
Viewpoint Consistency in ODP

Eerke Boiten, Howard Bowman, John Derrick, Peter Linington, Maarten Steen
Computing Laboratory, University of Kent, Canterbury, CT2 7NF, UK.

(Email: E.A.Boiten@ukc.ac.uk.)

February 19, 2011

Abstract

Open Distributed Processing (ODP) is a joint ITU/ISO standardisation framework for con-
structing distributed systems in a multi-vendor environment. Central to the ODP approach
is the use of viewpoints for specification and design. Inherent in any viewpoint approach is
the need to check and manage the consistency of viewpoints.

In previous work we have described techniques for consistency checking, refinement, and
translation between viewpoint specifications, in particular for LOTOS and Z/Object-Z. Here
we present an overview of our work, motivated by a case study combining these techniques
in order to show consistency between viewpoints specified in LOTOS and Object-Z.

Keywords: Open Distributed Processing; Viewpoint Consistency; Formal Methods; Object-Z;
LOTOS.

1 Introduction

There have been dramatic recent developments in the area of distributed computing, e.g. ap-
plications involving multi-media made possible by high speed networks; however, for the next
generation of global distributed systems to be realised, significant system engineering problems
must be resolved. Examples of such problems include the wealth of legacy components that must
be accommodated, software interoperability, the heterogeneity of underlying technologies and the
sheer complexity of such distributed systems.

The Open Distributed Processing (ODP) architecture is a vehicle for addressing these system
engineering problems. Open Distributed Processing (ODP) is a joint ITU/ISO standardization
framework for constructing distributed systems in a multi-vendor environment. The architecture
has reached a level of maturity, with the main ODP document, the Reference Model for Open
Distributed Processing (RM-ODP), recently progressed to become an international standard. The
interested reader is referred to both published introductions [?, ?, ?] and the standards documents
themselves [?].

Significant features of ODP include object based specification and programming, use of trans-
parencies to hide aspects of distribution and viewpoints [?]. The latter of these is of particular
significance here; it provides a basic separation of concerns, enabling different participants to ob-
serve the system from suitable perspectives and at suitable levels of abstraction. It is a central
device for structuring and managing the complexity inherent in describing systems. Its value in
this respect is witnessed by the work of the Telecommunications Information Networking Archi-
tecture (TINA) group [?], which is using ODP viewpoints extensively in its work on defining a
software architecture for the next generation of telecoms systems.

1

The use of viewpoints in ODP mirrors their increasing importance throughout software engineer-
ing, e.g. in requirements engineering [?], OO design methodologies [?], formal system development
[?] and in software engineering in general [?]. The idea is that rather than having a single thread
of system development, in the style of the classic waterfall approach, multiple partial specifications
(i.e. viewpoints) of a system are considered. Each particular specification represents a different
perspective on the system under development and, in fact, may well be written by a different speci-
fier. ODP uses five predefined viewpoints - the enterprise viewpoint , the information viewpoint , the
computational viewpoint , the engineering viewpoint and the technology viewpoint . (Predefinition
of viewpoints in ODP contrasts with how they arise in other models, e.g. [?] where specifiers can
introduce new viewpoints as they wish.) ODP is not prescriptive about the choice of specification
language to be adopted with particular viewpoints. However, it does advocate that the chosen
languages should be formal [?].

One of the consequences of adopting a multiple viewpoints approach to development is that de-
scriptions of the same or related entities can appear in different viewpoints and must co-exist.
Thus, different viewpoints can impose contradictory requirements on the system under develop-
ment and consistency of specifications across viewpoints becomes a central issue. The problem is
complicated by the fact that we can expect viewpoint specifications to be written in different lan-
guages (viz. languages particularly suited for the viewpoint at hand, e.g. Z [?] for the information
viewpoint and LOTOS [?, ?] for the engineering viewpoint [?]).

Thus, providing techniques to check viewpoint consistency is one of the major research topics
surrounding ODP viewpoints modelling and a number of workers have responded to this challenge,
[?, ?, ?]. In particular, a research project, Cross Viewpoint Consistency in Open Distributed
Processing1 was undertaken at the University of Kent at Canterbury in order to explore this issue.
The scope of this project was broad, including theoretical investigations of the nature of consistency
checking [?, ?], techniques for consistency checking within specific formalisms, e.g. LOTOS [?, ?, ?]
and Z [?, ?] and, techniques for consistency checking across specification languages [?, ?].

This paper reviews the results of this project through the presentation of a worked consistency
checking example. The example is the specification of CCITT’s Signalling System No. 7 Protocol
[?] from two viewpoints: engineering and computational. We give a computational viewpoint
specification in Object-Z and an engineering viewpoint description containing LOTOS and Object-
Z fragments.

The paper illustrates the scope of the results of our project by presenting a complete consistency
check between these viewpoints. First we show how the Object-Z and LOTOS fragments can be
reconciled by translating the LOTOS fragments into observationally equivalent Object-Z ones.
Then we check the consistency of the two viewpoint specifications now both expressed in Object-
Z. The constructive method used for this results in a common refinement of the two Object-Z
specifications, whose existence demonstrates consistency of the original viewpoints.

It is important to note that although our example is couched in terms of the computational and
engineering viewpoints the techniques we present are general in nature. They are techniques for
checking the consistency between any set of viewpoint specifications, in fact, any set of partial
specifications written in LOTOS and/or (Object-)Z. For example, in [?] they are applied to the
ODP information and enterprise viewpoints.

The paper is structured as follows. First we present some background on the ODP model and
consistency in section ??. Section ?? introduces the LOTOS and Object-Z specifications of the
computational and engineering viewpoints. Section ?? describes how we relate specifications in
LOTOS with Object-Z specifications. Section ?? describes the basic principles of consistency
checking. Consistency checking in Z and Object-Z are reviewed in section ?? and consistency

1Funded by the UK Engineering and Physical Sciences Research Council under grant GR/K13035 with additional
support from British Telecom Research Labs, Martlesham, Ipswich, U.K..

2

checking in LOTOS is considered in section ??. Both these sections use the running example to
illustrate the techniques introduced. Section ?? discusses issues for further work and the potential
for tool support and finally, section ?? discusses related work.

2 ODP Reference Model

2.1 Overview and Motivation

The initiative which lead to the standardization of Open Distributed Processing [?] came from a
growing awareness that many of the communications-oriented standardization activities aimed at
the provision of Open Systems Interconnection required a broader framework than was provided
by the OSI Reference Model [?]. Standardization of distributed applications such as interpersonal
messaging or transaction processing requires a view of the way many components are linked into
a distributed system, and of the resources and structures used by these components. A simple
interconnection model is not powerful enough. What is needed is a model which can combine the
description of system structure with statement of system-wide objectives and constraints, so that
the adequacy of the solutions proposed can be judged against the system’s original purpose. The
ODP standardization initiative is a response to these issues.

The central ODP document is the Reference Model for Open Distributed Processing (RM-ODP)
[?]. This aims to provide a unifying framework for the standardization of any mechanized dis-
tributed system, and of the supporting models, techniques and notations needed to describe such
a system. Its scope is very broad, including support for all types of traditional data processing
systems, networked personal computers, real-time systems and multimedia systems.

As indicated earlier, the reference model recently progressed to become an international standard.
Consequently, the focus of research within the ODP community has now moved from defining
the reference model to standardizing components of the architecture, e.g. the trader [?] and the
enterprise language [?] and in addition, to progressing specific instantiations of the architecture.
Examples of such instantiation include OMG’s CORBA [?] and Microsoft’s D-COM [?] architec-
tures; both of which can be viewed as instantiating the ODP Computational and Engineering
viewpoints.

2.2 ODP Viewpoints

The complete specification of any non-trivial distributed system involves a very large amount of
information. Attempting to capture all aspects of the design in a single description is generally
unworkable. Most design methodologies aim to establish a coordinated, interlocking set of models
each aimed at capturing one facet of the design, satisfying the requirements which are the concern
of some particular group involved in the design process. In ODP, this separation of concerns is
established by identification of five viewpoints [?].

For each of the five viewpoints, the reference model presents a set of definitions and a set of rules
which constrain the ways in which the definitions can be related.

• The enterprise viewpoint is concerned with business policies, management policies and
human user roles with respect to the systems and the environment with which they interact.
Use of the word enterprise here does not imply a limitation to a single organization. The
model constructed may well describe the constraints placed on the interaction of a number
of distinct organizations.

3

• The information viewpoint is concerned with information modelling. By factoring an
information model out of the individual components, it provides a common view which can
be referenced by the specifications of information sources and sinks and the information
flows between them. The information viewpoint defines concepts for information schema
definition. The viewpoint distinguishes between an instantaneous view of information (a
static schema), a statement of information which is necessarily unchanged by the system (an
invariant schema) and a description of information reflecting the behaviour and evolution of
the system (a dynamic schema).

• The computational viewpoint is concerned with the algorithms and data flows which
provide the distributed system function. This viewpoint specifies the individual components
which are the sources and sinks of information flows. It represents the system and its
environment in terms of objects which interact by transfer of information via interfaces. This
does not necessarily imply that the computational objects will be realized in the eventual
system by separate components, but indicates which are the candidate objects from which
components can be chosen.

• The engineering viewpoint is concerned with the distribution mechanisms and the provi-
sion of the various transparencies needed to support distribution. The engineering viewpoint
defines a number of functional building blocks which can be combined together to provide
the requested transparencies (e.g. distribution, failure or migration transparencies). The
engineering viewpoint lists a large number of supporting functions which are candidates for
standardization (or for which there are already standards) and gives initial definitions of
them.

• The technology viewpoint is concerned with the detail of the components and links from
which the distributed system is constructed.

It is important to note that ODP is not specific about the choice of specification language that
should be applied in particular viewpoints, rather the reference model gives an abstract definition
of the set of basic constructs that would be used when describing systems from that particular
viewpoint. Then the reference model advocates a process of instantiation by which existing spec-
ification notations are related to these constructs; the ODP architectural semantics takes a first
step in this direction [?].

Furthermore, since different languages are applicable to the specification requirements of different
viewpoints, e.g. LOTOS for the engineering viewpoint and Z/Object-Z for the information view-
point, it is clear that we must work within a multiple language setting. In particular, consistency
checking must be performed both within and across specific languages.

2.3 Formal Description in ODP

Formal description has been extensively employed in Open Distributed Processing, [?, ?, ?, ?,
?, ?]. Within ODP, formal description is viewed as enabling precise, unambiguous, and abstract
definition and interpretation of ODP standards. This is the familiar motivation for employing
FDTs in standardization activities. However, the spectrum of FDT usage in ODP is both extensive
and diverse. Which FDT should be employed for each particular role is a central issue. The
spectrum of available FDTs also offers significant diversity. For example, LOTOS [?, ?], Estelle
[?] and SDL [?] are targeted at issues of explicit concurrency and interaction (specifying ordering
and synchronisation of abstract events). Communication protocols are a typical example of this
class of application. In contrast, approaches such as Z [?] and VDM [?] address specification of
software systems in terms of data state change. Importantly, none of these FDTs fully address
the specification requirements of modern distributed systems and Open Distributed Processing

4

in particular. Such systems are extremely broad, encompassing, for example, both information
modelling and description of engineering infrastructures.

The paper [?] makes a broad assessment of the role of different FDTs within ODP. In the current
paper however, we will focus on two basic techniques: LOTOS and Z (in fact, an object oriented
variant of Z, called Object-Z). These two FDTs are chosen because they are conceptually two of
the most different specification notations being considered in ODP. Thus, if we can successfully
reconcile these two specification notations we will have a strong indicator of the effectiveness of
our techniques.

2.4 Consistency and Correspondences in ODP

In order to be able to check the consistency of multiple viewpoint specifications we first need
to define what is meant by consistency - at one time the ODP reference model alluded to three
different definitions. However, this can be resolved by adopting a formal framework as described
in [?]. This provides a definition of consistency between viewpoints general enough to encompass
all three ODP definitions.

Correspondences. Because viewpoints overlap in the parts of the envisaged system that they
describe, we need to describe the relationship between the viewpoints. In simple examples, these
parts will be linked implicitly by having the same name and type in both viewpoints – in gen-
eral however, we may need more complicated descriptions for relating common aspects of the
viewpoints. Such descriptions are called correspondences in ODP. We will introduce a number of
examples of correspondences in section ??.

Some correspondences follow directly from the ODP reference model. These are mostly consis-
tency requirements of the structural type, similar to those occurring in diagrammatic methods
for requirements engineering [?]. For example, the model requires that each computational object
which is not a binding object correspond to a set of one or more basic engineering objects (with
connecting channels). However, if full consistency (i.e. conformant behaviour) is required, such
correspondences need to be more detailed, stating which behaviours are viewed as corresponding
between the viewpoints.

The traditional way to check for consistency is by translating all the viewpoints to a common
underlying semantic framework (e.g. first order predicate logic [?]) – if all of these translations have
a common model (their conjunction is satisfiable) then the viewpoints were consistent. However,
this approach suffers from traceability problems, as discussed in more detail in [?]: a reported
inconsistency will be in terms of the semantic framework, and can normally only be partially
translated back into the original languages. In any case, it will be hard to recover all of the
original syntactic structure in such a back-translation. Additionally, the use of an underlying
common model, also due to loss of syntax, makes incremental consistency checks (on a specification
in development) more difficult.

Development Relations. An alternative approach to consistency checking has been described in
our papers [?, ?, ?]. Consistency of viewpoint specifications is defined as the existence of a common
“implementation”. Checking this directly would be just another “common model” approach.
However, ideally, abstract formal specifications are developed in small formal steps, characterised
by refinement relations. In order to gather refinement, implementation, and translation (to another
formal notation) under one name, we use the term “development relation”. For demonstrating
the existence of a common implementation, finding a common development is sufficient. If both
specifications use the same development relation, and the development relation is complete (in
the sense that all implementations can be obtained by development), existence of a common

5

Figure 1: Consistency as the existence of a common implementation

development is even necessary . Furthermore, under certain conditions common developments of
viewpoint specifications can be used to check consistency with additional viewpoints, ensuring
that all consistency checks can be just between two specifications.

Thus, our definition of consistency will be:

A set of viewpoint specifications are consistent if there exists a specification that is a development
of each of the viewpoint specifications with respect to the identified development relations and the
correspondences between viewpoints. This common development is called a unification.

As just indicated, different viewpoint specifications may be related to the unification by different
development relations. For example, the LOTOS engineering viewpoint might be related by a
conformance relation, while the Z computational viewpoint might be related by the Z refinement
relation. (Note also that the definition makes no reference to the five ODP viewpoints – in
particular, it allows viewpoint decomposition to be applied recursively, within the ODP viewpoints,
as well.)

Least Developed Unification. Besides a definition of consistency, we have also investigated
methods for constructively establishing consistency [?]. This involves defining algorithms which
build unifications from pairs of viewpoint specifications. An important notion in this context
is that of a least developed unification. This is a unification such that all other unifications are
developments of it. Thus, it is the least developed of the set of possible unifications according to
the development relations of the different viewpoints.

Using least developed unifications as intermediate stages, global consistency of a set of viewpoints
can be established by a series of binary consistency checks.

Unfortunately, it is not the case that least developed unifications can always be derived. In [?]
properties that development relations must possess for such unifications to exist are investigated.
In most cases development relations possess the required properties (in particular, for Z refinement,
least developed unifications can always be constructed) and as a reflection of this we will use
a strategy of constructing successive least developed unifications below in order to check the
consistency of the protocol viewpoints.

Techniques Considered. This definition of consistency is general in nature and can be instan-
tiated in many ways within and between languages. In this paper we present an example which
demonstrates how consistency can be shown between one viewpoint specified in LOTOS, and two
others specified in (Object-)Z.

6

Figure 2: Global consistency from binary consistency

3 A Worked Example

We illustrate our work by reference to a worked example, which we outline in this section. The
example we describe specifies message streams, routing and rerouting within CCITT’s Signalling
System No. 7 protocol [?] from a number of different ODP viewpoints. The example is based on
the specifications of the protocol described in [?, ?], and the informal description is taken from
[?]. The viewpoints are specified using a combination of Object-Z and LOTOS, and in subsequent
sections we show how the correspondences between the viewpoints can be described and how they
can be checked for consistency.

The Network Layer of the Signalling System No. 7 protocol provides services which enable a User
Part to send message sequences between not necessarily adjacent signalling points in identifiable
streams. Messages are confined to streams by routing labels and there are no dependencies across
streams within the network. Streams are conceptually concurrent, although an implementation
may merge them arbitrarily.

We specify streams using the Computational and Engineering viewpoints. The Computational
viewpoint is concerned with the identification of individual correctly sequenced message streams
from origin to destination without routing detail, and is specified in Object-Z. The Engineering
viewpoint identifies the route of a stream as a sequence of sections, each with a signalling point
and an outgoing linkset. This viewpoint is the basis for rerouting. In order to illustrate some
of the techniques we have been developing we have further split the engineering viewpoint into
two views (i.e. general partial specifications, not necessarily ODP viewpoints): one view which
specifies a single stream as a sequence of sections, this is specified in LOTOS; and a second view
which describes the multiplicity of these streams, this is specified in Object-Z. These views are at
different levels of abstraction and allow us to illustrate how components specified in one viewpoint
can be reused in another viewpoint.

We now describe each of these viewpoints in turn, beginning with the Computational viewpoint
in Object-Z. Object-Z is an object oriented variant of Z, which extends Z with notions of class,
object and inheritance. Object-Z classes that contain no instances of classes in their state can be
viewed as encapsulated versions of abstract data types in the standard Z states-and-operations
style: they contain a state description, an initialisation, and a collection of operations. Therefore,
as a development (refinement) relation for such Object-Z classes we will use standard Z refinement.

7

Figure 3: Signalling System No. 7

(In particular, in contrast to some of the proposals for Object-Z refinement, we will allow widening
of operations’ preconditions in refinements. In a context of partial specification this seems the
more obvious choice.) For an introduction to Object-Z and LOTOS the reader is referred to [?]
and [?] respectively.

3.1 The Computational Viewpoint in Object-Z

The Computational viewpoint describes service information with respect to streams at the User-
Part/Network Layer interface, we do not describe routing or signalling details here.

The set of signalling point codes is denoted SPC, and the codes identify a network’s potential
signalling points. The SPC of an origin point is denoted opc, and that of a destination dpc.

SPC0..16383

There can be up to sixteen streams of communication between any two signalling points. A
stream selector is used to distinguish streams between the same two signalling points; these stream
selectors are taken from the set SLS.

SLS0..15

The set of all signalling messages is denoted MSG.

[MSG]

Each stream is specified as a STREAM ext class that describes the state space of the object,
its initialisation (in the schema) together with the operations available. For each stream we
record the messages actually sent by the application at the origin (MsgsSent) and the messages
actually delivered (MsgsDelivered) to the application at the destination. Two operations define
the behaviour of the protocol. The operation Transmit accepts a new message and adds it to the
MsgsSent sequence. The Receive operation either causes the output sequence MsgsDelivered to
increase, or the MsgsDelivered sequence is unaltered modelling the environment’s busy waiting.
Initially, no messages have been sent. (Note that due to the way in which Z models sequences,
prefixing is denoted by set inclusion.)

8

STREAM ext MsgsSent, MsgsDelivered : MSG MsgsDelivered ⊆ MsgsSent
MsgsSent =
Transmit ∆(MsgsSent)
m? : MSGMsgsSent′ = MsgsSentm?
Receive ∆(MsgsDelivered)
#MsgsDelivered′ = #MsgsDelivered + 1 ∨MsgsDelivered′ = MsgsDelivered

The above class describes just one stream, and for each routing label there is a possible stream. A
stream is uniquely determined by its origin (opc) and destination (dpc) point codes together with
its stream selector (sls). Such an identification is called a routing label (RTG LAB): RTG LAB
opc, dpc : SPC
sls : SLS The class STREAM EXT provides for a multiplicity of streams, and is specified
as follows. The operations GTransmit and GReceive allow the Transmit and Receive opera-
tions to be performed on individual stream objects identified by a particular routing label lab?.
STREAM EXT Stream ext :RTG LAB STREAM ext
∀lab : Stream extṠtream ext(lab).
GTransmit [lab? : RTG LAB lab?∈ Stream ext]Ṡtream ext(lab?).T ransmit
GReceive[lab? : RTG LABlab? ∈ Stream ext]Ṡtream ext(lab?).Receive

3.2 The Engineering Viewpoint of a single stream in LOTOS

The Engineering viewpoint of a single stream models its path from origin to destination as a chain
of sections, one per signalling point en-route, except for the destination point. A section can be
considered as an abstraction of a signalling point and its ongoing linkset.

A route is a non-empty sequence of signalling points with no duplicates. The sections join end to
end so that the output of one is the input to the next.

The LOTOS specification of an engineering viewpoint stream follows. We assume a given specifi-
cation Items providing the sort element.

specification Sections [transmit,receive] : noexit
type BBuffer is Items, Boolean with

sorts buffer
opns nil :→ buffer

add : element, buffer → buffer
fst : buffer → element
rmv : buffer → buffer
empty : buffer → Bool

eqns
forall x, y : element, z : buffer
ofsort element

fst(add(x, nil)) = x;
fst(add(x, add(y, z))) = fst(add(y, z));

ofsort buffer
rmv(nil) = nil;
rmv(add(x, nil)) = nil;
rmv(add(x, add(y, z))) = add(x, rmv(add(y, z)));

ofsort Bool
empty(nil) = true;
empty(add(x, z)) = false;

endtype
behaviour

9

hide in, out in
(Section[transmit, out](nil, 0)|||Section[in, receive](nil, succ(0)))
|[in, out]|
Daemon[in, out]

where
process Section[in, out](q : buffer, j : Nat) : noexit :=

in!j?m : element;Section[in, out](add(m, q), j)
[]
[not(empty(q))] → out!j!(fst(q));Section[in, out](rmv(q), j)

endproc
process Daemon[in, out] : noexit :=

out?j : Nat?x : element[0 = j]; in!succ(j)!x;Daemon[in, out]
endproc

endspec

A generic section is described in the process Section. This gets messages using action in, puts
them in a buffer and then, using action out, outputs them.

The sections are placed independently in parallel. In order to prevent the example becoming
prohibitively complex we only include two sections, but more could be included and furthermore,
recursion could be used to accommodate an arbitrary number. For simplicity we use 0 and 1
(written succ(0) in LOTOS) as the signalling point codes for the two sections.

A process Daemon is composed in parallel with the two sections. This has the role of moving
messages between sections.

Further operations to specify any necessary rerouting in the presence of link failure could also be
included in the above specification if needed (see for example the rerouting operations given in
[?]). However, since they do not appear in the computational viewpoint, and are thus not central
to consistency checking, we have omitted them in the specification given above.

3.3 The Engineering Viewpoint of multiple streams in Object-Z

The final view(-point) in our example describes how the individual streams are combined to provide
a multiplicity of streams. To do so we specify a STREAM SECT class in Object-Z which provides
a global picture of the engineering viewpoint in terms of a number of stream objects. Since the
stream class was defined in another viewpoint in order to use it here we have to include it in this
viewpoint, however, we only define its signature and do not prescribe any behaviour. That is, this
viewpoint does not make any assumptions about a stream and the effect of the operations apart
from declaring their existence. Consequently, it is guaranteed to be consistent with any viewpoint
of a single stream. We will exploit this specification style when we combine the engineering views
in the sequel.

Our specification uses the signature of a stream object as defined in LOTOS before. Its sig-
nature could be constructed from the Object-Z translation that follows in Section ??, but also
by simply observing which actions occur in the LOTOS specification: transmit, receive, and
internal actions i which we will rename daemon to distinguish between the viewpoints. The signa-
ture STREAM sect contains these operations, with as the only state variables boolean variables
representing the applicability of each of the operations.

STREAM sect predaemon, prereceive, pretransmit : Bool

transmit ∆(predaemon, prereceive, pretransmit)pretransmit

10

receive ∆(predaemon, prereceive, pretransmit)prereceive
daemon ∆(predaemon, prereceive, pretransmit)predaemon

This will be used to define the class STREAM SECT . The operations Gtransmit and Greceive
allow the transmit and receive operations to be performed on individual stream objects identified
by a particular routing label lab?. The operation Gdaemon non-deterministically selects a stream
and forwards a message in it from one section to the next by using the daemon operation on that
stream object.

STREAM SECT Stream sect :RTG LAB STREAM sect
∀lab : Stream sectṠtream sect(lab).
Gtransmit [lab? : RTG LAB lab?∈ Stream sect]Ṡtream sect(lab?).transmit
Greceive[lab? : RTG LABlab? ∈ Stream sect]Ṡtream sect(lab?).receive
Gdaemon[∃lab : RTG LABl̇ab ∈ Stream sect]Ṡtream sect(lab).daemon

4 Relating LOTOS and Object-Z

Comparing viewpoints written in LOTOS and Object-Z requires that we bridge a gap between
completely different specification paradigms. Although both languages can be viewed as dealing
with states and behaviour, the emphasis differs between them. Our solution for consistency
checking between these two languages is to exploit a behavioural interpretation of Object-Z.

Object-based languages have a natural behavioural interpretation, and there is a strong correlation
between classes in object-oriented languages and processes in concurrent systems (see for example
[?, ?, ?]). We have used this correlation as the basis of a translation between the two languages,
which has been verified by defining a common semantics for LOTOS and Object-Z.

The ADT component of a LOTOS specification is translated directly into the Object-Z type
system. To translate the behavioural aspect of a LOTOS specification we map each LOTOS
process to an Object-Z class. Adopting this approach allows a natural mapping to be identified
between many of the behavioural constructs in the two languages, for example, we find that process
instantiation in LOTOS corresponds naturally to object instantiation in Object-Z.

To map a LOTOS process to an Object-Z class we will relate their observable atomic actions, i.e.
events in LOTOS and operations in Object-Z. Therefore the translation will map each LOTOS
action into an equivalent Object-Z operation schema. For example, the process Section in the
engineering viewpoint will be translated into an Object-Z class which contains operation schemas
with names in and out. The Object-Z operation schemas have appropriate inputs and outputs to
perform the value passing defined in the LOTOS specification. In addition, each operation schema
includes a predicate to ensure that it is applicable in accordance with the temporal behaviour of
the LOTOS specification.

The translation is given in [?], where it is verified against a common semantic model of the two
languages. This model is based upon the semantics for Object-Z described in [?], which effectively
defines a state transition system for each Object-Z specification. This model is used as a common
semantic basis by embedding the standard labelled transition system semantics for LOTOS into it
in an obvious manner. This provides a basis by which we can verify that the translation is correct,
i.e., that the meaning of a term in one language is (bisimulation) equivalent to the meaning of
that term after translation. [?] verifies the translation in detail.

11

4.1 Translating the data types

In LOTOS, data types are specified using the language for abstract data types ACT ONE [?]. ACT
ONE is an algebraic specification method to write parameterised as well as unparameterised ADT
specifications. These are translated directly into the Z type system. For example, the specification
Sections defines a data type given in terms of a signature and a list of equations. The translation
of this will introduce a given set to represent the sorts (here buffer), together with an axiomatic
definition which introduces the operations constrained by the behaviour of the equations. Thus
we translate the data type aspect of the specification Sections to:

[element, buffer]

nil : buffer
add : element×buffer → buffer
fst : buffer → element
rmv : buffer → buffer
empty : buffer → Bool

∀x, y : element, z : buffer ˙1̈fst(add(x, nil)) = x1̈fst(add(x, add(y, z))) = fst(add(y, z))1̈rmv(nil) = nil1̈rmv(add(x, nil)) = nil1̈rmv(add(x, add(y, z))) = add(x, rmv(add(y, z)))1̈empty(nil) = true1̈empty(add(x, z)) = false

Moreover, any realistic consistency checking toolbox will also contain direct translations from
axiomatic descriptions of standard structured types (e.g. sets, queues and sequences) into their Z
mathematical toolbox (cf. [?]) equivalents. We will assume that this translation has indeed been
made in this example (and hence identify buffer with element, add(x, y) with yx, nil with , fst
with head and rmv with tail).

4.2 Translating the behaviour

The translation of the behaviour of a LOTOS specification produces a number of Object-Z classes,
each one representing a behaviour expression (e.g. process definition) of the LOTOS specification.
The heart of the translation consists of a number of translation rules, one for each of the LOTOS
operators or terminals (i.e. occurrences of stop, exit or any process instantiations). The translation
of a process definition begins with its terminals and successively applies the operator translation
rules given in [?] until each operator and terminal has been translated.

For example, to translate the behaviour of Sections, we first note that it contains two process
instantiations Section, and another instantiation of Daemon. The Object-Z translation will thus
contain the definition of the class Section and Daemon followed by that of Sections.

Let us consider the class Section first. To translate the behaviour

process Section[in, out](q : buffer, j : Nat) : noexit :=
in!j?m : element;Section[in, out](add(m, q), j)
[]
[not(empty(q))] → out!j!(fst(q));Section[in, out](rmv(q), j)

endproc

we begin with the terminals, which in this case are (recursive) process instantiations.

The translation will produce an Object-Z class with state variables q and j and a recursive instan-
tiation to Section (in fact we flatten this to a single class here). The operators we have to translate
consist of action prefix (;), guarding and choice ([]). The appropriate translation rules are applied

12

in turn. The events in!j?m : element and out!j!(fst(q)) produce two operation schemas, with
inputs and outputs to perform the value passing. Each variable declaration, e.g. ?m : element
gives rise to a state variable of the same name in the Object-Z class. The overall result is the
following class:

Section q:buffer; m:element; j:IN
in ∆(m, q)
ch! : IN
ch? : elementch! = j ∧ ch? = m′

q′ = qm′

out ∆(q)
ch1! : IN
ch2! : elementq 6=
ch1! = j ∧ ch2! = q
q′ = q (Note that the state variable m could be removed entirely, as its value is never used when
it does not equal ch?. This need not be the case in general for variables containing received values,
though.)

An interesting observation, illustrated by this example, is that translation from LOTOS to Object-
Z will always result in classes with no invariants defined on the state components. However,
invariants have a valuable role in consistency checking, as they allow unreachable states to be
eliminated from consideration. Thus, as a preliminary stage of consistency checking, often class
invariants (that are established by initialisation and preserved by all operations) are made explicit.

The translation of the Daemon process follows similar lines, to produce the class:

Daemon x :element
j :IN
s : {0,1}
s = 0 in ∆(s)
ch1! : IN
ch2! : elements = 1 ∧ s′ = 0
ch1! = j + 1 ∧ ch2! = x
out ∆(s, j, x)
ch1? : IN
ch2? : elements = 0 ∧ s′ = 1
ch1? = j′ = 0 ∧ ch2? = x′

Finally, we translate the behaviour

hide in, out in(Section[transmit, out](nil, 0)|||Section[in, receive](nil, succ(0)))|[in, out]|Daemon[in, out]

The process instantiation rule produces a class with two instances of the object Section and one
instance of the object Daemon. Subsequently we need to translate the parallel compositions
induced by ||| and |[in, out]|. The former interleaves the operations defined in the two instances
of Section, if these are denoted s1 and s2 then this interleaving results in operation definitions of
the form transmits1.in etc. The synchronisation with Daemon induced by |[in, out]| produces a
similar synchronisation in the Object-Z class using the Object-Z parallel operator || to produce
operations of the form s2.in||d.in, where d is an object of type Daemon. Finally, hiding in and
out produces an internal operation. The complete specification of the class Sections can then be
given as

Sections s1, s2 : Section
d : Daemon
s1. ∧ s2. ∧ d.
transmit s1.in

13

receives2.out
i(s2.in||d.in) ∨ (s1.out||d.out)

In order to illustrate the consistency checking techniques in a convenient way, we will in fact flatten
this specification into a specification consisting of just one class Sections. This is easily achieved by
including the definitions of Section and Daemon, indexing state variables to differentiate between
the different instances of Section. If we then also remove constant and irrelevant components, we
end up with the single class: Sections q1, q2 : buffer
x : element
s : {0, 1}
q1 = q2 = ∧s = 0
transmit ∆(q1)
ch! : IN
ch? : elementch! = 0
q′1 = q1ch? receive ∆(q2)
ch1! : IN
ch2! : elementq2 6=
ch1! = 1 ∧ ch2! = q2

q′2 = q2

i (in —— din) ∨(out||dout)
in∆(q2)
ch1! : IN
ch2? : elementch1! = 1
q′2 = q2ch2?din∆(s)
ch1! : IN
ch2! : elements = 1 ∧ s′ = 0
ch1! = 1 ∧ ch2! = x
out∆(q1)
ch1! : IN
ch2! : elementq1 6=
ch1! = 0 ∧ ch2! = q1

q′1 = q1dout∆(s, x)
ch1? : IN
ch2? : elements = 0 ∧ s′ = 1
ch1? = 0 ∧ ch2? = x′

5 Correspondences

In order to establish whether these viewpoints are consistent, we first need to describe formally
how they are related. In particular, clearly they overlap in parts of the envisaged system that they
describe (e.g. all the viewpoints above specify the result of receiving a message), but this needs to
be documented formally. Thus, we have to establish the correspondences between the viewpoints.

What are the correspondences in the above example? There are (at least) three possible corre-
spondences between the viewpoints, and these are illustrated in the following diagram (the cor-
respondences are marked a, b and c). Each correspondence relates terms (e.g. names of classes,
operations, state variables) in two viewpoints and the correspondences in this example illustrate
an increasing complexity according to how tightly the viewpoints are coupled.

The simplest correspondence, a, links the two engineering views and simply identifies the Sections
class/process with its use as a component in the multiple stream view. This is described by saying
that, for example, daemon and i represent different perspectives of the same event and so we

14

Figure 4: Correspondences between viewpoints

should link them. Let us document these correspondences in a table.

EngVpt multiple EngVpt single Status
STREAM sect Sections unify
transmit transmit unify
receive receive unify
daemon i unify
predaemon, prereceive, pretransmit q1, q2, x, s relate

The following ”Status” labels will be used:

unify The behaviours are intended as describing aspects of the same system part, they are not
necessarily equal but should be checked for consistency.

equal The corresponding items are intended to describe exactly the same system part in exactly
the same way.

relate The corresponding state components represent related information – a predicate should
be given to describe how they relate.

The last column in the table above illustrates that when the Object-Z classes themselves have a
unify label, this implies that their respective states need to be related. Given that the booleans
which make up the state of the STREAM sect signature class represent applicability of the op-
erations, it seems obvious to relate them to the preconditions of the corresponding operations in
Sections. It is often convenient to represent relate predicates as schemas, in this case: EngVp-
tRelate predaemon, prereceive, pretransmit: Bool
q1, q2 : buffer

15

x : element
s : {0, 1}predaemon ⇔ i
pretransmit ⇔ transmit
prereceive ⇔ receive The correspondence b between the computational viewpoint and the single
stream engineering view links STREAM ext to Sections, and is much more involved. Clearly the
protocol transmits one type of message, so MSG and element should be identified. Again the
operations and actions described in the two viewpoints are different perspectives of the same func-
tion, so we should link Transmit to transmit and Receive to receive (and implicitly the input
m? of Transmit is identified with the input of transmit). Finally, it is clear that MsgsSent and
MsgsDelivered in the computational viewpoint in some way represent information part of which
is also represented by the buffers q1 and q2 in the engineering viewpoint. However, a crucial differ-
ence between the viewpoints is that Receive has no output, whereas receive does. Actually, the
values output (in ch2!) by receive together constitute MsgsDelivered. This is no unsurmountable
problem – in terms of refinement a specification with outputs and one which contains, in addition,
an accumulated sequence of these outputs, are equivalent.2 Thus, in order to completely exhibit
the correspondences between the viewpoints, we add a sequence delivered to Sections, which is
initialized to and only changed in receive, as follows: receive ∆(q2, delivered)
ch1! : IN
ch2! : elementq2 6=
ch1! = 1 ∧ ch2! = q2

q′2 = q2

delivered′ = deliveredch2! Then we have MsgsDelivered = delivered. (Note that this does not
impact on the correspondence between the engineering viewpoints.) MsgsSent consists of many
parts: all the messages queued in q1, possibly a message in transit between the two internal oper-
ations, all the messages queued in q2 and all the messages delivered. The correspondences can now
be given in the form of a schema as follows: EngsCompRelate q1, q2,MsgsSent,MsgsDelivered, delivered :
buffer
x : element
s : {0, 1}MsgsDelivered = delivered
s = 0 ⇒ MsgsSent = deliveredq2q1

s = 1 ⇒ MsgsSent = deliveredq2xq1Again, we can document these correspondences as a table

CompVpt EngVpt single Status
STREAM ext Sections unify
MSG element equal
Transmit transmit unify
Receive receive unify
delivered MsgsDelivered equal
q1, q2, x, delivered MsgsSent relate

The final correspondence c between the computational viewpoint and the multiple stream engi-
neering view is the most complex as both viewpoints provide an internal representation of the
same class. In particular, they both define streams between routing labels, and the streams and
the routing labels used must be related. Clearly the same set of routing labels has to be used in
both viewpoints, so they are identified by saying that the domains of the indexing functions are
identical (i.e. Stream ext = Stream sect). The second constraint is that for a given routing label
(lab : Stream ext) the computational and engineering stream objects are the same stream (i.e.
these really are just different perspectives of the same object) related by the correspondence b.

The correspondence c is now written as a schema: EXT SECT STREAM EXT
2Technical details on this can be found in [?], section 16.5 on “unwinding”, and in [?], the discussion on non-

trivial finalisations. These methods, or the IO-refinement method discussed in [?] can also be used to show that
the constant outputs ch1! are irrelevant, and that even the specification which contains the sequence instead of the
outputs is equivalent.

16

STREAM SECT Stream ext = Stream sect
∀lab : Stream ext

˙
1̈∃STREAM ext;STREAM sect;Sections ˙2̈STREAM ext = Stream ext(lab)2̈STREAM sect = Stream sect(lab)2̈EngV ptRelate2̈EngsCompRelate

Note that the existentially quantified Sections means that there is an instance of this viewpoint
for each lab, but unlike for the other viewpoints, these instances are not gathered into an indexed
collection.3

6 Consistency in Object-Z and Z

6.1 Overview

We have now obtained viewpoints which are all specified in Object-Z. Moreover, they are all in
the subset of Object-Z that is naturally viewed as encapsulated standard Z states-and-operations
specifications, viz. classes that have no objects in their states. For Object-Z classes of this shape,
we can adapt the consistency checking techniques for Z described in [?]. Recall that consistency
is defined as the existence of a common refinement (unification). In Z refinement [?, ?], we
allow reduction of non-determinism (strengthening of postconditions) and extension of the domain
(weakening preconditions) of operations. Additionally, data refinement is possible.

The Z unification techniques in [?] operate on two viewpoints at the same level of decomposition,
however here we have three viewpoints, two of which describe collections of “stream” objects
based on single stream descriptions, and one of which only describes a single stream. Fortunately,
the way in which the “multiple streams” descriptions have been based on their respective single
stream descriptions ensures that a consistency check of the three single stream descriptions, when
successful, guarantees consistency of the complete specifications. The construction mechanism
used in STREAM EXT and STREAM SECT is called free promotion, and a theorem in [?]
states that the promotion of a refinement is a refinement of the promotion, provided the promotion
is free. Thus, a (least) common refinement of the single stream descriptions, when promoted to
multiple streams, is a common refinement of the full viewpoints, i.e. a witness to their consistency.

Therefore we will initially concentrate on the three single stream descriptions, construct a unifi-
cation of those, and then promote it to a witness of consistency of all three viewpoints.

In addition, some of the viewpoints given here have internal operations, so the refinement relation
we need to use is actually weak refinement [?]. However, the consequences of this for the consistency
checking process are only minor, and will be highlighted where they occur.

A unification of two viewpoints is constructed in two phases. In the first phase (“state unification”),
a unified state space (i.e., a state schema) for the viewpoints has to be constructed. The essential
components of this unified state space are the correspondences between the types in the viewpoint
state spaces. At this stage we have to check that a condition called state consistency is satisfied.
The viewpoint operations are then adapted to operate on this unified state.

In the second phase, called operation unification, pairs of adapted operations from the viewpoints
which are linked by a correspondence (e.g. Transmit and transmit) have to be combined into single
operations on the unified state. This also involves a consistency condition (operation consistency)
which ensures that the unified operation is a refinement of the viewpoint operations. A similar
procedure also needs to be executed for the initialisations of the viewpoints, and the adapted
initialisations together need to be satisfiable.

3Actually, only the existential quantification over Sections is a genuine one – the other two are artefacts of the
Z schema notation, allowing the direct inclusion of EngV ptRelate etc. without explicit substitutions.

17

6.2 State Unification

The first step in state unification is to establish whether the state consistency condition is fulfilled.
If the viewpoint state schemas are S1x : Spred1 S2y : Tpred2 and their correspondence is given
as R x:S; y:T predR then state consistency is

∀x : S; y : T ṗredR ⇒ (pred1 ⇔ pred2)

i.e., no legal state of one viewpoint is linked to an illegal one of the other.

A natural way of avoiding state inconsistencies is to include the entire state schemas in the corre-
spondence schema, i.e. to have a correspondence of the form R’ S1;S2predR′ which ensures that
both viewpoint predicates hold for all values in the correspondence schema.

Even though we will construct the unification of all viewpoints by pairwise unifications and pro-
motion, we can analyze the correspondences for state consistency together:

• The correspondence schema EngV ptRelate introduces no state inconsistencies as the view-
point states involved have empty predicate parts.

• For EngsCompRelate, we need to prove that its predicate implies the state predicate of
STREAM ext, which is that MsgsDelivered ⊆ MsgsSent. This is trivial, as EngsCompRelate
states that MsgsDelivered = delivered and MsgsSent consists of a concatenation of se-
quences, the first of which is delivered.

• For EXT SECT , state consistency is trivial because the correspondence schema includes
the state schemas STREAM EXT and STREAM SECT .

The next phase of state unification is the totalisation of correspondence relations. In brief, to get
the most general refinement possible, every value allowed in either of the viewpoint states needs
to be represented in the unification – even if it is not linked to any value by the correspondence.
If the correspondence is already total, we can use the correspondence schema itself as the unified
state. In that case, operations Op will be adapted to4 ∆ROp. In this example, all correspondences
are total:

• EngV ptRelate is total: for every instance of Sections one can find corresponding booleans
prereceive and predaemon; vice versa, in Sections none, either, or both of receive and i
can be enabled at any time.

• EngsCompRelate is also total. In one direction that is trivial, as the STREAM ext com-
ponents are defined as expressions in terms of the Sections components. In the other di-
rection, whenever MsgsDelivered ⊆ MsgsSent, MsgsSent equals MsgsDeliveredq1q2 for
some q1, q2.

• Finally, the correspondence EXT SECT is total as well: for every STREAM EXT there
is a STREAM SECT such that their state components (functions) have the same domains,
and such that their respective images match, and vice versa.

6.3 Unifying the engineering viewpoints

As discussed above, we will first construct a unification for the three “single stream” descriptions.
This is done via two binary unifications, starting with the simplest one. STREAM sect has been

4Object-Z operations can be specified in the form ∆(c1, . . . , cn)pred, leaving implicit that some components
remain unchanged. Before adaptation Op should be rewritten in a form ∆Spred′, such that S is the complete state.

18

constructed as a “signature” of Sections, it does not constrain the behaviour of Sections at all,
and only models that some of its operations are partial. Thus, we would expect their unification
to proceed smoothly.

In analyzing the correspondences above, we already found that the correspondence is total, and
can be used as the common state for their unification. However, as the boolean components can
be derived directly from the other state components, we will take the equivalent but simpler state
of Sections. Any occurrence of prereceive and predaemon should then be replaced by receive
and i, respectively.

The operations from STREAM sect, when adapted to the common state, become:

1. Sstransmit∆Sections

2. Ssreceive∆Sectionsreceive

3. Ssdaemon∆Sectionsi

The initialisation of STREAM sect becomes Sections. The operations from Sections do not
need to be adapted as they already operate on the correct state, and the correspondence is total.

The rule for operation unification is as follows [?, ?]. Two operations Op1 and Op2, both changing
state S and with input x?1:1T , are unified to

Op∆S
x?1:1TOp11 ∨ 1Op2
Op111Op1
Op211Op2For this unified operation to be a common refinement of the original operations, the
condition of operation consistency needs to hold: whenever both pre-conditions hold, Op1∧Op2
must be satisfiable. This clearly represents the informal notion that the two viewpoint opera-
tions should not impose contradictory requirements. Additionally, if the operations concerned are
internal operations, we need to ensure that their preconditions coincide. This follows from the
conditions for weak refinement in [?].

According to the table in section ??, the following pairs of operations need to be unified: Sstransmit
and transmit; Ssreceive and receive; Ssdaemon and i. All of these are trivial, resulting in
transmit, receive and i. For example, the last is: uni∆SectionsSsdaemon1 ∨ 1i
Ssdaemon11Ssdaemon
i11i which indeed equals i, and satisfies the operation consistency condition, given that Sssdaemon =
i. The extra weak refinement condition for internal operations, viz. equality of preconditions, is
clearly also fulfilled. The two initialisations are also consistent.

In conclusion, the unification of Sections and STREAM sect is Sections itself, as we would have
hoped. A clear advantage of this is that, in order to establish a three-way unification in the
next step, we do not have to compose correspondence relations to end up with one relating the
third with the unified first two viewpoints. Instead, the correspondence between Sections and
STREAM ext will suffice.

6.4 Unifying the computational and engineering viewpoints

When unifying the computational and engineering viewpoints, we need to adapt their operations
to the unified state given by their correspondence schema (section ??), viz. EngsCompRelate
q1, q2,MsgsSent,MsgsDelivered, delivered : buffer
x : element

19

s : {0, 1}MsgsDelivered = delivered
s = 0 ⇒ MsgsSent = deliveredq2q1

s = 1 ⇒ MsgsSent = deliveredq2xq1and then perform operation unification on the corresponding
pairs of operations. We do this in turn for the initialisation and each operation.

6.4.1 Initialisation

The computational viewpoint initialisation, when adapted to the unified state, is CInit EngsCom-
pRelate MsgsSent = which requires all the buffer components to be empty, and s to be 0. The
engineering viewpoint initialisation is EInit EngsCompRelate q1 = q2 = delivered =
s = 0 which is satisfiable and equivalent to CInit (and thus consistent).

Thus, the initialisation in the unification will be either of the two equivalent adapted initialisations.

6.4.2 Transmission

First, Transmit is adapted to adTransmit∆EngsCompRelateTransmit, which is after simplifi-
cation: adTransmit ∆(MsgsSent, q1, q2, x, s)
m? : elements = 0 ⇒ MsgsSent = deliveredq2q1

s = 1 ⇒ MsgsSent = deliveredq2xq1

s′ = 0 ⇒ MsgsSent′ = deliveredq′2q
′
1

s′ = 1 ⇒ MsgsSent′ = deliveredq′2x
′q′1

MsgsSent′ = MsgsSentm? Informally, the new value m? needs to be added to the end of
MsgsSent, but not necessarily in the obvious way by adding it to q1; for example if q1 is empty
it may be put in x or q2.

The corresponding operation in the engineering view is transmit which gets adapted to adtransmit∆EngsCompRelatetransmit,
which is after simplification and identification of input ch? with m?: adtransmit ∆(MsgsSent, q1)
m? : elementq′1 = q1m?
MsgsSent′ = MsgsSentm? Clearly adtransmit is a refinement of adTransmit, and thus the
former is the least common refinement (operation unification) of both. In conclusion, for this
operation the engineering viewpoint specialises the computational viewpoint.

6.4.3 Reception

The receive operation in the engineering viewpoint gets adapted to adreceive∆EngsCompRelatereceive,
which simplifies to adreceive ∆(q2, delivered, MsgsDelivered)
ch1! : IN; ch2! : elementdelivered′ = deliveredch2!
ch1! = 1
ch2! = q2

q2 = q2

MsgsDelivered′ = MsgsDeliveredch2! The precondition of this operation is that q2 is nonempty.

The Receive operation in the computational viewpoint is a disjunction of two operations, we will
consider each of those separately. The first is total, models active waiting, and gets adapted to
adWait ∆EngsCompRelateMsgsDelivered′ = MsgsDelivered
MsgsSent′ = MsgsSent The second models successful reception of a value, and gets adapted to
adSReceive ∆EngsCompRelate#MsgsDelivered′ = #MsgsDelivered + 1
MsgsSent′ = MsgsSent In terms of the other components, #MsgsDelivered′ = #MsgsDelivered+
1 becomes MsgsDelivered′ = MsgsDelivered(q2q1) when s = 0 (and similar when s = 1). Thus,
the precondition of adSReceive is adSReceive EngsCompRelate (s=0 ∧ q2q1 6=) ∨

20

(s = 1 ∧ q2xq1 6=)
which is slightly weaker than the precondition of adreceive.

The operation unification of adreceive and adWait∨adSReceive is5 unReceive ∆EngsCompRelate
ch1! : IN; ch2! : elementadreceive ∨ (adWait ∨ adSReceive)
adreceive ⇒ adreceive
(adWait ∨ adSReceive) ⇒ (adWait ∨ adSReceive) which simplifies to (adWait =) unReceive
∆EngsCompRelate
ch1! : IN; ch2! : elementq2 6=⇒ adreceive
adWait ∨ adSReceive Also, the operations are consistent: when both preconditions hold, i.e.
when q2 is nonempty, both allow adreceive to happen. The unified operation in this case is
determined by both viewpoints: within the engineering viewpoint operation’s domain, the com-
putational viewpoint’s behaviour is made more deterministic; the latter however provides a wider
precondition.

6.4.4 Internal operation

Apart from the normal operations that occur in both viewpoints, there is also an internal operation
that occurs only in the engineering viewpoint. The consistency checking rules for standard Z
refinement do not suffice here. Informally, for consistency one would expect internal operations
in one viewpoint to have no noticeable effect on the state in the other. Formally, this does
indeed follow from the rules for weak refinement in [?]. Operation consistency for an internal
operation in only one viewpoint means it should be unified with an identity operation on the
other. Additionally, because the precondition of an internal operation may not be weakened in
weak refinement, this identity operation should be partial, its precondition corresponding to the
internal operation’s precondition. Finally, one needs to ensure that no divergence is introduced in
refinement, i.e. no internal operation should be infinitely often enabled before or after a normal
operation happens.

The internal operation in the engineering viewpoint is a disjunction of two operations in||din and
out||dout, we will give their adaptations separately.

First, adin∆EngsCompRelatein||din simplifies to adin ∆(q2, s)q′2 = q2x
s = 1∧s′ = 0 The operation adout∆EngsCompRelateout||dout simplifies to adout ∆(q1, s, x)q1 6=
x′ = q1

q′1 = q1

s = 0 ∧ s′ = 1 Operation unification of these with partial identities on the STREAM ext state
means that we need to prove that both these operations allow the sequences MsgsDelivered and
MsgsSent to remain unchanged when these operations are applied. We have actually proved
something stronger: those sequences do not appear in the ∆ lists, so they are required to remain
unchanged. Thus, the operation unifications we were looking for are these operations themselves.
The operation adin∨ adout, an internal operation, is thus part of the unified viewpoint. One can
establish that it is non-divergent as required: it transfers messages from q1 to q2 in two steps,
which can only happen a finite number of times since q1 will have a finite length only.

6.5 Conclusion

We have now established the consistency of the three single stream descriptions and constructed
their unification to witness this. It is given by a class whose state is the overall correspondence
EngsCompRelate, and whose initialisation and operations are the results of operation unification

5Formally, to allow introduction of outputs in refinement, which Receive did not have, we would need IO-
refinement or similar rules, as mentioned before in section ??.

21

Figure 5: LOTOS Consistency Relations

given above, i.e.: StreamU EngsCompRelate CInit adtransmit
unReceive i adin ∨adout which is a (least common) refinement of each of the viewpoint classes.
As a consequence, the promoted version of this, viz. STREAMU Streamu: RTG LAB StreamU
∀lab : StreamuṠtreamu(lab).
UTransmit [lab? : RTG LAB lab?∈ Streamu]Ṡtreamu(lab?).adtransmit
UReceive[lab? : RTG LABlab? ∈ Streamu]Ṡtreamu(lab?).unReceive
Udaemon[∃lab : RTG LABl̇ab ∈ Streamu]Ṡtreamu(lab).i is a refinement of STREAM SECT
and STREAM EXT , and thus a witness of consistency of the entire collection of viewpoints.

This concludes the proof of consistency of the viewpoints. Once the correspondences had been set
up as required (with the issue of “remembering” outputs as the main hurdle), previously published
techniques [?] allowed the proof to proceed. In some cases we needed to use generalised refinement
conditions (weak and IO-refinement [?, ?, ?]), but these had only local effects. The main effort
was in simplification of the resulting schemas, and in knowing when to tacitly use distributivity
of disjunction over refinement.

Automation of this consistency proof would have been possible to a large extent. The simplifi-
cations of schemas were useful in increasing our confidence in the correctness of the result – any
automated consistency check would need user guidance to come up with the “right” simplifica-
tions. Also, the way the use of the generalised refinement rules could be relegated to side comments
suggests that these rules should only optionally be used in any automated system. One would
rarely want to deal with the full generality of the rules in [?, ?] indeed.

7 Consistency in LOTOS

In addition to the techniques discussed so far, we have also developed mechanisms to check the
consistency of two viewpoint specifications written in LOTOS. This section reviews our work in
this area.

Instantiations of Consistency. A major influence on consistency in LOTOS is that the language
supports a large spectrum of development relations. Elsewhere we have categorised consistency
according to these different relations [?, ?, ?], which is summarised in figure ??. The development
relations highlighted are the following:

≤tr - trace preorder (i.e. refinement as preservation of safety properties); ext - extension (i.e.

22

refinement as addition of functionality); conf - conformance; red - reduction (i.e. refinement as
reduction of non-determinism); cs = conf ∩ conf −1; xcs = ext∩conf −1; te - testing equivalence;
≈ - weak bisimulation equivalence; ∼ - strong bisimulation equivalence.

The figure considers instantiations of consistency with each of these development relations, e.g.
Cred denotes consistency when the development relation is instantiated as red . The figure illus-
trates, as a Venn diagram, the relative strengths of the different instantiations of consistency. For
example, it indicates that C∼, consistency according to strong bisimulation, is the most discrim-
inating check. In other words, if two specifications are consistent by C∼ they will be consistent
by all other instantiations of consistency, however, there is at least one pair of specifications that
is consistent by all other instantiations, but not by C∼. At the other extreme, the instantiations
C≤tr , Cext and Cconf are completely un-discriminating, in the sense that all pairs of LOTOS
specifications are consistent according to these checks.

A full discussion of the different development relations we have considered and the resulting
notions of consistency is beyond the scope of this paper. However, a general point should be
clear, which is that there are many different notions of consistency all arising from different
notions of development, and these can be related according to their relative strength. This enables
appropriate consistency checks to be employed according to the class of viewpoint specification
being considered.

Example. We illustrate the LOTOS consistency checking techniques using our running example.
To contain the complexity of our presentation, the illustration is slightly artificial, but it will serve
to highlight our approach.

The LOTOS process Section presented in section ?? implements a buffer which inputs data items
using the action in, adds them to a queue and then retrieves items from the queue using action
out. Such a behaviour can be viewed as a unification of two partial specifications. The first is a
“lossy” section. It is defined as follows:

process SectionPS1[in, out](q : buffer) : noexit :=
in?m : element;SectionPS1[in, out](add(m, q))
[]
in?m : element;SectionPS1[in, out](q)
[]
[not(empty(q))] →out!fst(q);SectionPS1[in, out](rmv(q))

endproc

which adds the option, the second branch of the three way choice, to lose the item that is input.
Notice that a non-deterministic choice on in (for a particular data item) results between the first
branch and the second branch. Also, we have not included the section identifier, the j, which was
in the original version. This is for simplicity of presentation; it could easily be added without
affecting our approach. The ADT definition presented in section ?? with Sections is assumed to
be generic and hence available to all the partial specifications we consider here.

We also assume the following partial specification:

process SectionPS2[in, out](q : buffer) : noexit :=
in?m : element;SectionPS2[in, out](add(m, q))
[]
in?m : element;SectionPS2[in, out](add(m,add(m, q)))
[]
[not(empty(q))] →out!fst(q);SectionPS2[in, out](rmv(q))

endproc

23

which models a section which on inputting a data item has the (non-deterministic) option to
duplicate the data item, modelled by adding the item twice to the queue.

Here we assume that the correspondences between SectionPS1 and SectionPS2 are given im-
plicitly, by name. With this in mind we can see that the behaviour of each partial specifica-
tion constrains the behaviour of the other specification. SectionPS2 constrains the behaviour of
SectionPS1 by not allowing the option to lose data items, while SectionPS1 constrains the be-
haviour of SectionPS2 by not allowing the option to duplicate data items. Consequently when we
unify the two specifications using reduction we obtain Section, which only exhibits the common
behaviour.

Research based on work performed by Leduc [?] can be used to characterise the least developed
unification according to reduction. Specifically, if we denote a least developed unification of two
processes P and Q by U then the following trace/refusal property characterises U (the reader
unfamiliar with trace/refusals is referred to [?]):

Tr(U) = Tr(P) ∩ Tr(Q) ∧ ∀σ ∈ Tr(U) . Ref(U, σ) = Ref(P, σ) ∩Ref(Q, σ)

It turns out that if we replace U by Section, P by SectionPS1 and Q by SectionPS2, then the
above relationship holds.

Unbalanced Unification. What we have presented is a very simple example which illustrates
one of the simplest of our unification strategies: unification according to reduction. However
as indicated earlier in this section, there are a large number of different development relations
associated with LOTOS. Using the work of Guy Leduc [?] as a starting point we have identified
unification algorithms for all the major combinations of LOTOS development relations [?]. In
particular, we have considered the important issue of unbalanced consistency - where different
viewpoints are related to the unification by different development relations. This is a common
situation with viewpoints modelling.

For example, as a rather contrived illustration, we could consider a process:

process SectionPS3[in, out](q : buffer) : noexit :=
in?m : element;SectionPS3[in, out](add(m, q))

endproc

which just allows items to be added to the section, but never offers the action out. Then we might
require that our unification is a common reduction of SectionPS1 and SectionPS2, but is also an
extension of SectionPS3. Extension enables new behaviour to be added to a partial specification
as long as new deadlocks are not added. Section would indeed be a suitable (3 way) unification.

We have characterised consistency and unification for a spectrum of such unbalanced situations.
These are reported in [?, ?].

8 Issues and Tool Support

The key component of the consistency checking strategy presented here is to be able to identify
common refinements of multiple viewpoints with respect to the correspondences between the
viewpoints. Such refinements can also be viewed as common models for the collection of viewpoints.
These common models will typically be expressed in terms of the most primitive entities in the
viewpoints, for example in the protocol viewpoints typical entities included: actions or operations,
e.g. transmit and Receive; data variables, e.g. the sequence MsgsDelivered representing messages
delivered by the protocol.

24

However, finding a suitable set of primitives is not always possible. In particular, different ODP
viewpoints occur at different levels of abstraction, thus identifying one-to-one correspondences
is almost certain to be impossible in general. In fact, these correspondences can be extremely
complex with what are primitive entities in one viewpoint being related to whole portions of
behaviour in another viewpoint. For example, the execution of a remote procedure call operation
in the computational viewpoint would actually correspond to a body of primitive interactions in
the engineering viewpoint, e.g. interactions between stub objects, binding objects and protocol
objects in order to invoke an RPC transport protocol.

This difficulty raises many questions about how the viewpoints are specified, how to document the
correspondences and how to deal with changes in the level of abstraction between viewpoints. Gen-
eral viewpoint models have great difficulty dealing with correspondences, having to use similarity
checking [?] or low level common models [?]. However, because ODP has a fixed set of viewpoints
with predetermined roles, more specific guidance can be provided for establishing correspondences.

Describing correspondences

The ODP reference model prescribes a number of correspondences between particular viewpoints
(e.g. between computational objects and basic engineering objects). Under current practice com-
mon terms are identified by name alone [?]. However, in general, between viewpoints at different
levels of granularity, we need to relate single actions and objects to complete behaviours. To do
this the viewpoint specifications need to be structured with correspondences in mind and in appro-
priate ways. It is also becoming increasingly clear that consistency checking will only be feasible if
the correspondences between viewpoints are considered at the same time as the viewpoints them-
selves are being structured as opposed to attempting to retrofit inappropriate correspondences
later. For example, in the case study we needed to remedy the situation that one viewpoint “re-
membered” past outputs but the other did not. As a consequence, one viewpoint specification
had to be changed when the correspondence was being established. (Fortunately in this case the
change made no difference to the semantics of the specification, so we were at liberty to do so.)

There has been work on structuring complex specifications for single viewpoints, e.g. work on
templates for ODP [?] and specification architectures [?]. However, to date there has been little
work on exploiting the facilities provided by specific languages which allow viewpoints to be
related and combined by elegant structuring mechanisms. To do so specifications at different
levels of granularity need to be related.

The nature of ODP viewpoints can be exploited here by providing techniques that reflect their
relationships. For example, the engineering viewpoint may provide standard communication com-
ponents that are assumed when describing a computational viewpoint specification. This needs
to be enhanced with mechanisms to relate portions of behaviour between viewpoints, for example
by using notions of action refinement.

Changing granularity

Action refinement incorporates a change of action granularity into the refinement. It fits naturally
into a process algebra setting where actions serve as the primitive unit of computation. For
example, in the engineering viewpoint written in LOTOS one branch dealt with reception of a
message6:

in;Section[in, out](add(m, q), j)

6For simplicity, we have removed the output here.

25

and we may wish to refine this to show how the message is passed down the layers in the protocol
stack:

inlyr1; . . . ; inlyrn;Section[in, out](add(m, q), j)

where the action in has been action refined into the “partial behaviour” inlyr1; . . . ; inlyrn.

The first behaviour could be viewed as more “abstract” in its modelling of the transmission
process; the actual mechanism for communication is abstracted away from and represented by a
single action. This method of action refinement enables us to relate viewpoints at different levels
of abstraction to the same unification. For example, one viewpoint, expressed in terms of coarse
grain primitives, could be action refined to a model that is expressed in terms of the finer grained
primitives of another viewpoint.

Such action refinement has been quite extensively investigated within the process algebra field,
although little work has to date been performed in the context of LOTOS. However, there are
some underlying problems with action refinement. In particular, it has been realised that it is
difficult to handle in the context of an interleaving semantics (which is the standard approach),
because central to interleaving semantics is the assumption that actions are atomic. Clearly, if
actions can be refined into arbitrarily complex behaviours, it is hard to sustain the assumption of
atomic actions. Research has suggested that true concurrency models are better behaved in the
presence of action refinement [?], since true concurrency models do not rely on the assumption of
atomic actions.

A different method of providing support for a change of granularity was already illustrated in the
example presented above. This was the use of a single stream component in the multiple stream
engineering view. We exploited here the use of promotion in Object-Z when we promoted the
operations defined in the skeleton STREAM sect class to an operation in the STREAM SECT
class. To perform this promotion (a similar facility exists in Z as well) all we needed to know
was the signature of the component. The behaviour of the component was defined in a separate
viewpoint and the correspondence relation was trivial (it just linked up names). The advantage of
this style is that it automatically guarantees the consistency of the two engineering views, and to
unify them all that is needed is the renaming of the signatures as specified in the correspondence.

Other viewpoints

The work described above has considered consistency checking in LOTOS and Object-Z/Z, this has
been successful as proof of concept, however to have a practical impact this work needs to extended
to other notations and particular viewpoints. Integration with viewpoints written in UML and
support for the enterprise viewpoint are explored in [?, ?]. Although the example specified above
describes a protocol, none of the viewpoints presented so far actually guarantee delivery of the
messages, and one could imagine an enterprise viewpoint which specifies that eventually messages
are delivered. This could be achieved by use of a temporal logic to specify that

∀n : IN2̇(#MsgsSent = n ⇒ 3#MsgsDelivered = n)

that is, it is always the case that eventually the sequence MsgsDelivered will have the same
length that MsgSent had before, i.e. we will eventually deliver every message. The relation to
other viewpoints could then perhaps be maintained by embedding this temporal specification as
part of a history invariant in an Object-Z class. (History invariants are temporal logic statements
expressed as part of an Object-Z specification [?].)

A further avenue of investigation relates to the use of different languages in different viewpoints.
Each language (whether informal or formal) has an associated development relation, or in the
case of some languages such as LOTOS, more than one development relation. If the viewpoints

26

are to be developed separately according to different development or refinement relations, the
relationship between different notions of refinement need to be documented.

To this extent we have considered how the refinement relations in Z and LOTOS relate, with
interesting and promising results [?]. As could be seen in the example, translation from LOTOS
to (Object-)Z also requires an interpretation of and refinement rules for specifications with internal
operations, this is called weak refinement and is described in [?].

Tool support

It is important to be able to automate as much as possible of the unification and consistency
checking process. Since the complexity and structure of these conditions is almost exclusively
determined by the predicates that occur in the viewpoint specifications, existing methods for
automated theorem proving in Z (e.g. [?, ?, ?]) can be used for proving the consistency conditions.
With that in mind we have built a small prototype to support the process. A unification tool
(described in [?]) was implemented using Generic Formaliser, a generalisation of a tool for Z
written by Logica, called (Z Specific) Formaliser. In addition an implementation of Z in the
theorem prover Isabelle has been used to provide theorem proving support for verification of
consistency conditions. The consistency conditions can be automatically generated from the Z
unification tool and fed into the Isabelle theorem prover.

Also it should be clear from the example in this paper that a significant part of the work involved
is to do with simplifying predicates and specifications. This is a typical activity for tactic-based
theorem proving systems: the user needs to have an idea of the sort of simplifications that might
be possible, and then the system can aid in proving they are indeed correct.

9 Related work

Whereas our work on viewpoint consistency was motivated by the emerging standard reference
model for open distributed processing (see section 1), the use of multiple viewpoints for speci-
fying complex systems is not unique to the RM-ODP. Using different abstractions when reason-
ing about complex systems is an effective way of separating concerns. Not surprisingly, many
other disciplines involved in information systems development have come up with similar ap-
proaches. View-integration in conceptual database design has been a widely researched topic in
the 1980s [?, ?]. The use of viewpoints in requirements engineering even dates back to the late
1970s [?] (an overview of viewpoint oriented approaches to requirements definition can be found
elsewhere [?]). More recently, viewpoints have been proposed and researched for program develop-
ment environments [?] and information systems design [?]. Within the software and requirements
engineering communities there is currently a substantial number of researchers working on what
is phrased as “the multiple perspectives problem” [?, ?, ?, ?, ?].

In any viewpoint oriented specification approach, the viewpoints will not be completely indepen-
dent. Ultimately, each viewpoint is concerned with the same system, and constraints expressed in
different specifications are likely to overlap. Therefore, viewpoint consistency has to be addressed
by each realistic viewpoint oriented approach.

The viewpoint oriented methods mentioned above generally do not base their notion of consistency
on development relations. Partly this is due to the fact that they use languages which are less
formal or less development oriented than the ones we use. Consistency is often determined by
explicit consistency relations on and between the viewpoints [?], based on overlap identification
(akin to our correspondences) and similarity analysis. Unification, however, also seems a useful
process for consistency checking in requirements engineering [?].

27

9.1 Formal methods for ODP viewpoints

9.1.1 Architectural semantics

The RM-ODP defines abstract languages for the five viewpoints. Several research groups have
worked on populating this abstract framework with specific formal specification notations (e.g. [?,
?, ?]). In particular, work on the ODP architectural semantics aims to provide interpretations of
the abstract modelling and specification concepts in a number of standardised formal description
techniques [?, ?, ?].

The architectural semantics will provide the basis for uniform and consistent comparison between
formal descriptions of the same system or standard in different FDTs. It is, therefore, of signifi-
cance to achieve realistic consistency checking techniques.

On the other hand, inter-language consistency checking techniques, such as those developed in
this paper, may also play a role in the definition of the architectural semantics. In order for the
architectural semantics to act as a bridge between the ODP model and the semantic models of
the FDTs, the architectural semantics should be consistent in two ways. Firstly, it is necessary
to demonstrate that the interpretations of the same architectural entity in different FDTs are
consistent. Secondly, the architectural semantics of different viewpoints are related and should
therefore be checked for consistency. These are issues for further research.

9.1.2 Formal methods for consistency and unification

Some researchers circumvent the issues of consistency and unification by assuming an ordering
between the ODP viewpoints. The information viewpoint is taken to be more abstract than
the computational viewpoint. They subsequently define transformations from the former to the
latter [?, ?, ?].

In our work on LOTOS we have mainly focused on the question of consistency and less on the
unification problem. The composition of process specifications has been considered before by
several others [?, ?, ?, ?].

From amongst these approaches, perhaps the most common is to use the LOTOS parallel operator,
|[G]|, as the notion of composition. This yields the so called constraint oriented style of specifica-
tion [?] where the parallel composition of two specifications is viewed as its unification. However,
such a notion of unification does not have nice formal properties. In particular, the main result
on such constraint oriented composition is that the || operator (i.e. |[G]| with an empty gate set)
respects trace preorder, but this is a very weak notion of development (see [?, ?] for more details)
and is not in general sufficient.

Ichikawa [?] introduced a ‘specification merge operator’, ⊕, to obtain a common extension (ext)
of two processes. We define an operator in [?] which is an improvement of the ⊕-operator, in
the sense that it can deal with non-deterministic specifications. Leduc [?] considers the balanced
composition of processes with respect to conformance (conf) and reduction (red). The result is a
denotational characterisation of the unification, which is close to the characterisation in terms of
traces and refusals given in section ??. Khendek [?] proposes an algorithm to compute a common
extension (ext) of two processes modelled by acceptance graphs. Interestingly, this algorithm
not only extends the original processes, but also preserves their cyclic traces. Consistency and
unbalanced composition are, however, not considered by any of these authors.

In addition, it is clear from this previous work that there is a trade-off between the operational and
denotational approaches. The operational approach provides a high-level composition operator,
which has a similar status to the existing LOTOS operators. However, operational definitions

28

typically fail to characterise the least developed unification. In contrast, the denotational approach
enables a natural characterisation of least development, but its status is quite different from the
other LOTOS operators as it is interpreted in a different semantic setting.

A number of the problems with these approaches are resolved in [?] by separating refinement
from non-determinism. In particular, in the resulting modal transition system based approach, an
operational characterisation of the least unification can be given.

9.2 Viewpoints in Z and related methods

Various approaches to using Z as a language for partial specification have been described in the
literature. For more detailed comparisons of the various approaches with our methods, we refer
to [?, ?].

Ainsworth, Wallis and others [?, ?] advocate an approach very similar to ours. They use the term
amalgamation for what we call unification, and union for operation unification, and relate these
notions to a variant of refinement. However, they are less explicit about correspondences and
consistency conditions.

In the more abstract relational framework of Milli, Frappier, et al [?, ?] operation unification
appears as well, under the name of demonic join. Their work also points out the link between
viewpoint consistency and feature interaction.

D. Jackson [?] describes “view composition” in Z, giving many examples of syntactic constructions
in Z that can be profitably used for partial specification, including promotion and a syntactic
variant of unification. However, not all of these are relevant in a semantic sense.

Zave and Jackson describe in several papers [?, ?] a multiparadigm specification technique, with
impressive applications in specifications of telephone switching systems. Their work is similar
to ours in that it uses Z and other languages for partial specification. For consistency checking,
they use a translation of all specifications to first order predicate logic. Composition of partial
specifications is then “just” conjunction [?].

Approaches in which Z specifications are augmented with specifications in other formalisms can
also be viewed as specifications with multiple viewpoints, with consequences similar to those that
follow from our work on comparing viewpoints in LOTOS and (Object-)Z. In particular, Fischer,
Smith and Derrick combine Z with CSP [?, ?, ?], and Weber et al [?] combine Z with Statecharts.
However, most methods that combine Z with some other language manage to avoid the consistency
issue by the use of layering techniques, or by using the various languages in different stages of
development. Kasurinen and Sere [?], for example, in their integration of Z and action systems
use a layering technique, Z providing the types and operations to be used in the action systems
descriptions.

References

[1] AFNOR. A direct computational language semantics for Part 4 of the RM-ODP. ISO/IEC
JTC1/SC21/WG7 approved AFNOR contribution, July 1994.

[2] M. Ainsworth, A. H. Cruickshank, L. J. Groves, and P. J. L. Wallis. Viewpoint specification and Z.
Information and Software Technology, 36(1):43–51, February 1994.

[3] M. Ainsworth, S.. Riddle, and P.J.L. Wallis. Formal validation of viewpoint specifications. Software
Engineering Journal, 11(1):58–66, January 1996.

[4] D. Baldwin. Applying multiple views to information systems: A preliminary framework. Data base,
24(4):15–30, November 1993.

29

[5] C. Batini and M. Lenzerini. A methodology for data schema integration in the entity relationship
model. IEEE Transactions on Software Engineering, SE-10:640–655, November 1984.

[6] C. Bernardeschi, J. Dustzadeh, A. Fantechi, E. Najm, A. Nimour, and F. Olsen. Transformations
and consistent semantics for ODP viewpoints. In H. Bowman and J. Derrick, editors, FMOODS’97,
2nd IFIP Conference on Formal Methods for Open Object Based Distributed Systems. Chapman and
Hall, July 1997.

[7] G.S. Blair and Jean-Bernard Stefani. Open Distributed Processing and Multimedia. Addison-Wesley,
1997.

[8] E. Boiten. Z unification tools in Generic Formaliser. Technical Report 10-97, Computing Laboratory,
University of Kent at Canterbury, 1997.

[9] E. Boiten, H. Bowman, J. Derrick, and M. Steen. Managing inconsistency and promoting consis-
tency. In revision, available from http://www.cs.ukc.ac.uk/research/tcs/consistency/tse.html,
September 1997.

[10] E.A. Boiten and J. Derrick. IO - refinement in Z. In A.S. Evans, D.J. Duke, and T. Clark, editors,
3rd BCS-FACS Northern Formal Methods Workshop, Electronic Workshops in Computing. Springer
Verlag, September 1998.

[11] E.A. Boiten, J. Derrick, H. Bowman, and M. Steen. Coupling schemas: data refinement and
view(point) composition. In D.J.Duke and A.S.Evans, editors, 2nd BCS-FACS Northern Formal
Methods Workshop, Workshops in Computing. Springer-Verlag, July 1997.

[12] E.A. Boiten, J. Derrick, H. Bowman, and M. Steen. Constructive consistency checking for partial
specification in Z. Science of Computer Programming, 35(1):29–75, 1999.

[13] T. Bolognesi and E. Brinksma. Introduction to the ISO Specification Language LOTOS. Computer
Networks and ISDN Systems, 14(1):25–59, 1988.

[14] G. Booch. Object-oriented Analysis and Design. The Benjamin/ Cummings Publishing Company,
Inc, 1994.

[15] N. Boudriga, F. Elloumi, and A. Mili. On the lattice of specifications: Applications to a specification
methodology. Formal Aspects of Computing, 4:544–571, 1992.

[16] J. P. Bowen and M. Gordon. Z and HOL. In J. P. Bowen and J. A. Hall, editors, Z User Workshop,
pages 141–167, Cambridge, July 1994. Springer-Verlag.

[17] H. Bowman, E. Boiten, J. Derrick, and M. Steen. Strategies for consistency checking based on
unification. Science of Computer Programming, 33:261-298, April 1999.

[18] H. Bowman, J. Derrick, P. Linington, and M. Steen. FDTs for ODP. Computer Standards and
Interfaces, 17:457–479, September 1995.

[19] H. Bowman, J. Derrick, P. Linington, and M. Steen. Cross viewpoint consistency in Open Distributed
Processing. IEE Software Engineering Journal, 11(1):44–57, January 1996.

[20] H. Bowman, J. Derrick, and M. Steen. Some results on cross viewpoint consistency checking. In
K. Raymond and L. Armstrong, editors, IFIP TC6 International Conference on Open Distributed
Processing, pages 399–412, Brisbane, Australia, February 1995. Chapman and Hall.

[21] H. Bowman, E.A.Boiten, J. Derrick, and M. Steen. Viewpoint consistency in ODP, a general in-
terpretation. In E. Najm and J.-B. Stefani, editors, First IFIP International workshop on Formal
Methods for Open Object-based Distributed Systems, pages 189–204, Paris, March 1996. Chapman &
Hall.

[22] H. Bowman, M.W.A. Steen, E.A. Boiten, and J. Derrick. A formal framework for viewpoint consis-
tency. Formal Methods in System Design. To appear, 2000.

[23] E. Brinksma, G. Scollo, and C. Steenbergen. Process specification, their implementation and their
tests. In B. Sarikaya and G. v. Bochmann, editors, Protocol Specification, Testing and Verification,
VI, pages 349–360, Montreal, Canada, June 1986. North-Holland.

[24] TINA C. Telecommunications information networking architecture, 1997. WWW:
http://www.tinac.com/.

[25] CCITT Z.100. Specification and Description Language SDL, 1988.

30

[26] E. Cusack. Object oriented modelling in Z for Open Distributed Systems. In J. de Meer, V. Heymer,
and R. Roth, editors, IFIP TC6 International Workshop on Open Distributed Processing, pages 167–
178, Berlin, Germany, September 1991. North-Holland.

[27] H.S. Delugach. An approach to conceptual feedback in multiple viewed software requirements mod-
eling. In Finkelstein and Spanoudakis [?], pages 242–246.

[28] J. Derrick, E.A. Boiten, H. Bowman, and M. Steen. Supporting ODP - translating LOTOS to Z. In
E. Najm and J.-B. Stefani, editors, First IFIP International workshop on Formal Methods for Open
Object-based Distributed Systems, pages 399–406, Paris, March 1996. Chapman & Hall.

[29] J. Derrick, E.A. Boiten, H. Bowman, and M.W.A. Steen. Viewpoints and Consistency - translating
LOTOS to Object-Z. Computer Standards and Interfaces, 21:251–272, 1999.

[30] J. Derrick, H. Bowman, E. Boiten, and M. Steen. Comparing LOTOS and Z refinement relations. In
FORTE/PSTV’96, pages 501–516, Kaiserslautern, Germany, October 1996. Chapman & Hall.

[31] J. Derrick, H. Bowman, and M. Steen. Viewpoints and Objects. In J. P. Bowen and M. G. Hinchey,
editors, Ninth Annual Z User Workshop, LNCS 967, pages 449–468, Limerick, September 1995.
Springer-Verlag.

[32] John Derrick, Eerke Boiten, Howard Bowman, and Maarten Steen. Specifying and Refining Internal
Operations in Z. Formal Aspects of Computing, 10:125–159, December 1998.

[33] R. Duke, G. Rose, and G. Smith. Object-Z: A specification language advocated for the description
of standards. Computer Standards and Interfaces, 17:511–533, September 1995.

[34] J. Dustzadeh and E. Najm. Consistent semantics for ODP information and computational models. In
T. Higashino and A. Togashi, editors, FORTE/PSTV’97, pages 107–126. Chapman & Hall, November
1997.

[35] H. Ehrig and B. Mahr. Fundamentals of algebraic specification. Springer-Verlag, 1985.

[36] K. Farooqui and L. Logrippo. Viewpoint transformation. In J. de Meer, B. Mahr, and O. Spaniol,
editors, Open Distributed Processing II, pages 352–362. IFIP TC6, September 1993.

[37] K. Farooqui and L. Logrippo. Viewpoint transformations. In J. de Meer, B. Mahr, and O. Spaniol,
editors, 2nd International IFIP TC6 Conference on Open Distributed Processing, pages 352–362,
Berlin, Germany, September 1993.

[38] A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein, and M. Goedicke. Viewpoints: a framework
for integrating multiple perspectives in system development. International Journal on Software En-
gineering and Knowledge Engineering, Special issue on Trends and Research Directions in Software
Engineering Environments, 2(1):31–58, March 1992.

[39] A. Finkelstein and G. Spanoudakis, editors. SIGSOFT ’96 International Workshop on Multiple
Perspectives in Software Development (Viewpoints ’96). 1996.

[40] A. Finkelstein, G. Spanoudakis, and D. Till. Managing interference. In Finkelstein and Spanoudakis
[?], pages 172–174.

[41] A.C.W. Finkelstein, D. Gabbay, A. Hunter, J. Kramer, and B. Nuseibeh. Inconsistency handling in
multiperspective specifications. IEEE Transactions on Software Engineering, 20(8):569–578, August
1994.

[42] C. Fischer. CSP-OZ - a combination of CSP and Object-Z. In H. Bowman and J. Derrick, editors,
Second IFIP International conference on Formal Methods for Open Object-based Distributed Systems,
pages 423–438. Chapman & Hall, July 1997.

[43] J. Fischer, A. Prinz, and A. Vogel. Different FDT’s confronted with different ODP-viewpoints of
the trader. In J. C. P. Woodcock and P. G. Larsen, editors, FME’93: Industrial Strength Formal
Methods, LNCS 670, pages 332–350. Springer-Verlag, 1993.

[44] M. Frappier, A. Mili, and J. Desharnais. Program construction by parts. In B. Möller, editor,
Mathematics of Program Construction: Third International Conference, volume 947 of Lecture Notes
in Computer Science, pages 257–281. Springer-Verlag, 1995.

[45] M.-C. Gaudel and J. Woodcock, editors. FME’96: Industrial Benefit of Formal Methods, Third
International Symposium of Formal Methods Europe, volume 1051 of Lecture Notes in Computer
Science. Springer-Verlag, March 1996.

31

[46] V. Gay, P. Leydekkers, and R. Huis in ’t Veld. Specification of multiparty audio and video; interaction
based on the reference model of open; distributed processing. Computer Networks and ISDN Systems,
January 1995.

[47] R. Gotzhein and F. H. Vogt. The design of a temporal logic for Open Distributed Systems. In
J. de Meer, V. Heymer, and R. Roth, editors, IFIP TC6 International Workshop on Open Distributed
Processing, pages 229–240, Berlin, Germany, September 1991. North-Holland.

[48] J. J. Van Griethuysen. Enterprise modelling, A necessary basis for modern information systems. In
J. de Meer, V. Heymer, and R. Roth, editors, IFIP TC6 International Workshop on Open Distributed
Processing, pages 29–68, Berlin, Germany, September 1991. North-Holland.

[49] I. Hayes, M. Mowbray, and G.A. Rose. Signalling System No. 7 - The network layer. In E. Brinksma,
G. Scollo, and C.A. Vissers, editors, Protocol Specification Testing and Verification IX, pages 3–14.
North-Holland, 1989.

[50] H. Ichikawa, K. Yamanaka, and J. Kato. Incremental Specification in LOTOS. In L. Logrippo, R. L.
Probert, and H. Ural, editors, Protocol Specification, Testing and Verification X, pages 183–196,
Ottawa, Canada, 1990.

[51] ISO 8807. LOTOS: A Formal Description Technique based on the Temporal Ordering of Observational
Behaviour, July 1987.

[52] ISO 9074. Estelle, a Formal Description Technique based on an extended state transition model, June
1987.

[53] ISO/IEC JTC1/SC21/WG7. Basic Reference Model of Open Distributed Processing. ISO 10746,
1993. Part 1 to 4.

[54] ITU/ISO CD ISO 13235/ITU.TS Rec.9tr. ODP Trading Function, 1994.

[55] D. Jackson. Structuring Z specifications with views. ACM Transactions on Software Engineering and
Methodology, 4(4):365–389, October 1995.

[56] C. B. Jones. Systematic Software Development using VDM. Prentice Hall, 1989.

[57] V. Kasurinen and K. Sere. Integrating action systems and Z in a medical system specification. In
Gaudel and Woodcock [?], pages 105–119.

[58] F. Khendek and G. von Bochmann. Merging behaviour specifications. Journal of Formal Methods in
System Design, 6(3):259–294, June 1995.

[59] Kolyang, T. Santen, and B. Wolff. A structure preserving encoding of Z in Isabelle/HOL. In J. von
Wright, J. Grundy, and J. Harrison, editors, Theorem Proving in Higher-Order Logics – 9th Interna-
tional Conference, volume 1125 of Lecture Notes in Computer Science, pages 283–298, 1996.

[60] G. Kotonya and I. Sommerville. Viewpoints for requirements definition. IEE Software Engineering
Journal, 7(6):375–387, November 1992.

[61] I. Kraan and P. Baumann. Implementing Z in Isabelle. In J. P. Bowen and M. G. Hinchey, editors,
ZUM’95: The Z Formal Specification Notation, 9th International Conference of Z Users, Limerick,
Ireland, September 7-9, 1995, Proceedings, volume 967 of LNCS, pages 355–373. Springer-Verlag,
1995.

[62] G. Leduc. On the Role of Implementation Relations in the Design of Distributed Systems using
LOTOS. PhD thesis, University of Liège, Liège, Belgium, June 1991.

[63] P. F. Linington. RM-ODP The Architecture. In K. Raymond and L. Armstrong, editors, IFIP TC6
International Conference on Open Distributed Processing, pages 15–33, Brisbane, Australia, February
1995. Chapman and Hall.

[64] S. Meyers. Difficulties in integrating multiview development systems. IEEE Software, 8(1):49–57,
January 1991.

[65] Microsoft. The Component Object Model specification, 1997.
http://www.microsoft.com/oledev/olecom/title.htm.

[66] G. P. Mullery. CORE - a method for controlled requirement specification. In 4th International
Conference on Software Engineering, pages 126–135. IEEE Computer Society, 1979.

[67] E. Najm and J.-B. Stefani. Computational models for open distributed systems (invited talk). In
H. Bowman and J. Derrick, editors, 2nd IFIP Conf. on Formal Methods for Open Object-Based
Distributed Systems (FMOODS), pages 157–176. Chapman & Hall, 1997.

32

[68] S. Navathe, R. Elmasri, and J. Larson. Integrating user views in database design. IEEE Computer,
19(1):50–62, January 1986.

[69] B. A. Nuseibeh. A Multi-Perspective Framework for Method Integration. PhD thesis, Imperial College,
University of London, 1994.

[70] Object Management Group. The Common Object Request Broker: Architecture and Specification,
February 1997. WWW: http://www.omg.org/.

[71] P. F. Pinto and P. F. Linington. A language for the specification of interactive and distributed mul-
timedia applications. In B. Mahr J. de Meer and O. Spaniol, editors, IFIP International Conference
on Open Distributed Processing, pages 217–234, Berlin, Germany, September 1993. North-Holland.

[72] W.L. Poon and A. Finkelstein. Consistency management for multiple perspective software develop-
ment. In Finkelstein and Spanoudakis [?], pages 192–196.

[73] K. Raymond. Reference model of open distributed processing (RM-ODP): Introduction. In K. Ray-
mond and L. Armstrong, editors, IFIP TC6 International Conference on Open Distributed Processing,
pages 3–14, Brisbane, Australia, February 1995. Chapman and Hall.

[74] A. Reeves, M. Marashi, and D. Budgen. A software design framework or how to support real designers.
IEE Software Engineering Journal, 10(4):141–155, July 1995.

[75] J. Ronayne. The Integrated Services Digital Network: from concept to application. Pitman, London,
1987.

[76] M. Van Sinderen and J. Schot. An engineering approach to ODP system design. In J. de Meer,
V. Heymer, and R. Roth, editors, IFIP TC6 International Workshop on Open Distributed Processing,
pages 301–312, Berlin, Germany, September 1991. North-Holland.

[77] R. Sinnott. An Initial Architectural Semantics in Z of the Information Viewpoint Language of Part
3 of the ODP-RM. ISO/IEC SC21/WG7 N915, July 1994. BSI Input document to the ODP Plenary
meeting in Southampton.

[78] R.O. Sinnott and K.J. Turner. Applying formal methods to standard development: The open dis-
tributed processing experience. Computer Standards and Interfaces, 17:615–630, 1995.

[79] G. Smith. A fully abstract semantics of classes for Object-Z. Formal Aspects of Computing, 7(3):289–
313, 1995.

[80] G. Smith. A semantic integration of Object-Z and CSP for the specification of concurrent systems.
In J. Fitzgerald, C. B. Jones, and P. Lucas, editors, Formal Methods Europe (FME ’97), LNCS 1313,
pages 62–81, Graz, Austria, September 1997. Springer-Verlag.

[81] G. Smith and J. Derrick. Refinement and verification of concurrent systems specified in Object-
Z and CSP. In M. Hinchey and Shaoying Liu, editors, First IEEE International Conference on
Formal Engineering Methods (ICFEM ’97), pages 293–302, Hiroshima, Japan, November 1997. IEEE
Computer Society.

[82] I. Sommerville. Software Engineering. Addison-Wesley, 1989.

[83] J. M. Spivey. The Z notation: A reference manual. Prentice Hall, 1989.

[84] M. W. A. Steen, H. Bowman, and J. Derrick. Composition of LOTOS specifications. In P. Dembinski
and M. Sredniawa, editors, Protocol Specification, Testing and Verification, XV, pages 73–88, Warsaw,
Poland, 1995. Chapman & Hall.

[85] M. W. A. Steen and J. Derrick. Formalising ODP Enterprise Policies. In 3rd International En-
terprise Distributed Object Computing Conference (EDOC ’99), University of Mannheim, Germany,
September 1999. IEEE Publishing.

[86] M.W.A. Steen. Consistency and Composition of Process Specifications. PhD thesis, University of
Kent at Canterbury, United Kingdom, 1998.

[87] M.W.A. Steen and J. Derrick. Applying the UML to the ODP enterprise viewpoint. Technical Report
8-99, Computing Laboratory, University of Kent at Canterbury, May 1999.

[88] S. Stepney, D. Cooper, and J. Woodcock. More powerful Z data refinement. In J. P. Bowen, A. Fett,
and M. G. Hinchey, editors, ZUM’98: The Z Formal Specification Notation, volume 1493 of Lecture
Notes in Computer Science, pages 284–307. Springer-Verlag, September 1998.

[89] C.N. Taylor, M.W.A. Steen, J. Derrick, and E.A. Boiten. Library case study. In preparation, 2000.

33

[90] K. Turner, (Ed.), Computer networks and ISDN Systems, 1995. Special Issue.

[91] R.J. van Glabbeek. The refinement theorem for ST-bisimulation semantics. In Programming Concepts
and Methods. Elsevier Science Publishers, 1990.

[92] C. A. Vissers, G. Scollo, M. van Sinderen, and E. Brinksma. On the use of specification styles in the
design of distributed systems. Theoretical Computer Science, 89(1):179–206, October 1991.

[93] M. Weber. Combining statecharts and Z for the design of safety-critical control systems. In Gaudel
and Woodcock [?], pages 307–326.

[94] J. Woodcock and J. Davies. Using Z: Specification, Refinement, and Proof. Prentice Hall, 1996.

[95] A. Yonezawa and M. Tokoro. Object-Oriented Concurrent Programming. MIT Press, 1987.

[96] P. Zave and M. Jackson. Conjunction as composition. ACM Transactions on Software Engineering
and Methodology, 2(4):379–411, October 1993.

[97] P. Zave and M. Jackson. Where do operations come from? A multiparadigm specification technique.
IEEE Transactions on Software Engineering, 22(7):508–528, July 1996.

[98] H. Zimmermann. OSI - reference model - ISO model of architecture for open systems interconnection.
IEEE Transactions on Communications, COM-28:425–432, 1980.

34

