

Kent Academic Repository

Walsh, Jacqueline, Barrett, Iain D., Thompson, Andrew J., Lummis, Sarah and Kelley, Stephen P. (2011) *Quinine blocks 5-HT and 5-HT3 receptor mediated peristalsis in both guinea pig and mouse ileum tissue.* In: Proceedings of the British Pharmacological Society.

Downloaded from

https://kar.kent.ac.uk/53245/ The University of Kent's Academic Repository KAR

The version of record is available from

http://www.pa2online.org/abstract/abstract.jsp?abid=30000&author=Kelley&cat=-1&period=-1

This document version

Publisher pdf

DOI for this version

Licence for this version

UNSPECIFIED

Additional information

Versions of research works

Versions of Record

If this version is the version of record, it is the same as the published version available on the publisher's web site. Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in *Title of Journal*, Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record in KAR. If you believe that your, or a third party's rights have been compromised through this document please see our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

Quinine blocks 5-HT and 5-HT $_3$ receptor mediated peristalsis in both guinea pig and mouse ileum tissue

Jacqueline Walsh¹, Iain Barrett¹, Andrew Thompson², Sarah Lummis², Stephen Kelley¹. ¹University of Kent, Chatham Maritime, UK, ²University of Cambridge, Cambridge, UK.

<u>Introduction</u>. Quinine is commonly used to treat malaria; however one of the principal side effects is gastrointestinal disturbances (White, 1992). 5-HT₃ receptors modulate gut peristalsis (Chetty *et al.*, 2006), and, as quinine has been shown to act as a 5-HT₃ receptor antagonist (Thompson and Lummis, 2008) it is possible that these side effects result from actions at gut 5-HT₃ receptors. To address this question, we examined the ability of quinine to antagonise 5-HT and 5-HT₃ mediated peristalsis in guinea pig and mouse ileum.

<u>Methods</u>. Ileum was excised from male guinea pigs (200-300g) and C57BL/6 mice (25-35g) following cervical dislocation. Ileum segments (3-5 cm) were mounted in 50 ml organ baths containing Tryode's solution at 35-37 °C. Concentration-response curves were constructed for 5-HT and the selective 5-HT₃ agonist 2-Me-5-HT (non-cumulative doses). Quinine was pre-applied for 10 min and inhibition measured using agonist concentrations that elicited a submaximal response.

Results. Concentration-dependent contractions produced by 5-HT (p $EC_{50} = 5.45 \pm 0.17$, n = 8) and the selective 5-HT₃ agonist 2-Me-5-HT (5.01 \pm 0.17, n = 11) were not significantly different (Student's t-test, t = 0.619, df = 17, p = 0.544) in guinea pig ileum. Increasing concentrations of quinine were able to antagonise the activities of both 5-HT ($pIC_{50} = 5.03 \pm 0.2$, n = 6) and 2-Me-5HT ($pIC_{50} = 4.59 \pm 0.26$, n = 4). At mouse ileum, 5-HT ($pEC_{50} = 7.57 \pm 0.33$, n = 9) was more potent (Student's t-test, t = 3.6, df = 12, p = 0.004) than 2-Me-5-HT ($pEC_{50} = 5.45 \pm 0.58$, n = 5). Quinine antagonised both the 5-HT ($pIC_{50} = 4.87 \pm 0.31$, n = 7) and 2-Me-5-HT-induced ($pIC_{50} = 6.18 \pm 1.14$, n = 4) contractions.

<u>Conclusions</u>. These results support previous electrophysiological studies that identified quinine as an antagonist at recombinant 5-HT₃ receptors with IC₅₀ values comparable with those reported here (p $IC_{50} = 4.87$, Thompson *et al.*, 2007). Further, we found that quinine completely blocked 5-HT induced contractions in mouse and guinea pig, raising the possibility that quinine targets other 5-HT receptors in the gut (e.g., 5-HT₄ receptors) and may influence intestinal function.

Chetty et al., (2006). Br.J.Pharmacol., 148; 112-141.

Thompson et al., (2007). Br.J.Pharmacol 151; 666-667.

Thompson and Lummis, (2008). Br.J.Pharmacol 153; 1686-96. White, (1992). BJCP, 34; 1-10.