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A density-functional formalism for superconductivity and magnetism is presented. The resulting relations
unify previously derived Kohn-Sham equations for superconductors and for noncollinear magnetism. The
formalism, which discriminates Cooper-pair singlets from triplets, is applied to two quantum liquids coupled
by tunneling through a barrier. An exact expression is derived, relating the eigenstates and eigenvalues of the
Kohn-Sham equations, unperturbed by tunneling, on one side of the barrier to the proximity-induced ordering
potential on the other.
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I. INTRODUCTION

Condensed-matter phenomena owe much of their variety
to the multifarious properties of inhomogeneous electron liq-
uids. Long-range order, gaps, screening, enhanced correla-
tions, anomalies, resonances—a multiplicity of effects results
from the diversity of chemical compositions and crystal
structures. Not surprisingly, density-functional theory �DFT�,
a program dedicated to describing the effect of atomic-scale
inhomogeneity on the electron liquid, has acquired mounting
prominence.1,2 Its success in the description of properties
associated with the microscopic inhomogeneities due to lat-
tice potentials provides the foundation upon which ab initio
procedures are built. To describe ordered states, specialized
formalisms comprising other order parameters along with the
density have been proposed.3–7

Macroscopic inhomogeneities have received less attention
from the DFT community. In particular a physical boundary
separating distinct order parameters is a nesting ground for
concepts and applications of which the discovery of giant
magnetoresistances is the most persuasive example.8,9 More
recently, advances in fabrication techniques and experimen-
tal probes �notably x-ray and neutron reflectometry� have
revealed that the behavior at such boundaries can be quite
unexpected. To give one example, novel magnetic order has
been observed in the superconducting side of a ferromagnet-
superconductor interface �Ref. 10; see also Ref. 11 and ref-
erences therein�, yet one finds in the literature no DFT
broadly applicable to junctions.

To fill this void, we present here a density-functional
theory of superconducting and magnetic materials. A gener-
alization of previously published theories for the individual
orderings,3–7 the formalism is designed to describe long-
range order with coexisting charge and magnetic and super-
conducting order parameters. Competition or coexistence of
different forms of order is known to occur in bulk
high-temperature,12 heavy fermion,13,14 and organic15 super-
conductors as well as manganites.16 Here we will focus on
proximity effects in junctions between differently ordered
quantum liquids.17

While studies of superconductivity in a specific material
can be restricted to Cooper pairs of given spin, either

singlets6,18 or triplets,18 the more general setups that we tar-
get require parallel treatment of the singlet pair, the triplet
pair, and the magnetization densities. A triplet supercon-
ductor coupled to a noncollinear antiferromagnet is, e.g.,
well within the scope of our formalism.

As a general application, we consider two quantum liq-
uids with different order parameters separated by a thin bar-
rier that allows tunneling. Under these circumstances, we
demonstrate that the Kohn-Sham �KS� equations yielding the
ground-state energies and densities on one side of the barrier
can be decoupled from the analogous equations for the ener-
gies and densities on the opposite side. In each decoupled KS
Hamiltonian, an effective potential obtained from the solu-
tion of the unperturbed KS equations, i.e., the KS equations
in the absence of tunneling, represents the opposite side. This
potential gives mathematical substance, within DFT, to the
proximity effect. In a normal metal-superconductor junction,
the decoupled KS Hamiltonian adds correlation to the
Bogolubov–de Gennes equations.19,20 In a normal metal-
antiferromagnet junction, it generates analogous equations
describing the staggered proximity field induced on the non-
magnetic side.

Our presentation starts out with a cursory review of DFT
for superconductivity and for magnetism. Section III pre-
sents the formalism for coexisting order parameters. The re-
sulting KS equations are applied in Sec. IV to a barrier sepa-
rating two quantum liquids, and the effective proximity
potential is derived. In Sec. V the formalism is generalized to
magnetic interfaces. Finally, Sec. VI lists our conclusions.

II. DENSITY-FUNCTIONAL THEORY
FOR ORDERED QUANTUM LIQUIDS

Sections II A and II B briefly recapitulate the DFT ap-
proach to ordered quantum liquids. They highlight those as-
pects of the theory that will prove particularly important in
our formulation and others that were brought to view in re-
cent publications posterior to the original references.

A. Density-functional theory for superconductors

Superconductors still pose a challenge to electronic-
structure theorists. Progress in that area had a late start. Long
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after band-structure calculations based on DFT had provided
valuable information about such normal-state properties as
Fermi-surface geometries, single-particle spectra, and elec-
tronic densities of states, well after DFT had yielded such
lattice properties related to superconductivity as phonon-
dispersion relations, the superconducting state still lay out-
side the realm of ab initio electronic-structure calculations.

Model Hamiltonians had provided much of what was
known about superconductivity. The reduced BCS
Hamiltonian,21 the Hubbard Hamiltonian22 and its variations,
and the Bogolubov–de Gennes mean-field equations19,20 are
examples; none of which seemed adaptable to a density-
functional formulation. In view of its reliance on empirical
information on phonon spectra and Coulomb matrix ele-
ments, not even the detailed microscopic description of
strong-coupling superconductivity in Eliashberg’s theory
could be seamed to ab initio DFT.23

To circumvent such difficulties, an alternative approach
was proposed.6 Instead of functionals of the density, one now
studied functionals of two variables: the normal density

n�r�= ��̂↑
†�r��̂↓�r�� and the superconducting order parameter

��r ,r��= ��̂↑�r��̂↓�r���. In the same way that � is coupled to
an electric potential, or the magnetization density of spin-
DFT �SDFT� is coupled to a magnetic field, the anomalous
density � was coupled to a pair potential. In the same way
that the KS equations generalize the Hartree mean-field
equations, extended KS equations were derived that general-
ize the mean-field Bogolubov–de Gennes equations.

Two are the potentials in these KS Bogolubov–de Gennes
equations: an effective electric potential

vs�r� = vext�r� + vH�r� + vxc�r� , �1�

and an effective pair potential

��r,r�� = �ext�r,r�� + �H�r,r�� + �xc�r,r�� . �2�

If the �microscopic� inhomogeneity is due exclusively to
the lattice potential vext, only an infinitesimal external poten-
tial �ext is needed to break the gauge symmetry that would
otherwise annul the anomalous density in the self-consistent
cycle. �As pointed out in Ref. 6, however, and further dis-
cussed in Sec. IV A, macroscopic inhomogeneities may gen-
erate noninfinitesimal external anomalous potentials.� While
the Hartree potential vH tends to make the charge distribution
uniform, the anomalous Hartree potential �H, the interaction
of the anomalous density with its own pair potential, tends to
enhance the superconducting order parameter. As usual, the
exchange-correlation potential vxc�r�=�Exc�n ,�� /�n�r� is
the derivative of the universal exchange-correlation func-
tional of DFT with respect to the normal density. Similarly,
�xc�r ,r��=�Exc�n ,�� /���r ,r�� represents the exchange-
correlation correction to the mean-field approximation.
Among the generalizations of this formalism, we mention
one that will assist our analysis: the extension to triplet
superconductors.18

The exchange-correlation functional Exc�n ,�� is, of
course, unknown, and the DFT program calls for first-
principles approximations. That at least in the context of
phonon-mediated superconductivity this program can be fol-

lowed to its end was demonstrated by Gross and
co-workers,24–30 who constructed a functional with no ad-
justable parameters and applied it to a number of materials.
We note in passing that their breakthrough has led to the first
truly microscopic theory of conventional superconductivity.

B. Density functional for magnetic systems

The fundamental variables in the standard formulation of
DFT, collinear SDFT, are the spin-resolved densities n↑�r�
and n↓�r�. From these, the charge density n�r�=n↑�r�
+n↓�r� and the magnetization mz�r�=�0�n↑�r�−n↓�r�� are
promptly recovered ��0 is the Bohr magneton�. We concen-
trate our discussion on two features of magnetic systems that
are foreign to SDFT in the local spin-density approximation:
noncollinearity and nonlocality.

To describe noncollinear magnetic structures, one may
substitute the magnetization vector m�r� for its z component.
Elegant extensions of noncollinear SDFT and successful
implementations have been cast in this forge.31–34 However,
while local approximations suffice to describe the nearly uni-
form average local magnetization in a ferromagnet, such ap-
proximations cannot be expected to fully reproduce the
strong nonlocal correlations associated with spin waves in a
noncollinear antiferromagnet.35

Faced with this difficulty, one might construct nonlocal,
e.g., orbital-dependent functionals of the local variables n�r�
and m�r�.36 A simpler alternative is suggested by the proce-
dure that, starting with spin-independent DFT, constructed
SDFT and DFT for superconductors: a density sensitive to
the ground-state correlations characteristic of the phenom-
enon under study is added to the list of fundamental vari-
ables. To the set �n↑�r� ,n↓�r�� of SDFT variables, noncol-
linear antiferromagnetism thus adds the staggered
density7,37,38

�s�r,r�� = ��̂↑
†�r��̂↓�r��� . �3�

The formal similarity between �s and the anomalous density
in DFT for superconductors is not accidental: already in
1958 it was recognized that the restricted particle-hole
transformation39,40

�̂↑�r� � �̂↑�r� ,

�̂↓�r� � �̂↓
†�r� ,

converts the BCS procedure into a mean-field theory of an-
tiferromagnetism.

Central to the development of staggered DFT is a cou-
pling between the staggered density and a staggered potential
S�r ,r��, a nonlocal generalization of the magnetic field B�r�.
In the resulting KS equations, the staggered density is
coupled to the effective staggered potential

Ss�r,r�� = Sext�r,r�� + SH�r,r�� + Sxc�r,r�� . �4�

Exploring the analogy with the external pair potential in DFT
for superconductivity, Refs. 7 and 37 conjectured that, more
than a mathematical artifact, the first term on the right-hand
side could be interpreted as a proximity effect—a potential
induced near a noncollinear antiferromagnet.
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Two features distinguish staggered DFT from collinear
SDFT. �i� The diagonal element �r�=r� of the staggered den-
sity determines the x and y components of the magnetization:
mx�r�=�0��s�r ,r�+�s

��r ,r�� and my�r�= i�0��s
��r ,r�

−�s�r ,r��. This restriction yields a formalism equivalent to
local noncollinear SDFT.31–34 Even under this restriction,
even for perfectly collinear states, noncollinear DFT is more
powerful than standard �i.e., collinear� SDFT. In the latter,
the specification of the quantization direction breaks rota-
tional symmetry. The staggered density restores that symme-
try: collinear SDFT is blind to, e.g., a magnetization along
the x axis since n↑=n↓=0. Staggered SDFT, by contrast, ex-
tracts the x and y components of the magnetization from �s.

�ii� The nonlocal dependence �s=�s�r ,r�� enhances the
advantage of staggered DFT over SDFT and makes it more
powerful than local noncollinear SDFT. To see this, it is
sufficient to recall that the electron liquid possesses an insta-
bility against the formation of spin-density waves
�SDW�.41–43 The driving force of the Overhauser instability
is the staggered Hartree interaction

Ux��s� = −	 d3r	 d3r�

�s�r,r��
2


r − r�

. �5�

This interaction, which formally appears as a Hartree term
involving the staggered density, arises from evaluating the
exchange diagram with two-component spinors. It tends to
push the energy of the SDW state below that of the paramag-
netic state.7,37

Standard formulations of SDFT miss this energy reduc-
tion altogether; sophisticated approximations to the
exchange-correlation functional are needed to account for
it.36 By contrast, the right-hand side of Eq. �5� is trivially
incorporated in the definition of the staggered DFT
exchange-correlation energy functional; the epithet “stag-
gered Hartree energy” emphasizes its formal similarity to the
usual Hartree term while the subscript x is a reminder of its
physical origin in the exchange diagram.7,37,38 Its contribu-
tion SH�r ,r��=�Ux /��s�r ,r�� to the effective Hartree poten-
tial Ss�r ,r�� defines the second term on the right-hand side of
Eq. �4�. Staggered DFT has been shown to recover both the
Overhauser instability in the exchange-only approximation
and its suppression by correlation.7

III. DENSITY-FUNCTIONAL FORMALISM
FOR COMPETING ORDER PARAMETERS

We now turn to a formulation that extends the results
recapitulated in Sec. II to more complex ground states, with
coexisting or competing order parameters. Our derivation
following closely Ref. 18 for the superconducting order pa-
rameter and Ref. 7 for the noncollinear order parameter, we
list but the key equations.

A. Many-body Hamiltonian

We consider an interacting Hamiltonian that includes ex-
ternal potentials coupled to all the physical observables of
interest

Ĥ = T̂ + Û + �
�
	 d3rn̂��r�v��r� +	 d3xd3y��̂S�x,y�S�x,y�

− �̂�x,y����x,y� − �
m=−1

1

�̂m�x,y��m
� �x,y� + H.c.� . �6�

Here, the density operators n̂��r�� �̂�
†�r��̂��r�, �̂s�r ,r��

��↑
†�r��↓�r��, �̂�r ,r������r���r���s �the singlet combina-

tion of the two field operators�, and �̂m�r ,r������r���r���m
�the m=−1, 0, and 1 triplet combinations of the field opera-
tors� are coupled to the external potentials v��r�=v�r�
+��BBz�r�, S�x ,y� �the staggered potential7�, ��x ,y�
=��y ,x� �the singlet pairing potential18�, and �m�x ,y�
=−�m�y ,x� �the m component of the triplet pairing
potential18�, respectively. As usual, the kinetic-energy opera-

tor is T̂���=↑↓
d3r��
†�r��−	2�2 /2m����r�, where m is elec-

tronic mass and as in Refs. 6 and 18, we assume the follow-
ing form for the electron-electron interaction:

Û ª

1

2 �

1,�1,�2,
2

	 d3y1d3x1d3x2d3y2�̂
1

† �y1��̂�1

† �x1�

�U�y1,
1;x1,�1;x2,�2;y2,
2��̂�2
�x2��̂
2

�y2� , �7�

where the electron-electron interaction comprises the Cou-
lomb repulsion and a nonlocal spin-dependent term, needed
to represent, e.g., the phonon-mediated attraction in conven-
tional superconductors or a spin-fluctuation mediated inter-
action in unconventional ones

U�y1,
1;x1,�1;x2,�2;y2,
2�

=
q2


x1 − y1

��x1 − x2���y1 − y2���1,�2

�
1,
2

+ W�y1,
1;x1,�1;x2,�2;y2,
2� . �8�

Since the following arguments make only implicit reference

to Ŵ, to be concise we have chosen a nonretarded potential
to illustrate Eq. �8�.

Lest the reader be puzzled by the asymmetry in our treat-
ment of the pair density, which is resolved into a triplet and
a singlet components, while the staggered density is not, we
note that the restricted particle-hole transformation
�↑�r���↑�r�, �↓�r���↓

†�r� would turn spins into isospins.
Under this transformation, the Cooper pairs would comprise
an isospin doublet coupled to an anomalous magnetic-field
like potential, while the staggered density would decompose
into an isospin singlet and an isospin triplet. Although the
two approaches are mathematically equivalent, we find the
language of spins more attractive for the present purposes
than that of isospins.

B. Kohn-Sham equations

Given Û, the ground-state energy is a functional of the
densities n� ��= ↑ ,↓�, �s, �, and �m �m=−1,0 ,1�, which can
be written as
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E�n↑,n↓,�s,�,�m=0,�m=+1,�m=−1�

= FHK�n↑,n↓,�s,�,�m=0,�m=+1,�m=−1�

+ �
�
	 d3rn��r�v��r� +	 d3xd3y��S�x,y�S�x,y�

− ��x,y����x,y� − �
m=−1

1

�m�x,y��m
� �x,y� + c.c.� , �9�

where the potential energy in the various external potentials
has been written explicitly and the kinetic and interaction

energies are combined into the Hohenberg-Kohn internal-
energy functional FHK,

FHK = �T̂� + �Û� = Ts + UMF + Exc. �10�

In the last equation we defined the exchange-correlation

functional Exc= �T̂�−Ts+ �Û�−UMF in terms of the kinetic en-
ergy Ts of a noninteracting system with densities
n↑ ,n↓ ,�s ,� ,�m=0 ,�m=+1 ,�m=−1 and the mean-field approxi-

mation UMF to the full interaction energy �Û�. Formally, this
mean-field approximation is given by

UMF =
1

2 �

1,�1,�2,
2

	 d3y1d3x1d3x2d3y2��̂
1

† �y1��̂�1

† �x1��U�y1,
1;x1,�1;x2,�2;y2,
2���̂�2
�x2��̂
2

�y2��

+
1

2 �

1,�1,�2,
2

	 d3y1d3x1d3x2d3y2��̂
1

† �y1��̂
2
�y1��U�y1,
1;x1,�1;x2,�2;y2,
2���̂�1

† �x1��̂�2
�x2��

−
1

2 �

1,�1,�2,
2

	 d3y1d3x1d3x2d3y2��̂
1

† �y1��̂�2
�x2��U�y1,
1;x1,�1;x2,�2;y2,
2���̂�1

† �x1��̂
2
�y2�� . �11�

Some contributions to UMF have appeared before in more
restricted formulations, such as the conventional Hartree
term

EH =
1

2
	 d3x	 d3y

n�x�n�y�

x − y


, �12�

the anomalous Hartree term

EH
a =	 d3x	 d3y


��x,y�
2


x − y

, �13�

and the staggered Hartree term

EH
s = −	 d3x	 d3y


�s�x,y�
2


x − y

� Ux��s� . �14�

We stress that while EH
a is repulsive and thus detrimental to

superconductivity,24 Ux��s� is attractive and favors formation
of spin-density waves.7,37,38

The KS procedure, applied to this total-energy functional,
leads to single-particle equations for the four-component
spinor


��r� = �u↑
��r�,u↓

��r�,v↑
��r�,v↓

��r��T, �15�

with particle �hole� wave functions u��r� �v��r�� for each
electron spin, �= ↑ ,↓. The symbol T indicates transposition,
while the superscript � labels the self-consistent solutions of
the KS equations, the first of which is

H�s��w�s��
� = ��
�, �16�

where w�s� denotes the set of the seven potentials
�v�

�s� ,S�s� ,��s� ,�m
�s�� ��= ↑ , ↓ ,m=−1,0 ,1�. The KS Hamil-

tonian is

H�s� =�
h + v↑,s Ŝ�s� − 2�̂1

�s� − �̂�s� − �̂0
�s�

Ŝ�s�† h + v↓,s �̂�s� − �̂0
�s� − 2�̂−1

�s�

2�̂1
�s�� �̂0

�s�� + �̂�s�� − h − v↑,s − Ŝ�s��

�̂0
�s�� − �̂�s�� 2�̂−1

�s�� − Ŝ�s�T − h − v↓,s

� ,

�17�

with the shorthands h for −	2�2 /2m and Ŝ�s�, �̂�s�, and �̂m
�s�

for the integral operators associated with the nonlocal poten-
tials S�s��r ,r��, ��s��r ,r��, and �m

�s��r ,r�� by

Ŝ�s�:f�x� �	 d3yS�s��x,y�f�y� , �18a�

�̂�s�:f�x� �	 d3y��s��x,y�f�y� , �18b�

�̂m
�s�:f�x� �	 d3y�m

�s��x,y�f�y� . �18c�

The effective single-body potentials are defined by

v�s = v� +
�UMF

�n�

+
�Exc

�n�

, �19a�
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S�s� = S +
�UMF

��s
+

�Exc

��s
, �19b�

��s� = � +
�UMF

��
+

�Exc

��
, �19c�

�m
�s� = �m +

�UMF

��m
+

�Exc

��m
. �19d�

The derivation of Eq. �17� from Eq. �9� is analogous to
that of the simpler KS Hamiltonians in Refs. 6 and 7. First,
we note that minimization of the interacting Hamiltonian of
Eq. �6� with respect to n� results in the Euler equation

�Ts

�n��r�
+

�UMF

�n��r�
+

�Exc

�n��r�
+ v��r� = 0 �20�

and similar equations for the minimization with respect to
the other densities.

In a second step, we construct a noninteracting many-

body system with Hamiltonian Ĥs obtained by subtracting Û
from the interacting Hamiltonian of Eq. �6� and replacing the
external potentials v�, S, �, and �m with v�,s, S�s�, ��s�, and
�m

�s�, respectively. These self-consistent potentials are chosen
such that the noninteracting system has the same densities n↑,

n↓, �s, �, and �m as given by the original Hamiltonian Ĥ.

Minimization of Ĥs with respect to n� leads to the Euler
equation

�Ts

�n��r�
+ v�,s�r� = 0. �21�

The two Euler equations can be combined to yield Eq.
�19a�. In the same manner, minimization with respect to the
other densities yields Eqs. �19b�–�19d�. To solve the effec-

tive problem, we need to diagonalize Ĥs. We achieve this by
a linear �Bogolubov� transformation from the electron cre-

ation and annihilation operators, �̂�
†�r� and �̂��r�, to new

fermionic creation and annihilation operators �̂l
† , �̂l,

�̂��r� = �
l

�u�
l �r��̂l + v�

l �r���̂l
†� . �22�

This transformation renders the effective single-particle

Hamiltonian in diagonal form Ĥs=const+�l�l�̂l
†�̂l. The

single-particle energies �l are the eigenvalues of the KS
Hamiltonian �17�, while the coefficients u�

l and v�
l of the

Bogolubov transformation are the components of the spinors

l.

In terms of these coefficients, the ground-state densities
are given by

n��r� = �
�:���0


u�
��r�
2 + �

�:���0

v�

��r�
2 �� = ↑,↓� ,

�23a�

�s�x,y� = �
�:���0

u↑
���x�u↓

��y� + �
�:���0

v↑
��x�v↓

���y� ,

�23b�

��x,y� = �
�:���0

�v���x�u��y��s + �
�:���0

�u��x�v���y��s,

�23c�

�m�x,y� = �
�:���0

�v���x�u��y��m + �
�:���0

�u��x�v���y��m.

�23d�

The ground-state energy is then obtained by computing the
functional E�n↑ ,n↓ ,�s ,� ,�m=0 ,�m=+1 ,�m=−1�.

The KS Eqs. �16�, �17�, �18a�–�18c�, and �19a�–�19d� de-
termine the ground-state energy and densities for external
potentials ranging from microscopically to macroscopically
inhomogeneous, as well as from periodic to disordered. Our
interest in the proximity effect focuses the following discus-
sion on the inhomogeneities associated with a one-
dimensional discontinuity separating two semi-infinite re-
gions.

IV. SPECIALIZATION TO INTERFACES

We consider two semi-infinite spatial regions, labeled L
�left� and R �right�, separated by a potential barrier that is

wide in comparison with the range of the interaction Û in
either L or R. Though high, the barrier is finite and hence
allows electronic tunneling between L and R. As Fig. 1 indi-
cates, we denote the position in L �R� by r �r��. To save
space, we will indicate the densities and potentials on the R
semispace by a prime. Thus, e.g., v�r�L� �v�r�R�� will be
denoted v �v��.

Our model Hamiltonian reads

Ĥ = ĤL + ĤT + ĤR. �24�

Here, ĤL �ĤR� are of the form Ĥ+ V̂, where Ĥ is defined in

Eq. �6� and V̂ is an infinite barrier centered at the interface
between L �R� and the tunneling region, which enforces or-

thogonality between the eigenfunctions of ĤL and ĤR.44 The
phenomenological tunneling Hamiltonian

ĤT = �
�
	

L

d3r	
R

d3r���̂�
†�r�t�r,r���̂��r�� + H.c.� �25�

provides transport across the barrier.

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
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FIG. 1. The physical system under consideration �see text�: the
shaded area represents the physically inaccessible region across
which tunneling can take place, while the dashed lines indicate the
extent of the L and R regions on which the tunneling amplitude
t�r ,r�� is important.
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We complete the phenomenological description of the in-
terface by assuming that the only effect of the tunneling term

ĤT in the Hamiltonian �24� is to make the KS equations
become

�H�s��w�s�� HT
�s�

HT
�s�† H�s��w�s���

��
L
�


R
� � = ���
L

�


R
� � , �26�

where the tunneling KS Hamiltonian HT
�s� is defined by

HT
�s� =�

t̂ 0 0 0

0 t̂ 0 0

0 0 − t̂� 0

0 0 0 − t̂�
� . �27�

The integral operator t̂ is given by t̂ : f�r��
d3r�t�r ,r��f�r��.
Our phenomenological description of the barrier contrasts

with the microscopic treatment of the semi-infinite regions.
Instead of deriving and solving Kohn-Sham equations for the
shaded region in Fig. 1, we prefer to follow Prange’s
prescription44 even if we have to rely on phenomenological
considerations to define the tunneling matrix t�r ,r��. This
simplification focuses our analysis on the interaction be-
tween the L and R regions. Under appropriate circumstances,
as shown below, it leads to an independent set of Kohn-Sham
equations for each region—a result combining mathematical
convenience with physical appeal. Under such circum-
stances, to determine the densities in one of the regions, we
can rely on first-principles calculations in which the external
potential captures phenomenologically the influence of the
material across the barrier.

A. Decoupled Hamiltonians

The KS Eq. �26� describes the electronic states of L and
R. Let us now derive a set of KS equations that describe,
formally, only the states of R, but take into account the in-
fluence on such states of the charge, spin, and superconduct-
ing order that are potentially present in L.

For r�L, since the eigenfunctions of the KS Hamiltonian

with ĤT=0 form a complete set, we can write


L
� = �

�

�
̃L
�†,
L

��
̃L
� , �28�

where the tildes denote the absence of tunneling and the

scalar product �
̃L
�† ,
L

�� comprises integration over the spa-
tial variable and summation over spinor indices.

Insertion into the second row of Eq. �26� then yields

�
�

�
̃L
�†,
L

��HT
�s�
̃L

� + H�s��w�s���
R
� = ��
R

� . �29�

To eliminate 
L
� from this equation, we first write the eigen-

value equation defining 
̃L
�, i.e., the first row of Eq. �26� with

HT
�s�=0,

H�s��w�s��
̃L
� = �̃L

�
̃L
� , �30�

and multiply it on the left by 
L
�†. Hermitian conjugation

then yields


̃L
�†H�s��w�s��
L

� = �̃L
�
̃L

�†
L
� . �31�

Next, we multiply the first row of Eq. �26� by 
̃L
�† on the

left


̃L
�†HT

�s�
R
� + 
̃L

�†H�s��w�s��
L
� = ��
̃L

�†
L
� . �32�

We then subtract Eq. �31� from this result, solve for 
̃L
�†
L

�,
and integrate over the spatial variable to find that

�
̃L
�†,
L

�� =
1

�� − �̃L
� �
̃L

�†,HT
�s�
R

�� . �33�

We can now substitute the right-hand side for the scalar
product on the left-hand side of Eq. �29� and exploit the
completeness of the wave functions �̃L

� �l=1,2 , . . .� to define
the effective external Hamiltonian

Hext���� = �
�

HT
�s�
̃L

� 1

�� − �̃L
� 
̃L

�†HT
�s�, �34�

so that Eq. �29� defines a KS eigenvalue equation for r�
�R,

�H�s��w�s��� + Hext�����
R
� = ��
R

� . �35�

More explicitly, given that, if �ũ↑ , ũ↓ , ṽ↑ , ṽ↓�T is an eigen-
vector, with eigenvalue �̃, then �ṽ↑ , ṽ↓ , ũ↑ , ũ↓�† is also an ei-
genvector, with eigenvalue −�̃, we can cast the effective ex-
ternal potential in the form

Hext���� =�
v̂↑

�s����� Ŝ�s����� − 2�̂1
�s����� − ��̂�s� + �̂0

�s������

Ŝ�s�†���� v̂↓
�s����� ��̂�s� − �̂0

�s������ − 2�̂−1
�s�����

2�̂1
�s���− ��� ��̂0

�s�� + �̂�s����− ��� − v̂↑
�s��− ��� − Ŝ�s���− ���

��̂0
�s�� − �̂�s����− ��� 2�̂−1

�s���− ��� − Ŝ�s�T�− ��� − v̂↓
�s��− ���

� , �36�
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where the integral operators v̂�����, Ŝ����, �̂����, and �̂m����
�m=−1,0 ,1� have the following kernels:

v����;x�,y�� = 	
L

d3xt�x�,x��
�
	

L

d3y
ũL,�

� �x�ũL,�
�� �y�

�� − �̃L,l

t�y,y�� ,

�37a�

S���;x�,y�� = 	
L

d3xt�x�,x��
�
	

L

d3y
ũL,↑

� �x�ũL,↓
�� �y�

�� − �̃L,l

t�y,y�� ,

�37b�

����;x�,y�� = 	
L

d3xt�x�,x��
�
	

L

d3y
�ũL

��x�ṽL
���y��s

�� − �̃L,l

��− 1�t��y,y�� , �37c�

�m���;x�,y�� = 	
L

d3xt�x�,x��
�
	

L

d3y
�ũL

��x�ṽL
���y��m

�� − �̃L,l

��− 1�t��y,y�� . �37d�

The effective external potential Hext���� expresses math-
ematically the proximity effect. The nonlocal effective po-
tential v���� ;x� ,y�� in Eq. �37a� describes the virtual transi-
tion from point x� to y� depicted in Fig. 2, with intermediate
tunneling to point x and propagation to point y. The right-
hand sides of Eqs. �37b�–�37d� have analogous interpreta-
tions, the propagation in L now involving a spin flip �Eq.
�37b�� or spin-conserving scattering into a hole state �Eqs.
�37c� and �37d��, respectively.

B. General aspects of the decoupled Hamiltonian

Equations �37a�–�37d� decompose a pair of quantum liq-
uids, differently ordered and coupled by tunneling, into two
uncoupled liquids subject to effective, energy-dependent ex-
ternal fields. The right-hand side of each equality depends

only on 
̃L
�, not on 
R

� or on 
L
�. In words, the effective

fields induced by the proximity effect on one half-space de-
pend only on the solutions of the KS equations on the oppo-
site side, unperturbed by tunneling.

In general, the effective fields also depend on the energies
��. Whether it is easier to diagonalize energy-independent
coupled Hamiltonians or energy-dependent uncoupled ones
then depends on specific aspects of the problem under study.
If a low barrier separates degenerate states, the coupled-
Hamiltonian formalism is natural and mathematically conve-
nient. As pointed out in Ref. 6, however, if the energy spec-
trum �̃ on one of the sides is bounded by a gap while that on
the other side is not, then the low KS eigenvalues �� can be
neglected in the denominators of the sums on the right-hand
sides of Eqs. �37a�–�37d� and the potentials become energy
independent. In this case, the treatment of the decoupled
Hamiltonians is clearly more efficient than the solution of the
coupled KS equations. From a conceptual viewpoint, more-
over, the emergence of proximity-induced effective poten-
tials that give rise to superconductivity or antiferromag-
netism is appealing.

In the analysis of infinite systems, at the formal level,
DFT starts out by introducing a fictitious external potential,
set equal to zero after the KS equations are derived. Equation
�6� is an example. To solve the KS equations, at the opera-
tional level, one likewise seeds the self-consistent loop with
an artificial external potential. In the vicinity of an ordered
system, as Eqs. �37a�–�37d� show, this mathematical expedi-
ent is neither formally nor operationally necessary. One can
therefore interpret the spontaneous ordering of an infinite
system as a residual consequence of a proximity effect. We
see that this interpretation, first offered in connection with
superconductors in Ref. 6, describes equally well magnetic,
superconducting, and coexisting states.

In spite of the complex form on the right-hand side of Eq.
�36�, our attention to spin in the definition of the Cooper-pair
densities guarantees that the KS equations couple only the
singlet �triplet� density to the singlet �triplet� potential. As
the analyses in Secs. IV C and IV D will show, if a conven-
tional superconductor is coupled to a noncollinear antiferro-
magnet by an interface through which electrons can tunnel,
the resulting proximity potential will induce the formation of
singlet Cooper pairs in the antiferromagnetic material. Like-
wise, on the superconducting side, the induced staggered
field scatters the Cooper pairs into other singlet states.

C. Special case: Superconductivity

This subsection and the next examine Eqs. �37a�–�37d� in
two particularly simple situations. Here, we detail the first
arrangement, which couples an unspecified material �R� to a
singlet superconductor �L�. We take the latter to be nonmag-
netic, so that vs,↑−vs,↓=Ss=0.

To determine the unperturbed KS eigenstates in L, which
contribute to the right-hand sides of Eqs. �37a�–�37d�, we set
HT

s =0. A Bogolubov-Valatin transformation then diagonal-
izes the matrix on the right-hand side of the resulting Eq.
�17�. The eigenspinors have the form


̃L
���r� � �

ũL,↑
�� �r�

ũL,↓
�� �r�

ṽL,↑
�� �r�

ṽL,↓
�� �r�

� =�
u��r�

0

0

v��r�
���,1 +�

0

u��r�
− v��r�

0
���,2

�� = 1,2� . �38�

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �
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� � � � � �
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FIG. 2. The external nonlocal “potential” of Eq. �37a� induced
in the R region describes new coupling between points x� and y�
that takes into account processes in which an electron would tunnel
across the barrier, propagate inside the differently ordered electron
liquid in the L region, and then tunnel back into R �see text�.
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The amplitudes u��r� and v��r� are solutions of the
Bogolubov–de Gennes equations �i.e., Eq. 7 in Ref. 6�. The
invariance of the L Hamiltonian under the inversion z�−z
makes the KS eigenvalues independent of the spin index �,
i.e., �̃L

��= �̃�. The eigenvalues moreover change sign under
the transformation �ũ↑ , ũ↓ , ṽ↑ , ṽ↓�T� �ṽ↑ , ṽ↓ , ũ↑ , ũ↓�†. These
two symmetries considered, and the eigenfunctions on the
right-hand side of Eq. �38� substituted on the right-hand
sides of Eqs. �37a�–�37d�, we find that

v����;x�,y�� = 	
L

d3xt�x�,x��
�
	

L

d3y
u���x�u��

� �y�
�� − �̃�

t�y,y�� ,

�39a�

����;x�,y�� = 	
L

d3xt�x�,x��
�
	

L

d3y�u��x�v�
��y�

�̃� − ��
�

s

t��y,y�� ,

�39b�

S���;x�,y�� = �m���;x�,y�� = 0 �m = − 1,0,1� .

�39c�

Thus the superconductivity in L induces only a normal
and a singlet pairing potential in R. When R is a semi-
infinite, normal metal, we recover the superconductor-DFT
result.6 Equation �39a� is the nonlocal normal potential al-
luded to, but not given explicitly, in footnote 10 of Ref. 6.

D. Special case: Magnetism

As a second particular case, we consider a nonsupercon-
ducting material in L, i.e., �L=0. The eigenspinors of the KS
equations now have the form


̃L
�m�r� � �

ũL,↑
�m �r�

ũL,↓
�m �r�

ṽL,↑
�m �r�

ṽL,↓
�m �r�

� =�
�m,↑�r�
�m,↓�r�

0

0
���,p +�

0

0

�m,↑
� �r�

�m,↓
� �r�

���,h

�� = p,h� , �40�

where the labels �= p and �=h designate particlelike and
holelike KS quasiparticles, respectively. The amplitudes
�m,��r� are solutions of an eigenvalue problem analogous to
the Bogolubov–de Gennes equations �Eq. 15 in Ref. 7�. For a
given m, the corresponding eigenvalue �m can either be posi-
tive or negative and the external potentials are

v����;x�,y�� = 	
L

d3xt�x�,x��
m
	

L

d3y
�m,��x��m,�

� �y�
�� − �m

t�y,y�� ,

�41�

S���;x�,y�� = 	
L

d3xt�x�,x��
m
	

L

d3y
�m,↑�x��m,↓

� �y�
�� − �m

t�y,y�� ,

�42�

����;x�,y�� = �m���;x�,y�� = 0 �m = − 1,0,1� . �43�

This set is analogous to Eqs. �39a�–�39c� and gives substance
to the image7 of the external contribution to the staggered
field in DFT as a proximity effect, an interpretation that
places additional emphasis on the analogy between DFT for
superconductors and for spin-density waves.

V. GENERALIZATION: MAGNETIC INTERFACES

The tunneling Hamiltonian �27� defines an inert barrier,
one that merely allows charge transport between regions L
and R. By contrast, this section examines a magnetically ac-
tive interface in which spin-orbit coupling or spin-flip scat-
tering from impurities add off-diagonal elements to the tun-
neling matrix. In special situations, a trivial rotation of the
quantization axis may be sufficient to diagonalize that matrix
over the entire barrier; in such instances, one expects the
barrier to induce spin polarization in both L and R.

More generally, however, the spatial dependence of the
matrix elements will bar global diagonalization so that in-
stead of simply redefining the quantization axis, the barrier
will turn into an inhomogeneous source of spin flips. While
the system, constituted by the L and R regions and the inter-
face between them, is subject to global conservation laws,
the spin of the electrons in regions R and L is no longer
conserved. This section explores the consequences of that
rupture. We shall see that while the potentials v� ��= ↑ ,↓�
and S are only quantitatively affected, the magnetic barrier
breaks the independence between the singlet and the triplet
Cooper pairs. A magnetic interface separating a singlet su-
perconductor from a normal metal, for instance, will induce
the formation of triplet pairs in the latter.

More specifically, instead of Eq. �27� we consider the fol-
lowing tunneling KS Hamiltonian:

HTmagn
�s� =�

t̂↑↑ t̂↑↓ 0 0

t̂↓↑ t̂↓↓ 0 0

0 0 − t̂↑↑
� − t̂↑↓

�

0 0 − t̂↓↑
� − t̂↓↓

�
� , �44�

and follow the analysis leading from Eq. �27� to Eq. �34�,
which now takes the form

Hext,magn���� = �
�

HTmagn
�s� 
̃L

� 1

�� − �̃L
� 
̃L

�†HTmagn
�s� . �45�

From Eqs. �15� and �44�, the computation of the right-
hand side of Eq. �45� is straightforward, which brings Eq.
�45� to the form of Eq. �36�, with the kernels

v����;x�,y�� = 	
L

d3x �
�,��

t���x�,x�	
L

d3y�
�

ũL,�
� �x�ũL,��

�� �y�

�� − �̃L,l

�t����y,y��, �� = ↑,↓� , �46a�
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S���;x�,y�� = 	
L

d3x �
�,��

t↑��x�,x�	
L

d3y�
�

ũL,�
� �x�ũL,��

�� �y�

�� − �̃L,l

�t��↓�y,y�� , �46b�

and, with the notation P���
sm �� ,��= ↑ ,↓, S=0,1, and m

=−S , . . . ,S� for the spin operator projecting the doublets �
and �� onto their singlet �S=0� or triplet �S=1�
combinations,45

����;x�,y�� =
1

2
P���

00 	
L

d3x �
�,��

t���x�,x�	
L

d3y

��
�

ũL,�
� �x�ṽL,��

�� �y�

�� − �̃L,l

t����
� �y,y�� , �46c�

�m���;x�,y�� =
1

2
P���

1m	
L

d3x �
�,��

t���x�,x�	
L

d3y

��
�

ũL,�
� �x�ṽL,��

�� �y�

�� − �̃L,l

t����
� �y,y��

�m = 0, � 1� . �46d�

While the projector P
���
Sm in Eqs. �46c� and �46d� ensures

singlet and triplet symmetries for � and �m, respectively, the
sums over the spin components � and �� involve all combi-
nations of the eigenvectors ũL�

� and ṽL��
�� , i.e., contributions

from both the singlet and the triplet anomalous densities. The
product ũL↑

� �x�ṽL↑
���y�, for instance, which Eq. �23d� associ-

ates with �1�y ,x�, contributes to � and to all three compo-
nents of �m; should a global rotation of the quantization axis
diagonalize both t�x� ,x� and t�y ,y��, its contribution to the
singlet potential � would vanish so that the mismatch be-
tween the symmetries of the densities and of the KS poten-
tials would be restricted to the z component of �m and �m. In
general, however, in the presence of magnetically inhomoge-
neous interfaces neither the z component nor the total spin on
one side of the interface is conserved.

In particular, if a singlet superconductor in region L is
coupled to a normal metal in region R, the singlet anomalous
density will contribute to the right-hand side of Eq. �46d�.
We expect, therefore, triplet Cooper pairs to be proximity
induced in the normal metal, along with singlet pairs due to
the potential �.

To conclude this section we note that the coupling be-
tween anomalous densities with different symmetries is in
line with spin conservation. The off-diagonal terms in our
phenomenological Eq. �44� arise from magnetic degrees of
freedom in the barrier, which interact with the spins of the
electrons in L and R. Only the total spin S2= �SL+ST+SR�2,
which includes the contribution ST from such degrees of
freedom, must be conserved. While a tunneling matrix �44�
diagonalizable by a uniform rotation of its spin variables is
sufficient to conserve SL

2 and SR
2 , and while at least in special

situations, this condition proves not necessary,46 the right-
hand side of Eq. �44� will in general fail to commute with SR

2

and hence allow S→S�1 Cooper-pair spin transitions.

VI. CONCLUSIONS

We have discussed a density-functional formalism de-
scribing superconductivity and magnetism, a generalization
encompassing DFT for superconductors,6,18 and DFT for
antiferromagnets7 that covers systems with coexisting order
parameters. The formalism being particularly practical in de-
scriptions of two quantum liquids coupled by tunneling, we
have derived an exact expression relating the proximity field
in one region to the eigenfunctions and eigenvalues of the
unperturbed KS equations in the opposite region.

The solution of the self-consistent cycle of equations pre-
sented in Sec. III B gives individual access to the singlet and
the triplet Cooper-pair densities as well as to the staggered
magnetization. This feature of the formalism was explored in
Sec. IV B, which demonstrated that the proximity field in-
duced by the singlet �triplet� density affects only the singlet
�triplet� pairs and showed that DFT opens attractive perspec-
tives for the study of the competition between order param-
eters in junctions such as a conventional or unconventional
superconductor coupled to a noncollinear antiferromagnet. In
Sec. V we considered the special case of a magnetic inter-
face. We found that a singlet superconductor can in this case
induce triplet pairing in a normal metal. We hope that our
results stimulate further experimental scrutiny of macro-
scopically inhomogeneous quantum liquids and serve as the
basis for an ab initio description of such systems.
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