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ABSTRACT 36 

 37 

Approximate Entropy (ApEn) is frequently used to identify changes in the complexity of 38 

isometric force records with ageing and disease.  Different signal acquisition and 39 

processing parameters have been used, making comparison or confirmation of results 40 

difficult.  This study determined the effect of sampling and parameter choices by 41 

examining changes in ApEn values across a range of submaximal isometric 42 

contractions of the First Dorsal Interosseus.  Reducing the sample rate by decimation 43 

changed both the value and pattern of ApEn values dramatically.  The pattern of ApEn 44 

values across the range of effort levels was not sensitive to the filter cut-off frequency, 45 

or the criterion used to extract the section of data for analysis.  The complexity 46 

increased with increasing effort levels using a fixed ‘r’ value (which accounts for 47 

measurement noise) but decreased with increasing effort level when ‘r’ was set to 0.1 48 

of the standard deviation of force.  It is recommended isometric force records are 49 

sampled at frequencies >200 Hz, template length (‘m’) is set to 2, and 'r' set to 50 

measurement system noise or 0.1 SD depending on physiological process to be 51 

distinguished.  It is demonstrated that changes in ApEn across effort levels are related 52 

to changes in force gradation strategy. 53 

 54 

KEYWORDS: complexity, isometric muscle force, first dorsal interosseus 55 

56 
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INTRODUCTION 57 

 58 

A healthy physiological output signal results from the integration of many processes, 59 

and allows for a full range of responses to any physiological demands [1].  As the 60 

physiological systems underlying these processes degenerate as a result of ageing or 61 

pathology, the possible values of the physiological output become restricted, which 62 

results in a decreased complexity [2, 3].  The measurement of changes in complexity 63 

are therefore useful in identifying early and pre-clinical degeneration, and, conversely, 64 

successful rehabilitation and preventative strategies [3].  Here complexity refers to a 65 

signal which has detailed structure.  Approximate Entropy (ApEn) is a statistic that 66 

quantifies the complexity and regularity of physiological time series [4].  For example, a 67 

sine wave is regular and therefore has an ApEn value close to 0; while white noise 68 

consists of random independent samples and has an ApEn value close to 2. 69 

 70 

The ApEn statistic derives from the Kolmogorov-Sinai entropy in an information theory 71 

sense, but, whereas the latter requires large amounts of data to achieve convergence 72 

and is not robust to noise, the former has the advantage for physiological signals that it 73 

can account for noise, is robust to outliers, and is applicable to relatively short data 74 

lengths [5].  ApEn is designed for use as a comparative measure such that for a 75 

defined template “length”, ‘m’, and noise amplitude, ‘r’, a more regular (less complex) 76 

data series of length N points has a lower ApEn(m,r,N) value (i.e. closer to zero) than a 77 

more irregular data series of the same length [6].   78 

 79 
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ApEn has also been used to quantify complexity in human motor behaviour, and in 80 

particular in isometric force records from voluntary muscle contractions [7, 8].  As the 81 

force fluctuations are influenced by changes in motor unit activity [9] quantifying the 82 

ApEn of an isometric force record provides insight into motor control strategies and 83 

how they may change with ageing, disease, and training interventions [10].  For the 84 

comparison of older with younger adults, the differences in ApEn are consistent with 85 

the age-related loss of complexity hypothesis, though these changes may be a 86 

characteristic of isometric tasks only [7, 11].  ApEn has also been used to construct an 87 

entropy based theory of adaptation to different motor task requirements under different 88 

conditions of environmental information [8].  The use of ApEn therefore forms the basis 89 

for a number of hypotheses and explanations in relation to the production of isometric 90 

force, and theories of motor behaviour, control, and ageing.   91 

 92 

Given the scope of these theories, it is important that there should be comparability 93 

between studies.  However, signal acquisition and processing parameters have varied 94 

between studies involving isometric force production (Table 1), for example the sample 95 

frequency used varies by an order of magnitude, and the filter cut-off frequency varies 96 

by two orders of magnitude.  The present study was motivated by an inability to 97 

replicate previously reported patterns of ApEn values across effort levels [12] where 98 

different signal sampling and post-processing characteristics were used.  No previous 99 

study has examined how changing these characteristics affects the conclusions drawn 100 

from isometric force records.  It is entirely possible that signal acquisition and 101 

processing parameters may interact with the ApEn parameters [13].   102 
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 103 

The ApEn statistic is a biased estimator of the limiting parameter as are virtually all 104 

non-linear statistical estimators [6].  Pincus [4] has demonstrated that with appropriate 105 

parameters ApEn can distinguish between different signal types.  Chon et al. [14] 106 

proposed that ‘r’ should be set such that the ApEn value is maximized.  However, ApEn 107 

is intended for use with a fixed experimental protocol, fixed data length, and fixed ‘m’ 108 

and ‘r’ parameters so that comparisons can be made between subjects and or 109 

conditions.  It is not expected that the absolute ApEn value can be compared for 110 

different signal acquisition and processing settings.  Consequently the approach used 111 

here was to determine the effect of these settings by empirically comparing the pattern 112 

of mean ApEn values across a range of isometric effort levels for a group of subjects.  113 

A similar approach has been used in other areas such as endocrinology [13].  By 114 

collecting the force signals at each effort level for each subject with high force and 115 

temporal resolution post-processing then allows the simulation of the effects of various 116 

parameter choices.  Therefore, the purpose of this study was to answer, for the first 117 

time, the following questions to determine how conclusions drawn from data may 118 

change with different parameter choices. 119 

1) What frequencies are present in isometric force signals? 120 

2)  What is the effect on ApEn of altering the parameters ‘r’ and ‘m’ for isometric force 121 

records? 122 

3)  What is the effect on ApEn of different sampling frequencies? 123 

4) What is the effect on ApEn values of different filter cut-off frequencies? 124 
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5)  Are the changes in ApEn with decimation an effect of having fewer data points or is 125 

it related to the frequencies that are captured? 126 

6)  What is the effect of using a minimum variance criterion to select the section of data 127 

for analysis, compared with alternative criteria? 128 

The eventual aim was to identify a “gold standard” for the acquisition and processing of 129 

isometric force records, where the purpose is to distinguish effort levels from each 130 

other. 131 

 132 

Having identified suitable acquisition, processing and parameter choices the purpose 133 

was then to identify how the regularity of the force signal, as quantified by ApEn, varied 134 

with effort level over a range from 5% of maximum voluntary contraction (MVC) to 75% 135 

MVC. 136 

 137 

MATERIALS AND METHODS 138 

 139 

Participants 140 

Twenty-three, neurologically healthy subjects (range 18-72 years; 13 females and 10 141 

males) were recruited to the study.  All subjects were assessed for hand dominance by 142 

the Edinburgh Handedness Inventory [15], and all testing was performed on the non-143 

dominant hand.  Potential subjects were excluded if they had history of a serious hand 144 

injury, suffered from arthritis affecting the hand, had untreated high blood pressure or 145 

were taking any medications known to have neurological side effects.  If required 146 

subjects wore their prescription lenses through all testing procedures.  All subjects 147 
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gave written informed consent for the experimental procedures, which had been 148 

approved by the Aberystwyth University Ethics Committee for Research Procedures. 149 

 150 

Testing Apparatus 151 

Participants sat upright on a non-adjustable chair (height = 45 cm) facing a 60 cm 152 

computer monitor, which was placed approximately 70 cm away and centered both 153 

horizontally and vertically from the eyes.  The participants non-dominant hand was 154 

pronated and lay flat, resting on a custom made metal plate to which a load cell was 155 

attached.  The non-dominant elbow was flexed to 90 degrees, and the upper arm 156 

slightly abducted.  A restraining plate was positioned between the second and third 157 

phalanges of the hand to restrict motion of the remaining phalanges.  The load cell and 158 

thumb rest were positioned so that the load cell was level with the lateral side of the 159 

proximal inter-phalangeal joint with the angle between thumb and index finger being 160 

approximately 80 degrees when the finger was in contact with the load cell (Figure 1).  161 

This set-up permitted measurement of the forces during index finger abduction, an 162 

action produced entirely achieved by the first dorsal interosseus.  The initial trial hand 163 

position was traced so that hand position was standardised from trial to trial.   164 

<<<Insert Figure 1 Around Here.>>> 165 

The signal from the load cell (HBM, PW6-CC3MR/10 kg, Hottinger Baldwin 166 

Messtechnik, Harrow, UK Ltd.; sensitivity 2.2 mV/V) was passed through an HBM AED-167 

9101-B full bridged transducer (Hottinger Baldwin Messtechnik, Harrow, UK).  The 168 

force signal was sampled at 1200 Hz, designed to reflect the sample frequency used if 169 

force and electromyographic data are collected synchronously ( e.g. [10]). 170 
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 171 

Familiarisation Procedure 172 

Each participant was asked to attend a familiarisation session a few days prior to the 173 

test day.  At the beginning of each session participants performed a warm-up of light 174 

finger exercises such as flexing and extending the fingers.  During the familiarisation 175 

session the participant’s maximum voluntary contraction force (MVC) was measured in 176 

order to avoid fatigue during the experimental testing session.  To measure MVC the 177 

participant increased the finger abduction force gradually over approximately 5 seconds 178 

until they were pushing as hard as possible and then held the maximum force possible 179 

for 2-3 seconds.  The force applied to the load cell was displayed on the monitor in 180 

white pixels.  The time count was displayed on the screen and verbal encouragement 181 

was given during each trial.  After two practice trials a further three maximum effort 182 

trials were performed.  Between each trial the participant was given a 3 minute rest.  183 

The maximum force from the three recorded trials was the MVC. 184 

 185 

Following this each participant practiced a number of the force targeting trials, which 186 

included familiarisation with the targeting of the force trajectory at force levels varying 187 

from 5% to 75% of MVC.  The display was re-scaled for each subject so that the force 188 

target was displayed as a percentage of maximum from 0-100% to avoid possible 189 

effects on resolution due to scaling. 190 

 191 

Testing Procedure 192 
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At a subsequent session participants produced isometric contractions at 5%, 10%, 193 

25%, 40%, 50% and 75% of their MVC for ten seconds.  A three minute rest was given 194 

after trials of 50% and 75% MVC, otherwise a one minute rest was given.  The order of 195 

presentation of the effort levels was randomised.  Participants were informed what the 196 

force target would be prior to each trial and were instructed to ramp-up the contraction 197 

from 0% as quickly as possible to the target. 198 

 199 

The target was a force level identified by two red lines displayed on a computer 200 

monitor, the top line two pixels thick and bottom line four pixels thick.  The gap between 201 

the red lines was scaled to be ± 5% of the target force.  In order to maintain a visible 202 

gap between the lines at the lowest force levels a minimum gap of a six pixels was 203 

used, which represented an error window of ±20% at 5% MVC, and ±10% error at 10% 204 

MVC.  The participant viewed their force trajectory as a white force time trajectory two 205 

pixels thick moving from left to right across a black background.  The participants were 206 

instructed to keep the white trajectory line between the red lines, but were told to focus 207 

on keeping the line as ‘straight and steady’ as possible. 208 

 209 

Post Processing 210 

All data processing was performed using custom software written in Matlab v9.9 211 

(MathWorks, Inc., Natick, MA).  Electrical noise was removed using a 49.0-51.0 Hz 4th 212 

order (bi-directional) Butterworth notch filter.  Unless otherwise stated, a rolling 213 

minimum variance window was used to select the steadiest three second section of 214 

each data set for subsequent analysis.  ApEn was computed for each trial using the 215 
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method described by Pincus [4].  ApEn quantifies the negative natural logarithm of the 216 

conditional probability that a template is repeated during a time series.  ApEn(m,r,N), 217 

takes sequences of m data points and determines the logarithmic likelihood that this 218 

sequence is similar to other sequences of data points in the data set.  Matching 219 

templates that remain similar (i.e. within the tolerance, r) are then counted, the number 220 

of matches to the ith template of length m is designated Bi.  Then the number of these 221 

matches that remain similar for the m+1th point is counted, this number for the ith 222 

template is designated Ai.  When comparing sequences they are considered to be 223 

similar if the sequences differ by an amount greater than the noise threshold r.  The 224 

approximate entropy can then be computed from, 225 

    226 

Where, 227 

N – number of data points in time series 228 

m – length of template 229 

Ai – number of matches of the ith template of length m+1 data points 230 

Bi – number of matches of the ith template of length m data points 231 

 232 

Several different processing conditions were applied to the force data in post-233 

processing to answer the questions posed about the effect of signal acquisition and 234 

processing choices on the ApEn values.  The effect that each condition had on 235 

calculated ApEn values was determined from the mean results and the associated 236 
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confidence interval for all subjects across different isometric effort levels.  The 237 

processing conditions applied were as follows. 238 

 239 

1) What frequencies are present in isometric force signals?  Frequency analysis of the 240 

measurement system from trials with no load and a known load on the force sensor, 241 

and the spectra of the subjects’ trials was carried out in order to identify frequencies 242 

present in the signal that are due to physiological processes. 243 

 244 

2)  What is the effect on ApEn of altering the parameters ‘r’ and ‘m’ for isometric force 245 

records?  The parameter ‘r’ was altered from the Root Mean Square (RMS) of the 246 

measured noise (r=1.13N, determined by collecting force signal data with no force 247 

exerted and with a known load), to using 0.1 of signal standard deviation (SD), and 0.2 248 

SD of the force signal of each trial, ‘m’ was increased from 2 to 3. 249 

 250 

3)  What is the effect on ApEn of different sampling frequencies?  The original signal 251 

sampled at 1200 Hz was decimated to 600 Hz, 200 Hz, 100 Hz and 30 Hz to simulate 252 

lower sampling frequencies.  In the decimation process the original data set is filtered 253 

to remove signal frequency components above the Nyquist frequency to be simulated, 254 

and then the signal is resampled.  To mirror an approach sometimes used in the 255 

literature the 1200 Hz was also downsampled, that is: resampled to produce a 100 Hz 256 

signal, but without the filtering. 257 

 258 
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4) What is the effect on ApEn values of different filter cut-off frequencies?  The original 259 

signals were low-pass filtered using 4th order bi-directional Butterworth filters, with cut-260 

off frequencies of 100 Hz, 80 Hz, 70 Hz, 60 Hz, 50 Hz, 30 Hz and 25.6 Hz.  The cut-off 261 

frequencies were selected to mirror values used in the literature and the frequencies 262 

associated with motor unit activity (Table 1). 263 

 264 

5)  Are the changes in ApEn with decimation an effect of having fewer data points or is 265 

it related to the frequencies that are captured?  The size of the minimum variance 266 

window was altered to capture the number of data points that equalled the total number 267 

of data points in each decimated data set.  For example, decimating a three second 268 

length of data sampled at 1200 Hz to 30 Hz reduces the number of points from 3600 to 269 

90 data points. Therefore the minimum variance window was adjusted to collect just 90 270 

data points.  This method was used to simulate the collection of 1800, 300 and 90 data 271 

points (the number of data points equivalent to sampling at 600 Hz, 100 Hz and 30 Hz 272 

respectively).  In addition, the steadiest five seconds, three seconds and half a second 273 

of the force data (starting from the fourth second) were selected from each trial in order 274 

to assess the effect of varying N on ApEn values.   275 

 276 

6)  What is the effect of using a minimum variance criterion to select the section of data 277 

for analysis, compared with other criteria?  A 3 s window extracted using a minimum 278 

variance criterion was compared to a 3 s window starting from the fourth second, and 279 

to a 3 s window starting at the sixth second, and to half second windows starting at the 280 

fourth, sixth or eighth second of data.  Since the first three seconds of data was always 281 
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removed to allow for ramping up to the correct force level, there were seven seconds of 282 

data (from the 3rd to the 10th second) available for analysis. 283 

 284 

Finally, once reasonable values for the parameters had been chosen, the relationship 285 

between effort level as a percentage of MVC and regularity as quantified by ApEn was 286 

determined.  An Analysis of Variance and post-hoc Tukey tests were used to identify 287 

for which force levels the regularity differed.  The significance level for all statistical 288 

tests was set at p=0.05. 289 

 290 

RESULTS 291 

 292 

Typical force-time records are shown for a contraction at 5% of MVC, and a contraction 293 

by the same subject at 75% of MVC (Figure 2).   294 

<<Insert Figure 2 around here>> 295 

1.  What frequencies are present in isometric force signals? 296 

The frequency spectra of force for contractions at 5 to 75 % had the majority of the 297 

power below 15 Hz, but the power in the signals between 15 and 30 Hz did increase 298 

with changing percentage of MVC (Figure 3).  For example, the proportion of the signal 299 

power in the 0 to 15 Hz band compared with the 15 to 30 Hz band was twice as great 300 

for the 75% signal compared with the 25% signal.  The power spectrum for the force 301 

sensor was constant and low across all frequencies (Figure 3a), and so did not 302 

demonstrate changes in power with increases in frequency, thus the changes in signal 303 

power content with increasing percentage of MVC were biological in origin. 304 
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<<Insert Figure 3 around here>> 305 

2) What is the effect on ApEn of altering the parameters ‘r’ and ‘m’ for isometric force 306 

records?   307 

Changing the ‘r’ parameter had a large effect on the pattern of ApEn results across the 308 

range of effort levels (Figure 4).  Using a value for ‘r’ which was obtained from an 309 

analysis of the amplitude of the noise of the transducer resulted in a sigmoid like curve 310 

across the range of effort levels.  However, increasing the value of the ‘r’ parameter to 311 

0.2 of the standard deviation of each signal resulted in a flattening of the pattern of 312 

ApEn values across the range of effort levels.  Changing the ‘m’ parameter from 2 to 3 313 

reduced the ApEn values but preserved the pattern of values across the force levels 314 

(Figure 5). 315 

<<Insert Figures 3 and 4 around here>> 316 

3) What is the effect on ApEn of different sampling frequencies?   317 

Down-sampling and decimation of the data to replicate sampling frequencies below 200 318 

Hz reversed the trend of ApEn values across the range of effort levels (Figure 6). 319 

<<Insert Figure 6 around here>> 320 

4) What is the effect on ApEn values of different filter cut-off frequencies?   321 

For sample rates above 200 Hz, changing the filter cut-off frequency had little effect.  322 

Very small decreases in the absolute ApEn values were seen with decreases in the 323 

filter cut-off frequency from 80 to 25.6 Hz (Figure 7).  The patterns of ApEn values 324 

across the range of effort levels were identical. 325 

<<Insert Figure 7 around here>> 326 
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5) Are the changes in ApEn with decimation an effect of having fewer data points or is it 327 

related to the frequencies that are captured?   328 

When the data is downsampled to produce a signal sampled at 100 Hz or 30 Hz, the 329 

ApEn pattern changes considerably (Figure 8a).  However, a three second data record 330 

at 100 Hz is 300 data points long, and at 30 Hz is 90 data points long.  When sections 331 

of data of length 300 points, and 90 points are taken from the original signal sampled at 332 

1200 Hz without downsampling, it can be seen that the pattern of ApEn results over the 333 

effort levels does not change, although the absolute ApEn values change slightly 334 

(Figure 8a).  This suggests that the dramatic change in pattern seen when the data is 335 

decimated or downsampled (Figure 6) is related to the frequencies captured and not 336 

the number of data points analysed. 337 

 338 

6)  What is the effect of using a minimum variance criterion to select the section of data 339 

for analysis, compared with an alternative criterion? 340 

When a fixed section of the data record is taken, for example from the 3rd to the 6th 341 

second, as opposed to using the minimum variance criterion to select the same data 342 

length, there is very little effect on either the absolute ApEn values, or the pattern of 343 

values across the effort levels (Figure 8b).   344 

<<Insert Figure 8 around here>> 345 

Finally, with ‘r’ set at the level of transducer noise, ‘m’ set to 2, the sample rate set to 346 

1200 Hz, and a data length of 3 seconds selected using the minimum variance 347 

criterion, there was a significant effect for effort level on ApEn(2,  (F=44.39; d.f.=5, 105; 348 

p<0.001).  Post-hoc Tukey comparisons showed that effort levels of 5, 10 and 25% 349 
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MVC were significantly different from effort levels of 40, 50 and 75% MVC (p<0.001).  350 

In general the ApEn value increased with increasing effort level (Figures 3-7).  351 

Conversely, with ‘r’ set at 0.1SD the ApEn value generally decreased with increasing 352 

effort level (Figure 4) (F=16.69; d.f.=5, 110; p<0.001).  Post-hoc Tukey comparisons 353 

showed that the effort levels of 5% and 10% MVC were significantly different from the 354 

other effort levels, and that 25% and 40% MVC were significantly different from 50% 355 

and 75% MVC (p<0.001). 356 

 357 

DISCUSSION 358 

 359 

This study determined the effect of different sampling and post-processing choices on 360 

the pattern of ApEn values for isometric force records across a range of effort levels 361 

produced by the First Dorsal Interosseus in order to identify what effect these may have 362 

on conclusions drawn when using ApEn to differentiate between force levels.  This 363 

study has shown that choosing an appropriate value for the ‘r’ parameter in the ApEn 364 

algorithm is very important.  The role of this parameter is to account for measurement 365 

system noise.  The choice of ‘r’ for a given process or physiological setting, is 366 

influenced by physiological attributes (the focus of the present study), the series length, 367 

N, and the sampling frequency.  The sampling frequency also strongly determines the 368 

entropy value due to the mathematical underpinnings of the calculation of ApEn. 369 

 370 

When examining the variability of beat by beat heart rate data it has been 371 

recommended that ‘r’ be set to between 0.1 and 0.25 of the SD of the time series [5].  372 
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However, for heart rate data it can be more difficult to estimate the noise of the 373 

measurement system since it arises from several sources.  For a force transducer that 374 

is well shielded and has a differential input amplifier the noise level should be very low, 375 

and measurable.  In addition, when comparing beat by beat data, it is likely that the 376 

standard deviation of data from different subjects is fairly similar [16].  This is partly due 377 

to the physiological limits of the heart which mean that the range of frequencies is low 378 

(the extreme range of 30 to 220 beats per minute is equivalent to a range of just 0.5 to 379 

3.67 Hz).  In contrast, the standard deviations of the force signals here increased by 380 

orders of magnitude moving from 5% to 75% MVC.  This means the pattern of ApEn 381 

values is flattened across the range of effort levels as ‘r’ is increased through 0.1 to 0.2 382 

SD (Figure 4).  The proposal of Chon et al. [14] that ‘r’ should be set such that the 383 

ApEn value is maximized, if applied across the full set of force records for all effort 384 

levels and subjects was approximately the same as the amplitude of the transducer 385 

noise, i.e. the low and fixed ‘r’ value (1.13N) used here. 386 

 387 

A primary finding of this study was that a fixed ‘r’ value reflecting measurement system 388 

noise results in a strong discrimination between different processes in the analysed 389 

signal, which is consistent with previous work [13].  An important point is that ApEn with 390 

a fixed ‘r’ value captures changes in both complexity and variance [17].  It is often the 391 

case that ApEn increases with increasing variance [17].  To decouple ApEn from the 392 

variance, Pincus and Goldberger [17] suggested that ‘normalized regularity’ could be 393 

obtained by setting ‘r’ to a fixed percentage of the standard deviation.  Both versions of 394 

ApEn have their uses but have a slightly different focus from each other [18].     395 
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 396 

The direction of the relationship between ApEn and effort levels reverses when ‘r’ is 397 

reduced from 0.1 SD to a level equivalent to measurement system noise (r=1.13N).  A 398 

similar phenomenon was shown by Pincus and Huang [6] who mathematically 399 

constructed a pair of processes denoted the ‘flip-flop pair’.  Their conclusion was that 400 

different relative dynamic characteristics can be manifested as the resolution 401 

(controlled by reducing the ‘r’ value) is altered.  Using this reasoning it may be 402 

concluded that with a fixed ‘r’ that is similar to measurement system noise, it is possible 403 

to distinguish between effort levels above 40% and below 25% of MVC.  When the 404 

normalized regularity is assessed (i.e. using ‘r’ set to 0.1SD) it is possible to distinguish 405 

between effort levels below 10% versus effort levels above 25% MVC, and to 406 

distinguish between 40% versus 75% MVC.  However it is not possible to distinguish 407 

between all effort levels using only one ‘r’ value. 408 

 409 

The second key setting identified here was the choice of sample frequency.  Figure 6 410 

shows that sample frequencies below around 200 Hz, whether obtained by decimation 411 

(filtering before downsampling to prevent aliasing) or simple downsampling (taking 412 

every nth point without prior filtering) changes, and for very low sample rates, 413 

completely reverses the pattern of mean ApEn values across the effort levels.  Veldhuis 414 

et al. [13] used a similar approach to the present study when examining the effect of 415 

varying sampling frequency on ApEn applied to hormonal secretory patterns.  Their 416 

study also showed that a high sampling frequency is required for delineation using 417 

ApEn of records arising from models with different dynamics.   418 
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 419 

The pattern of decreasing complexity with increasing effort level seen with the 30 Hz 420 

sample rate seems unrealistic when the appearances of the plots for 5% and 75% of 421 

MVC are considered (Figure 2).  Furthermore, this sample rate would not allow 422 

frequencies above 15 Hz to be captured without aliasing.  For frequencies above 200 423 

Hz, the pattern of mean ApEn values across the effort levels is preserved, although a 424 

reduction in the actual values is seen.  Comparison of Figure 6 with Figure 8 shows 425 

that the change in pattern for low sample frequencies is not simply due to the reduction 426 

in the number of data points when a lower sample rate is used.  For example, the 427 

pattern of mean ApEn values clearly changes when the sample frequency is changed 428 

to 100 Hz, at this frequency 300 data points constitute the 3 second window, whereas 429 

at 1200 Hz the three second window is 3,600 data points long.  However, when the 430 

ApEn value of 300 sequential data points from the data series sampled at 1200 Hz is 431 

computed it can be seen that although the ApEn value is reduced, the pattern of mean 432 

values across the effort levels is preserved.  The greater relative sensitivity of the ApEn 433 

algorithm to the sample frequency as opposed to the number of data points should not 434 

be surprising given the theoretical relationship between entropy rate and scalar 435 

multiples of sample frequency [17]. 436 

 437 

It can be seen from Figure 8b that, once a steady state force has been achieved, the 438 

criterion used to select the data window for analysis has little effect on either the 439 

pattern of ApEn values or the actual ApEn values.  The length of the data series also 440 

has little effect on the pattern of ApEn values, though for very short data series the 441 
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ApEn values are slightly reduced for the highest effort levels.  Also, once a suitably 442 

high sample rate, and a suitable value for the ‘r’ parameter had been set, it was found 443 

that the pattern of mean ApEn values was robust to changes in the ‘m’ parameter.  444 

Finally, once a suitably high sample rate, and a suitable value for ‘r’ had been set, the 445 

filter cut-off frequency had little effect on either the pattern or the actual values; this 446 

may be expected since the ‘r’ parameter, if appropriately set, acts as a filter.  The 447 

robustness to a range for the ‘m’ parameter is reasonable given the formulation of the 448 

ApEn algorithm [17].  It is reassuring that the pattern of results is also reasonably 449 

robust to small alterations in the location and length of the window of data for analysis.   450 

 451 

ApEn has been widely used to draw conclusions about the structure of isometric force 452 

records and possible differences, for example, with age [19], task [20], pathology [21], 453 

and feedback [22].  However, previous studies have used very different signal 454 

acquisition and processing settings and have used different parameter settings, even 455 

for the same task.  The results of this study show that certain sampling and parameter 456 

choices can completely reverse conclusions with respect to the regularity of isometric 457 

force records at different effort levels.  The present study did not identify the same 458 

inverted U relationship reported by Slifkin and Newell [12].  While the present study 459 

involved finger abduction, which is entirely achieved by the first dorsal interosseus, the 460 

Slifkin and Newell [12] study measured index finger flexion, for which it is the prime but 461 

not the sole mover.  However, given the results of the present study, it is also possible 462 

that the discrepancy is due to their sample rate of 100 Hz, which, based on the present 463 
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findings, would reduce the ApEn value of the highly variable trials at the higher effort 464 

levels towards zero.   465 

 466 

The difference in regularity with fixed ‘r’, ApEn(m=2, r=1.13N, N=3600), between effort 467 

levels above and below 40% found in the present study may be associated with the 468 

different force gradation strategies for the first dorsal interosseus [12, 23].  Below 30-469 

40% MVC force gradation is primarily achieved by motor unit recruitment, at higher 470 

effort levels it is achieved primarily by rate coding [24].  As previously described, 471 

ApEn(m=2, r=1.13N, N=3600) reflects the change in regularity and variance jointly.  It is 472 

noteworthy that the degree of regularity is comparable at 40 and 75% of MVC, despite 473 

the magnitude of the fluctuations (quantified by the standard deviation of force) being 474 

twice as high for 75% MVC and statistically significantly different to 40% MVC.  475 

Conversely ApEn(m=2, r=0.1SD, N=3600) is lower for 75% than for 40%, suggesting 476 

that the apparently greater randomness using ApEn(m=2, r=1.13N, N=3600) is linked 477 

to the higher variance of the force record at 75% MVC.   478 

 479 

The results of the present study suggest that a change in the force gradation strategy 480 

can be identified using ApEn with ‘r’ fixed and equivalent to the measurement system 481 

noise. This metric shows that in the region of motor unit recruitment, the force record 482 

during isometric contraction is highly ordered, but exhibits less regularity or greater 483 

randomness in the region of rate coding.  Furthermore it is possible to distinguish 484 

between effort levels below 10% and above 10%, and to distinguish between 40% and 485 

75% MVC by using ApEn with ‘r’ set to 0.1SD.  This metric may reflect an inflection 486 
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point in the motor unit firing rate versus effort level relationship.  Such inflection points 487 

can be seen in the motor unit firing rate versus force level plots presented by De Luca 488 

and Erim [25].  While EMG studies indicate the patterns of motor unit recruitment in the 489 

FDI [26], simulation studies of motor unit activation patterns and the corresponding 490 

changes in the nature of force output demonstrate that these variations are caused by 491 

multiple mechanisms [9].  There are other mechanisms which will contribute these 492 

force fluctuations, for example muscle forces will cause corresponding changes in 493 

tendon stretch causing changes in muscle length and therefore muscle force.  At low 494 

muscle forces these tendon length changes may not be influential because of the low 495 

stretch caused in the toe-region of the tendon stress-strain curve [27].  The pattern of 496 

results seen in this study characterize the FDI, but the relationship between motor unit 497 

firing rate and force relationship differ between muscles, for example there is a distinct 498 

difference in this pattern for the FDI [24] and the Vastus Medialis [28].  The methods 499 

proposed in this study would be applicable to other muscles, but may potentially reveal 500 

different mechanisms associated with force variability. 501 

 502 

In conclusion, based on the findings of this study, when computing ApEn it is 503 

recommended isometric force records are sampled at frequencies >200 Hz, ‘m’ is set to 504 

2, and 'r' is set using estimated measurement system noise or 0.1SD depending on the 505 

effort levels to be distinguished.  Using these values, it has been shown that significant 506 

ApEn differences existing at effort levels corresponding to a change in force gradation 507 

strategy.  The relationship between the structure of the variability and the force 508 
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gradation strategy for this muscle provides a basis for using ApEn to detect and 509 

understand changes in neuro-muscular physiology with ageing, pathology and training. 510 

 511 
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Table 1:  Sample and filter cut-off frequencies used in some force steadiness studies. 609 

Study Muscle Tested Sample 
Frequency 

(Hz) 

Filter 
Cut-off 

(Hz) 

Slifkin and Newell [12] First Dorsal Interosseus 
(Flexion) 

100 30 

Sosnoff et al. [29] First Dorsal Interosseus 
(Abduction) 

100 25.6 

Rose et al. [10] Akle dorsi- and plantar-
flexors 

1000 down-
sampled to 

200 

1000 

Svendsen and Madeleine [30] Elbow and wrist flexors 500 10.5 

 610 

 611 

612 
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 614 

Figure 1:  Experimental set-up showing hand and index finger position. 615 

 616 

Figure 2:  Typical isometric force records from one subject at 75%, 50%, 25%, and 5% 617 

MVC. 618 

 619 

Figure 3:  Typical frequency spectra for a) the steady state section of isometric force 620 

records at various effort levels, and b) for two exemplar effort levels and the transducer 621 

noise when loaded with a fixed mass (expanded view).  Note that the noise is so low in 622 

magnitude compared to the other signals that it is barely visible in a). 623 

 624 

Figure 4:  Mean (error bars show 95% confidence interval for the mean) ApEn values 625 

across the range of effort levels when the ‘r’ parameter is set equal to the amplitude of 626 

the transducer noise, or equal to 0.1 or 0.2 times the standard deviation of the force 627 

record, and ‘m’=2 and N=3,600. 628 

 629 

Figure 5:  Mean (error bars show 95% confidence interval for the mean) ApEn values 630 

across the range of effort levels when the ‘m’ parameter is set to 2 or 3, and ‘r’ is set to 631 

the amplitude of the transducer noise and N=3,600. 632 

 633 

Figure 6:  Mean (error bars show upper bound of 95% confidence interval for the 634 

mean) ApEn values across the range of effort levels when the sample frequency is 635 
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1200 Hz (Undec) or decimated to 600 Hz (Dec600) to 200 Hz (Dec200) to 100 Hz 636 

(Dec100) to 30 Hz (Dec30) or is simply downsampled to 100 Hz (DOWN).  The ‘m’ 637 

parameter is set to 2, and the ‘r’ parameter is set to the amplitude of the transducer 638 

noise. 639 

 640 

Figure 7:  Mean (error bars show upper bound of 95% confidence interval for the 641 

mean) ApEn values across the range of effort levels when the sample frequency is 642 

1200 Hz and the filter cut-off frequency is set to values between 25.6 Hz and 80 Hz.  643 

The ‘m’ parameter is set to 2, and the ‘r’ parameter is set to the amplitude of the 644 

transducer noise and N=3,600. 645 

 646 

Figure 8:  Mean (error bars show upper bound of 95% confidence interval for the 647 

mean) ApEn values across the range of effort levels for a) data decimated to replicate 648 

sampling at 100 and 30 Hz and also data records of the same length (number of points) 649 

but sampled at 1200 Hz, and b) data records sampled at 1200 Hz of various lengths.  650 

In (b) the data is either extracted using a minimum variance criterion, or is taken from a 651 

fixed section of the data: for the 5 second record this is from 4 to 9 seconds, for the 3 652 

second record this is from 4 to 7 seconds, for the 0.5 second record this is either from 653 

early in the record (4 to 4.5 seconds) or from late in the record (6 to 6.5 seconds).  The 654 

‘m’ parameter is set to 2, and the ‘r’ parameter is set to the amplitude of the transducer 655 

noise. 656 
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