Downloaded from
https://kar.kent.ac.uk/50921/ The University of Kent's Academic Repository KAR

The version of record is available from
 https://doi.org/10.1007/s00605-015-0844-2

This document version
Publisher pdf

DOI for this version

Licence for this version UNSPECIFIED

Additional information

Versions of research works

Versions of Record

If this version is the version of record, it is the same as the published version available on the publisher's web site. Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record in KAR. If you believe that your, or a third party's rights have been compromised through this document please see our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository\#policies).

Continued fractions for some transcendental numbers

Andrew N. W. Hone

Monatshefte für Mathematik
ISSN 0026-9255
Monatsh Math
DOI 10.1007/s00605-015-0844-2

Monatshefte für Mathematik

Volume $178 \cdot$ Number $4 \cdot 2015$

Your article is published under the Creative Commons Attribution license which allows users to read, copy, distribute and make derivative works, as long as the author of the original work is cited. You may selfarchive this article on your own website, an institutional repository or funder's repository and make it publicly available immediately.

Continued fractions for some transcendental numbers

Andrew N. W. Hone ${ }^{1}{ }^{(D)}$

Received: 16 September 2015 / Accepted: 13 November 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract We consider series of the form

$$
\frac{p}{q}+\sum_{j=2}^{\infty} \frac{1}{x_{j}}
$$

where $x_{1}=q$ and the integer sequence $\left(x_{n}\right)$ satisfies a certain non-autonomous recurrence of second order, which entails that $x_{n} \mid x_{n+1}$ for $n \geq 1$. It is shown that the terms of the sequence, and multiples of the ratios of successive terms, appear interlaced in the continued fraction expansion of the sum of the series, which is a transcendental number.

Keywords Continued fraction • Non-autonomous recurrence • Transcendental number

Mathematics Subject Classification Primary 11J70; Secondary 11B37

1 Introduction

In recent work [5], we considered the integer sequence

$$
\begin{equation*}
1,1,2,12,936,68408496,342022190843338960032, \ldots \tag{1.1}
\end{equation*}
$$

[^0](sequence A112373 in Sloane's Online Encyclopedia of Integer Sequences), which is generated from the initial values $x_{0}=x_{1}=1$ by the nonlinear recurrence relation
\[

$$
\begin{equation*}
x_{n+2} x_{n}=x_{n+1}^{2}\left(x_{n+1}+1\right) \tag{1.2}
\end{equation*}
$$

\]

and proved some observations of Hanna, namely that the sum

$$
\begin{equation*}
\sum_{j=1}^{\infty} \frac{1}{x_{j}} \tag{1.3}
\end{equation*}
$$

has the continued fraction expansion

$$
\begin{equation*}
\left[x_{0} ; y_{0}, x_{1}, y_{1}, x_{2}, \ldots, y_{j-1}, x_{j}, \ldots\right], \tag{1.4}
\end{equation*}
$$

where $y_{j}=x_{j+1} / x_{j} \in \mathbb{N}$ and we use the notation

$$
\left[a_{0} ; a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots\right]=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\ldots \frac{1}{a_{n}+\ldots}}}}
$$

for continued fractions. Furthermore, we generalized this result by obtaining the explicit continued fraction expansion for the sum of reciprocals (1.3) in the case of a sequence $\left(x_{n}\right)$ generated by a nonlinear recurrence of the form

$$
\begin{equation*}
x_{n+1} x_{n-1}=x_{n}^{2} F\left(x_{n}\right), \tag{1.5}
\end{equation*}
$$

with $F(x) \in \mathbb{Z}_{\geq 0}[x]$ and $F(0)=1$; so (1.2) corresponds to the particular case $F(x)=x+1$.

All of the recurrences (1.5) exhibit the Laurent phenomenon [4], and starting from $x_{0}=x_{1}=1$ they generate a sequence of positive integers satisfying $x_{n} \mid x_{n+1}$. The latter fact means that the sum (1.3) is an Engel series (see Theorem 2.3 in Duverney's book [3], for instance).

The purpose of this note is to present a further generalization of the results in [5], by considering a sum

$$
\begin{equation*}
S=\frac{p}{q}+\sum_{j=2}^{\infty} \frac{1}{x_{j}} \tag{1.6}
\end{equation*}
$$

with the terms x_{n} satisfying the recurrence

$$
\begin{equation*}
x_{n+1} x_{n-1}=x_{n}^{2}\left(z_{n} x_{n}+1\right) \tag{1.7}
\end{equation*}
$$

for $n \geq 2$, where $\left(z_{n}\right)$ is a sequence of positive integers, $x_{1}=q$, and x_{2} is specified suitably. Observe that, in contrast to (1.5), the recurrence (1.7) can be viewed as a
non-autonomous dynamical system for x_{n}, because the coefficient z_{n} can vary independently (unless it is taken to be $G\left(x_{n}\right)$, for some function G). The same argument as used in [5], based on Roth's theorem, shows the transcendence of any number S defined by a sum of the form (1.6) with such a sequence $\left(x_{n}\right)$.

2 The main result

We start with a rational number written in lowest terms as p / q, and suppose that the continued fraction of this number is given as

$$
\begin{equation*}
\frac{p}{q}=\left[a_{0} ; a_{1}, a_{2}, a_{3}, \ldots, a_{2 k}\right] \tag{2.1}
\end{equation*}
$$

for some $k \geq 0$. Note that, in accordance with a comment on p. 230 of [7], there is no loss of generality in assuming that the index of the final coefficient is even. For the convergents we denote numerators and denominators by p_{n} and q_{n}, respectively, and use the correspondence between matrix products and continued fractions, which says that

$$
\mathbf{M}_{n}:=\left(\begin{array}{cc}
p_{n} & p_{n-1} \tag{2.2}\\
q_{n} & q_{n-1}
\end{array}\right)=\left(\begin{array}{cc}
a_{0} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
a_{1} & 1 \\
1 & 0
\end{array}\right) \ldots\left(\begin{array}{cc}
a_{n} & 1 \\
1 & 0
\end{array}\right)
$$

yielding the determinantal identity

$$
\begin{equation*}
\operatorname{det} \mathbf{M}_{n}=p_{n} q_{n-1}-p_{n-1} q_{n}=(-1)^{n+1} \tag{2.3}
\end{equation*}
$$

Now for a given sequence $\left(z_{n}\right)$ of positive integers, we define a new sequence $\left(x_{n}\right)$ by

$$
\begin{equation*}
x_{1}=q, \quad x_{n+1}=x_{n} y_{n-1}\left(x_{n} z_{n}+1\right) \text { for } n \geq 1, \tag{2.4}
\end{equation*}
$$

where

$$
\begin{equation*}
y_{0}=q_{2 k-1}+1, \quad y_{n}=\frac{x_{n+1}}{x_{n}} \text { for } n \geq 1 \tag{2.5}
\end{equation*}
$$

It is clear from (2.4) and (2.5) that $\left(x_{n}\right)$ is an increasing sequence of positive integers such that $x_{n} \mid x_{n+1}$ for all $n \geq 1 ;\left(y_{n}\right)$ also consists of positive integers, and is an increasing sequence as well. The recurrence (1.7) for $n \geq 2$ follows immediately from (2.4) and (2.5).

Theorem 2.1 The partial sums of (1.6) are given by

$$
S_{n}:=\frac{p}{q}+\sum_{j=2}^{n} \frac{1}{x_{j}}=\left[a_{0} ; a_{1}, \ldots, a_{2(k+n-1)}\right]
$$

for all $n \geq 1$, where the coefficients appearing after $a_{2 k}$ are

$$
a_{2 k+2 j-1}=y_{j-1} z_{j}, \quad a_{2 k+2 j}=x_{j} \quad \text { for } \quad j \geq 1
$$

Proof For $n=1, S_{1}$ is just (2.1), and we note that $q_{2 k-1}=y_{0}-1$ and $q_{2 k}=q=x_{1}$. Proceeding by induction, we suppose that $q_{2 k+2 n-3}=y_{n-1}-1$ and $q_{2 k+2 n-2}=x_{n}$, and calculate the product

$$
\begin{aligned}
\mathbf{M}_{2 k+2 n} & =\mathbf{M}_{2 k+2 n-2}\left(\begin{array}{cc}
a_{2 k+2 n-1} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
a_{2 k+2 n} & 1 \\
1 & 0
\end{array}\right) \\
& =\mathbf{M}_{2 k+2 n-2}\left(\begin{array}{cc}
y_{n-1} z_{n} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
x_{n} & 1 \\
1 & 0
\end{array}\right) \\
& =\left(\begin{array}{ll}
p_{2 k+2 n-2} & p_{2 k+2 n-3} \\
q_{2 k+2 n-2} & q_{2 k+2 n-3}
\end{array}\right)\left(\begin{array}{cc}
x_{n} y_{n-1} z_{n} & y_{n-1} z_{n} \\
x_{n} & 1
\end{array}\right) .
\end{aligned}
$$

By making use of (2.4) and (2.5), this gives $p_{2 k+2 n}=\left(x_{n} y_{n-1} z_{n}+1\right) p_{2 k+2 n-2}+$ $x_{n} p_{2 k+2 n-3}$,

$$
\begin{aligned}
q_{2 k+2 n-1} & =y_{n-1} z_{n} q_{2 k+2 n-2}+q_{2 k+2 n-3}=x_{n} y_{n-1} z_{n}+y_{n-1}-1 \\
& =\frac{x_{n+1}}{x_{n}}-1=y_{n}-1,
\end{aligned}
$$

and

$$
\begin{aligned}
q_{2 k+2 n} & =\left(x_{n} y_{n-1} z_{n}+1\right) q_{2 k+2 n-2}+x_{n} q_{2 k+2 n-3} \\
& =\left(x_{n} y_{n-1} z_{n}+1\right) x_{n}+x_{n}\left(y_{n-1}-1\right)=x_{n+1},
\end{aligned}
$$

which are the required denominators for the $(2 k+2 n-1)$ th and $(2 k+2 n)$ th convergents. Thus we have

$$
S_{n+1}=S_{n}+\frac{1}{x_{n+1}}=\frac{p_{2 k+2 n-2}}{q_{2 k+2 n-2}}+\frac{1}{q_{2 k+2 n}}=\frac{1}{q_{2 k+2 n}}\left(\frac{x_{n+1}}{x_{n}} p_{2 k+2 n-2}+1\right) .
$$

From (2.3) and (2.4), the bracketed expression above can be rewritten as

$$
\begin{aligned}
& \left(y_{n-1}\left(x_{n} z_{n}+1\right)-q_{2 n+2 k-3}\right) p_{2 k+2 n-2}+q_{2 n+2 k-2} p_{2 k+2 n-3} \\
& \quad=\left(y_{n-1}\left(x_{n} z_{n}+1\right)-y_{n-1}+1\right) p_{2 k+2 n-2}+x_{n} p_{2 k+2 n-3}
\end{aligned}
$$

giving

$$
S_{n+1}=\frac{1}{q_{2 k+2 n}}\left(\left(x_{n} y_{n-1} z_{n}+1\right) p_{2 k+2 n-2}+x_{n} p_{2 k+2 n-3}\right)=\frac{p_{2 k+2 n}}{q_{2 k+2 n}}
$$

which is the required result.
Upon taking the limit $n \rightarrow \infty$ we obtain the infinite continued fraction expansion for the sum S, which is clearly irrational. To show that S is transcendental, we need the following growth estimate for x_{n} :

Lemma 2.2 The terms of a sequence defined by (2.4) satisfy

$$
x_{n+1}>x_{n}^{5 / 2}
$$

for all $n \geq 3$.
Proof Since $\left(x_{n}\right)$ is an increasing sequence, the recurrence relation (1.7) gives

$$
x_{n+1}>\frac{x_{n}^{3}}{x_{n-1}}>x_{n}^{2}
$$

for $n \geq 2$. Hence $x_{n-1}<x_{n}^{1 / 2}$ for $n \geq 3$, and putting this back into the first inequality above yields $x_{n+1}>x_{n}^{3} / x_{n}^{1 / 2}=x_{n}^{5 / 2}$, as required.

The preceding growth estimate for x_{n} means that S can be well approximated by rational numbers.

Theorem 2.3 The sum

$$
S=\frac{p}{q}+\sum_{j=2}^{\infty} \frac{1}{x_{j}}=\left[a_{0} ; a_{1}, \ldots, a_{2 k}, y_{0} z_{1}, x_{1}, y_{1} z_{2}, \ldots, y_{j-1} z_{j}, x_{j}, \ldots\right]
$$

is a transcendental number.

Proof This is the same as the proof of Theorem 4 in [5], which we briefly outline here. Let $P_{n}=p_{2 k+2 n-2}$ and $Q_{n}=q_{2 k+2 n-2}$. Approximating the irrational number S by the partial sum $S_{n}=P_{n} / Q_{n}$, then using Lemma 2.2 and a comparison with a geometric sum, gives the upper bound

$$
\left|S-\frac{P_{n}}{Q_{n}}\right|=\sum_{j=n+1}^{\infty} \frac{1}{x_{j}}<\frac{1}{x_{n}^{5 / 2-\epsilon}}=\frac{1}{Q_{n}^{5 / 2-\epsilon}}
$$

for any $\epsilon>0$, whenever n is sufficiently large. Roth's theorem [6] (see also chapter VI in [1]) says that, for an arbitrary fixed $\kappa>2$, an irrational algebraic number α has only finitely many rational approximations P / Q for which $\left|\alpha-\frac{P}{Q}\right|<\frac{1}{Q^{\kappa}}$; so S is transcendental.

For other examples of transcendental numbers whose continued fraction expansion is explicitly known, see [2] and references therein.

3 Examples

The autonomous recurrences (1.5) considered in [5], where the polynomial F has positive integer coefficients and $F(0)=1$, give an infinite family of examples. In that case, one has $p=1$ and $x_{1}=q=1$, so that $k=0, y_{0}=1$ and $z_{n}=$
$\left(F\left(x_{n}\right)-1\right) / x_{n}$. More generally, one could take $z_{n}=G\left(x_{n}\right)$ for any non-vanishing arithmetical function G.

In general, it is sufficient to take the initial term in (1.6) lying in the range $0<$ $p / q \leq 1$, since going outside this range only alters the value of a_{0}. As a particular example, we take

$$
\frac{p}{q}=\frac{2}{7}=[0 ; 3,2], \quad z_{n}=n \text { for } n \geq 1,
$$

so that $k=1$, and $q_{1}=3$ which gives $y_{0}=2$. Hence $x_{1}=7, x_{2}=112$, and the sequence $\left(x_{n}\right)$ continues with

$$
403200,1755760043520000,53695136666462381094317154204367872000000, \ldots .
$$

The sum S is the transcendental number

$$
\frac{2}{7}+\frac{1}{112}+\frac{1}{403200}+\frac{1}{1755760043520000}+\cdots \approx 0.2946453373015879
$$

with continued fraction expansion

$$
[0 ; 3,2,2,7,32,112,10800,403200,17418254400,1755760043520000, \ldots] .
$$

Acknowledgments This work is supported by Fellowship EP/M004333/1 from the Engineering and Physical Sciences Research Council. The original inspiration came from Paul Hanna's observations concerning the nonlinear recurrence sequences described in [5], which were communicated via the Seqfan mailing list. The author is grateful to Jeffrey Shallit for helpful correspondence on related matters.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Cassels, J.W.S.: An Introduction to Diophantine Approximation. Cambridge University Press, Cambridge (1957)
2. Davison, J.L., Shallit, J.O.: Continued fractions for some alternating series. Monatsh. Math. 111, 119126 (1991)
3. Duverney, D.: Number Theory: An Elementary Introduction Through Diophantine Problems, World Scientific (2010)
4. Fomin, S., Zelevinsky, A.: The Laurent Phenomenon. Adv. Appl. Math. 28, 119-144 (2002)
5. Hone, A.N.W.: Curious continued fractions, nonlinear recurrences and transcendental numbers. J. Integer Seq. 18 (2015) (Article 15.8.4)
6. Roth, K.F.: Rational approximations to algebraic numbers. Mathematika 2, 1-20 (1955)
7. Shallit, J.O.: Simple continued fractions for some irrational numbers. II. J. Number Theory 14, 228-231 (1982)

[^0]: Communicated by A. Constantin.
 \boxtimes Andrew N. W. Hone
 anwh@kent.ac.uk; A.N.W.Hone@kent.ac.uk

 1 School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury CT2 7NF, UK

