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Abstract: Data analysis has become an important field over the last decades. The
growing amount of data demands new analytical methodologies in order to extract
relevant knowledge. Clustering is one of the most competitive techniques in this context.
Using a dataset as a starting point, these techniques aim to blindly group the data
by similarity. Among the different areas, manifold identification is currently gaining
importance. Spectral-based methods, which are the mostly used methodologies in this
area, are however sensitive to metric parameters and noise. In order to solve these
problems, new bio-inspired techniques have been combined with different heuristics to
perform the clustering solutions and stability, specially for dense datasets. Ant Colony
Optimization (ACO) is one of these new bio-inspired methodologies. This paper presents
an extension of a previous algorithm named Spectral-based ACO Clustering (SACOC).
SACOC is a spectral-based clustering methodology used for manifold identification. This
work is focused on improving this algorithm through the Nyström extension. The new
algorithm, named SACON, is able to deal with Dense Data problems. We have evaluated
the performance of this new approach comparing it with online clustering algorithms and
the Nyström extension of the Spectral Clustering algorithm using several datasets.

Keywords: Ant Colony Optimization, Clustering, Data Mining, Machine Learning,
Spectral, Nyström, SACON, SACOC

1 Introduction

Data analysis is currently a growing field [1]. The
importance of analysing these data quantities is growing
as a consequence of Social interactions, smart devices,
WiFi and networks, etc. Several methodologies have
been extended in order to deal with these problems.
Two of the most recent methodologies in Data Mining
are based on MapReduce [1] and online algorithms
[2]. The former is an approach which was designed
for parallelizing computation. Using several nodes it
distributes some calculus in two steps the mapper and
the reducer step. Online analysis is a methodology where
data instances are only processed once and the system
keeps no information about old instances. This reduces
the memory usage and allows the algorithms to work
with Dense Data.

There are several Data Mining approaches which deal
with Dense Data. The most relevant are those based on

Supervised [3] and Unsupervised Learning [3]. Because
supervised techniques usually need human assistant by a
manual labelling process, and this is costly, unsupervised
techniques are gaining importance in this area [2]. One of
the most relevant unsupervised techniques is clustering.
Clustering is defined as the process of grouping data
blindly, using a similarity criterion. These methods have
been extensively used in several and heterogeneous fields
[3].

Clustering techniques can be divided in several
sub-areas [3] such as centroid-based, medoid-based,
hierarchical and continuity-based among others. This
work is based on the latter. Continuity-based clustering
is a methodology focused on the identification of
manifolds within the data. These manifolds are
structures which are defined by the data points inside
their search space [4]. The main idea behind this work
is to extend a previous continuity-based algorithm to a
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Dense Data approach. The algorithm, named SACOC
(Spectral-based ACO Clustering algorithm) [5], is a
bio-inspired clustering algorithm based on Ant Colony
Optimization.

Ant Colony Optimization [6] algorithms are based
on the foraging behaviour of the ants when they need
to find the shortest path between their nest and the
food source. The ants use a methodology based on
pheromones to indicate the path that they have followed.
The evaporation of these pheromones is used to choose
the best path. This idea can be extended to optimization
problems and has been successfully applied in several
fields, such as Data Mining [7, 8].

This work aims to extend a previous SACOC
the Nyström extension [9]. This extension applies a
space reduction using a subset of the dataset. It
guarantees accurate solutions even when the reduction
has been applied. The new algorithm designed, called
SACON, has been evaluated using several continuity-
based datasets and it has been compared against Online
Clustering algorithms and the Nyström extension of
Spectral Clustering.

The paper is structured as follows: Section 2 presents
the related work, Section 3 introduces the SACOC
algorithm which is extended in Section 4 to create
the new SACON algorithm. Section 5 shows the
experimental setup applied in the experiments of Section
6. Finally, the last section explains the conclusions.

2 Related Work

Following sections will be focused on provide a general
description of the clustering problem, include some issues
about ACO for classification and clustering.

2.1 Clustering Large Data

Clustering has been widely used in several and
heterogeneous fields. Important challenges of large data
analysis is the online analysis. Clustering methods have
become promising techniques in this field, as these
algorithms can deal with unlabelled data.

The idea behind online clustering algorithm is to
analyse this data using real-time techniques. These
techniques usually need to deal with large data
quantities. The main problem of these algorithms is that
they need a specific space to update the information.
This limits the possibilities of the new algorithm,
producing for example, that some clustering algorithms
might not be easily adapted to this kind of analysis [2].

One of the main tools used for online clustering
analysis is the Massive On-line Analysis (MOA) tool.
This framework provides the following online clustering
algorithms:

• Online K-means [2]: This online algorithm updates
the centroid position when a new instance arrives.
Only one centroid is updated per iteration. It is
similar to classical K-means algorithm.

• ClusTree [10]: This online algorithm iteratively
updates the information of the clusters. It is able
to consider the speed of the data stream generating
the concept of the age of the object. It also
maintains stream summaries.

• CluStream [11]: This algorithm combines offline
clustering and online clustering in order to provide
partial clustering solutions which measure the
evolution of the clusters.

All of these algorithms have been designed in order
to identify more properties of the data stream than the
final clusters in a specific moment.

2.2 Continuity-based and Spectral Clustering

This section explains the Spectral Clustering Algorithm
(see Algorithm 1) which is one of the most relevant
continuity-based clustering algorithms. The algorithm
starts generating a Similarity Graph among the data
instances (line 1 of Algorithm 1), pair to pair. There are
three main methodologies, i.e., graphs, which are used
in these techniques [12]:

1. The ✏-neighbourhood graph: all the
components whose pairwise distance is smaller
than ✏ are connected.

2. The k-nearest neighbour graphs: the vertex
vi is connected with vertex vj if vj is among the
k-nearest neighbours of vi.

3. The fully connected graph: all points with
positive similarity are connected with each other.

This work is centred in the fully connected graph.
One of the most important metrics used in Spectral
Clustering is the RBF kernel [14] defined by:

s(xi, xj) = e−σ||xi−xj ||
2

(1)

The second step is related to the study of the
eigenvectors of the Laplacian Matrix of the Similarity
Graph (lines 2 and 3 of Algorithm 1). Depending on the
Laplacian Matrix calculation, there are three different
techniques related to Spectral Clustering [12]:

1. Unnormalized Spectral Clustering It defines
the Laplacian matrix as: L = D −W

2. Normalized Spectral Clustering It defines the
Laplacian matrix as: Lsym = D−1/2LD−1/2 = I −
D−1/2WD−1/2

3. Random Walks-based Normalized Spectral
Clustering It defines the Laplacian matrix as:
Lrw = D−1L = I −D−1W

In these equations I is the identity matrix, D represents
the diagonal matrix whose (i, i)-element is the sum of
the Similarity Matrix ith row and W represents the
Similarity Graph (see Algorithm 1, line 2). Once the
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Figure 1 Spectral Clustering process from the original dataset to the final clustering results (left to right): the original
data, the partition in the projective space and the final discrimination.

Algorithm 1 Normalized Spectral Clustering according
to Ng et al. (2001)[13]

Require: A dataset of n elements X = {x1, . . . , xn}
and a fixed number of clusters k.

Ensure: A set of clusters C = {C1, . . . , Ck} which is a
partition of X

1: Form the Similarity Graph W 2 Rn⇥n defined by
Wij = e−σ||xi−xj ||

2

if i 6= j, and Wii = 0.
2: Define D to be the diagonal matrix whose (i, i)-

element is the sum of the i-th row of W .
3: Construct the matrix L = D−1/2WD−1/2.
4: Find v1, . . . , vk, the k largest eigenvectors of L

(chosen to be orthogonal to each other in the case
of repeated eigenvalues) and form the matrix V =
[v1v2 . . . vk] 2 Rn⇥k by stacking the eigenvectors in
columns.

5: Form the matrix Y from V by renormalizing
each row of V to have unit length (i.e. Yij =
Vij/(

P
j V

2
ij)

1/2).
6: Apply K-means (or any other algorithm) treating

each row of Y as a point in Rk.
7: Assign the points xi to cluster Cj if and only if the

row i of the matrix Y was assigned to cluster j.
8: return C

Laplacian is calculated (in Algorithm 1 the Normalized
Spectral Clustering algorithm is used), its eigenvectors
are extracted (see lines 4 and 5 of Algorithm 1).
Some of the main problems of Spectral Clustering
are related to the consistency of the two classical
methods used in the analysis: normalized and un-
normalized Spectral Clustering. A deep analysis about
the theoretical effectiveness of normalized clustering over
un-normalized can be found in [15].

The graph cut problem is closely related to Spectral
Clustering. In the graph cut literature this problem has
two classical solutions [12]: RadioCut and NCut. Von
Luxburg et al. [12] describe the connection between the
different approaches of Spectral Clustering (focused on
the Laplacian Matrices), RadioCut and NCut. They also
show that Unnormalized Spectral Clustering converges
to RadioCut and the Normalized methods converge to
NCut.

Figure 1 shows an example where the Laplacian
Matrix has a maximum of 150 different eigenvectors.

According to the leader eigenvalues (those eigenvalues
with the highest values) their associated eigenvectors are
chosen. Since this example has three clusters (see Figure
1), the 3 leader eigenvectors are chosen.

The last step is the application of a clustering
algorithm to the projective space formed by the
normalized eigenvectors (see Figure 1 considering each
row of the matrix as a point (see lines 6 and 7 of
Algorithm 1). The most frequently applied algorithm
is K-means. There are several versions of Spectral
Clustering according to the algorithm that is used in this
step, e.g., the SACOC [5] algorithm is a Spectral-based
algorithm which applies an ACO clustering algorithm
instead of K-means. Figure 1 shows the application of
K-means to the previous example. The figure shows the
distribution of the data in the space generated by the
chosen eigenvector. In this case, each point could be
interpreted as a projection of the original points. The
results of the application of the algorithm to this data
are also shown in Figure ?? (right). The data in the
projective space is easier to separate than in the original
space. This shows the results of the algorithm in the
original space.

The main problem of Spectral Clustering is how to
compute the eigenvectors and the eigenvalues of the
Laplacian Matrix of the Similarity Graph avoiding the
huge memory that it consumes. For example, when
large datasets are analysed, the Similarity Graph of the
SC algorithm requires a high memory storage and it
makes extremely hard the eigenvalues and eigenvectors
computation.

2.3 Ant Colony Optimization in Classification
and Clustering

One of the current perspectives which deals with
Machine Learning problems is Ant Colony Optimization
[6]. ACO approaches have been used to improve
local minima convergence problems. These algorithms
are designed to look for an optimal solution. These
approaches have been applied for both, classification [3]
and clustering [3] algorithms.

In ACO there are also some adaptations of
classification algorithms—e.g., Otero et al. introduce an
ACO algorithm for decision tree induction [7]; Blum and
Socha introduce a neural network ACO model [16] and
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Figure 2 The construction graph of SACOC. The arrows
represent a trail of an ant.

Borrotti and Poli focused their work on the Näıve Bayes
model [17].

There are also some clustering algorithms which
have produced promising results—e.g., Kao and Cheng
designed a centroid-based ACO clustering algorithm [18];
Ashok and Messinger focused their work on graph-based
clustering [19]; Menéndez et al. designed a Medoid-based
ACO Clustering algorithm called MACOC [8] focused
on improving the results of ACOC; and, finally, several
other approaches are discussed in [20]. It is interesting
to remark that both MACOC and SACOC are based on
ACOC algorithm. The logic of the algorithms is similar
(also the parameters), but the goal and search space are
different.

3 Spectral-based ACO Clustering
Algorithm (SACOC)

This section presents the Spectral-based ACO Clustering
Algorithm (SACOC) [5]. This algorithm is similar
to Spectral Clustering. The goal of the algorithm is
to choose the data discrimination representing the
information as a Similarity Graph, and cutting it in
different clusters.

3.1 ACOC algorithm

The ACOC algorithm (see Algorithm 2) is the base of
SACOC (see Algorithm 3). It has a search space based
on instances and centroids, and can be defined as a graph
whose associated matrix is a N⇥k matrix, where N is
the number of instances and k is the number of centroids
(clusters).

The algorithm works with several ants looking for the
best path in the graph (see Fig. 2). Each ant (a) has the
following features: a list of visited objects (tba), a set of
chosen centroids Ca and a Weighted matrix W a (related
to the assignment of objects to clusters).
An ant a has two possible strategies: exploration and
exploitation. It chooses the strategy according to the
following equation:

j =

⇢
argmaxu2Ni

{[⌧(i, u)][⌘a(i, u)]β} , if q  q0
S , otherwise

,(2)

whereNi is the set of nodes associated to object i, j is the
chosen cluster, ⌧(i, u) is the pheromone value between i

and u, q0 is the exploitation probability, q is a random
number for strategy selection,β is a parameter, ⌘k(i, u)
is the heuristic value between i and u for ant a defined
by the formula: ⌘a(i, u) = 1/d(xi, c

a
j ).

where xi is a data instance and ckj is a centroid from the
ant centroid list. and S is the exploration defined by:

S = P a(i, u) =
[⌧(i, u)][⌘a(i, u)]βPm
j=1[⌧(i, j)][⌘

a(i, j)]β
. (3)

The algorithm steps can be divided by:

1. Initialize pheromone matrix (see line 1 of
Algorithm 2).

2. Initialize ants (see line 3 of Algorithm 2): (tba, Ca,
W a), for each ant a in the colony. Then, each ant
repeats until tba is full:

(a) Select (randomly) a data object i satisfying
i /2 tba (see line 6 of Algorithm 2).

(b) Select a cluster j: first the ant chooses a
strategy; then, it calculates the transition
probability and, finally, it visits a node (see
line 7 of Algorithm 2).

(c) Update tba, Ca and W a (see lines 9 and 10 of
Algorithm 2).

3. Choose the best solution. First, calculate the
objective function for each ant (see lines 14 and 15
of Algorithm 2):

Jk =

nX

i=1

mX

j=1

wa
ijd(xi, c

a
j ) , (4)

where wa
ij is a weight value of the assignment

matrix W a. Next, rank ants solutions. Choose the
iteration-best solution, apply local search (for more
details of local search see [21]), to improve the
solution and, finally, compare it with the best-
so-far solution and update this value with their
maximum.

4. Update pheromone trails (global updating rule).
Only the best r ants are able to add pheromones.
Let ⇢ be the pheromone evaporation rate, (0 <
⇢ < 1), t the iteration number, r is the number
of elitism ants and ∆⌧hij = 1/Jh (see line 17 of
Algorithm 2):

⌧ij(t+ 1) = (1− ⇢)⌧ij(t) +

rX

h=1

wh
ij∆⌧hij . (5)

5. Check the termination condition: if the number
of iterations is greater than the maximum limit,
finish; otherwise, go to step 2.
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Algorithm 2 ACOC algorithm.

Require: X = x1, . . . , xn and k number of clusters
Ensure: c1, . . . , ck best k centroids
1: Initialize the pheromone matrix ⌧0.
2: for generation g = 0 to maxGenerations do
3: Initialize ants: Ca = ; and tba = ;
4: for all ant a 2 A (the ants set) do
5: while |tba| == n or |Ca| == k do
6: Select the next data object i
7: Choose a strategy (exploration,

exploitation)
8: Select cq∗ 2 Ca as the closest centroid
9: Set W a

i,q∗ = 1
10: addInstance(i) to tba

11: end while
12: Calculate the objective function for each

ant: Ja =
Pn

i=1 min
|M |
j=1 d(xi,m

a
j )

13: end for
14: Rank the ants according to Ja.
15: Choose the best ant a⇤ (iteration-best solution).
16: Compare it with the best-so-far solution (a⇤⇤)

and update this value with the maximum
between them.

17: ⌧g+1(i, u) = (1− ⇢)⌧g(i, u) +
Pr

h=1 w
h
iu ·

∆⌧g(i, u)
h

18: end for
19: Re-centralize a⇤⇤.

3.2 The Spectral hybridisation

The original ACOC algorithm uses the Euclidean space
as a search space. However, the algorithm can be
modified to consider any kernel in a similar way that
K-means is modified to generate the Spectral Clustering
algorithm. Consider a graph G and its associated
weighted matrixW , which is a pairwise Similarity Graph
amongst the data. The similarity is calculated using a
similarity function defined by a kernel k(xi, xj) (see line 1
of Algorithm 3). The Spectrum of the graph is calculated
in a similar fashion used by Ng et al. [13] (see lines 2
and 3 of Algorithm 3) to create the original Spectral
Clustering algorithm. First, we calculate the Laplacian
matrix defined by: Lsym = I −D−1/2WD−1/2, where I
is the identity matrix and D represents the diagonal
matrix whose (i, i)-element is the sum of the similarity
matrix i-th row. After the creation of the Laplacian
matrix, we extract the v1, . . . , vz, (see line 4 of Algorithm
3) which corresponds with the z largest eigenvectors
of L—chosen to be orthogonal to each other in the
case of repeated eigenvalues—and form the matrix V =
[v1 v2 . . . vz] 2 R

n⇥z by stacking the eigenvectors in
columns. Finally, we form the matrix Y from V by
renormalizing each row of V to have unit length (i.e.,
Yij = Vij/(

P
j V

2
ij)

1/2) (see line 5 of Algorithm 3). Then,
we can consider Y as a projection of the original space
and apply ACOC (see line 6 of Algorithm 3) to the
representation of each point.

Algorithm 3 SACOC algorithm. [5]

Require: X = x1, . . . , xn and k number of clusters
Ensure: c1, . . . , ck best k clusters
1: Form the Similarity Graph W 2 Rn⇥n defined by

Wij = e−||xi−xj ||
2/2σ2

if i 6= j, and Wii = 0.
2: Define D to be the diagonal matrix whose (i, i)-

element is the sum of the i-th row of W .
3: Construct the matrix L = D−1/2WD−1/2.
4: Find v1, . . . , vk, the k largest eigenvectors of L

(chosen to be orthogonal to each other in the case
of repeated eigenvalues) and form the matrix V =
[v1v2 . . . vk] 2 Rn⇥k by stacking the eigenvectors in
columns.

5: Form the matrix Y from V by renormalizing
each row of V to have unit length (i.e. Yij =
Vij/(

P
j V

2
ij)

1/2).
6: ACOC(Y ,k).

4 SACON: Improving the SACOC
algorithm through the Nyström Method

The goal of this methodology is to reduce the
dimensions sampling the Similarity Matrix. We are going
to choose a subset of points S = {s1, . . . , sn} 2 X =
{x1, . . . , xN} (see line 1 of Algorithm 4). If W is the
Similarity Matrix (related to the Similarity Graph),
we need to extract the eigenvectors of its Spectrum
in order to project the data. The Spectrum we are
going to consider in this work is defined by: Lsym (see
Section 3.2). Because it is difficult to scale the original
Similarity Matrix, we need to use the subsample S and
reformulate the whole process to describe how to extract
approximate eigenvectors of the Spectrum using less
information related to the original Similarity Matrix.

For this approximation, we are going to apply the
Nyström extension [9], defined as follows:

Nyström Extension: Let k(xi, xj) be a kernel whose
Gram matrix K is symmetry and positive semi-
definite satisfying Ki,j = k(xi, xj). We assume that the
eigendescomposition is KU = UΛ with U orthogonal.
Then, the Nyström extension for a new instance x is the
eigenvector approximation ūk(x) to the real uk(x) given
by:

ūk(x) =
1

λu
k

NX

j=1

k(x, xj)u
k
j (6)

In order to apply the extension to calculate the
eigenvectors of Lsym we need to simplify the problem.
First, Lsym = I −D−1/2WD−1/2, so it is equivalent to
calculate the eigenvectors for P = D−1/2WD−1/2.

In order to approximate the eigenvectors, we are
going to follow the scheme of Figure 3. In this case, we
use W , and we take the subsamples set S, which defines
a submatrix of W called A. These matrices satisfy:

W =

✓
A B
Bt C

◆
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W =

0
B@

w1,1 . . . w1,N

...
. . .

...
wN,1 . . . wN,N

1
CA

W =

0
B@

w1,1 . . . w1,N

...
. . .

...
wN,1 . . . wN,N

1
CA

(A|B) =

0
B@

a1,1 . . . a1,n b1,1 . . . b1,N−n

...
. . .

...
...

. . .
...

an,1 . . . an,n bn,1 . . . bn,N−n

1
CA

UUT

UUT

Full-Matrix

n samples

Eigenvectors Extraction

Nyström method

approximation

Equivalent Eigenvectors

Figure 3 Eigenvector decomposition applying the Nyström extension. The original Similarity Matrix W is subsampled in
the augmented matrix (A|B). Using only this information the Nyström extension is able to approximate the
eigenvectors U of W as the eigenvectors U .

Algorithm 4 SACOC+Nystrom (SACON) algorithm.

Require: X = x1, . . . , xN and k number of clusters
Ensure: c1, . . . , ck best k clusters
1: Select a subsample of the data instances: S =

{s1, . . . , sn} 2 X = {x1, . . . , xN} where, n << N .
2: Form the Similarity Graph A 2 Rn⇥n defined by

Aij = e−σ||si−sj ||
2

if i 6= j, and Aii = 0.
3: Calculate the Matrix B formed by the similarities

among the elements of A and the rest of data
instances.

4: Calculate the eigenvectors of A, named Ū and the
eigenvalues, named Λ̄.

5: Calculate the approximate eigenvectors U of W
which try to approximate the real eigenvectors,
named U , as:

U =

✓
Ū

BtŪ Λ̄−1

◆

6: Define D to be the diagonal matrix whose (i, i)-
element is the sum of the i-th row of W .

7: Construct the matrix L0 = D−1/2W 0D−1/2.

8: Separate L0 =

✓
A0 B0

(B0)t (B0)t(A0)−1B0

◆

9: Set R = A0 + (A0)−1/2B0(B0)t(A0)−1/2, and
calculate its eigenvector decomposition R =
URΛRU

t
R.

10: Set V =


A0

(B0)t

]
(A0)−1/2URΛ

−1/2
R .

11: Find v1, . . . , vk, the k largest eigenvectors of L0

and form V = [v1v2 . . . vk] 2 Rn⇥k by stacking the
eigenvectors in columns.

12: Form the matrix Y from V by renormalizing
each row of V to have unit length (i.e. Yij =
Vij/(

P
j V

2
ij)

1/2).
13: ACOC(Y ,k).

where A 2 R
n⇥n, B 2 R

n⇥(N−n) and C 2
R(N−n)⇥(N−n) (see line 3 of Algorithm 4). The Nyström
Extension will only need the augmented matrix formed
by A and B: (A|B). The matrix C is the part that
we want to approximate and satisfies that has more
elements than A, due to n << N . Using this matrix it

will be able to approximate eigenvectors of U calculating
the eigenvectors of A, denoted by Ū (see line 4 of
Algorithm 4). These eigenvectors Ū will be extended to
form the approximation U which is close to the original
U . Once the eigenvectors Ū have been calculated, we
have the eigendecomposition of A as A = Ū Λ̄ŪT because
U is orthonormal. Equation 6 provides a methodology
to calculate U as (see line 5 of Algorithm 4):

U =

✓
Ū

BtŪ Λ̄−1

◆
(7)

which is the approximation of the K first eigenvectors of
W .

Now, we need to extract the Laplacian eigenvectors,
which are extracted from the approximate matrix (see
line 7 of Algorithm 4): L0 = D−1/2W 0D−1/2, where

W 0 = U bΛU , bΛ = n
l Λ̄. Setting Di,i =

PN
j=1 w

0
i,j we can

restructure D as

D =

✓
D1 0
0 D2

◆

where D1 2 R
n⇥n and D2 2 R

(N−n)⇥(N−n) and L can
be approximated by (see lines 7 and 8 of Algorithm 4):

L0 =

✓
A0 B0

(B0)t (B0)t(A0)−1B0

◆

where A0 = D1A and B0 = D2B. In order to
approximate the eigenvectors of L0 we will use the same
methodology that we have used to approximate W - In
this case, we are going to use A0 as the base, supposing
that the eigenvectors of A0 and eigenvalues are Vo and
Λo.

Λ0 =
n

l
Λo, V =

r
l

n


A0

(B0)t

]
V oΛo

where V and Λ0 are the extended eigenvectors and
eigenvalues of L0. Due to V is not orthogonal, which is
required by the Spectral Clustering algorithm, we apply
the transformation of Fowlkes et al. [9] and defined the
matrix (see line 9 of Algorithm 4):

R = A0 + (A0)−1/2B0(B0)t(A0)−1/2
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This matrix can be decomposed as R = URΛRU
t
R due

to A0 is positive define. Then, we set (see line 10 of
Algorithm 4):

V =


A0

(B0)t

]
(A0)−1/2URΛ

−1/2
R

And, finally,

D−1/2W 0D−1/2 = VΛRV
t

which means that V are the eigenvectors which will be
used for the ACOC clustering algorithm (see line 11 of
Algorithm 4).

5 Experimental Setup

The evaluation of the clustering algorithm is a sensitive
process, specially when the algorithm deals with large
datasets. In this work we have focused the evaluation
on comparing the algorithm with other Big Data
algorithms. This evaluation has been performed using 8
datasets with 50.000 instances.

The experiments have been carried out using the
Nyström extension of Spectral Clustering [9] (SC+N),
CluStream, Online K-means and ClusTree.

The parameters of SACON are: the subsample size
(fixed to 500), and the sigma value that has been
calculated using the methodology described by Ng et al.
in [13] (for SC + Nyström is the same); the ants number
is 10, the elitism is 1, the exploitation probability is
0.0001, the initial pheromone values have been set to
1/k—where k is the number of clusters, β = 2.0, ⇢ = 0.1,
the local search probability is 0.001 and the maximum
number of iterations is 1000.

The metrics used are the Euclidean Distance for
online algorithms, and the RBF for the spectral-based
algorithms. The evaluation is performed comparing the
results with the ideal labels. The evaluation is performed
with the accuracy metric, defined by:

sim(Ci, Cj) =

Pn
q=1 δCi

(xq)δCj
(xq)

2

✓
1

|Ci|
+

1

|Cj |

◆
(8)

where |Ci| is the number of elements of cluster Ci and
δCi

(xq) is the Kronecker δ defined by:

δCi
(xq) =

⇢
0 if xq /2 Ci

1 if xq 2 Ci

All the experiments have been executed 100 times.
The statistical test which has been performed is the
Wilcoxon test, because we can not guarantee that the
distributions are normal. It compares SACON with
SC+Nyström since these algorithms are very similar to
each other. We have considered that there is statistically
difference when the p-value of the test is lesser than 0.05
(5% significance level).

(a) Cassini (b) Cuboids

(c) Hypercube (d) Shapes

(e) Simplex (f) Smiley

(g) Spiral1 (h) Spiral2

Figure 4 The original images of the synthetic datasets

5.1 Dataset Description

The datasets have been generated using the R package
mlbench [22] which allows to generate dense datasets
with a specific form. The datasets—all composed by
50.000 instances—that have been generated are the
following (see Figure 4):

• Cassini: This dataset is formed by 3 clusters which
are continuity-based.

• Cuboids: This dataset has four cuboids in three
dimensions.

• Hypercube: This datasets is composed by eight
spheres distributed as the vertex of a cube.

• Shapes: This dataset has 4 different shapes.

• Simplex: This dataset has four spheres well
separated.

• Smiley: This dataset is formed by four clusters
which define a smiley face.

• Spirals1: This dataset has two spirals without
noise.

• Spirals2: This dataset has two noisy spirals.
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6 Experimental Results

This section presents the evaluation process of SACON.
Table 1 shows the results for the algorithms applied
to the datasets. As we can appreciate, SACON obtains
overall good results, but it is important to analyse the
algorithm according to each dataset in order to identify
its weaknesses.

In the case of Cassini dataset, SACON obtains the
best results. SC+Nyström also obtains good results. It
is important to remark that the SD of SACON is 0,
which means that these results are stable. The rest of the
algorithms obtain worse results. It should be because the
dataset (see Figure 4 (a)) has two sections which can be
easily defined using a Gaussian distribution, and when
the number of instances is high, the boundaries between
these distributions are harder for the discrimination
process. SC is also sensitive to the noise produced in
this situation. The statistical test shows that SACON is
significantly better than SC + Nyström.

For Cuboids dataset, Clustream obtains the best
Median results (100.0%) followed by SC+Nyström
(99.74%). However SACON obtains close results
(99.33%). This dataset produces the lesser stable results
for SACON (0.0066 of SD), however, the algorithm
is the most stable of the algorithms group. These
results suggest that the algorithm is also able to deal
with volume identification problems (see Figure 4 (b)).
The Wilcoxon test shows that there is not statistical
difference between the spectral-based algorithms.

Hypercube results show that SACON is able
to discriminate the clusters perfectly. Clustream also
obtains good results during the discrimination process.
SC+Nyström, Clustree and Online K-means have more
problems to discriminate the cluster distribution. It
might be because the algorithms have to deal with
large data quantities and that introduces noise during
the calculation (see Figure 4 (c)). The algorithms are
also less stable than SACON (the SD of SACON is 0).
Again, SACON is significantly better than SC+Nyström
approach.

In the case of Shapes, the best results according
to the Mean and Median are achieved by Clustream,
and the best for Median by Clustree and Online K-
means. SACON obtains worse but close results (99.98%)
because the algorithm is more stable (the SD is 0.0002).
SC+Nyström obtains the worst results of the iteration
(68.71%). According to the statistical test, SACON is
better again.

Simplex is easy for all algorithms. The Median value
shows that they obtain the maximum results. However,
according to the Mean, only SACON, Clustream and
SC+Nyström keep these results in all the iterations.
These results are a consequence of the data structure (see
Figure 4 (e)), in this case, they only need to discriminate
spheres which is the simplest clustering problem. There
is not statistical difference between them.

Smiley results show that SACON obtains the
best discrimination results (99.59%). The rest of

the algorithms have more problems generating the
clusters. This dataset is a continuity-based problem,
therefore only SC+Nyström, Clustream and SACON can
discriminate the boundaries (see Figure 4 (f)). SACON
is statistically better than SC + Nyström.

The Spiral1 dataset tests show how the algorithms
can deal with continuity datasets without noise (see
Figure 4 (g)). In this case, SACON and SC+Nyström
obtain the best results (100.0%). In this case, Online
K-means, Clustree and Clustream have more problems
discriminating the spirals which means that these
algorithms are not able to deal with pure continuity-
based problems. There is not statistically difference
between them.

The Spiral2 dataset introduces noise to the previous
one (see Figure 4 (h)). In this case, the results of
SACON are worse than in the previous datasets, but
it also obtains the best and more stable results. The
results of the rest algorithms show that there is a good
minimal solution and all of them are close to this solution
(around the 59%), however, they still find problems
discriminating the spirals. SACON is significantly better
than SC + Nyström.

6.1 Discussion

SACON shows competitive results when it is applied to
continuity-based data, such as Cassini, Shapes, Smiley
and Spirals while the rest have more problems, e.g., with
Spirals which is a pure continuity-based problem. It also
performs better than the rest when we add noise to the
dataset. The algorithm also obtains more stable results
than the others according to the standard deviation.
The spectral transformation is probably the main reason
of the algorithm improvements. The performance is
correlated to the type of clustering that this algorithm
can face.

In order to compare the memory usage of the
current algorithm against SACOC (its predecessor), it
is important to remark that SACON uses a matrix of
50, 000⇥ 500 instances, whereas SACOC uses 50, 000⇥
50, 000 instances. The memory usage of the former is
around 0.18 GB while the latter consumes around 18.63
GB. The memory consume of SACON grows linearly
whereas SACOC grows exponentially. The rest of the
algorithm are not spectral algorithm, i.e., they do not
use a Similarity Matrix. According to the memory
consumption, the online algorithms only keep memory
about the centroids they are using (similar to K-means),
i.e., the memory grows according to the number of
centroids, while ACOC keep memory of the assignation
of the instance to the centroid, i.e., its memory usage
grows linearly according to the product of instances and
centroids number.
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Dataset SACON SC+Nystrom Online K-means Clustree Clustream

Cassini N 99.98% ± 0.0000 98.61% ± 0.1681 65.47% ± 0.0003 66.97% ± 0.1301 67.39% ± 0.0478
Cuboids 99.33% ± 0.0066 99.74% ± 0.1736 88.84% ± 0.1219 72.74% ± 0.1108 100.0% ± 0.1157
Hypercube N 100.0% ± 0.0000 76.71% ± 0.1565 81.36% ± 0.1122 82.29% ± 0.1126 100.0% ± 0.0541
Shapes N 99.98% ± 0.0002 68.71% ± 0.4425 100.0% ± 0.1389 100.0% ± 0.1765 100.0% ± 0.0001
Simplex 100.0% ± 0.0000 100.0% ± 0.0000 100.0% ± 0.1508 100.0% ± 0.1703 100.0% ± 0.0000
Smiley N 99.56% ± 0.0003 74.99% ± 0.1627 62.54% ± 0.1729 64.41% ± 0.1608 91.60% ± 0.1451
Spirals1 100.0% ± 0.0000 100.0% ± 0.0991 50.00% ± 0.0000 50.01% ± 0.0002 50.01% ± 0.0006
Spirals2 N 63.03% ± 0.0001 59.59% ± 0.0392 59.36% ± 0.0000 58.84% ± 0.0295 59.59% ± 0.0392

Table 1 Median and Standard Deviation accuracy results of the application of the algorithms to the datasets. Values in
bold shows the best results while italics shows the second. The N symbol shows those datasets where the results of
SACON are statically better than the results of the benchmark algorithm SC + Nystrom.

7 Conclusions

This paper presents an evolution of the SACOC
algorithm [5] using the a Nytröm extension [9]. The
new algorithm, called SACON, applies the spectral
transformations and the Nyström extension to the
original search space in order to apply the clustering
in the projective space. The transformation consists
on transforming the original data into a graph-
based representation (through a similarity graph) and
calculate its Laplacian matrix, during this calculation,
the Nyström extension guarantees that the Laplacian
calculation is accurate enough using less information.
Once the Laplacian has been obtained, the eigenvectors
are extracted and normalized to generate the projective
space, this extraction also applies the Nyström extension
in order to reduce the memory usage.

The proposed SACON algorithm shows good results
for the studied datasets. It is able to discriminate
continuity-based clusters with more stable results, when
compared to Spectral Clustering using the Nyström
extension (SC+Nyström) and modern online clustering
algorithms.
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