
A Case Study in Partial Specification:

Consistency and Refinement for Object-Z

Chris Taylor, John Derrick and Eerke Boiten
Computing Laboratory, University of Kent,

Canterbury, CT2 7NF, UK
C.N.Taylor-1,J.Derrick,E.A.Boiten@ukc.ac.uk

Abstract

The ‘viewpoint’ approach, in which a system is
described by several partial specifications, has been
proposed as a way of making complex computing
systems more understandable. The ISO’s Open
Distributing Processing (ODP) framework is an
architecture for open distributed systems, involving
five named viewpoints. This paper compares two
partial specifications of a lending library — from
the ODP’s Enterprise and Information Viewpoints
— and discusses the relation between them. Both
specifications are written in Object-Z, an object-
oriented variant of Z. Examining how such partial
specifications might be unified raises broader issues
of refinement and mutual consistency of partial
specifications in Object-Z.

1. Introduction

Distributed computing systems, consisting of
multiple interacting software and hardware compo-
nents, often physically distributed across networks,
are now commonplace. Their increasing complexity
motivates an approach in which systems are spec-
ified from several different viewpoints [4] — each
a partial specification, focusing on a particular as-
pect.

The ISO’s Open Distributing Processing (ODP)
framework, an architecture proposed for open dis-
tributed systems [6], identifies five named view-
points, as follows:

• Enterprise Viewpoint — focuses on the overall
scope, purpose, and policies of the system.

• Information Viewpoint — specifies in a fairly
abstract way the information involved in the
system, and how it is processed, without de-
scribing the distributed architecture that will
be used.

• Computational Viewpoint — a functional de-
composition of the system into objects that
interact via specific interfaces.

• Engineering Viewpoint — a specification of the
mechanisms and functions needed to support
interaction between the distributed objects of
the system.

• Technology Viewpoint — concerned with the
concrete technological infrastructure of a sys-
tem, i.e. the particular hardware and software
components involved, and how they are inter-
related.

ODP does not prescribe particular specification for-
malisms, software, or hardware. The viewpoints
are informally defined in natural language — al-
beit at much greater length than given above —
and so are inevitably somewhat vague.

In the viewpoint method, the problem arises of
relating different viewpoint specifications — which
may not even be in the same language — and en-
suring that they are ‘consistent’, in some sense (see
[3]). One approach is to say that partial specifi-
cations are mutually consistent if and only if they
have a common refinement . Finding such a refine-
ment is sometimes referred to as unification. The
problem then becomes one of defining appropri-
ate refinement rules which preserve certain proper-
ties. Another issue important in practice as regards



viewpoints — although not addressed in this paper
— is tool support (see [4]).

Our work on using the specification language Z
(see [9]) for partial specification has led to new in-
sights into refinement. A variety of refinement rela-
tions have been defined (see [2]) to account for spec-
ifications being ‘partial’ in a number of different
senses. For example, a specification can be partial
in describing only a certain aspect of the behaviour
(e.g. a state-space specification without timing con-
straints), only a subset of the possible operations,
only a certain perspective (e.g. an external user’s),
only a certain level of implementation, or only a
certain subsystem of the whole.

Object-Z [8] is one of the best developed of sev-
eral Z-like object-oriented specification languages.
In comparison to the work on Z refinement, there
has been little work on Object-Z refinement, partic-
ularly as regards partial or viewpoint specification.
This paper examines some of the issues involved,
by summarising a case study in which two Object-Z
specifications of a lending library are compared (see
[11]). The first (in Section 2) is from the Enterprise
Viewpoint. It was derived using a policy specifica-
tion language, and a set of translation rules from
that language to Object-Z (see [10]). The second
(in Section 3) is from the Information Viewpoint.

The purpose of the case study was twofold.
One aspect was to consider to what extent partial
specification can be successful: thus in our case
study, different project members were responsible
for the different viewpoint specifications, with
little communication between them. We wanted
to see if it was possible to reconcile the resulting
differences. Section 4 compares the viewpoint
specifications and comments on their differences.
The second aspect was to look at what general
conclusions can be drawn, regarding the refinement
of partial specifications in Object-Z. Section 5
uses the case study to suggest possible refinement
rules for partial specification in Object-Z. Section
6 concludes the paper.

2. An Enterprise Viewpoint library specification

This section outlines the Enterprise Viewpoint
library specification, given in full in [10]. The in-
formal ODP definition of the Enterprise Viewpoint
refers to describing a system as a ‘community’ with
an overall objective, consisting of entities that play

various ‘roles’, some as ‘actors’ (agents), others as
‘artifacts’ (passive objects). The roles are con-
strained by ‘policies’, i.e. permissions, obligations,
and prohibitions. In the library case, the objec-
tive is to share the collection fairly and efficiently
amongst the members, and the policies relate to
loans. For example, the regulation Academic staff
may borrow 25 books or periodicals ... denotes a
permission, and the regulation Items borrowed must
be returned by the due day and time denotes an obli-
gation.

To formalise such policies, [10] develops a simple
logic-based policy language, with a mapping
into Object-Z. This helps to support consistency
checking between different viewpoints, since
Object-Z has been suggested as a notation for
the Information Viewpoint. However, this paper
only describes the Object-Z form of the Enterprise
specification.

2.1. Object-Z

An Object-Z specification includes several class
schemas, each corresponding to an ADT, of which
one represents the type of system being modelled,
e.g. in our case study, the Library class. Variable
declarations such as x : ClassName are allowed,
where x denotes an unique identifier for, or pointer
to, an object of the class Classname (the notation
x :↓ ClassName is also used, to mean that x points
to an object of type ClassName or of any of its
descendant classes). If Op is an operation of class
Classname, the notation x .Op represents the exe-
cution of Op on the object to which x refers. For ex-
ample, in one of the library specifications given, the
Library class has an attribute clock of class Clock ,
and the expression clock .Tick represents the execu-
tion on the library’s clock of its own (lower-level)
Tick operation.

Each operation has a ∆-list, showing the at-
tributes it is allowed to change — attributes not in
the ∆-list are not changed by that operation (unless
they are ‘secondary’ attributes, separated from the
main attributes by a ∆ symbol, in which case they
may change in any way consistent with preserving
the state invariant). The names of the visible op-
erations of a class are shown bracketed after the
� symbol, at the top of the class schema, and the
corresponding operation schemas appear below the
state schema.

2



The ‘firing’ interpretation of operations is as-
sumed in Object-Z, i.e. an operation cannot occur
unless its pre-condition is satisfied. This contrasts
with an interpretation often assumed in standard
Z, in which operations are viewed as total relations
on the state space, such that pre-states which do
not satisfy the pre-condition are related to any
post-state.

2.2. Component object types

Date, Time, and Money are given types. The
current date and time are represented by the special
globally declared terms today : Date and now :
Time, assumed to have changing rather than fixed
values.

Enterprise Viewpoint roles are represented by
classes. Item and Loan are passive ‘artifact’ roles.
The Item class (outlined below) has operations
CheckIn and CheckOut . Book and Periodical are
subclasses of Item. The Loan class has attributes
borrower , item, issue date, and due date, and no
operations.

Item
�(CheckOut ,CheckIn)

onloan : B
loan : PLoan

#loan 6 1 ∧ onloan ⇔ loan 6= ∅

...

Borrower is an ‘actor’ role. The UpdateFines op-
eration is not in the visibility list, which is taken
to mean that it occurs as soon as its precondi-
tion is true, without interaction from the environ-
ment. The subclasses of Borrower — ACBorrower ,
PGBorrower , and UGBorrower — use different
preconditions for the Borrow operation and differ-
ent values of the allowance attribute to express the
policies concerning borrowing.

Borrower
�(Borrow ,Return,PayFine)

allowance : N
fines : Money
loans : PLoan

#loans 6 allowance

Borrow
· · ·

...

UpdateFines
∆(fines)

. . .

The librarian’s role is to prevent unauthorised loans
and to maintain the loan records. Librarians may
issue and return items or receive fines.

Librarian
�(Issue,Return,ReceiveFine)

Issue
borrower? : Borrower
item? : Item

#(borrower?.loans)
< borrower?.allowance

...

...

2.3. The library community

The library community consists of borrowers,
items and librarians. Its actions (Borrow , Return,
and PayFine) are interactions between two or three
different roles. Additional constraints on the bor-
row and return actions ensure that appropriate
loans are created or destroyed.

3



Library
�(Borrow ,Return,PayFine)

borrowers : FBorrower
items : F Item
librarians : FLibrarian
loans : FLoan

∀ loan : loans •
loan.borrower ∈ borrowers
∧ loan.item ∈ items
∧ loan ∈ loan.borrower .loans
∧ loan.item.loan = {loan}

...

...

3. An Information Viewpoint library specification

This section outlines an Object-Z Information
Viewpoint specification of the library system,
given in full in [11]. It is a high-level functional
specification, defining at a fairly abstract level the
information needed in the system state, and the
operations required to manipulate it. Whereas the
Enterprise Viewpoint concentrated on high-level
policies, this viewpoint looks more closely at the
stock of the library, its collections and users, and
the fines on overdue loans. The outline given here
illustrates the scope of the Information Viewpoint
and the level of detail it might typically include,
although given the informal nature of the ODP
framework, it is difficult to be very precise about
this.

3.1. Component object types

The library stock consists of ‘items’, i.e. actual
physical books, periodicals, etc. Each item has an
associated ‘abstract item’, i.e. the abstract work
of which it is a particular copy. ‘Holders’ are en-
tities that can ‘hold’ items, in an abstract sense.
The given type Holder is partitioned into users (i.e.
people), library loan collections, and ‘other holders’
(which includes objects used to represent a library
store, a reference collection, and a ‘disposal bin’).

The Item class has attributes representing the
related abstract item, the category (book or peri-
odical), the ‘location’ (current holder of that item),
and the ‘home’ (holder to which that item ‘be-

longs’).

Item
�(MoveItem,ChangeItemHome)

abitem : AbItem
cat : Cat
loc, home : Holder

cat = abitem.cat

...

The MoveItem operation changes the location, but
not the home; whereas the ChangeItemHome op-
eration changes both, by moving the item from its
home to a new current location, which becomes the
new home as well. These two operations are used to
define Library class operations that transfer items
between ‘holders’ — some of which change the li-
brary stock (e.g. buying and selling of items, dis-
posal of items), whereas as others (e.g. issuing and
returning) do not.

Because the behaviour in our case study is
heavily time-dependent, our Information View-
point specification models time explicitly. However,
other Information Viewpoint descriptions might
not need to do this. Here we use a Clock class,
where ‘clocks’ measure both the time and the date.
The primary attributes of a clock are its start date
and time, and its tick count, incremented by the
Tick operation.

A Loan class is defined, without operations. Its
attributes are: an identity number, the item and
user involved, the issue date and time, the due date,
the loan collection from which the loan is made, and
the item category and abstract item of the physical
item involved.

A library user may join, leave, or change mem-
bership type whilst a member. Three global func-
tions express borrowing restrictions, mapping each
user type to a maximum total number of loans, a
maximum number for each item category, and a
level of fines at which further borrowing is blocked.

We can see clearly now the need for consistency
checking between the viewpoints. Borrowing
operations are part of the Information Viewpoint,
but also occurred in the policies in the Enterprise
Viewpoint. Clearly the two specifications have to
be consistent in any such areas of overlap.

4



3.3. Fines

Fines are expressed as natural numbers. A user’s
net fines are the cumulative fines incurred, minus
those paid. The fines incurred are the sum of those
on current loans and those on old (i.e. returned)
loans. A state invariant specifies that the fine
on any current loan is zero if the loan’s due date
is after the library’s clock date; and otherwise,
is equal to the number of days that the loan is
overdue times the charge per day. Every library
operation ‘ticks’ the clock, so its date periodically
advances.

3.4. The library class

The top-level library class has primary attributes
such as the stock of items, the main and short-term
loan collections, the set of all loans so far, and the
total fines paid by each user.

Lib
�(Tick ,AddMember , ...)

clock : Clock
stock : F Item
main, short : LoanColl
status : User → Status
loans so far , old loans : FLoan
fines paid : User → N
return time : Loan 7→ Time
. . .
∆
loans out : FLoan
current fine : Loan 7→ N
net fines : User → N

. . .

INIT

clock .INIT

loans so far = ∅
...

...

Secondary attributes are also used, e.g. the set
of loans currently out. A state invariant and
initialisation are specified. The operations in
this class represent the Information Viewpoint

behaviour: for example, there are operations
AddMember , PayFine, Issue, etc. The overlap
with the Enterprise Viewpoint is again clear,
since the library class also models paying fines,
borrowing, etc.

4. Comparison of the specifications

This section compares the IVS (Information
Viewpoint Specification) and EVS (Enterprise
Viewpoint Specification). Many of the issues
raised relate to the general problem of unifying
partial specifications in Object-Z: indeed, this case
study addresses broader questions about Object-Z
refinement, as well as questions relevant to ODP.

4.1. Differences between the specifications

Table 1 summarises the kinds of entity used in
the IVS and EVS. Subclass types are indented with
respect to their parent class type, as are named
subsets of a given type. Roughly corresponding
types are horizontally aligned, with a gap being
left if there is no corresponding type.

Table 1: Comparison of IVS and EVS types
IVS EVS

Library(C:18att:23ops) Library(C:4att:3ops)
Item(C:4att:2ops) Item(C:2att:2ops)

– Book(as above)
– Periodical(as above)

Loan(C:9att:0ops) Loan(C:4att:0ops)
Cat(E) (Uses Item subclasses)
AbItem(C:1att:0ops)
Holder(G)
– LoanColl(S)
– OtherHolder(S)
– User(S) Borrower(C:3att:3ops)

– UGBorrower(as above)
– PGBorrower(as above)
– ACBorrower(as above)
Librarian(C:0att:3ops)

(Uses N) Money(G)
Status(E) (Uses Borrower subclasses)
Clock(C:5att:1op)
Date(N) Date(G)
Time(Fin. subs. of N) Time(G)

G = given type

5



S = subset of given type
E = enumerated type
C = class type (with nos. of attrs. and visible ops.)
N = natural numbers

Some notable differences between the specifica-
tions are as follows:

• Library stock. The EVS stock is unchanging
and undivided. The IVS stock is divided be-
tween a store, main and short loan collections,
and a reference collection; and both the stock
and the allocation of items within it are al-
lowed to change. This is an arbitrary mod-
elling decision, and is not due to the ODP
viewpoints framework.

• Roles. The EVS identifies roles correspond-
ing to the types of borrower, and encapsulates
their state and operations by defining Object-Z
classes for each type of borrower. The roles are
thereby fixed, so that a borrower cannot leave
or join the library, or change membership type.
By contrast, the IVS effectively allows the role
of an object to change (although roles are not
identified as fundamental concepts in the In-
formation Viewpoint), since it allows the sta-
tus of library users to change. The behaviour
associated with each user status is specified by
global functions, rather than being encapsu-
lated in classes.

• Range of library operations. At the library
level, the EVS defines three visible operations:
issuing an item; returning an item; and pay-
ing off all or part of a fine. The IVS defines
an extra 20, including operations for changing
and reorganising the stock, and for querying
aspects of the library state. By their nature,
Enterprise Viewpoint specifications are likely
to include only a fraction of the operations
found in an Information Viewpoint specifica-
tion.

• Loan information. The IVS assigns each loan
a unique number, in order of issuance, as well
as an issue time and date, and a due date.
It also records the collection that the loan is
from. When a loan is returned, its return
time and date are recorded in the library state.
By contrast, the EVS does not record issue

time, source (because different collections are
not distinguished), return time, or return date,
and does not assign unique identifiers to loan
objects. This illustrates the general point that
one viewpoint might record more detail than
another.

• Clocks, dates, and times. The IVS explicitly
formalises clocks, dates, and times. The EVS
implicitly assumes some non-standard seman-
tic features, such as special ‘built-in’ date and
time variables, and events which occur as soon
as their preconditions become true. Building
some general templates or modules to handle
temporal concepts would be useful.

• Entities not represented. The EVS represents
librarians, whereas the IVS does not. Con-
versely, the IVS represents other entities which
the EVS does not, such as clocks, library col-
lections, abstract items, types of user status,
and categories of item (although the EVS rep-
resents the latter two aspects using subclasses
of Borrower and Item). This is a specific in-
stance of a general problem with partial spec-
ification.

• Interaction with component objects. Both
specifications assume that state attributes of
component objects (e.g. of items) can be ac-
cessed by the top-level (library) class and used
in state invariants — a practice not permitted
by a fully abstract semantics (see [7]), which
only allows component objects to be manip-
ulated via their operations. The IVS does,
however, adhere to the principle that a com-
ponent object’s state attributes cannot change
without an operation on that object; whereas
the EVS appears to allow such attributes to
change via an ‘internal’ operation, or to pre-
serve an invariant, without a visible external
operation on the object. (The invariant in
question is in the EVS library class, and it
constrains the ‘loans’ attribute of all the items
belonging to the stock.)

4.2. Discussion of differences

Some differences between the two specifications
reflect arbitrary decisions about what to formalise

6



or how to formalise it. Given that an object-
oriented formalism is being used, one of the dimen-
sions of variation is the choice of object classes,
and the distribution of attributes and operations
between them. The method used to derive the EVS
identifies classes corresponding to types of passive
objects (which have no operations), and classes cor-
responding to ‘roles’ (types of active objects, which
do have operations). In the library case, this leads
to a specification with a lot of attributes and op-
erations at the level of component objects. Since
the library itself is not classified as a role, the three
operations at the library level are then defined as
synchronised executions of component-level oper-
ations, e.g. issuing a book involves synchronising
a borrower’s Borrow operation, a librarian’s Issue
operation, and an item’s CheckOut operation.

By contrast, in the IVS, the only component op-
erations are the Clock class’s Tick operation, and
the Item class’s MoveItem and ChangeItemHome
operations. Several component object types (e.g.
the Date, Time, User , Holder , LoanColl , and
OtherHolder types) have no state attributes or op-
erations.

Overall, the IVS is more detailed, and records
cumulative information which the EVS does not —
e.g. the EVS library state does not retain completed
loan objects, or their actual return dates and times.

The method used to generate the EVS identifies
Enterprise Viewpoint ‘roles’ with Object-Z classes.
This encapsulates information about each role,
but has the disadvantage that roles are thereby
associated with fixed classes of objects, so that
an object cannot change its role. For this reason,
the EVS cannot represent changes to a person’s
library membership status.

5. Unification and refinement

5.1. Conventional refinement in Z

In data refinement in Z (see [12]), an abstract
ADT is refined to a more concrete one by changing
the state space and operations. Let the abstract
and concrete ADT’s be (AStates,AInit , {AOpi |
i ∈ I }) and (CStates,CInit , {COpi | i ∈ I }), re-
spectively (where AInit and CInit are initialisation
predicates). The concrete ADT refines the abstract
one, with respect to a retrieval relation Retr be-
tween their state spaces, if and only if the following

conditions hold:

• Initialisation. Every concrete initial state in
CInit is related by Retr to some abstract initial
state in AInit .

• Inputs and outputs. The operations AOpi and
COpi have the same input and output vari-
ables (if any).

• Applicability . If a given abstract pre-state
AState and set of inputs satisfies the pre-
condition of AOpi , then any concrete pre-state
CState related to AState by Retr satisfies the
pre-condition of COpi , given the same inputs.

• Correctness. For any pre-states AState and
CState related by Retr , if AState satisfies
the pre-condition of AOpi , and CState ′ is a
concrete post-state reachable from CState via
COpi , then there is some abstract post-state
AState ′ related by Retr to CState ′.

The conditions above ensure that the concrete
ADT ‘simulates’ the abstract ADT, in the sense
that every behaviour of the concrete ADT corre-
sponds, via the retrieval relation, to a behaviour
of the abstract ADT. Two assumptions made here
are that: (a) the two ADTs have matching indexed
sets of operations; and (b) matching operations
have the same input and output variables. For
partial specification in Object-Z, these assump-
tions seem too inflexible.

5.2. Approaches to unification

This section considers how the two viewpoint
specifications of the library system might be refined
into a single specification. One general strategy
might involve rules for ‘flattening’ each specifica-
tion, replacing component object classes by addi-
tional, appropriately typed higher-level attributes,
until each specification is reduced to a single top-
level class. Data and operation refinement tech-
niques similar to those conventionally used in stan-
dard Z could then be applied to find a common
refinement. An alternative strategy might be to
define rules for developing a merged specification
which retains all the classes of the two specifi-
cations, but establishes identities between some

7



classes, refines individual classes, and adds invari-
ants to relate various classes. In practice, a combi-
nation of the two approaches could be used — the
guiding consideration being the pragmatic one of
choosing whichever approach minimises the knock-
on effects on the unification process as a whole.

In Z, refinement is applied to a specification
representing a single ADT. By contrast, a typi-
cal Object-Z specification represents a set of inter-
related ADTs — one for each class — although
one ADT is identified with the overall system be-
ing modelled. This suggests that some refinement
rules for Object-Z should operate at a higher level
than data refinement rules in Z, i.e. they should
relate two finite sets of ADTs, rather than two in-
dividual ADTs. Moreover, it should be possible to
‘promote’ certain refinements on individual ADTs
to refinements of the whole specification.

In this section, an indexed collection of
ADTs corresponding to an Object-Z specifica-
tion will be written as a tuple ({ADTj | j ∈
J}, j0, Inherits,CompOf ), where:

• j0 is the index of the ‘system’ ADT (j0 ∈ J ).

• Inherits is the full inheritance relation on the
set of ADTs, i.e. the transitive closure of the
‘child’ (immediate subclass) relation.

• CompOf is the ‘component of’ relation on the
set of ADTs, i.e. the transitive closure of the
‘immediate component’ relation, where type Y
is an immediate component of type X if and
only if X is a class with a state attribute of
type Y or of a higher-order type involving Y
and/or other types (e.g. PY , Y × Z ).

• ADTj0 is the least element of CompOf , so that
every other type is a component type (directly
or indirectly) of ADTj0 .

In both library specifications, Inherits defines a
tree, not a DAG, so there is no multiple inheritance.
However, CompOf is a partial order in the IVS, but
not in the EVS, in which some classes are mutual
components.

Each ADT is a tuple (AStates,AInit , {AOpi |
i ∈ I }). In so-called conformal refinement steps,
the index set I does not change, and COpi must
have the same input and output variables as AOpi .
Some of the rules now proposed, however, do not
abide by these restrictions, as discussed in the next

section.

5.3. Types of development step

This section looks at the kinds of ‘refinement’
steps made in the library unification, and attempts
to isolate some more general principles. The
discussion is informal, but the aim is to identify as-
pects worthy of more detailed, formal investigation.

Conventional ADT refinement. Conventional
ADT data refinement of a class should be possible,
via the definition of a retrieval relation between
two disjoint state spaces, and the specification
of new operations corresponding to the old ones.
Weakening of operation pre-conditions should not
be allowed, because the ‘firing’ interpretation of
pre-conditions is assumed in Object-Z. Also, in
the context of a collection of ADTs, refining one
will in general have implications for others, as
previously noted — for example, if the operational
interface of one class changes, other classes may
require modification. One factor that has to be
considered when applying conventional refinement
rules to an ADT is how to define the post-state,
given operations of the form x .Op on object-valued
attributes such as x , which change the state of the
object to which x refers, without changing x itself,
which denotes a reference or pointer to the object.

Adding state attributes. Most unifications
of corresponding classes in the library example
involve adding attributes to the original state
schemas, and possibly relating them to the original
attributes by means of new invariants. This seems
unproblematical in most cases (although possibly
not when the new attributes are of types which
themselves refer back, directly or indirectly, to the
class type to which the attributes are being added
— as discussed shortly). Adding new attributes
may require the ∆-lists of existing operations to be
modified, unless the new attributes are secondary.

Adding operations. The library case study
also raises the issue of extending the possible be-
haviour by adding operations. For example, the
EVS assumes fixed sets of library items and li-
brary members, whereas the IVS has operations
that can change those sets. One view of this is
that such differences make two specifications in-

8



consistent. Another view — natural in the con-
text of viewpoints — is that the initial specifica-
tions should be thought of as partial — in which
case it ought to be permissible to add operations,
the result being a more complete description of the
possible behaviour. In terms of an ADT with op-
erations indexed by a set I , this means that I is
extended to a proper superset I ′, without affecting
the indexing of existing operations.

A step of this kind is most likely (as in the
library case) to be applied to the top-level ‘system’
class, in which case no further changes are implied.
If, however, operations are added to a component
class, the new operations will be redundant, unless
used to define new higher-level operations.

Adding ADTs. The library case involves adding
classes, given types, etc., to each specification, in
an attempt to find a unified specification. Any
ADT added needs to be meet any constraints
assumed regarding the Inherits and CompOf
relations, e.g. that they should be hierarchical.

Replacing many operations by one. In the
library case study, two EVS operations without
inputs (CheckIn and CheckOut) were found to
correspond approximately to one IVS operation
(MoveItem) with two input variables. This sug-
gests a kind of development step in which two or
more operations on a state schema are replaced by
one, with an additional inputs or inputs in the sin-
gle operation providing a ‘menu’ of options, allow-
ing it to have the same effect on state variables as
any of the individual operations which it replaces.
Alternatively, the number of inputs might be the
same, but the number of possible value assignments
to the inputs might be increased, as e.g. when the
type of a single input variable is changed from B
(Boolean) to N (natural number).

Conventionally, an ADT is a tuple
(AStates,AInit , {AOpi | i ∈ I }), involving a
one-to-one function from an indexing set I to the
set of operations for the state space AStates. If
several operations can be refined into one, this
suggests that the indexing function should not
have to be one-to-one, or in other words, that an
indexed bag of operations should be used, rather
than an indexed set. After an operation reduction
step, the indexing function should have the same
value — i.e. the new, single operation — for several

index values, each formerly the index for one of
the multiple operations replaced.

Global declarations. In the library case study,
some information — e.g. borrowing rights — spec-
ified by component classes in one specification, is
specified by global functions in the other. This
seems justified when the different attribute val-
ues of the subclasses involved are fixed anyway
(which is true of the allowance attribute of the EVS
Borrower subclasses).

Globally declared functions and constants
behave like fixed-value attributes of every class.
Development towards a unified specification may
involve imposing further constraints on globally
declared quantities. For example, in the library
case, specific values are given to some globally
defined quantities from the IVS, so that they
conform to the values of corresponding quantities
specified in the EVS.

Removing classes. The library unification in-
volves removing the inherited EVS subclasses Book
and Periodical of the class type Item. This is jus-
tified by the presence in the unified Item schema
of the extra attribute cat : Cat , which classifies
items into books and periodicals. In more abstract
terms, what is involved here is a class X 0, with
subclasses X 1, ..., Xn, being used in the context of
a higher-level class in which there is an attribute
xs : F ↓ X and an invariant of the form (where Y
denotes exclusive OR):

∀ x : xs • x ∈ X 1 Y ... Y x ∈ Xn

The library case study also involves the re-
placement of the EVS Borrower class hierarchy
by a subset (User) of a given type (Holder),
which is justified on the grounds that it implies
fewer changes during the overall unification than
would otherwise be the case. Information held
in the original class hierarchy, concerning the
borrowing rights of different kinds of borrower, is
specified alternatively by means of global functions.

Developing attribute types. Another way to
‘develop’ Object-Z classes is to develop the types of
state attributes. For example, when the top-level
IVS library schema is developed into the unified li-
brary schema, the values of the attribute loans out

9



are sets of the unified, refined Loan class objects.
Thus the development of a class X often consti-
tutes an implicit development of other classes with
attributes of type X , or of compound types involv-
ing X (e.g. PX , X → Y , etc.). Moreover, the
development of classes which explicitly refer to X
may have further knock-on effects on other classes
that do not directly refer to X . Thus the develop-
ment of one class cannot be considered in isolation
from that of others.

In hierarchical Object-Z specifications, the
knock-on effects of developing a type will flow
only upwards, towards the top-level class. In
specifications with mutually inter-defined types,
the flow will be partly circular. For example, class
type X may have an attribute of type Y , and
vice versa. Developing X will then amount to
developing Y , but this in turn will be a further
development of X , and so on. In other cases, X
and Y may be linked indirectly via other classes.
Whether the circularity is direct or indirect, it
makes the interpretation of development steps
more difficult, and may in some cases be vicious.
This is an area worth further investigation regard-
ing the semantics of Object-Z specifications, and
the nature of refinement in Object-Z.

6. Conclusion

This paper has used a case study of a lending li-
brary to compare two Object-Z specifications repre-
senting the ODP Enterprise and Information View-
points. The Information Viewpoint Specification
(IVS) is more detailed than the Enterprise View-
point Specification (EVS), and represents cumula-
tive information about loans which the EVS does
not. It also represents a greater range of behaviour,
allowing items to be moved between collections or
into and out of stock, and permitting users to join,
leave, or change membership type. Other signifi-
cant differences are a greater use of component ob-
ject attributes and operations in the EVS, and a
more explicit model of time in the IVS.

Attempting to unify the two library specifica-
tions raises many issues of wider interest than
those concerning only ODP viewpoints, relating to
the refinement steps which should be allowed for
Object-Z specifications interpreted as partial spec-
ifications. Conventional Z refinement is not ade-
quate for this task, and needs to be extended in

several ways.
The types of development step worthy of more

formal investigation include: adding new oper-
ations; removing classes (partial ‘flattening’ of
a specification); replacing several operations by
one, which has more inputs; and developing the
types of class attributes. Regarding the last of
these, providing a satisfactory account of Object-Z
refinement may be harder when a specification has
mutually inter-defined classes.

7. References

[1] E. Boiten, J. Derrick, H. Bowman, and M.
Steen, “Constructive Consistency Checking for
Partial Specification in Z”, Science of Computer
Programming, 35, 1999, pp. 29–75.

[2] E. Boiten and J. Derrick, “Liberating Data Re-
finement”, Mathematics of Program Construction,
eds. J.N. Oliveira and R.C. Backhouse, LNCS,
Springer, 2000 (to appear).

[3] H. Bowman, E. Boiten, J. Derrick, and M.
Steen, “Viewpoint Consistency in ODP, a Gen-
eral Interpretation”, Formal Methods for Open
Object-Based Distributed Systems, eds. E. Najm
and J.-B. Stefani, Chapman & Hall, March 1996,
pp. 189–204.

[4] A. Finkelstein, J. Kramer, B. Nuseibeh, L.
Finkelstein, and M. Goedicke, “Viewpoints: A
Framework for Integrating Multiple Perspectives
in System Development”, Int. Jour. on Software
Engineering and Knowledge Engineering, 1992,
2(1), pp. 31–58.

[5] He Jifeng, C.A.R. Hoare, and J.W. Sanders,
“Data Refinement Refined”, Proc. ESOP 86, eds.
B. Robinet and R. Wilhelm, LNCS, Springer, vol.
213, 1986, pp. 187–196.

[6] P.F. Linington, “RM-ODP: The Architecture”,
ICODP, eds. K. Raymond and L. Armstrong,
Chapman and Hall, February 1995, Brisbane,
Australia, pp. 15–33

[7] G. Smith, “A Fully Abstract Semantics of
Classes for Object-Z”, Formal Aspects of Comput-
ing, 7(3), 1995, pp. 289–313.

10



[8] G. Smith, The Object-Z Specification Lan-
guage, Kluwer Academic Publishers, 2000.

[9] J.M. Spivey, The Z Notation: A Reference
Manual, Prentice Hall, 2nd edition, 1992.

[10] M. Steen and J. Derrick, “Formalising ODP
Enterprise Policies”, EDOC, 1999, University of
Mannheim, Germany, IEEE Publishing.

[11] C. Taylor, “Comparison of ODP Viewpoint
Specifications in Object-Z: A Case Study”, Uni-
versity of Kent, Tech. Rep. No. 7-00, March 2000.

[12] J. Woodcock and J. Davies, Using Z: Specifica-
tion, Refinement, and Proof, Prentice Hall, 1996.

11


