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ABSTRACT

Translation termination in eukaryotes typically
requires the decoding of one of three stop codons
UAA, UAG or UGA by the eukaryotic release factor
eRF1. The molecular mechanisms that allow eRF1 to
decode either A or G in the second nucleotide, but to
exclude UGG as a stop codon, are currently not well
understood. Several models of stop codon recogni-
tion have been developed on the basis of evidence
from mutagenesis studies, as well as studies on the
evolutionary sequence conservation of eRF1. We
show here that point mutants of Saccharomyces
cerevisiae eRF1 display significant variability in
their stop codon read-through phenotypes depend-
ing on the background genotype of the strain used,
and that evolutionary conservation of amino acids
in eRF1 is only a poor indicator of the functional
importance of individual residues in translation ter-
mination. We further show that many phenotypes
associated with eRF1 mutants are quantitatively
unlinked with translation termination defects, sug-
gesting that the evolutionary history of eRF1 was
shaped by a complex set of molecular functions in
addition to translation termination. We reassess
current models of stop-codon recognition by eRF1
in the light of these new data.

INTRODUCTION

Eukaryotic translation termination is mediated by two
interacting polypeptides, the eukaryotic release factors
eRF1 and eRF3 (1–3). eRF1 interacts with the ribosomal
A site and, upon decoding of a stop codon, induces hy-
drolysis of the peptidyl-tRNA:peptide bond. The exact

molecular details underlying stop codon decoding by
eRF1 are unclear, but several competing models have
been proposed that differ substantially in the predicted
stop codon binding sites on eRF1. One of these models,
termed the ‘cavity model’, posits that specific nucleotide
binding pockets in the N-terminal domain of eRF1 phys-
ically accommodate the 3 nt of the stop codon. This model
has received strong support from several recent studies,
and it was proposed that eRF1 adapts to the different
stop codons via eRF3-controlled conformational changes
that alter the relative arrangement of the respective
pockets (4–6).
eRF3 assists the decoding process in a manner depend-

ent on its physical interaction with eRF1 and on the hy-
drolysis of GTP (7,8). eRF3 also links translation
termination to the control of mRNA turnover. The inter-
play of contacts between this protein, the poly(A) binding
protein and factors involved in the non-sense-mediated
decay (NMD) pathway are important for the rapid de-
struction of mRNAs containing premature stop codons
(9–11). In addition, contacts between eRF3, the poly(A)
binding protein and several other factors control the rate
of normal co-translational deadenylation, and the trans-
lational life-time of mRNAs (12–14).
Stop codon read-through (i.e. the incorporation of an

amino acid upon decoding of a stop codon by a near-
cognate tRNA) leads to the production of C-terminally
extended proteins while also altering the abundance of
the corresponding mRNA. Translation termination there-
fore has the potential to be a major modulator of the
cellular proteome. Consistent with this notion, mutations
in the yeast Saccharomyces cerevisiae that affect the
fidelity of translation termination display many pleiotrop-
ic phenotypes, including sensitivity to osmotic stress
(15) and the microtubule-destabilizing drug benomyl
(16), chromosome instability (17), respiratory deficiency
(18), and cytoskeletal and cell-cycle defects (19).
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However, pleiotropic phenotypes may not exclusively
occur as secondary defects resulting from primary trans-
lation termination defects. A non-translational function
was recently suggested for eRF1 during cytokinesis,
based on the suppression of cytokinesis defects in two
eRF1 mutants by overexpression of the myosin light
chain Mlc1p, and on the demonstration that eRF1 and
Mlc1p interact physically (20). Together, these observa-
tions suggest that there are at least two routes by which
alterations in translation termination factor activity can
modulate quantitative traits, namely via changes in the
physical properties and abundance of individual proteins
resulting from stop-codon read-through, and via changes
in translation-independent functions of the eRFs.
This study describes a quantitative trait analysis of a

collection of point mutants in yeast eRF1. The quantita-
tive relationship between termination defects and other
phenotypes in these mutants strongly indicates that
many pleiotropic phenotypes do not quantitatively correl-
ate with translation termination defects in this organism,
and are thus most likely due to defects in non-
translational functions of eRF1. Our findings have impli-
cations for current molecular models of stop codon
recognition.

MATERIALS AND METHODS

Plasmids and yeast strains

Plasmids used in this study are summarized in Table 1,
and yeast strains in Table 2.

Shuffling strains. The shuffling strain used throughout
most of this study (except for experiments in Figure 2)
was created from diploid strain �MT604 (21), which is
heterozygous for the SUP45 locus (MATa/a SUQ5/
SUQ5 ade2-1/ade2-1 his3-11,15/his3-11,15 ura3-1/ura3-1
leu2-1/leu2-1 trp1-1/trp1-1 can1-100/can1-100
sup45::HIS3/SUP45 [PIN+] [psi�]). �MT604 was trans-
formed with pTH400, a centromeric URA3 marker
plasmid containing the SUP45 gene under control of the
GAL1-promoter, sporulated, and a spore able to grow
on medium containing galactose and lacking histidine,
but unable to grow on glucose-containing medium, was
selected as final shuffling strain YTH82.
Shuffling strains based on the BY4743 (22) and 74D-694

(23) backgrounds (used for experiments in Figure 2) were
created by first disrupting one of the SUP45 loci in the
diploid parent strains using PCR-generated KanMX4 cas-
settes (24), then transforming with pTH400 and sporula-
tion as described for �MT604 above.
Plasmid shuffling was performed as previously

described (25), by first introducing LEU2 plasmids that
express Sup45 under control of the wild-type SUP45
promoter, and then using 5-FOA as selection medium
for cells that have lost the original URA3 plasmids.
Plasmids containing wild-type or mutant alleles of

SUP45 were constructed by excising an XbaI–SalI
fragment containing the SUP45 gene with the adjacent
regulatory sequences from plasmid UKC803 (26) and in-
sertion into pRS315 (27), a centromeric LEU2 marker

plasmid, to yield pTH353. sup45 mutants were generated
by PCR, either by using existing templates containing the
relevant mutations or by using site-directed mutagenesis
(28). Mutant DNA sequences were then introduced into
pTH353 by digesting the PCR products with BglII and
SpeI (enzymes that cut near the extreme 50- and 30-ends
of the SUP45 sequence), and cloning of the resulting frag-
ments into similarly digested pTH353. A subset of the
mutants (4) was provided by Dr Ian Stansfield
(Aberdeen, UK) in an identical plasmid background. A
2 m URA3 marker plasmid for the overexpression of
Sup35 was generated by excising an XhoI–NotI fragment
containing the SUP35 ORF and regulatory sequences
from plasmid UKC1620, and ligation into similarly
digested pRS426 (27).

Western blotting was performed using an alkaline lysis
method as described in ref. (29). Five ODs of cells were
lysed in 100 ml standard buffer without urea for blots with
anti-eRF1 antibodies (MT44), or in buffer containing urea
for blots with anti-eRF3 antibodies (MT30). Antibodies
were raised in rabbit and have been described before
(30,31).

Table 2. Yeast strains used in this study

�MT604 MATa/a SUQ5/SUQ5 ade2-1/ade2-1
his3-11,15/his3-11,15 ura3-1/ura3-1 leu2-1/
leu2-1 trp1-1/trp1-1 can1-100/can1-100
sup45::HIS3/SUP45 [PIN+] [psi�]

(21)

YTH82 MATa SUQ5 ade2-1 his3-11,15 ura3-1 leu2-1
trp1-1 can1-100 sup45::HIS3 [PIN+] [psi�]
[pTH400]

This study

YTH87 =YTH82 upf1::KanMX4 This study
LJ1,

74D-694
MATa/a ade1-14/ade1-14 trp1-2889/trp1-2889
his3D200/his3D200 ura3-52/ura3-52
leu2-3,122/leu2-3,112

(23,31)

YTH88 MATa ade1-14 trp1-2889 his3D200
ura3-52 leu2-3,112 sup45::KanMX4
[pTH400]

This study

BY4740 MATa/a leu2D0/ leu2D0 lys2D0/ lys2D0
ura3D0/ ura3D0 his3D1/ his3D1

(22)

YTH90 MATa leu2D0 lys2D0 ura3D0 his3D1
sup45::KanMX4 [pTH400]

This study

Table 1. Plasmids used in this study

Plasmid name Description Reference

228 CEN/ARS LEU2 sup45-S74F (4)
222 CEN/ARS LEU2 sup45-M48I (4)
242 CEN/ARS LEU2 sup45-D110G (4)
707 CEN/ARS LEU2 sup45-H129R (4)
708 CEN/ARS LEU2 sup45-I32F (4)
718 CEN/ARS LEU2 sup45-P38L (4)
721 CEN/ARS LEU2 sup45-L123V (4)
731 CEN/ARS LEU2 sup45-V68A (4)
pTH353 and

mutant
derivatives

CEN/ARS LEU2 SUP45 or sup45 This study

pTH400 CEN/ARS URA3 PGal-SUP45 This study
pTH422 2 m URA3 SUP35 This study

Dual luciferase readthrough
reporter plasmids

(32)
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Dual-luciferase assays of termination efficiency

Termination efficiency of strains transformed with the
luciferase-based reporter constructs was determined in
96-well microtitre plates as follows, using a commercial
dual luciferase assay (Dual-Glo Assay, Promega, UK).
Individual transformants were inoculated into 150 ml of
SC medium lacking uracil in the wells of a 96-well plate
and grown with rapid shaking (1000 r.p.m.) at 30�C in
a microplate thermoshaker (Grant Bio). After overnight
growth, 10 ml of these cultures were transferred into 140 ml
of fresh medium in a new 96-well microplate, and grown
for an additional 4 h. Immediately prior to the luciferase
measurements, 40 ml of passive lysis buffer (PLB,
Promega, UK) was added per well. Culture/ PLB
mixture (25 ml) were then mixed with 25 ml of the Firefly
luciferase substrate in the wells of an opaque 96-well plate,
incubated for 20min at room temperature, and Firefly
luciferase activity was measured in a BMG Fluostar
microplate reader. Stop-and-Glo reagent (25 ml) was then
added per well, and the Renilla luciferase activity was
measured after another 20min of incubation.

Read-through values were calculated as follows (32):
F/R ratios were calculated by dividing firefly and Renilla
values from each well. Percent read-through was then
calculated by dividing the F/R ratio of a construct con-
taining the relevant stop codon by the F/R ratio of a
control construct without any stop codon. Values
presented in this study are the average of at least four
biologically independent replicates.

Quantitative colony colour determination

Cells (5 ml) diluted to an OD of 0.1 in water were spotted
onto agar plates and incubated at 30�C for 48 h. Plates
were then removed from the incubator, allowed to cool
to room temperature and scanned at 360 dpi and 24 bit
colour using an Epson Perfection 2580 Photo scanner.
The acquired images were analysed using the box tools
and histogram function of ImageJ (v1.33u, http://
rsbweb.nih.gov/ij/), which returns the distribution and
mean of the RGB values in the analysed image section.

Quantitative analyses of phenotypes

Growth assays were conducted in minimal medium
lacking uracil, using strains that had been transformed
to URA3 with the dual-Luciferase reporter plasmids.
Logarithmic growth rates of three independent trans-
formants were determined by following the OD600 over
time.

For other phenotypic analyses, 5 ml of yeast cultures
were spotted onto plates at serial 10-fold dilutions (final
ODs of 0.1, 0.01 and 0.001) and incubated at the respect-
ive growth temperatures and media for 48 h. Plates were
then scanned and the diameter of colonies that had grown
without touching adjacent colonies was determined using
the program ImageJ (version 1.33, http://rsb.info.nih
.gov/ij/). Clustering analyses and multidimensional
scaling were performed using the program Clustan
Graphics (ver. 8.04, http://www.clustan.com). Phenotypic

traits were scaled between the wild-type and worst
observed phenotype, and clustered using Pearson’s rho.

Evolutionary conservation scores

eRF1 sequences from a published set of organisms with
standard code stop codon usage (33) were used to calcu-
late average Gonnet scores for every amino acid position
in yeast eRF1.

RESULTS

Generation of an eRF1 mutant collection

As a starting point to our study, we established an exten-
sive collection of isogenic yeast strains containing single
amino acid exchanges in eRF1. Plasmid-borne mutant
alleles of the SUP45 gene (which encodes eRF1 in
S. cerevisiae) were collated from a wide variety of
sources including alleles previously described in other
strain backgrounds (20,34–37), alleles that displayed func-
tional defects in in vitro models of stop codon decoding
(38–40) but that had to date not yet been tested in vivo,
fortuitous mutants arising during cloning procedures in
our lab, and mutants identified in an in vivo suppressor
screen (4). A complete list of eRF1 mutants used in this
study is given in Table 3.
Mutants were introduced into yeast strain YTH82/

MT604, which contains a deletion of the chromosomal
SUP45 gene, by using a standard plasmid shuffling
strategy (25). To ensure that any observed termination
defect was solely the result of the introduced eRF1 muta-
tions, we utilized the ade2-1 non-sense allele present in our
shuffling strain. This allele leads to accumulation of a red
intermediate in the adenine synthesis pathway (33).
Defects in the termination machinery lead to partial sup-
pression of the ade2-1 allele and restoration of white
colony colour, thus allowing an easy visual assessment
of termination defects. We patched 10 or more independ-
ently shuffled colonies per mutant onto one-fourth Yeast
extract/Peptose/Dextrose medium (YPD) plates, and indi-
vidual colonies were only subjected to further analysis if
the colour change on one-fourth YPD was consistent with
the majority of shuffled samples. For each shuffled
mutant, we also ensured that colony colour reverted to
the non-suppressed colour when a plasmid-borne
wild-type SUP45 allele was re-introduced into the strains.
Out of the 34 mutant sup45 alleles tested, 28 conferred

viability when present as the sole source of eRF1. Four of
these 28 alleles initially yielded identical termination
defects in independently shuffled strains, but these
defects reverted to the wild-type phenotype within short
periods of sub-culturing the cells (days to weeks). Because
of the difficulties in analysing such phenotypically
unstable mutants, these four mutants were discounted
from further analyses. Figure 1A summarizes the
location of all inviable and unstable mutations. All of
the respective amino acids are located within or directly
adjacent to the highly conserved TASNIKS and GGQ
motifs. Our in vivo results are thus consistent with the
previous identification of these motifs in vitro as sites of
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particular functional importance for release factor activity
and translation termination (38,39).

Termination defects in eRF1 mutants

A dual-luciferase based reporter system (41) was used to
accurately measure termination defects associated with the
24 phenotypically stable alleles. Stop codon read-through
at all three stop codons was measured, in each case using
cytosine as the base 30 of the stop codon since this context
is known to confer the highest levels of basal read-through
(7). This analysis revealed widespread translation termin-
ation defects for mutations in the N-terminal and
middle domains of eRF1 (amino acids 1–276, Table 3
and Figure 1). In contrast, only one of the mutations
introduced into the C-terminal domain (encompassing
amino acids 277–437) produced a significant increase in

stop codon read-through. In order to assess whether the
observed termination defects were the result of functional
changes in eRF1 or of changes in abundance, we
determined relative levels of eRF1 in the mutants via a
quantitative protein extraction and western blotting pro-
cedure (29). Two of the mutants (I32F and V107D)
showed statistically significant reductions in abundance,
while the N58A mutant showed a significant increase
(Figure 1C). This indicates that, in most mutants, termin-
ation defects were the result of functional changes in
eRF1.

To facilitate comparisons between the different
mutants, we quantitatively analysed both the relative con-
servation of the mutated amino acids during evolution,
and the severity of the introduced amino acid exchange,
by using substitution frequencies from the Gonnet matrix
as a reference (42). Consistent with previous reports, eRF1

Table 3. SUP45 alleles used in this study

SUP45
mutant

Amino acid
distance scorea

Published
allele name

Readthrough frequency (%) Growth rate
(% of wt.)

eRF1 expression
level (% of wt.)

Ref.

UAAC UAGC UGAC

wt [psi�] – 3.7 0.3 0.7 100 100 This study
wt [PSI+]s – 12.7 2.0 5.8 101 nd This study
wt [PSI+]m – 9.8 1.1 3.4 99 nd This study
wt [PSI+]w – 5.6 0.7 1.5 97 nd This study
S30P 0.4 sl23ts 5.0 0.6 1.3 99 101 (20)
I32F 1.0 sup45-708 6.4 0.2 5.8 87 30 (4)
L34S �2.1 sup45-36ts Unstable (34)
P38L �2.3 sup45-718 7.1 0.9 3.5 80 96 (4)
M48I 2.5 sup45-222 2.1 1.2 3.2 75 129 (4)
L49A �1.2 3.0 0.3 0.7 100 nd This study
E52A 0.0 3.4 0.3 0.7 100 nd This study
G54D 0.1 Not viable This study
T55A 0.6 5.4 0.4 0.6 97 86 This study
N58A �0.3 22.4 1.9 3.8 71 140 This study
K60A �0.4 Not viable This study
S61A 1.1 3.8 0.4 0.8 100 nd This study
R62A �0.6 5.1 0.4 1.1 92 87 This study
R65C �2.2 sup45-3 Unstable (35)
V68A 0.1 sup45-731 8.9 0.3 4.6 87 85 (4)
S74F �2.8 sup45-228 13.2 1.6 2.0 80 96 (4)
V107D �2.9 10.2 0.8 4.7 100 29 This study
D110G 0.1 sup45-242 12.2 0.9 2.8 98 119 (4)
L123V 1.8 sup45-721 4.4 0.3 10.0 101 118 (4)
H129R 0.6 sup45-707 4.3 0.3 5.4 98 96 (4)
P174Q �0.2 7.0 0.7 2.5 89 82 This study
K175A �0.4 Not viable This study
K176A �0.4 Not viable This study
G180A 0.5 Not viable This study
G181A 0.5 Not viable This study
Q182E 1.7 Unstable (37)
Q182N 0.7 Unstable (37)
I222S �1.8 sup45-2 9.1 1.4 3.9 88 85 (36)
T295A 0.6 3.7 0.4 0.7 100 nd This study
T305A 0.6 4.3 0.4 0.9 100 nd This study
T357A 0.6 3.9 0.4 0.8 100 nd This study
T388A 0.6 4.3 0.3 0.9 100 nd This study
F401Y 5.1 4.1 0.3 0.6 85 nd This study
Y410F 5.1 5.0 0.4 1.6 87 74 This study

Statistically significant differences to wild-type are indicated in bold (P <0.05) or bold italic (P <0.01). All data for sup45 mutants were generated in
a [psi�] background (strain YTH82/MT604).
aGiven as the log odds score for observing this amino acid substitution in natural protein alignments, based on the PAM250-normalized Gonnet
matrix (42). Lower numbers indicate less frequently observed substitutions.
Nd, not determined.
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is generally highly conserved, with a slightly lower degree
of conservation evident in the C-terminal domain
compared with the N- and M-domains. There are only
small windows of variable amino acids dotted throughout
its primary sequence (Figure 1B). Since none of the mu-
tations described here affect any of these less conserved
residues, all would be expected to display similarly strong
phenotypes if they involved similarly severe amino acid
changes.

The amino acid changes in the mutant alleles varied
widely in their impact on translation termination
(Table 3), although surprisingly there was no obvious cor-
relation between the severity of the amino acid exchange
and the severity of the observed termination defect.
This lack of correlation was particularly obvious in the
C-domain, where the only mutation resulting in signifi-
cant stop-codon read-through was Y410F, the most

conservative amino acid exchange in our collection. On
the other hand, some relatively severe changes in highly
conserved residues (e.g. S61A, R62A) displayed no or only
very mild termination defects.
For seven mutants from the Stansfield collection where

stop codon read-through levels were previously reported
using a different reporter assay to the one employed here
(4), our results agree only partially with the original
report. There is excellent agreement for the L123V and
H129R mutants, which confer strong UGA-specific
read-through in both our studies. In contrast, for the
P38L, M48I, V68A, S74F and D110G mutants, we
observe significant differences in the specificity and levels
of reported stop-codon read-through. Such differences
might either arise from the different yeast strains used in
our respective studies or from the different reporter
systems employed to measure stop-codon read-through.

Figure 1. eRF1 point mutants affect viability and termination efficiency in yeast. Yeast strain YTH82 was used to generate data for this figure. (A)
Amino acids mutated in this study are shown in spacefill in a ribbon model of yeast eRF1. The yeast model was generated by homology modelling
based on the published structure of human eRF1 (48). Phenotypes of the respective mutants are indicated in red (inviable or genetically unstable),
orange (viable but detectable termination defect on at least one of the three stop codons) or green (viable and no significant termination defect on
any of the analysed stop codons). (B) The relative conservation of amino acids in the eRF1 sequence is indicated by colour. Amino acids mutated in
this study are shown in spacefill as in panel A. (C) Some eRF1 mutants alter the intracellular abundance of the protein. A representative western blot
is shown for the three mutants that showed significantly different changes in abundance compared to wild-type. Numbers under the blots give the
abundance relative to wild-type, as average of three independent experiments. ‘Loading’ indicates a high molecular weight band arising from a cross
reaction of the anti-eRF1 antibody, which was used as loading control.
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To address this question, we constructed SUP45 shuffling
strains in two additional genetic backgrounds, namely
YTH90 which is based on the S288c-derived BY4741
background (22), and YTH88 which is based on 74D-
694 (23), a strain background that is not genetically
related to S288c. Our existing MT604-based shuffling
strain (YTH82) has a genetic make-up that is largely—
but not exclusively—derived from S288c (B.S. Cox,
personal communication). MT604 also contains the
serine-inserting SUQ5 ochre suppressor allele which
leads to high UAA read-through levels (43).
Stop codon read-though was measured in all three

strains for the wild-type SUP45 allele, as well as the
P38L and M48I mutants, for which we had obtained
results that differed significantly from the original study
(Figure 2). The P38L allele gave highly reproducible
results in all three strain backgrounds, in that it increased
read-through on UGA codons �4-fold, and on UAA and
UAG codons �2-fold. This is very different from the
original data reported for this allele, which showed
moderate UAA-specific read-through. In contrast to our
reproducible data for the P38L allele, we observed signifi-
cant strain-specific differences for the M48I allele.
While this allele produced a weak omnipotent suppressor
phenotype in the BY4741 and 47D-694 derived strains, it
increased read-through on UAA and UAG codons more
strongly in MT604, but actually decreased stop codon
read-through on UAA codons. Repeat measurements in
freshly constructed mutant strains confirmed these results.
Interestingly, the original study described decreased
read-through on UGA codons for this SUP45 allele.
From the differences observed in our three strain back-
grounds, as well as differences between the study con-
ducted by Bertram et al. (4) and this study, we conclude
that the effects of individual termination factor alleles on
termination efficiency can be strongly modulated by un-
defined differences in the host genotype. It is also note-
worthy that Bertram et al. (4) discovered the I32F allele as
a chromosomal mutation, but were unable to shuffle this
allele into their shuffling strain (which differs from the
strains used here), while we had no difficulties in shuffling
the same I32F mutant in our study. On the other hand, we
were unable to shuffle the L34S allele into YTH82/
MT604, but this allele was originally discovered as a ts mu-
tation that was viable at low temperatures [sup45-36ts, ref.
(34)]. We were unable to shuffle this mutant in multiple
attempts, including the use of transformation procedures
that avoided the use of high temperatures (44). The differ-
ing viability of mutants in different strains supports the
notion that the same mutation can have substantially dif-
ferent effects in different strain backgrounds.

The relationship between growth defects and
termination efficiency

In order to gain insights into the relationship between stop
codon read-through and growth defects, we measured
growth rates for all viable sup45 mutants in SC medium
lacking uracil, i.e. under the same conditions used for
measuring termination efficiency. Strains were trans-
formed to URA3 using the stop-codon read-through

plasmids for this purpose. As a means of control, we
also generated a series of [PSI+] variants with different
levels of stop-codon read-through that were isogenic to
the eRF1 mutant collection. These [PSI+] variants
covered a similar range of stop-codon read-through

Figure 2. Strain specificity of stop codon read-through. (A) Bar graphs
on the left show basal stop codon read-through levels for three
SUP45 shuffling strains. Bar graphs on the right show changes in
stop codon read-through compared to wild-type for two different
mutants. Error bars indicate the variability in data from four independ-
ent transformants. Strains used are indicated. See text for discussion.
(B) Western blots indicate that there are no differential stability effects
that could give rise to the strain specific effect of the M48I mutant
observed in panel A.
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values for the three codons in a C context as the eRF1
mutants, with the exceptions of the N58A mutant which
showed higher UAA read-through levels than any of the
[PSI+] variants, and L123V, which showed higher UGA
read-through (Table 3). In order to evaluate how the eRF1
mutants compared to the [PSI+] variants for other stop
codon contexts, we determined termination efficiency on
all possible tetranucleotide stop signals for the strongest
[PSI+] variant, and the N58A and L123V mutants (i.e.
the strongest omnipotent suppressor and the strongest
stop-codon specific suppressor in our collection,
Figure 3B). The results indicate that the eRF1 mutants
do not show significantly worse termination defects
when compared to the [PSI+] variants.

None of the [PSI+] variants showed a statistically sig-
nificant change in growth rates when compared to the
[psi�] wild-type strain. In contrast, many of the [psi�]
strains containing eRF1 mutants grew significantly
slower than the wild-type [psi�] strain. A moderate correl-
ation was observed between the termination efficiency and
growth rate when data for the UAG codon were analysed

(Figure 3, pearson product moment correlation coefficient
= 0.67), with lower correlation for the other two codons.
In summary, while none of the [PSI+] strains showed any
reduction in growth rate, eRF1 mutants showed signifi-
cant reductions when compared to wild-type eRF1 cells.
Because eRF1 mutants do not show significantly worse
termination defects in any context than the [PSI+]
strains, growth rate reductions in these mutants appear
to be independent of the termination defects.

Pleiotropic phenotypes caused by mutations in eRF1

To further characterize potential non-translational defects
in eRF1 mutants that might be causally linked to the
reduced growth rates, we investigated phenotypic traits
associated with the sup45 alleles. An illustrative selection
of mutants is shown in Figure 4A. We studied previously
published phenotypes of eRF1 mutants including growth
at high and low temperatures, on non-fermentable carbon
sources, under high osmolarity conditions and in the
presence of paromomycin. We also uncovered two

Figure 3. Relationship between stop codon read-through and growth in yeast eRF1 mutants. Yeast strain YTH82 was used to generate data for this
figure. (A) plots of growth rates versus termination efficiency for individual strains for three stop codons with ‘C’ as fourth base context. Growth
data are from the same experiment in all three graphs. Error bars (x-axis) indicate the standard error for the growth rate of three independent
transformants, y-axis error bars indicate the standard error for termination efficiency of four independent transformants. Pearson product moment
correlation coefficients for the correlation between termination defects and growth are given. Data points for eRF1 mutants analysed in panel B are
indicated. (B) The change in stop codon read-through was measured for all possible tetranucleotide stop signals in two eRF1 mutants and [PSI+]
cells. Error bars indicate the standard deviation of data from six independent transformants. These data indicate that loss of growth in the N58A
mutant (panel A) is unlikely to stem from general termination defects, since the [PSI+] strain shows more severe termination defects for most
stop signals.
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Figure 4. Pleiotropic phenotypes in sup45 mutants. Yeast strain YTH82 was used to generate data for this figure. (A) Observed growth phenotypes
of a selection of eRF1 mutants. (B) Cell shape phenotypes observed in I32F and D110G eRF1 mutants. (C) A heat map summarizing all observed
phenotypes for all mutants and control strains. Growth phenotypes were quantified by measuring colony diameters after 48 h of growth under the
respective conditions, and normalized to values between one (fittest observed phenotype) and zero (worst observed phenotype).
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phenotypes not previously reported for eRF1 mutants,
namely impaired growth on media containing 100mM
hydroxyurea or 4mM caffeine. The mutants also dis-
played very specific cell morphology defects (Figure 4B),
with sub-populations of I32F mutant cells showing an
elongated shape reminiscent of the shmooing process
that yeast cells undergo during mating, while cultures of
D110G strains contained enlarged, rounded cells. All
of the observed phenotypes could be suppressed by
re-introducing wild-type SUP45 genes (data not shown),
confirming that these phenotypes are tied to the eRF1
alleles in the respective strains.

All of the mutant strains were also plated onto the dif-
ferent media at lower cell densities than those shown in
Figure 4, and the diameter of individual colonies was
measured following 48 h of growth. This parameter was
taken to be a quantitative indicator of the severity of the
observed phenotypes (Figure 4C). The same analysis was
also conducted for a series of control strains, namely the
[PSI+] strain series described earlier, and an additional
strain containing wild-type SUP45 but a deletion of the
NAM7/UPF1 gene, which generates weak termination
defects as well as a complete block of the termination-
related non-sense-mediated mRNA decay or NMD
pathway (9). Two main conclusions emerge from these
results: first, four of the phenotypes observed for eRF1
mutants are also observed in the different [PSI+]
variants, namely sensitivities to paromomycin, hydro-
xyurea, high osmolarity and to reduced incubation tem-
peratures. In the [PSI+] variant series, there was a
quantitative correlation between these phenotypes and
the observed termination defects, whereas these pheno-
types did not show an immediately apparent correlation
with termination defects for the eRF1 mutant collection.
Other phenotypes specific to eRF1 mutants but not
observed for the [PSI+] strains were sensitivity to growth
at 37�C and to caffeine, inability to utilize non-
fermentable carbon sources, and the two cell-shape
defects depicted in Figure 4B. Since these phenotypes
are also absent in the upf1 deletion strain, they are not
the result of specific defects in the NMD pathway that
might be associated with SUP45 mutants, but not with
the [PSI+] state. Thus, a subset of phenotypes observed
in both [PSI+] strains and eRF1 mutants may result from
a translation termination defect, whereas those pheno-
types observed only in eRF1 mutants are more likely to
be result from defects in non-translational functions of
eRF1 or in highly mRNA-specific termination defects
that are not observed when steady-state levels of function-
al eRF3 are reduced, as is the case in [PSI+] strains.

Suppression of pleiotropic phenotypes by eRF3
overexpression

For many genes encoding components of macromolecular
complexes, defects can be compensated by overexpres-
sion of genes encoding physical binding partners [i.e.
gene dosage suppression, ref. (45)]. To gain additional
insights into the phenotypes associated with the sup45
mutants, we investigated whether increased levels of
eRF3 would affect any of the observed phenotypes. We

introduced the full-length SUP35 gene encoding eRF3 on
a high-copy number plasmid into the different sup45
mutant strains, which resulted in a ca. 3-fold increase in
intracellular levels of eRF3 (Figure 5C). In these experi-
ments, colony colour of the transformants was carefully
monitored, and occasional colonies which had become
[PSI+] due to the high eRF3 levels (46) excluded from
analyses. In many of the mutants, eRF3 overexpression
led to a detectable shift in colony colour towards red
(Figure 5A), which was often but not always accompanied
by a partial suppression of the paromomycin sensitivity,
sensitivity to hydroxyurea and osmotic sensitivity. This is
illustrated for the N58A mutant in Figure 5B, and
summarized for all mutants in Figure 5D. In the N58A
mutant, we further observed that eRF3 overexpression
exacerbated a temperature-sensitivity defect (Figure 5B).
For all other phenotypes, only a single case was found,
namely caffeine sensitivity in the V68A mutant, where
eRF3 overexpression led to amelioration of the pheno-
type. The observed co-suppression of several mutant-
associated traits thus clearly establishes two groups of
phenotypes, namely those suppressible by increased
eRF3 levels and those that do not respond to this
condition.

Correlation analysis of termination and pleiotropic
defects in eRF1 mutants

A minimal framework for the quantitative connection
between primary termination defects and secondary pleio-
tropic defects is that if a series of strains is ranked first in
order of the severity of the termination defect and then
in order of the severity of the pleiotropic defect, both
rank orders should be identical. This precise relationship
was for example given for the termination defect
and paromomycin, hydroxyurea, osmolarity and cold-
sensitivity phenotypes in the three [PSI+] strains, which
gave a ranking of wild-type <[PSI+]w<[PSI+]m<
[PSI+]s for all five phenotypes (Figure 4C). In contrast,
no strong correlation between any two phenotypes was
observed in the sup45 mutants. This may reflect the fact
that, unlike in the [PSI+] strain series, termination defects
in the sup45 mutants show varying codon-specificity.
If secondary phenotypes were the result of compound
termination defects at the three different stop codons, cor-
relations might be masked by this codon specificity.
To further analyse potential correlations between ter-

mination defects and other phenotypes in the sup45
mutants Spearman’s rank correlation coefficient or rho
was determined for all possible pair wise comparisons of
phenotypes (Figure 6). The relative degree of similarity
in terms of rho is represented by the relative distance
between two parameter points. Those phenotypes that
were observable in [PSI+] strains and suppressible by
eRF3 overexpression, showed a higher degree of rank cor-
relation with termination defects, in particular on UAG
and UAA codons, than those phenotypes to which these
criteria did not apply. This correlation analysis confirmed
the division of the observed phenotypes into two groups,
one that is likely to be dependent on primary termination
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Figure 5. eRF3 is a dosage suppressor of eRF1-related phentoypes. Yeast strain YTH82 was used to generate data for this figure. (A) eRF3
overexpression partially suppresses the colony colour change observed in eRF1 mutants. Patched colonies of cells containing either an empty 2m
plasmid, or a 2m plasmid also containing the eRF3 gene, are shown. Numbers next to the panels indicate the red-shift in the presence of high-copy
eRF3, as evaluated from computerized scans of the plates. Positive numbers indicate a shift towards white colour, negative numbers a shift towards
red. (B) Effects of high copy expression of eRF3 in the eRF1 N58A mutant. High copy number expression of eRF3 partially suppresses the colony
colour and paromomycin phenotypes. It also very weakly suppresses the hydroxyurea and high osmolarity phenotpyes, while exacerbating the
temperature sensitivity observed in this mutant. (C) Western blots demonstrate that eRF3 is overexpressed 3-fold in the presence of high copy
plasmids encoding its gene, and that neither the stability of wild-type eRF1 nor of N58A eRF1 are affected by this overexpression. (D) Summary of
suppression by high copy number eRF3. Paromomycin, hydroxyurea and high osmolarity phenotypes can be co-suppressed together with colony
colour in many sup45 (eRF1) mutants.
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defects, and another group that is likely to be independent
of such defects.

DISCUSSION

Our quantitative analysis of a collection of point mutants
in yeast eRF1 has revealed a surprising strain-specificity
of eRF1-associated phenotypes, and an apparent lack
of correlation between evolutionary conservation and
termination-related functionality in eRF1 residues. These
findings have important implications for current models of
functional epitopes on eRF1.

Strain-specific variability of termination defects in
eRF1 mutants

The apparent differences we observed between termin-
ation defects published for some sup45 alleles and
defects observed for the same alleles in our genetic back-
ground prompted us to evaluate how far phenotypes may
be strain specific. For example, the M48I allele produced
significantly different phenotypes in different genetic back-
grounds, even though all experiments were conducted
using the same reporter system and identical experimental
conditions. Moreover, most of the alleles from the study
by Bertram et al. (4) that we measured in another genetic
background also gave different results in our studies.
There were also differences in the viability of the same
allele in different strains [e.g. I32F which could be
shuffled into our YTH82 strain but not into the shuffling

strain used by Bertram et al. (4), and L34S which could
not be shuffled into our strain but was viable in a chromo-
somal background in another strain (34)]. Taken together,
these findings suggest that differences in the molecular
details of translation termination exist in strains of differ-
ent genetic backgrounds, and that such differences are
widespread. Although we currently do not know the mo-
lecular details of these differences, we anticipate that they
may be linked to differences in the abundance or activity
of trans-acting modulators of translation termination.
Interestingly, quantitative differences in different genetic
backgrounds have previously been documented for the
efficiency of NMD-mediated mRNA decay, which is func-
tionally linked to translation termination (47).
Our study includes a number of alleles corresponding to

human eRF1 mutants previously only examined in in vitro
termination assays. Some of the relevant mutations
produced effects in vitro that mirror the results from our
in vivo study closely, namely the N58A, K60A and S61A
alleles [N61A, K63A and S64A in human numbering (38)].
Other alleles show significant defects in in vitro assays but
had no effect in our strains in vivo [yeast R62A and E52A,
corresponding to human R65A and E55A (38,40)],
although it should be noted that the in vitro assays were
relatively unphysiological in their set-up and lacked eRF3,
which may render the release reaction much more sensitive
to amino acid changes in eRF1. In summary, we observe
differences in translation termination efficiency for the
same mutant in different in vivo studies, for the same
mutant in different strains in the same study, and

Figure 6. Correlation between eRF1-related phenotypes. Yeast strain YTH82 was used to generate data for this figure. The linear distances between
individual data points approximate the degree of correlation between the severities of the two phentoypes, i.e. data points located more closely
together show stronger correlation in the rank order of the phenotypes. See text for discussion.
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between in vivo and in vitro experiments: these findings
highlight the difficulty in constructing reliable structural
models of translation termination based on mutagenesis
results alone.

Evolutionary conservation and functionality in termination

Analyses of evolutionary conservation have been used to
infer details of the molecular functions of eRF1, and to
model potential stop-codon binding sites (48,49). Such
studies are based on the rationale that the sole function
of eRF1 is in translation termination; and that conserva-
tion of a residue therefore indicates some form of a func-
tional requirement during termination with respect to this
residue. Surprisingly, the peptide 54-GTASNIKSR-62 is
one of the highest conserved stretches in eRF1 sequences
from a wide variety of organisms (48), yet yeast tolerated
amino acid substitutions in some of these residues much
better than in others (Figure 1 and Table 3). Although all
our exchanges were of very similar severity, the G54D and
K60A mutants were inviable, the N58A mutant were
viable but caused a severe termination defect, while the
T55A, S61A and R62A mutants only caused mild or no
defects.
This apparent independence of the mechanism of trans-

lation termination on very highly conserved residues
suggests that the evolutionary constraint on eRF1
residues may not solely be exerted by the requirements
of translation termination. If eRF1 has roles in the cell
other than translation, and if these roles contribute to
achieving maximum fitness, then evolutionary constraints
on sequence changes in eRF1 must reflect such
non-translational roles as well as translational ones.
Our quantitative trait analyses reveal several

eRF1-linked phenotypes that are unlinked to translation
termination as established by three independent criteria:
first, they occur in eRF1 mutants, but not when transla-
tional efficiency is reduced by prion aggregation of the
second essential translation factor, eRF3 (Figure 4).
Second, they are not co-suppressed when colony colour,
paromomycin sensitivity and sensitivity to high osmotic
pressure, three phenotypes known to be linked to transla-
tion termination, are suppressed by an extragenic suppres-
sor (Figure 5). Lastly, their quantitative correlation with
the termination defects in eRF1 is poor, making it unlikely
that they are secondary consequences of a primary termin-
ation defect. These unlinked phenotypes indicate that
eRF1 has multiple functions in eukaryotic cells, which
have collectively shaped the evolutionary history of this
essential translation factor.

The molecular mechanism of stop codon decoding

Current models of stop-codon decoding involve variations
on two central themes, namely, linear models positing
that stop-codons physically bind to the TASNIKS motif
in the eRF1 N-domain (49–51), and ‘cavity’ models which
propose that the body of the eRF1 N-domain contains
several cavities that may physically accommodate the
3 nt of the stop codon (4–6). Evidence for or against
these models has included data derived from evolutionary,
mutagenesis and biochemical studies.

The various linear models proposed for stop codon rec-
ognition differ in the exact amino acids contacting the stop
codon nucleotides. Proposed binding sites include
TASNIKS (51) and GTASNIKS (49), both of which are
not consistent with the absence of strong phenotypes in a
T55A mutant (Table 3). The only physical evidence
linking stop codons to individual amino acids in eRF1
comes from the observation that in in vitro termination
assays, s4U-label can cross-link the first base of the stop
codon to either K60, S61 or R62 [TASNIKSR, (50)].
The latter two residues are unlikely to act as primary
sites for stop-codon interactions since their replacement
by alanines does not lead to significant termination
defects (Table 3).

A non-linear model of stop-codon recognition, the
so-called cavity model, was first proposed by Bertram
et al. (4) based on the results of a screen for unipotent
stop-codon suppressors. The eRF1 N-domain contains
three cavities in its surface (Figure 7), and based on the
stop-codon specificity of suppressor mutants and on the
best fit of docking models between the stop codon and the
eRF1 surface, it was proposed that these three cavities
directly bind to the 3 nt of the stop codon. Additional
evidence for an important role of residues in cavity two
for UGA decoding was provided in another study (5),
which identified C124 as a critical residue for UGA
decoding. This study extended the cavity model by sug-
gesting that conformational changes hinging around the
TASNIKS motif optimize the relative orientation of the
cavities for decoding of UAA/UAG on one hand and
UGA on the other. Lastly, based on the results of an
anti-suppressor screen, Hatin et al. (6) identified two
new regions important for stop codon decoding they
termed pocket one and two (Figure 7), which were
proposed to be involved in maintaining an overall struc-
tural frame-work of the N-domain that is optimal for
eRF1 function in translation termination.

Our study strongly confirms the importance of residues
around cavity two for decoding of the UGA stop codon.
Both re-examination of the L123V and H129R mutants
already measured by Bertram et al., (4) and new measure-
ments for the I32F and V107D mutants which are located
directly adjacent to L123 and H129 (Figure 7), show
strong UGA-specific stop-codon read-through when
residues of this epitope are mutated. Both the I32F and
V107D mutant show reduced levels of eRF1 (Figure 1C),
however, the strong stop-codon specificity is unlikely to be
a result of eRF1 depletion, and is more likely related to
stop-codon specific termination defects. The C124 residue
identified by Fan-Minogue et al. (5) is continuous with
this epitope, and all of these residues are part of or near
cavity two which was proposed to be directly involved in
binding to the middle nucleotide of the stop codon, and
crucial for UGA recognition but less crucial for UAA/
UAG recognition.

In contrast to the strong support for an important role
of cavity two, we find that mutant eRF1 alleles used as
evidence for the assignment of pockets one and three are
poorly reproducible in different genetic backgrounds.
While our new data do not conclusively exclude the
three cavities as direct sites for stop codon binding, the
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evident variability of termination defects in eRF1 mutants
means that evidence supporting roles for cavities one and
three are weaker than for cavity two. The one aspect that
appears to be consistently supported by the available
evidence is the existence of an extensive epitope critical
for UGA decoding centring around the C124 residue.
However, the ability to decode UAA, UAG and UGA
but exclude UGG codons is likely to be a complex result
of properties distributed more widely throughout the
eRF1 N-domain.
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