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On the continued fraction expansion of certain

Engel series

Andrew Hone∗

September 14, 2015

Abstract

An Engel series is a sum of the reciprocals of an increasing sequence of
positive integers, which is such that each term is divisible by the previous
one. Here we consider a particular class of Engel series, for which each
term of the sequence is divisible by the square of the preceding one, and
find an explicit expression for the continued fraction expansion of the sum
of a generic series of this kind. As a special case, this includes certain series
whose continued fraction expansion was found by Shallit. A family of
examples generated by nonlinear recurrences with the Laurent property is
considered in detail, along with some associated transcendental numbers.

Keywords: continued fraction, nonlinear recurrence, transcendental num-
ber, Laurent property.

2010Mathematics Subject Classification: Primary 11J70; Secondary 11B37.

1 Introduction

Given a sequence of positive integers (xn), which is such that xn|xn+1 for all n,
the sum of the reciprocals is the Engel series

∞
∑

j=1

1

xj

=

∞
∑

j=1

1

y1y2 · · · yj
, (1.1)

where y1 = x1 and yn+1 = xn+1/xn for n ≥ 1. (It should be assumed that
(xn) is eventually increasing, which guarantees the convergence of the sum. A
brief introduction to Engel series can be found in [5].) In recent work [12],
we considered some particular series of this kind that are generated by certain
nonlinear recurrences of second order, and are such that the sequences (xn)
and (yn) appear interlaced in the continued fraction expansion. Here we start
from a sequence with the stronger property that x2

n|xn+1. Any initial 1s can be
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ignored, but in what follows it will be convenient to start with x1 = 1 and take
x2 ≥ 2, which implies xn ≥ 22

n−2

for n ≥ 2, and we may write

x1 = 1, xn =

n
∏

j=2

z2
n−j

j (1.2)

for some sequence of positive integers (zn) with z2 ≥ 2. The corresponding
Engel series is

S :=

∞
∑

j=1

1

xj

= 1 +

∞
∑

j=2

1

z2
j−2

2 z2
j−3

3 · · · zj
. (1.3)

Our main result will be to show that in the generic case, when z2 ≥ 3 and zn ≥ 2
for n ≥ 3, the continued fraction expansion of S has a universal structure, which
we present explicitly.

There is a precedent for these results in the work of Shallit, who first found
the continued fraction expansion of the sum

∞
∑

k=0

1

u2k
(1.4)

in [16], for integer u ≥ 3 (with u = 2 being a degenerate case), and went on [18]
to obtain the continued fraction for the more general series

∞
∑

k=0

1

uck
, (1.5)

where (ck) is a sequence of positive integers with some non-negative N such
that dn := cn+1 − 2cn ≥ 0 for all n ≥ N . If we set z2 = uc0 and zj = udj−3 for
j ≥ 3 in (1.3), and assume dn ≥ 0 for all n ≥ 0, then S− 1 coincides with (1.5).

1.1 Outline of the paper

In the next section we prove the main result, namely the expression for the
continued fraction expansion of a generic series of the form (1.3). Section 3 is
devoted to an infinite family of examples of series of this type, which are gen-
erated by nonlinear recurrences with the Laurent property. For such nonlinear
recurrence sequences, we show that the sum of the corresponding series (1.3)
is a transcendental number. In the fourth section we consider the continued
fractions obtained from certain degenerate cases, when either z2 = 2 or zn = 1
for n ≥ 3, and some particular examples of these degenerate cases are examined
in more detail. The final section contains some conclusions.
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2 Continued fractions

We use the notation

[a0; a1, a2, a3, . . . , aj , . . .] = a0 +
1

a1 +
1

a2 +
1

a3 + · · · 1

aj + · · ·
for continued fractions, and for the nth convergent of the continued fraction
[a0; a1, a2, . . .] we have

pn
qn

= [a0; a1, a2, . . . , an],

where the numerators pn and denominators qn are given in terms of the coeffi-
cients aj according to the matrix identity

(

a0 1
1 0

)(

a1 1
1 0

)

. . .

(

an 1
1 0

)

=

(

pn pn−1

qn qn−1

)

. (2.1)

For what follows, it will also be convenient to note the identity obtained by
taking the determinant of each side of (2.1), that is

pnqn−1 − pn−1qn = (−1)n+1. (2.2)

For other basic results on continued fractions, the reader is referred to [3].
To begin with, it is convenient to treat the factors z2, z3, . . . of the sequence

(xn) as variables. For the first few partial sums we find the continued fraction
expansions

S1 = 1, S2 =
z2 + 1

z2
= [1; z2], S3 =

z22z3 + z2z3 + 1

z22z3
= [1; z2−1, 1, z3−1, z2],

where the nth partial sum of (1.3) is denoted Sn. In general it is straightforward
to write Sn as a fraction, that is

Sn =

∑n−1
j=1

∏j

k=2 z
2n−k−2j−k

k

∏n

ℓ=j+1 z
2n−ℓ

ℓ + 1

z2
n−2

2 z2
n−3

3 · · · zn
, (2.3)

where the denominator is xn as given in (1.2); but the continued fraction ex-
pansion of the nth partial sum is best described recursively.

The basic pattern can be seen by looking at the continued fraction for the
fourth partial sum, which is

S4 = [1; z2 − 1, 1, z3 − 1, z2, z4 − 1, 1, z2 − 1, z3 − 1, 1, z2 − 1].

Observe that the first five coefficients are the same as those of S3, followed by
z4 − 1, 1, and then four more coefficients which almost coincide with the last
four in S3 in reverse order, except that there is z2 − 1 in place of the final z2 in
S3. This pattern persists, as described by the following

3



Proposition 2.1. Given the initial set of coefficients

[a
(3)
0 ; a

(3)
1 , a

(3)
2 , a

(3)
3 , a

(3)
4 ] = [1; z2 − 1, 1, z3 − 1, z2]

of the continued fraction expansion of S3, of length ℓ3 = 4, define a sequence

of sets of coefficients ({a(n)j }ℓn−1
j=0 ) with ℓn = 3 · 2n−2 − 1 for n = 3, 4, 5, . . .

recursively according to

a
(n+1)
j = a

(n)
j for j = 0, . . . , ℓn − 1,

a
(n+1)
ℓn

= zn+1 − 1, a
(n+1)
ℓn+1 = 1, a

(n+1)
ℓn+2 = a

(n)
ℓn−1 − 1,

and
a
(n+1)
j = a

(n)
2ℓn−j+1 for j = ℓn + 3, . . . , 2ℓn.

Then the nth partial sum of the series (1.3) has the continued fraction expansion

Sn = [a
(n)
0 ; a

(n)
1 , . . . , a

(n)
ℓn−1]. (2.4)

Proof: This can be done similarly to the proof in [18], but we prefer to use
matrix computations, in the same vein as [19]. The case n = 3 is easily verified
directly. Proceeding by induction, suppose that the continued fraction expan-

sion of Sn is given by (2.4), with coefficients a
(n)
j for j = 0, . . . ℓn − 1 with

ℓn = 3 · 2n−2 − 1 defined according the prescription above, and denote the nu-
merators and denominators of the convergents by pj and qj respectively; so the
final convergent gives

Sn =
pℓn−1

qℓn−1
, qℓn−1 = xn.

Then for the next finite continued fraction defined by this recursive procedure

there are a total of ℓn+1 = 2ℓn + 1 = 3 · 2n−1 − 1 coefficients, that is a
(n+1)
j

for j = 0, . . . ℓn+1 − 1, and for the convergents we use p̃j ,q̃j to denote numera-
tors/denominators, respectively. So by (2.1) we have

(

p̃ℓn+1−1 p̃ℓn+1−2

q̃ℓn+1−1 q̃ℓn+1−2

)

= Mn

(

zn+1 − 1 1
1 0

)(

1 1
1 0

)

M̃T
n , (2.5)

where

Mn =

(

a
(n)
0 1
1 0

)

· · ·
(

a
(n)
ℓn−1 1
1 0

)

=

(

pℓn−1 pℓn−2

qℓn−1 qℓn−2

)

and

M̃T
n =

(

a
(n)
ℓn−1 − 1 1

1 0

)(

a
(n)
ℓn−2 1
1 0

)

· · ·
(

a
(n)
1 1
1 0

)

=

(

a
(n)
ℓn−1 − 1 1

1 0

)(

a
(n)
ℓn−1 1
1 0

)−1

MT
n

(

a
(n)
0 1
1 0

)−1

=

(

qℓn−1 − qℓn−2 pℓn−1 − qℓn−1 + qℓn−2 − pℓn−2

qℓn−2 pℓn−2 − qℓn−2

)

,
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with T denoting transpose. Thus the equation (2.5) simplifies to yield

(

p̃ℓn+1−1 p̃ℓn+1−2

q̃ℓn+1−1 q̃ℓn+1−2

)

=

(

zn+1qℓn−1pℓn−1 + 1 zn+1pℓn−1∆n − 1
zn+1q

2
ℓn−1 zn+1qℓn−1∆n − 1

)

,

with ∆n = pℓn−1 − qℓn−1, where we have used the fact that

detMn =

∣

∣

∣

∣

pℓn−1 pℓn−2

qℓn−1 qℓn−2

∣

∣

∣

∣

= −1

by (2.2), since ℓn is odd. Hence we have

p̃ℓn+1−1 = zn+1qℓn−1pℓn−1 + 1, q̃ℓn+1−1 = zn+1q
2
ℓn−1 = xn+1,

so that

Sn+1 = Sn +
1

xn+1
=

pℓn−1

qℓn−1
+

1

zn+1q2ℓn−1

=
p̃ℓn+1−1

q̃ℓn+1−1

which is the required result.

Remark 2.2. Note that, mutatis mutandis, both the recursive structure of the
partial sums and the above inductive proof hold for the partial sums of an Engel
series (1.1) if, for some positive integer n0, the sequence (xn) satisfies the weaker
condition that x2

n|xn+1 for n ≥ n0 only. This is the analogue of the fact that for
the series (1.5) in [18], cn+1 − 2cn ≥ 0 need only hold for n ≥ N , for some N .

The finite continued fraction expansions of the partial sums immediately yield
the continued fraction for the full series (1.3), at least for a generic choice of
factors z2, z3, . . . of the sequence (xn).

Theorem 2.3. For integer factors z2 ≥ 3 and zn ≥ 2 for all n ≥ 3, the Engel
series (1.3) has the continued fraction expansion

S = [a0; a1, a2, . . . , aj , . . .] = [1; z2 − 1, 1, z3 − 1, z2, z4 − 1, 1, . . .] (2.6)

where the coefficients are given by aj = limn→∞ a
(n)
j .

Proof: The result follows from taking the limit n → ∞ in (2.4), provided that
none of the coefficients in the finite continued fractions vanish. To see that
this is so, note that only 1, z2 − 1, z2 and z3 − 1 appear as coefficients in the
continued fraction for S3, and all of these are non-zero with the above conditions
on the zj. At each step of the recursion in Proposition 2.1 only zn+1 − 1 ≥ 1

and a
(n+1)
ℓn+2 = a

(n)
ℓn−1 − 1 are potentially new coefficients, so we must check that

a
(n)
ℓn−1 − 1 cannot vanish. For n = 3 the last coefficient is a

(3)
4 = z2, so in S4

this gives a
(4)
7 = z2 − 1, while for n ≥ 4 we have a

(n)
ℓn−1 = a

(n−1)
1 = z2 − 1, so

a
(n+1)
ℓn+2 = z2 − 2, which is why we require z2 ≥ 3. Thus the only numbers that

appear as coefficients in the continued fraction expansion of S are 1, z2, z2 − 2
and zj − 1 for j ≥ 2, and none of these are zero.
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3 Nonlinear recurrence sequences

Among nonlinear recurrences of the form

xn+N xn = f(xn+1, . . . , xn+N−1), (3.1)

where f is a polynomial in N − 1 variables, there is a multitude of examples
which surprisingly generate integer sequences. In a wide variety of cases, the
recurrence (3.1) has the Laurent property: for certain special choices of f , all
of the iterates belong to the ring Z[x±1

0 , . . . , x±1
N−1]; as a consequence, if all

the initial values are 1 (or ±1), then each term of the sequence is an integer.
Such sequences were popularized by Gale [8, 9], and subsequently Fomin and
Zelevinsky found a useful technique - the Caterpillar Lemma [7] - which can be
used to prove the Laurent property in many cases, i.e. for recurrences coming
from cluster algebras [6] or in the more general setting of Laurent Phenomenon
(LP) algebras [14].

In [10, 11] we classified recurrences of second order, of the form

xn+2 xn = f(xn+1). (3.2)

For the Laurent property to hold, the recurrence (3.2) must belong to one of
three classes, depending on the form of f : (i) f(0) 6= 0, in which case one can
apply the framework of cluster algebras (when f is a binomial) or LP algebras
(when it is not); (ii) f(0) = 0, f ′(0) 6= 0; (iii) f(0) = f ′(0) = 0. In the first two
classes there are additional requirements on f , but in the third class one can
take f(x) = x2F (x) with arbitrary F ∈ Z[x].

In [12] we considered the case that f(x) = x2F (x), where F has positive in-
teger coefficients with F (0) = 1, and obtained the continued fraction expansion
of the sum

∑∞
j=1

1
xj
. In order to obtain an Engel series of the form (1.3), we

should instead choose F so that (3.2) becomes

xn+2 xn = xd1

n+1G(xn+1), (3.3)

where

d1 ≥ 3, G(x) ∈ Z≥0[x], degG = d2 ≥ 0, G(0) 6= 0, G(1) ≥ 3. (3.4)

From xn+2/x
2
n+1 = xn+1

xn
·xd1−3

n+1 G(xn+1), we see by induction that, starting with
the initial values x0 = x1 = 1, (xn) is a sequence of positive integers such that
x2
n|xn+1 with x2 = G(1) ≥ 3; hence also zn = xn/x

2
n−1 ≥ 3 for n ≥ 2.

Example 3.1. Taking d1 = 3, and G(x) = 3 for all x (so d2 = 0), the re-
currence (3.3) becomes xn+2xn = 3x3

n+1, which generates the sequence begin-
ning 1, 1, 3, 81, 531441, 5559060566555523, . . .. In this case the recurrence can be
solved explicitly to yield

xn = 3sn , sn =
5−

√
5

10

(

3 +
√
5

2

)n

+
5 +

√
5

10

(

3−
√
5

2

)n

− 1.
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The sum of the reciprocals is

S = 1 +
1

3
+

1

34
+

1

312
+

1

333
+ · · · = [1; 2, 1, 8, 3, 80, 1, 2, 8, 1, 2, 19682, . . .].

Remark 3.2. In the above example, S− 1 is a sum of the type (1.5) considered
in [18], with u = 3 and cn = sn−2. More generally, any recurrence of the form
xn+2xn = uxd1

n+1 with d1 ≥ 3 and x0 = x1 = 1 generates a sum of this type.

For most choices of G it is not possible to give the general solution of the non-
linear recurrence (3.3) in closed form. Nevertheless, one can adapt the methods
of Aho and Sloane [2] to write a formula giving precise asymptotic information.
By rewriting (3.3) in terms of logarithms we find that Λn = log xn satisfies

Λn+1 − (d1 + d2)Λn + Λn−1 = log c+ αn, with αn = log

(

G(xn)

cxd2
n

)

, (3.5)

where G(x) = cxd2 + lower order. Since αn = log(1 + O(x−1
n )) = O(x−1

n ) as
n → ∞, the leading order behaviour of Λn is determined by the linear expression
on the left-hand side of (3.5), which has the characteristic equation λ2 − (d1 +
d2)λ+ 1 = 0, with largest root

λ =
d1 + d2 +

√

(d1 + d2)2 − 4

2
> 2. (3.6)

The next two statements are equivalent to analogous formulae obtained for the
sequences considered in [12].

Proposition 3.3. For the initial conditions x0 = x1 = 1, the logarithm Λn =
log xn of each term of the sequence satisfying (3.3) is given by the formula

Λn =

(

(1 − λ−1)λn − (1− λ)λ−n

λ− λ−1
− 1

)

log c−
1

d1+d2−2+

n−1
∑

k=1

(

λn−k − λk−n

λ− λ−1

)

αk,

(3.7)
where αk is defined as in (3.5) and λ as in (3.6).

Corollary 3.4. To leading order, the asymptotic approximation of the logarithm
Λn is given by

Λn ∼ Cλn, (3.8)

where

C =
1

d1 + d2 − 2

(

1− λ−1

λ− λ−1

)

log c+
1

λ− λ−1

∞
∑

k=1

λ−kαk,

and for the terms of the sequence xn ∼ c−
1

d1+d2−2 exp(Cλn).

The asymptotic behaviour of these nonlinear recurrence sequences is enough
to show that the sum of the corresponding Engel series is transcendental.
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Theorem 3.5. Suppose that the sequence (xn) with initial values x0 = x1 = 1
is generated by the recurrence (3.3) for some G satisfying the conditions (3.4).
Then the sum S in (1.3) is a transcendental number.

Proof: This is essentially identical to the proof of Theorem 4 in [12], so here
we only sketch the argument. Recall that Roth’s theorem says that if α is an
irrational algebraic number then for an arbitrary fixed δ > 0 there are only
finitely many rational approximations p/q for which

∣

∣

∣

∣

α− p

q

∣

∣

∣

∣

<
1

q2+δ
. (3.9)

The number S has an infinite continued fraction expansion, so it is irrational.
From the asymptotics (3.8) it follows that for any ǫ > 0 the growth condition

xn+1 > xλ−ǫ
n (3.10)

holds for all sufficiently large n. By making a comparison with a geometric sum,
this gives

∣

∣

∣

∣

S − pℓn−1

qℓn−1

∣

∣

∣

∣

=

∞
∑

j=n+1

1

xj

<
1

xλ−ǫ−ǫ′
n

=
1

qλ−ǫ−ǫ′

ℓn−1

for any ǫ′ > 0 and n large enough. So if ǫ and ǫ′ are chosen such that λ−ǫ−ǫ′ =
2 + δ > 2, then α = S has infinitely many rational approximations satisfying
(3.9), and hence must be transcendental.

Example 3.6. Taking d1 = 3, and G(x) = 2x + 1 for all x (so d2 = 1), the
recurrence (3.3) becomes

xn+2xn = x3
n+1(2xn+1 + 1), (3.11)

which generates the sequence

1, 1, 3, 189, 852910317, 5599917937724687764238078261637795, . . .

with leading order asymptotics

xn ∼ eC(2+
√
3)n

√
2

, C ≈ 0.107812043.

The sum of the reciprocals is the transcendental number

S = [1; 2, 1, 20, 3, 23876, 1, 2, 20, 1, 2, 7697947188058154, . . .] ≈ 1.3386243.

Engel series of the form (1.3) can also be generated by nonlinear recurrences
of higher order. For instance, one can take a recurrence of third order,

Xn+3Xn = Xe1
n+1X

e2
n+2H(Xn+1, Xn+2), with e1 ≥ 1, e2 ≥ 2, (3.12)

8



where the polynomial H(X,Y ) ∈ Z≥0[X,Y ] is not divisible by either of its
arguments. It is straightforward to show that the Laurent property holds for
this recurrence, and from Xn+3/X

2
n+2 =

Xn+1

Xn
·Xe1−1

n+1 Xe2−2
n+2 H(Xn+1, Xn+2), it

is easy to see by induction that the initial values X0 = X1 = X2 = 1 generate
an integer sequence with X2

n|Xn+1 for all n ≥ 0. Thus the sum of reciprocals
starting from the index 2, that is

S′ :=

∞
∑

j=2

1

Xj

, (3.13)

is an Engel series of the form (1.3). Note that the condition H(1, 1) ≥ 3 should
be imposed, in order for Theorem 2.3 to apply to this series.

A particular class of recurrences of the form (3.12) can be obtained by fac-
torizing the terms of a sequence satisfying (3.3) as xn = XnXn+1, which lifts
the second order recurrence to

Xn+3Xn = (Xn+1Xn+2)
d1−1G(Xn+1Xn+2). (3.14)

For a generic polynomial H(Xn+1, Xn+2) on the right-hand-side of (3.12), it is
not immediately obvious which term will be dominant as n → ∞, but in the
special case (3.14) the same techniques as for the second order recurrence can
be applied directly, to show that the leading order asymptotics is logXn ∼ C′λn

for some C′ > 0, where λ is given by (3.6). This means that Theorem 3.5 applies
to the series (3.13) as well.

Example 3.7. Setting xn = XnXn+1 in (3.11) gives the recurrence

Xn+3Xn = X2
n+1X

2
n+2(2Xn+1Xn+2 + 1), (3.15)

which generates the sequence beginning

1, 1, 1, 3, 63, 13538259, 413636490314204194515563505, . . . .

To leading order, logXn ∼ C′(2 +
√
3)n, with C′ ≈ 0.0227833. The sum of the

reciprocals in (3.13) is the transcendental number

S′ = [1; 2, 1, 6, 3, 3410, 1, 2, 6, 1, 2, 2256800700104, . . .] ≈ 1.3492064.

For other examples of transcendental numbers whose complete continued
fraction expansion is known, see [4] and references.

4 Degenerate cases

If either z2 = 2 or zn = 1 for some n ≥ 3, then one of the coefficients in the
continued fraction becomes zero, and Theorem 2.3 is no longer valid. To obtain
a continued fraction with non-zero coefficients, one can use the replacement rule
[. . . , a, 0, b, . . .] −→ [. . . , a+ b, . . .] (see Proposition 3 in [15]) to remove the zero.
Each such replacement, decreases the length of a finite continued fraction by
two, so in degenerate cases the length of the continued fraction expansion of Sn

is typically shorter than the generic value ℓn = 3 · 2n−2 − 1. Here we present
the expansion for two particular degenerate cases, omitting details of the proof.
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4.1 The case z2 = 2

For generic values of the factors zj, the sequence of lengths ℓn of partial sums
begins 1, 2, 5, 11, 23 for n = 1, 2, 3, 4, 5. When z2 = 2 and zj ≥ 2 for all j ≥ 3,
the first few continued fractions for the partial sums of S are S1 = 1,

S2 = [1; 2], S3 = [1; 1, 1, z3−1, 2], S4 = [1; 1, 1, z3−1, 2, z4−1, 1, 1, z3−1, 2],

which are of the same length as in the generic case, except for S4 being of
length 10, since at the end [. . . , 1, 1] → [. . . , 2]. The first zero appears in S5,
which contains a single coefficient z2 − 2, so removing this and making the final
replacement [. . . , 1, 1] → [. . . , 2], results in the length being 20:

S5 = [1; 1, 1, z3−1, 2, z4−1, 1, 1, z3−1, 1, 1, z5−1, 2, z3−1, 1, 1, z4−1, 2, z3−1, 2].

Thereafter the pattern continues with the continued fraction doubling in length
at each step, as described by the following

Theorem 4.1. When z2 = 2 and zj 6= 1 for j ≥ 3, the Engel series (1.3) has
the continued fraction expansion

S = [a0; a1, a2, . . . , aj , . . .] = [1; 1, 1, z3 − 1, 2, z4 − 1, 1, . . .]

with coefficients given by aj = limn→∞ a
(n)
j , where ({a(n)j }ℓn−1

j=0 ), the sequence of
sets of coefficients of the finite continued fractions for partial sums Sn, of length
ℓn = 5 · 2n−3 for n = 4, 5, . . ., is defined by starting from

[a
(4)
0 ; a

(4)
1 , . . . , a

(4)
9 ] = [1; 1, 1, z3 − 1, 2, z4 − 1, 1, 1, z3 − 1, 2],

and obtaining subsequent coefficients according to

a
(n+1)
j = a

(n)
j for j = 0, . . . , ℓn − 2,

a
(n+1)
ℓn−1 = 1, a

(n+1)
ℓn

= 1, a
(n+1)
ℓn+1 = zn+1 − 1,

a
(n+1)
j = a

(n)
2ℓn−j+1 for j = ℓn + 2, . . . , 2ℓn − 2, and a

(n+1)
2ℓn−1 = 2.

In order to obtain a sequence (xn) of this degenerate type from a second
order recurrence of the form (3.3), the conditions (3.4) should be modified so
that G(1) = 2, which requires that G(x) = xd2 +1 for some non-negative integer
d2. So the recurrence becomes

xn+2 xn = xd1

n+1(x
d2

n+1 + 1), (4.1)

with d1 ≥ 3, d2 ≥ 0. The results of Proposition 3.3, Corollary 3.4 and Theorem
3.5 all apply without alteration to sequences obtained from (4.1).

Example 4.2. Taking d1 = 3, and G(x) = x+1 for all x, the recurrence (3.3)
becomes xn+2xn = x3

n+1(xn+1 + 1), which generates the sequence

1, 1, 2, 24, 172800, 37150633525248000000, . . .

with asymptotics xn ∼ eC(2+
√
3)n, C ≈ 0.06224548. The sum of the reciprocals

is the transcendental number

S = [1; 1, 1, 5, 2, 299, 1, 1, 5, 1, 1, 1244167199, 2, 5, 1, 1, 299, . . .] ≈ 1.54167245.

10



4.2 The case zj = 1 for j ≥ 3

If we set z2 = u and all other factors zj = 1 then xn = u2n−2

for n ≥ 2; the
expansion (2.6) is no longer valid because each coefficient zj − 1 becomes zero

for j ≥ 3. In that case, the sum of the reciprocals is S = 1 +
∑∞

k=0 u
−2k , so

that S − 1 coincides with (1.4). The continued fractions for the partial sums
were first obtained in [16], and a nonrecursive description was given in [17]. The
sequence of lengths begins 1,2,3,5,9,17, with ℓn = 2n−2 + 1 for n ≥ 3, and the
full continued fraction is

S = [1;u− 1, u+ 2, u, u, u− 2, u, u+ 2, u, u− 2, u+ 2, u, u− 2, u, u, u+ 2, u, . . .]

for u 6= 2. The only numbers that appear as coefficients in this continued
fraction are 1, u− 2, u− 1, u, u+ 2.

However, the case u = 2 is special, since some of the coefficients in the above
expansion become zero. The sequence of lengths of partial sums starts with
1,2,3,5,7,11, and ℓn = 2n−3 + 3 for n ≥ 4. Only the numbers 1,2,4,6 appear as
coefficients in the continued fraction for the series, which is

S = [1; 1, 4, 2, 4, 4, 6, 4, 2, 4, 6, 2, 4, 6, 4, 4, 2, 4, 6, . . .].

The argument used to prove Theorem 3.5, based on Roth’s theorem, does
not apply to the partial sums of the series (1.4), since the sequence (xn) does not
grow fast enough: in contrast to (3.10), it satisfies the recurrence xn+1 = x2

n.
However, a direct proof of transcendence of (1.4), valid for all integers u ≥ 2,
was first given by Kempner [13]; various alternative proofs are collected in [1].

5 Conclusions

We have found the continued fraction expansion for an Engel series of the special
type (1.3). In some cases, coming from nonlinear recurrence sequences, it has
been shown that this produces transcendental numbers. We expect that the
sum (1.3) should be transcendental for any choice of the factors z2 ≥ 2 and
zj ≥ 1 for j ≥ 3. However, we do not know of a simple way to prove this in
general.
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