
A Relational Framework for the Integration of

Specifications

Eerke Boiten and John Derrick
University of Kent at Canterbury
Canterbury Kent, CT2 7NF, UK

E.A.Boiten@ukc.ac.uk, J.Derrick@ukc.ac.uk

2003

Abstract
We describe a framework for viewpoint specification using formal spec-

ification languages. In order to establish consistency and to further de-
velop specifications, specifications need to be integrated (”unified”).

This integration is not defined in terms of their semantics, but more ab-
stractly in terms of, so-called, development relations, which represent ac-
ceptable “developments” (e.g. refinements) of each of the viewpoint speci-
fications. The framework is motivated by its instantiations with a number
of specification languages (e.g., LOTOS and Z) and different development
relations.

Keywords

Viewpoint specification, partial specification, consistency, formal methods, Z,
LOTOS.

1 Introduction

The use of viewpoints is often advocated as a solution for the problems of scale
arising from the development of large systems. However, the approach comes
with its own problems. By assuming a formal specification context, we can
clearly identify and rigorously analyse these problems, and give a framework for
their solution.

In this section, we first describe the wider software engineering context of
viewpoint specification, and then describe the main problems informally. Sec-
tion 2 lists the requirements for a framework for their solution. A number of
central design decisions for the framework are discussed in Section 3. A simpli-
fied version of the framework is presented in full in Section 4, with a number of
its instantiations. Section 5 sketches the full framework, and Section 6 concludes
by discussing related work.

1



1.1 Context

For projects involving the specification and development of large systems, the
structuring of their descriptions is crucial to the project’s success. Tradition-
ally, systems were decomposed according to functionality – modern approaches
favour, in addition to this, decompositions according to “aspects” or “view-
points” (Finkelstein et al., 1992). These may cover non-functional aspects like
security, safety, distribution, timing, etc. Typically, appropriate specialised lan-
guages would be used for each of those aspects. Alternatively, these viewpoints
may be views of the system’s functionality from different participants (for ex-
ample, a borrower’s and a library manager’s view of the action of borrowing
a book in a library system). We use the term partial specification (Zave and
Jackson, 1991) to include both those possibilities.

A prominent method with features of partial specification is the Unified
Modeling Language UML (Rumbaugh et al., 1999) which allows systems to be
described using diagrams and notations of various kinds. For example, the ef-
fects and ordering of operations can be (partially) deduced from information
provided in statecharts, in OCL annotations, and from object interaction dia-
grams, all of which can feature in a UML specification. However, none of these
takes precedence or is assumed to fully characterise the behaviour of the system
being specified. For a further discussion of these issues in UML, see (Derrick et
al., 2002).

The main inspiration for our work in this area, however, has been the Open
Distributed Processing (ODP) standard (ISO/IEC/ITU-T, 1995-98; Putman,
2000). This defines a viewpoints framework for the description and develop-
ment of distributed systems, using a fixed collection of five viewpoints with
predefined scopes. For example, the enterprise viewpoint is concerned with
communities, rôles and policies; the computational viewpoint describes the sys-
tem as a collection of distributed objects with their interfaces. A case study
in using ODP in the domain of air traffic control is the ECHO study presented
in (Eurocontrol, 1997), and analysed in (Derrick and Boiten, 2002; Taylor et
al., 2002). An overview of our approach, using a communication protocol case
study, is given in (Boiten et al., 2000).

These viewpoint methods are aimed at large projects, which will be un-
dertaken by teams of people. For that reason, they should also account for
independent development of the partial specifications. It should be clear that
this independence is limited by the degree of coherence and overlap between the
partial specifications, as described below.

1.2 Issues

The problems raised by a partial specification approach revolve around a single
fundamental issue. Namely, the tension caused by, on the one hand, the partial
specifications needing to be “independent”, and on the other hand, the partial
specifications all describing aspects of a single envisaged system. In particular,
as soon as multiple partial specifications constrain the same entity in the system,

2



the possibility arises that the constraints imposed are actually contradictory, i.e.,
inconsistent. The value of aspect-oriented methods is said to lie in the relative
orthogonality of the partial specifications. However, there would not be much of
a software development problem if the partial specifications did not ultimately
interfere. If they did not, we could develop the functional specification first,
and be assured that it would always be possible to superimpose the security,
real-time, etc. requirements on the final product afterwards. Clearly this is not
a realistic expectation, so consistency is going to be a serious issue in any partial
specification approach.

Two main classes of consistency can be distinguished. First there is what we
call structural consistency: if a viewpoint refers to something defined elsewhere,
that definition should indeed exist in another viewpoint. (For example, when
a method call on a particular object occurs in an interaction diagram, this
method is indeed defined on the object’s class.) This consistency problem is
largely solved; checking for this is already supported by any reasonable CASE
tool.

The more challenging type of consistency is usually called behavioural consis-
tency, but we might also call it constraint consistency. This is defined informally
as: the constraints placed by the partial specifications on an entity of the sys-
tem are jointly satisfiable. Such an “entity” might be an object, a data item,
an operation, or a behaviour. For example, in UML, constraint consistency on
a behaviour might be violated when a statechart allows action a only to occur
after action b, whereas an object interaction diagram puts b before a.

Note that we have defined constraint consistency in terms of entities of the
system, rather than in terms of elements of the partial specifications. This is
a crucial distinction to make, as we can hardly expect the views of the same
element from different viewpoints to be identical. If it is indeed given the same
name in two viewpoints, its representation (its type) may still be different. Con-
sider, for example, a service in a distributed system which is implemented trans-
parently by any of a number of servers. From the client’s viewpoint, the service
may well be provided by a single virtual server. An abstract view of the server
side may consider a set of servers – a more concrete view, which takes load
balancing into account, may have an even more detailed representation of the
collection of servers, e.g., a queue. Nevertheless, all of these views represent the
same entity in the eventual system. Thus, such a difference in representation
is not a structural inconsistency. Another apparent structural inconsistency is
when a single operation in one viewpoint corresponds to a sequence of oper-
ations in another, or when an entity has one name in one viewpoint, and a
different name in another.

All of these relations between elements of the various partial specifications
need to be documented – as the “glue” that holds the partial specifications
together. Constraint consistency (and even structural consistency) is to be con-
sidered modulo these relations. Using ODP terminology, we call such relations
the correspondences between the partial specifications. An elementary implicit
level of correspondence is provided by the use of identical names in partial spec-
ifications, as used in the ECHO study, but this is rarely sufficient.

3



Correspondences also need to cross language boundaries, as partial specifica-
tions need not use the same specification language. In practice, correspondences
may be implemented by reference to a common model of the system’s domain
knowledge, comparable to a data dictionary. Such a common model may well
be an informal one. For example, in the ECHO case study a base for the cor-
respondences between the viewpoints is found in the developers’ knowledge of
the elements of air traffic control software. A notable disadvantage of using
a common model is that all viewpoint developers need to be involved in its
definition and development, even when particular notions only concern a small
number of viewpoints. As a consequence, this puts the intended advantages of
a de-centralised development at risk.

A related problem caused by the desire for de-centralisation is the tension
between consistency checking and independent development. If a number of
viewpoints have been found to be consistent, and subsequently independently
developed further, consistency will not be guaranteed. (This will be even more
obvious in the formal setting presented later.) As a consequence, consistency is
only guaranteed immediately after a successful consistency check. If consistency
is continuously required, a check needs to be made after every change to every
viewpoint – which is clearly undesirable. Thus, a compromise needs to be made.
One possible approach is the use of inconsistency-tolerant methods (Nuseibeh,
1996; Miarka et al., 2002), but we will not consider this further in this paper.

2 Objectives

We will in this paper develop a framework that aims to support the use of partial
specification in a practical and rigorous way, taking into account the problems
outlined above. The framework being rigorous implies that we consider only
formalised notations1, as it would be hard to pin down a notion of consistency
otherwise.

The framework requires the following features.

• It should allow for the definition of correspondence relations between par-
tial specifications, potentially in different specification languages.

• Consistency needs to be checked between any number of partial specifi-
cations. As a witness of a successful consistency check, an integration
of the partial specifications involved (a “unification”) needs to be pro-
duced. This could be used as a basis for implementation of the system,
and also to define consistency between n specifications incrementally, in
terms of consistency between pairs of specifications (Bowman et al., 1999).
An unsuccessful consistency check should provide feedback , exhibiting the
sources of inconsistency in terms understandable to the specifiers. Thus,

1This does not wholly exclude UML – parts of it have been formalised (Evans et al., 1999).
However, we argue that a notion of refinement is essential for partial specification, and for
UML this has not been fully explored yet (Paech and Rumpe, 1994).

4



it should mainly use the vocabularies of the partial specifications and of
the correspondences between them.

• The framework should support independent evolution of the partial spec-
ifications.

3 Approaches to the Framework

The requirement that the specification notations be formalised implies that they
have a formal semantics of some sort. This semantics might be viewed as a basis
for consistency checking, but this may not lead to a practical approach. First,
the semantic domains of the different notations used are likely to be different
as well. This might be resolved by embedding all different semantics in some
unifying framework, but this makes the second problem more prominent: the
result of “intersecting the semantics” of two partial specifications is not likely to
be in terms understandable to the specifiers. The same goes for the feedback of
failed inconsistency. For example, when the common semantics is predicate logic
as in (Zave and Jackson, 1993), conjunction is used to combine specifications,
and inconsistency appears as “false”.

For this reason, we aim at methods for integrating specifications which are
more syntactic in nature.

The most intuitive definition of consistency between partial specifications is
nevertheless in terms of a particular common “semantics”. Every partial speci-
fication constrains the eventual implementation of the system – to put it differ-
ently, for every partial specification there is a set of acceptable implementations.
Consistency is then joint implementability of the partial specifications: the sets
of acceptable implementations should have a non-empty intersection. However,
this definition is neither practical nor abstract. It is impractical, because the sets
of acceptable implementations in any given programming language are likely to
be huge or even infinite, and due to many programs having the same semantics,
intersections of such sets will still be huge. Also, such intersections being empty
will not provide useful feedback in case of inconsistency.

Abstraction, however, is the key to improving on this definition. Most spec-
ification languages do not have a direct implementation relation, but they do
have notions of “refinement” or “development”. Such refinement relations are
normally characterised by the fact that a refined specification cannot be dis-
tinguished from its original – which amounts to its implementations forming a
subset. For some specification languages, multiple refinement relations exist,
reflecting varieties in the ways in which specifications may be “distinguished”.
(For example, refinement relations in process algebra (Hoare, 1985; Milner,
1989) correspond to varying notions of testing (Henessy, 1988).) In a partial
specification approach, one can imagine specifications in the same language be-
ing interpreted differently according to the particular rôle of the viewpoint at
hand – it may describe permissible behaviour, required behaviour, etc. Exam-
ples of the various rôles of process algebra specifications for ODP viewpoints,

5



and how their consistency is checked, may be found in (Steen et al., 1999). From
working out examples of viewpoint specification and consistency in Z (Boiten
et al., 1999), we also found that, depending on the interpretation of viewpoints,
different and non-standard refinement relations are needed (Derrick and Boiten,
2001).

All in all, it is clear that it will actually not be enough to consider just the
viewpoint specifications and their correspondences. We will also need to take
into account the permissible developments of each viewpoint, as indicated by
its associated “development relation”.

4 Simple Framework

In order to present the central notions, we first present a somewhat simplified
version of our framework. The assumptions made in this version are:

• all specifications are written in the same specification language L;

• the correspondence relation is characterised by the use of identical names
only.

The first assumption is not particularly strong, as it would be possible to con-
sider an embedding of all specification languages into a single “universal” one.

For brevity and clarity, we will call the combination of a partial specification
with its associated development relation a pspec, and a set of such pspecs a
pspecset.

Definition 1 (Pspec and pspecset) A pspec is a tuple (spec, dev) such that
spec ∈ L and dev is a member of L ↔ L, the set of all relations on L. A pspecset
is a set of pspecs. 2

A pspecset is consistent if all of its pspecs have a shared common develop-
ment.

Definition 2 (Consistency) A pspecset {(speci , devi)}i∈I is consistent iff

∃ s : L • ∀ i : I • (speci , s) ∈ devi

In that case, such an s is called a unification of the pspecset. 2

A least unification (most general unification) of two pspecsets is defined as
a “least upper bound” of their unifications:

Definition 3 (Least unification) The pspec (spec, dev) is a least unification
of pspecs (spec1, dev1) and (spec2, dev2) iff

dev = dev1 ∩ dev2 ∧ (spec1, spec) ∈ dev1 ∧ (spec2, spec) ∈ dev2 ∧
∀ spec′ : L • ((spec1, spec′) ∈ dev1 ∧ (spec2, spec′) ∈ dev2)

⇒ (spec, spec′) ∈ dev 2

6



Depending on the language and collection of development relations used, least
unifications may or may not exist.

The stepwise development of a pspecset (modelling stepwise system devel-
opment) is defined as a transition system, as follows.

Definition 4 (Stepwise development; Termination)
Stepwise development is a transition system on pspecsets, containing the fol-
lowing transitions −→ for every pspecset D :

1. If (spec, dev) ∈ D ∧ (spec, spec′) ∈ dev then D −→ D ′ where

D ′ = (D − {(spec, dev)}) ∪ (spec′, dev)

2. If (spec1, dev1) ∈ D and (spec2, dev2) ∈ D and (spec, dev) is a least unifi-
cation of (spec1, dev1) and (spec2, dev2) then D −→ D ′ where

D ′ = (D − {(spec1, dev1), (spec2, dev2)}) ∪ (spec, dev)

A pspecset D is terminating if

∃ spec : L; dev : L ↔ L • D −→∗ {(spec, dev)}

where −→∗ is the reflexive and transitive closure of −→. 2

The transition system −→ represents arbitrary steps in which partial spec-
ifications are developed or unified. A development objective terminates if at
least one sequence of such steps reduces it to a single specification. One would
assume that in that case, the pspecset is consistent. This is indeed true under
(mostly sensible) restrictions on the development relations used, see (Bowman
et al., 1999; Bowman et al., 2002) for a detailed analysis.

Theorem 1 When least unifications exist for all consistent pairs of pspecs, then
consistency of a pspecset implies termination. When, in addition, all develop-
ment relations involved are preorders, then termination also implies consistency.
2

Note that in this model, implicitly we are still considering an alternative
“semantics” of a partial specification: its semantics may be viewed as the set of
all its images under the development relation. The restrictions on development
relations in Theorem 1 amount to these sets being upward closed and having
minima.

A final element of the framework is feedback . This is provided through so-
called projections. A common strategy for debugging programs is to reduce a
buggy program step by step until one is left with a “smallest” program still ex-
hibiting the same bug. The lack of irrelevant detail surrounding it then makes it
easier to analyse and remove the bug. Projections have the same rôle for partial
specifications: they reduce inconsistent specifications (in analogous ways) leav-
ing us with “smaller” but still inconsistent viewpoints. In order for projections
to produce meaningful results, they need to be monotonic with respect to the
development relations involved.

7



Definition 5 (Admissable projection) A projection is a partial function from
L to L. A projection f is admissable for a pspecset {(speci , devi)}i∈I iff f is
applicable to all specifications and their possible developments:

∀ i : I • speci ∈ dom f

∀ i : I ; s : L • (speci , s) ∈ devi ⇒ s ∈ dom f

and, in addition, f is monotonic with respect to all development relations devi
in D :

∀ i : I ; s, s ′ : L • (s, s ′) ∈ devi ⇒ (f (s), f (s ′)) ∈ devi

The application of a projection f to a pspecset D is denoted by f (D), and
defined by elementwise application of f to all specifications in D ; if any of these
are outside the domain of f , then f (D) is not defined. 2

Admissability of a projection fully depends on the development relations
used. In the context of stepwise development as defined above, it is sufficient to
check that the projection is admissable for the initial pspecset. This is because
monotonicity with respect to two relations implies monotonicity with respect to
their intersection.

The composition of two admissable projections is itself an admissable pro-
jection. Thus we can define a pre-order on admissable projections by

f ≤D g ≡ ∃ h • h(f (D)) = g(D)

for f and g admissable projections on a given D , and h admissable on f (D).
Admissable projections f necessarily preserve consistency – if s is a unifica-

tion of D , then f (s) is a unification of f (D). However, they do not necessarily
preserve inconsistency, as they may actually remove the conflicting require-
ments. The most useful feedback from an inconsistent pspecset is its image
under a maximal inconsistency preserving projection.

Definition 6 (Maximal inconsistency preserving) The projection f is
maximal inconsistency preserving for an inconsistent pspecset D iff f is admiss-
able on D , f (D) is inconsistent, and of all projections satisfying those properties,
f is maximal with respect to the ordering ≤D . 2

Maximal projections need not exist, and they are likely not to be unique (con-
sider bijections h in the definition of ≤D).

This framework has been instantiated for the process algebra LOTOS (Bolog-
nesi and Brinksma, 1988) with a number of development relations in (Steen et
al., 1999). It has also been instantiated, extended with correspondence rela-
tions, for the Z notation (Spivey, 1992) with its standard refinement relation,
see (Boiten et al., 1999). The Z instantiation of consistency checking operates
on a schema-by-schema basis, so projections (from the whole specification to
single schemas) implicitly play a large rôle. Further useful projections would
hide state components which do not contribute to the inconsistency. The rela-
tionships between various non-standard development relations for Z are explored
in (Derrick and Boiten, 2001).

8



5 Full Framework

The full framework contains a number of additional elements, and some of its
definitions are generalisations of the corresponding ones in the simple frame-
work. This paper only sketches some of these, and the issues arising from them,
which are still subject of further research.

The first issue is heterogeneity. Disregarding correspondences for the mo-
ment, the definition of consistency remains as in Definition 2, except that the
unification of all pspecs can no longer be taken from the single language L. The
notation that it does belong to can be deduced from the ranges of the develop-
ment relations involved: it should contain the intersection of all those. Thus,
there is an issue of type-correctness for development relations in a pspecset.

The need for the development relations to have a common co-domain carries
the risk of reintroducing the problems indicated earlier for a “common seman-
tics” approach. A solution to this lies in considering additional structure in
the development relations. For example, if the common co-domain of the de-
velopment relations is an implementation notation I, one might consider only
development relations of the form devi o

9 impi where devi is a relation on a spec-
ification notation Li , and impi is a function from Li to I, representing the
transliterations of a subclass of “implementable” specifications into their imple-
mentations. For Z, this subclass could be all operations where all after-state
components and outputs are defined by equations relating them to before-state
components and inputs – these naturally correspond to an assignment-based
imperative implementation. For a process algebra, these could be determinis-
tic “regular” processes (i.e., whose definition has the pattern of a deterministic
regular grammar), which correspond to deterministic automata.

In a specialised setup like that, unifications between specifications in the
same language can be defined at the level of abstract development relations
as before. Also, translations between specification notations can be defined
and verified without reference to a common semantics. Consider a translation
transi,j from Li to Lj . If

transi,j o
9 devj ⊆ devi o

9 transi,j

transi,j o
9 impj ⊆ devi o

9 impi

and devi is transitive, then it is a sound development step to replace the pspec
(speci , devi o

9 impi) by its translation (transi,j (speci), devj o
9 impj ). A translation

from LOTOS to Object-Z is given in (Derrick et al., 1999). The first condi-
tion above, compatibility of development relations, is investigated for process
algebras and Z-like languages in (Derrick et al., 1996; Bowman and Derrick,
1999).

Another challenge is posed by the introduction of correspondence relations
between the viewpoints. The single-language model with correspondence rela-
tions for Z is described in detail in (Boiten et al., 1999). From that, it is clear
that having correspondences between more than two viewpoints induces a re-
quirement to ensure consistency between those correspondences. In addition, a

9



data refinement step in one viewpoint may lead to a modification in its corre-
spondence with another viewpoint, as it might have been referring to a state
component that has been removed by data refinement.

A potential solution for this problem has its base in category theory, in-
spired by the approaches to composition of specifications of Specware (Srinivas
and Jüllig, 1995) and (Fiadeiro et al., 1997). Every relation can be factored as
the composition of the inverse of a function and a function (a “span”). In such
a decomposition of a correspondence between two viewpoint specifications, the
“intermediate” specification contains essentially representations of the elements
in the viewpoints that need to be related. In a development step, the intermedi-
ate can be left unchanged, modifying only its images in the viewpoints, thereby
establishing a new correspondence relation. Unification is then a pushout of the
span diagram; correspondences can be combined as pullbacks.

6 Related Work

The use of Z for partial specification, and consequences for consistency checking
were first investigated by Ainsworth et al. (1994), their approach was based on
refinement. P. Zave and M. Jackson (1991; 1993; 1996) investigated the use
of combinations of Z and other notations for partial specification, using predi-
cate logic as a common semantics. Both these approaches lack the notion of a
correspondence relation. A different approach was taken by D. Jackson (1995),
using a correspondence relation as the mechanism for composing Z specifica-
tions, however not necessarily establishing refinements.

A relational approach to combining specifications is described by (Boudriga
et al., 1992; Frappier et al., 1995). Große-Rhode (2001) defines “transformation
systems” as a common semantic domain. Due to its expressiveness and some
built-in redundancy, it appears a promising basis for combining specifications
and integrating methods. Many other approaches to this are described in the
proceedings of the Integrated Formal Methods conference series, e.g., (Butler et
al., 2002).

Acknowledgements

Our research in this area was supported by EPSRC through the grants “Cross
Viewpoint Consistency in ODP”, ”OpenViews” and ”A Constructive Frame-
work for Partial Specification”. We thank our colleagues in these projects:
Marius Bujorianu, Peter Linington, Howard Bowman, Maarten Steen, and Chris
Taylor, for their contributions.

References

Ainsworth, M., Cruickshank, A. H., Wallis, P. J. L., and Groves, L. J., 1994,
“Viewpoint specification and Z,” Information and Software Technology, Vol. 36(1),

10



pp. 43–51.
Boiten, E. A., Derrick, J., Bowman, H., and Steen, M. W. A., 1999, “Con-

structive consistency checking for partial specification in Z,” Science of Com-
puter Programming, Vol. 35(1), pp. 29–75.

Boiten, E. A., Bowman, H., Derrick, J., Linington, P. F., and Steen, M. W. A.,
“Viewpoint consistency in ODP,” Computer Networks, Vol. 34(3), pp. 503–537.

Bolognesi, T., and Brinksma, E., 1988, “Introduction to the ISO Specifica-
tion Language LOTOS,” Computer Networks and ISDN Systems, Vol. 14(1),
pp. 25–59.

Boudriga, N., Elloumi, F., and Mili, A., 1992, “On the lattice of specifica-
tions: Applications to a specification methodology,” Formal Aspects of Com-
puting, Vol. 4, pp. 544–571.

Bowman, H., Boiten, E. A., Derrick, J., and Steen, M. W. A., 1999, “Strate-
gies for consistency checking based on unification,” Science of Computer Pro-
gramming, Vol. 33, pp. 261–298.

Bowman, H., Steen, M. W. A., Boiten, E. A., and Derrick, J., 2002, “A
formal framework for viewpoint consistency,” Formal Methods in System Design,
Vol. 21, pp. 111-166.

Bowman, H., and Derrick, J., 1999, “A junction between state based and
behavioural specification,” Invited Paper in Fantechi, A., Ciancarini, P., and
Gorrieri, R., (editors), Formal Methods for Open Object-based Distributed Sys-
tems, Kluwer.

Butler, M., Petre, L., and Sere, K. (editors), 2002, “Integrated Formal Meth-
ods, Third International Conference”, Lecture Notes in Computer Science 2335,
Springer-Verlag.

Derrick, J., Akehurst, D. H., and Boiten, E. A., 2002@ “A framework for
UML consistency”, in Kuzniarz, L., Reggio, G., Sourrouille, J. L., and Huzar,
Z. (editors), ¡¡UML¿¿ 2002 Workshop on Consistency Problems in UML-based
Software Development, pages 30-45.

Derrick, J., and Boiten, E. A., 2001, “Refinement in Z and Object-Z: Foun-
dations and Advanced Applications,” FACIT series, Springer-Verlag.

Derrick, J., and Boiten, E. A., 2002, “Applying ODP to an air traffic man-
agement system: viewpoints and correspondences,” submitted for publication.

Derrick, J., Boiten, E. A., Bowman, H., and Steen, M., 1999, “Viewpoints
and consistency: translating LOTOS to Object-Z,” Computer Standards and
Interfaces, Vol. 21, pp. 251–272.

Derrick, J., Bowman, H., Boiten, E.A., and Steen, M., 1996, “Comparing
LOTOS and Z refinement relations,” FORTE/PSTV’96, pp. 501–516, Chapman
& Hall.

European Organisation for the Safety of Air Navigation, 1997, “ECHO final
report2,” 1.0 edition.

Evans, A. S., France, R. B., Lano, K. C., and Rumpe, B., 1999 “Meta-
modelling semantics of UML,” in Kilov, H., (editor), Behavioural Specifications
for Businesses and Systems, chapter 4, Kluwer.

Fiadeiro, J., Lopes, A., and Maibaum, T., 1997, “Synthesising Intercon-
nections,” in Bird, R., and Meertens, L., (editors), Algorithmic Languages and

11



Calculi, pp. 240–264, Chapman & Hall.
Finkelstein, A., Kramer, J., Nuseibeh, B., Finkelstein, L., and Goedicke, M.,

1992, “Viewpoints: a framework for integrating multiple perspectives in system
development,” International Journal on Software Engineering and Knowledge
Engineering, Special issue on Trends and Research Directions in Software En-
gineering Environments, Vol. 2(1), pp. 31–58.

Frappier, M., Mili, A., and Desharnais, J., 1995, “Program construction by
parts,” in (Möller, 1995), pp. 257–281.

Große-Rhode, M., 2001, “Semantic integration of heterogeneous formal spec-
ifications via transformation systems”, Habilitation thesis, Technical University
of Berlin, Technical Report 2001/13.

Henessy, M., 1988, “Algebraic Theory of Processes,” MIT Press.
Hoare, C. A. R., 1985, “Communicating Sequential Processes,” Prentice

Hall.
ISO/IEC/ITU-T, 1995-98, “ISO/IEC 10746 — ITU-T Recommendation X.901-

X.904, Open Distributed Processing - Reference Model”.
Jackson, D., 1995, “Structuring Z specifications with views,” ACM Trans-

actions on Software Engineering and Methodology, Vol. 4(4), pp. 365–389.
Miarka, R., Derrick, J., and Boiten, E. A., 2002, “Handling inconsistencies

in Z using quasi-classical logic,” in Bert, D., Bowen, J. P., Henson, M. C., and
Robinson, K., (editors), ZB 2002, Lecture Notes in Computer Science 2272,
pp. 204–225, Springer-Verlag.

Milner, R., 1989, “Communication and Concurrency,” Prentice-Hall.
Möller, B., (editor), 1995, “Mathematics of Program Construction, 3rd In-

ternational Conference, Kloster Irsee, Germany,” Lecture Notes in Computer
Science 947, Springer-Verlag.

Nuseibeh, B., 1996, “Towards a framework for managing inconsistency be-
tween multiple views,” in Finkelstein, A., and Spanoudakis, G., (editors), SIG-
SOFT ’96 International Workshop on Multiple Perspectives in Software Devel-
opment (Viewpoints ’96), pp. 184–186, ACM.

Paech, B., and Rumpe, B., 1994, “A new concept of refinement used for
behaviour modelling with automata,” in Naftalin, M., Denvir, T., and Bertran,
M., (editors), FME’94: Industrial Benefit of Formal Methods, Lecture Notes in
Computer Science 873, pp. 154–164, Springer-Verlag.

Rumbaugh, J., Jacobson, I., and Booch, G., 1999, “The Unified Modeling
Language: Reference Manual,” Object Technology Series, Addison-Wesley.

Putman, J., 2000, “Architecting with RM-ODP,” Prentice Hall.
Spivey, J.M., 1992, “The Z notation: A reference manual,” 2nd edition,

Prentice Hall.
Srinivas, Y. V., and Jüllig, R., 1995, “Specware: Formal support for com-

posing software,” in (Möller, 1995), pp. 399–422.
Steen, M. W. A., Derrick, J., Boiten, E. A., and Bowman, H., 1999, “Consis-

tency of partial process specifications,” in Haeberer, A., (editor), AMAST’98,
Springer-Verlag.

Taylor, C. N., Boiten, E. A., and Derrick, J., 2002, “Interpreting ODP
viewpoint specification: Observations from a case study,” in FMOODS 2002.

12



Zave, P., and Jackson, M., 1991, “Techniques for partial specification and
specification of switching systems,” in Nicholls, J. E., (editor), Sixth Annual Z
User Workshop, pp. 205–219, Springer-Verlag.

Zave, P., and Jackson, M., 1993, “Conjunction as composition,” ACM Trans-
actions on Software Engineering and Methodology, Vol. 2(4), pp. 379–411.

Zave, P., and Jackson, M., 1996, “Where do operations come from? A multi-
paradigm specification technique,” IEEE Transactions on Software Engineering,
Vol. 22(7), pp. 508–528.

13


