University of

"1l Kent Academic Repository

Zhang, Kang-K, Mao, Zehui, Jiang, Bing and Yan, Xinggang (2015) Adaptive
and Robust Fault-Tolerant Tracking Control of Contact force of Pantograph-Catenar
for High-Speed Trains. In: IFAC-PapersOnLine. 48 (21). 740 - 745.

Downloaded from
https://kar.kent.ac.uk/51755/ The University of Kent's Academic Repository KAR

The version of record is available from
http://www.sciencedirect.com/science/article/pii/S2405896315017449

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).



https://kar.kent.ac.uk/51755/
http://www.sciencedirect.com/science/article/pii/S2405896315017449
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Available online at www.sciencedirect.com

IFAC “*ic

CONFERENCE PAPER ARCHIVE

ScienceDirect

IFAC-PapersOnLine 48-21 (2015) 740-745

Adaptive and Robust Fault-Tolerant
Tracking Control of Contact force of
Pantograph-Catenary for High-Speed
Trains
Kang-K Zhang* Zehui Mao * Bing Jiang* Xing-Gang Yan **

* College of Automation Engineering, also with Jiangsu Key
Laboratory of Internet of Things and Control Technologies, Nanjing
University of Aeronautics and Astronautics, Nanjing, China, e-mail:

kangzhang359@163.com(K. Zhang), zehuimao@nuaa.edu.cn (Zeh.
Mao), binjiang@nuaa.edu.cn(B. Jiang)
** School of Engineering and Digital Arts, University of Kent,
Canterbury, Kent CT2 7TNT, United Kingdom, e-mail:
z.yan@kent.ac.uk

Abstract: This paper presents a modified multi-body dynamic model and a linear time-
invariant model with actuator faults (loss of effectiveness faults, bias faults) and matched
and unmatched uncertainties. Based on the fault model, a class of adaptive and robust
tracking controllers are proposed which are adjusted online to tolerate the time-varying loss of
effectiveness faults and bias faults, and compensate matched disturbances without the knowledge
of bounds. For unmatched uncertainties, optimal control theory is added to the controller design
processes. Simulations on a pantograph are shown to verify the efficiency of the proposed fault-
tolerant design approach.
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1. INTRODUCTION

The contact between pantograph and catenary is the
most critical part to modern high-speed trains in the
transmission of electrical energy. The force exerted by the
pantograph on the contact wire may oscillates heavily,
which can originate electric arcs to damage the mechanical
structure and reduce the system performance Levant, A.
(2001).

Because of the elastic character from a static perspective
by its stiffness and from a dynamic one by its frequen-
cy, the pantograph-catenary system contains time-varying
parameters in its system matrix which make the modeling
difficult Benet, J. (2007), Park, T. J. (2002), Pisano, A.
(2008). Some researchers have used different approaches
to regulate the contact force to a pre-specified constant
value, such as robust optimal control Lin, Y. C. (2007),
H, control Makino, T. (1997).

For instance, extreme environmental conditions lead to
limitations to train operation and/or damage of compo-
nents of the pantograph and catenary in the short or long
run. Therefore, it is required to have the ability to toler-
ate the actuator faults and to guarantee the pantograph-
catenary system has the desired performance.
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There are many papers to deal with the fault-tolerant
problems, which are divided into two categories: active
fault-tolerant control and passive fault-tolerant control.
Jiang, B. (2006) do some researches on the active fault
tolerant control based on the adaptive fault diagnose and
accommodation; Tao G. (2001), Ye D. (2006), Yang G. H.
(2010) have done some work on the passive fault tolerant.
Tao G. (2001) try to deal with the stuck fault based on the
adaptive compensation mechanical. Ye D. (2006) proposes
a classical control structure to deal with actuator loss
of effectiveness faults, and Yang G. H. (2010) defines an
adaptive H., performance index and designs a class of
adaptive controllers which satisfy the defined performance
index.

Li X. J. (2012), Wu L. B. (2014), Zhang Y. (2009)
try to use robust adaptive method to cop with multi
types of actuator faults in presence of both matched and
unmatched disturbances and uncertainties. Li X. J. (2012)
mainly focus on actuator faults with matched uncertainties
and disturbances, Wu L. B. (2014) concentrates on the
specific unmatched uncertainties using the bounds of the
uncertainties. Zhang Y. (2009) deals with the specific
nonlinear uncertainties whose bounds are related to the
system matrix.

In this paper, considering the characteristics of the
pantograph-catenary system, the dynamic model with
matched and unmatched uncertainties and disturbances is
established with actuator faults (loss of effectiveness faults,
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bias faults). Then a class of adaptive robust fault-tolerant
compensation controller for the pantograph catenary fault
system are proposed. It assumes that the bounds on the
bias faults, and the matched uncertainties exist and are
unknown. Then the adaptive laws are proposed to estimate
these unknown bounds and it is capable of compensating
faults, disturbances and uncertainties automatically. Fi-
nally, it is shown that the proposed scheme ensures the
solution of the resulting adaptive closed-loop system being
uniformly bounded. Without the unmatched disturbances,
the states asymptotically converge to zero, that is, the
tracking error asymptotically converges to zero.

The remain parts of this paper are organized as follows: In
Section 2, the system model is established and preliminary
formulation are presented. In Section 3, adaptive and
robust fault-tolerant controllers are designed. Simulation
results based on pantograph-catenary are shown to verify
the effective of the designed controller in Section 4. Finally,
some conclusions end this paper in Section 5.

2. SYSTEM MODELING AND PROBLEMS
FORMULATION

2.1 Pantograph-Catenary Dynamic Modeling

In this section, a modified multi-body mathematical mod-
els for the pantograph-catenary is introduced. The panto-
graph model used for the initial control system designing is
the two degree of freedom model shown in Figure 1. In par-
ticular, a linear system can approximate the pantograph
dynamics in a suitable vicinity of the working configura-
tion, and this simplified model of the over head suspended
system is characterized by lumped time-varying parame-
ters that have been shown to be sufficiently accurate for
control analysis and design purposes Balestrino, A. (2000).
The equivalent mechanical parameters of the catenary

Fig. 1. Linear mass-spring-damper model

present a periodic behavior along each span Balestrino,
A. (2000). We consider the parameters as follows:

2
be (t) = beg + bersin (;Ut) ,

1)
9 (
ke (t) = keo + kersin (gm) )

where v is the velocity of vehicle, L is the single span
length, k.o is the average stiffness of contact wire in a
signal span, and b.g is the average damp of contact wire.

The dynamic equations governing this system (movement
of the pantograph) are described by
bc (t) (tl + kc (t) xr1 + mlfél + bl (1'1 — 1’2)
+ kl (.%'1 - l‘g) = faero2; (2>
Mads + body + Ky (2 — 21) + by (F2 — d1)
= Fu + faerol~

where m; and mgy are the equivalent mass of pantograph
head and frame, k; and d; are the stiffness and damp
of pantograph head, ds is the equivalent damp between
pantograph and vehicle, k. and d. are the equivalent
stiffness and damp of contact wire at the contact point.
The force faero1 and fuero2 represent the aerodynamic
force, which will be simulated by Gaussian-white-noise,
and F, refers to the static uplift force, which is produced
by air pressure or spring loading. The parameters in the
above will be given later.

The contact force between the pantograph and the contact
wire has the following expression

F,=max{ky (xg —x1)+ b1 (£2 —%1), 0 }. (3)

Therefore, letting @ = [&1, &2, X1, X2], u = Fy, w; =

faerols W2 = faero2 and y = F,, it follows that
i}:A£E+Ag($,t)+Bl(u+w1)+32w2, (4)

y=Cuz,

where

Ag(z,t) = AA; (t) z + AAz(t)z, C=[=b1 by —k1 k1],
0

ai1 ai2 aiz aia 0 m
_ | a21 a22 a23 a24 _ | = _
A= 1" s Bi= |72 |, Ba=1 0 |,
01 0 0 9
A1+01 62 Az+03 04 50 60 50 (?
— 0 0 0 0 _
AA()=1 § § 8 0| AL®O=|F7TTT
0 0 0 0 00 O0O0

with u = Fu7 w1 = faerol; w2 = faeT027

b1 + beo by k1 + keo k1
a1 = —-———,A12 = —,013 = —————,014 = —,
mi mi mi mi

b1 b1 + b ky ky
a1 = —,0a22 = — a23 = —,0a24 = ———,

mg 9 meo ms 9 ms

. ™ 1 . s
Ay = ——ZLsin(Zout), Ay = —~Lsin(Zut).
1= sin(Tot), Ag = = Esin(t)

where d;, i = 1---8 represent parametric uncertainties of
k1, by and by with assumed to be bounded.

2.2 Fault Modeling

To formulate the fault-tolerant control problem, the fault
model must be established firstly. Here, we consider ac-
tuator faults simultaneously including loss of effectiveness
faults and bias faults. For the pantograph and catenary
system, the following uniform actuator fault model is ex-

ploited

(1) = p(t)u + f(1)- (5)
where p(t) is the efficiency factor matrix and f(t) is the
bias value of the actuator. Then the dynamics of (4) with
actuator faults (5) is described by

T = Ax + Ag (’I,t) + Blp(t)u + Bl(f(t) + wl) + B2w27
y = Cx.
(6)

2.8 Assumptions

Considering the actuator fault pantograph system de-
scribed by (6), the problem under consideration is to
develop an adaptive and robust controller such that: under
normal operation, the corresponding closed-loop system is
stable, and the output Sy(t) tracks the reference signal y,
without steady-state error, tliglo e(t)=0, e(t)=y,(t)—

Sy (t), where S = 1 in pantograph-catenary system; in the
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case of actuator faults, all the signals of the closed-loop
system are uniformly bounded and that the required out-
put Sy(t) tracks the reference signal y,(t) without steady-
state error. It’s well known that the tracking error integral
action of a controller can efficiently eliminate the steady-
state tracking error for the command signal. In order to
obtain the adaptive tracking controller with tracking error
integral, the following augmented systems are proposed by
combining (5) and (6).

z = Az +Ag(z,t)+ Bip(t)u+ Bi(f(t) +wi) + Bawa, (7)

where x(t) = [ye(r)dr, Ag(z,t) = {AQ?CEJ)} -
A

AL()T + Ady(W)7, 7 = | X, @ = 52} =
0 -SC = 0 = I 0 =
|:0 A :|7 Bl = |:B1:|7 BQ = |:O BQ:|7 AAl(t) =
0 = 0
[AAJ and AAy(t) = |:AA2:| .

Remark 1. According to the structure of {Ay, By, By},
{AA;, @1} and {AA;, @} are the matched and un-
matched disturbances, respectively. The terms AA;Z and
e are both the unmatched uncertainties which will be
dealt by robust optimal technique based on the structure
relation with By, respectively. v
Lemma 1. Fuzhen Zhang (2011), For matrix B; € C™*",
(r > 0 represents matrix rank), then there exists decom-
position ~

Bl = QR7 (8>
where Q € R™*" and decomposition QTQ = I, where
R e R™*™ and RR” > 0.
Assumption 1. The pair {4, By} is completely control-
lable.

Assumption 2. The loss of effectiveness factor p(t) €
(0,1) is unknown time-varying actuator efficiency factor

satisfying
6B < pop(t). (9)

Assumption 3. The bias fault vector f(¢) is assumed to
be bounded, i.e., there exists an unknown constant f such
that [|f(t)]] < f; wy is also assumed to be bounded, i.e.,
there exist an unknown constants @y such that ||w; || < @;.
Assumption 4. Qu, Z. (1992) The nonlinear uncertain-
ties Ag (Z,t) satisfies

|z" PAG (z,1)]| < a(z,t) (10)
for all (z,t) € R™ x R. Furthermore, «(Z,t) has the

a(z,t
Rl
formly bounded with respect to ¢, and is locally uniformly
bounded with respect to z.
Remark 2. The uncertain term AA;(t)z does not satisfy
Assumption 4 , which can be expressed as
AAL(t)=HF(t)E

with FTF < I and H, E are the constant matrices.

property that the function is continuous, uni-

(11)

For another uncertainties A Ay (t)Z, it can be decomposed
as

AAy (1) = QS (1) (12)
with [|3 (¢) || < I*, where I* is a positive constant and @ is
satisfies B; = QR. Therefore,

lz"PAd, @) _  [lz"PelIZ @] I
[Z7PE:[ ~ Awin (RRT) [Z7PQ ~ Auin’

(13)

i.e., there is a positive constant ( satisfying

2" PAA; (1)|| < ¢||2"PBy ||, (14)
where ¢ = 7Amm(;‘iRT)‘
So AAy(t)z satisfies the Assumption 4. \Y%

Assumption 5. For any actuator failure mode, the equa-
tion
rank{B1p(t)} = rank{B}. (15)

holds.

Remark 3. In the pantograph-catenary system, the s-
tates are completely available and controllable. Assump-
tion 5 introduces a condition of actuator redundancy of the
system, which is necessary for completely compensating
the loss of control fault. But in the pantograph-catenary
system, because of there is just one actuator, it can not
tolerate the actuator loss of control case. v

Proposition 1. The matrix rank relation of (15) is holds
if and only if there exist matrix K*(t) satisfying

Bp(t)K*(t) = B. (16)

Proof. The proof is omitted. a

2.4 Control Objective

The objective of pantograph controller is to minimize fluc-
tuation in contact force around the desired value. There-
fore, the main control objective is to construct an adap-
tive and robust memoryless state feedback fault-tolerant
tracking controller for the actuator faulty system in the
presence of disturbances and uncertainties to guarantee
that the remaining actuators can still ensure that all the
signals are bounded and the tracking error between the
plant output Sy(¢) and the reference output signal y,. goes
to zero asymptotically when we = 0, i.e.,

Jim e () = 0; (17)
when we # 0, the tracking error e(t) satisfies a defined
performance index.

3. ADAPTIVE AND ROBUST FAULT-TOLERANT
TRACKING CONTROLLER DESIGN

In this section, to achieve the desired control objectives,
the control structure is constructed as:

(18)
where u, is designed to deal with the loss of effectiveness
fault and to guarantee the performance index, simultane-

ously; u,, is designed to compensate the matched distur-
bances and part of unmatched uncertainties.

U= Ue + Up

For the “healthy” system, the controller u. is designed as
u. = K1, where ug = Ks(t), and uz = K3(t).
Applying u. to the “healthy” system, it follows that

T =A%+ AA (t)Z + Biu + Bows. (19)
Then it is straightforward to obtain following closed-loop
system

i = (A+ AA () + BiK1)T + Baws. (20)

The objective now is to design the gain K; to guarantee
the “healthy” system to be stable and satisfy the optimal
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performance index. The following lemma 2 is used to
calculate the gain K7 and Layapunov matrix P.

Lemma 2. Ye D. (2006) Considering the closed-loop aug-
mented normal system (20) and the performance index
t
Jp = / [XTQ1X + 2T Qox + uTRu] dt (21)
0

where Q1 and () are positive semi-definite matrices, and
R is a positive definite matrix. For the given positive
constants v and 7, if there exist symmetric matrices X, T
and a matrix W satisfying the following linear matrix
inequalities,

S11 212 513 214

15 =16
* —yI 0 0 0 0
x x -1 0 0 0
s % o« —I 0 o | <0 (22)
x % ok % —7 T 0
x ok k% S |
T 1
{I X] >0, (23)
where
En:He(/iX =+ 31W), Elgiég, 513:WTR1/2,
E1y=XQ'? E15=XH, E;=XE",
Q = dlag[Qla Q?]a
then the following controller can stabilizes the closed-loop
augmented normal system with P = X! and K; =
WXL

Furthermore, an upper bound of the performance index
(21) can be obtained

t
Jy < 7/ wf wodt 4+ 27 (0) TZ (0). (24)
0

The proposition 1 shows that there exists K*(¢) guarantees
that Byp(t)K*(t) = B, i.e., there exist matrix Wy =
K*(t)W satisfying with (22) which W is replaced by W7.
Because p(t) is unknown for the unknown fault mode, we
have to estimate the gain K;. Then u. becomes

ue = K1 (t)z. (25)
Applying (18) and (25) to (7), the following closed-loop
system is formed

i = Az + Bip(t) K1 4 Bip(t) (K» (t) + K5 (1)) +

+ Ag (IIZ, t) + Blf(t) + Blwl + BQ(I)Q.
(26)
The following lemmas are needed for controller designing.
Lemma 3. Hao, L. Y. (2013), For the diagonal matrix
p(t) in (15), there exists a positive constant p satisfying
the following inequality

#'PBip(t)BI Pz > u||2" PB: ||”. (27)

Lemma 4. For any matrix X and Y with appropriate
dimensions, the following inequality holds

XTYy +YTX <aXTX 4+ a7 1Yy, (28)
~XTY - YTX <aXTX +a 'YTY.
Denote K = K + K with {R’, K, K} € R™*™ then based
on the above lemma, the following inequality holds:

tr(K'TK) — tr(K'TK) < 2tr(K'TK).  (29)

Based on Assumption 3 and Lemma 1, there exist positive
constants k4 and ks satisfying

1F (@) +wir O < ILF @ + llwr @] < ek,
|27 PAA;(t)|| < pks || 2" PBy]|.

Here, it is worth pointing out that the constants u, k4 and
ks are unknown which should be estimated.

(30)

Now consider the adaptive law of K as

f(l = —Ff.’fTP.Bl — poKl (31)

where I is a positive constant matrix. The control function
K5(t) is designed as

BT Pzk?
| BY Pz || ky + ee=5t

K (t) = - (32)
where k4 is the estimation function of ky, € and B are

adjustable positive parameters. The adaptive law of ky is
proposed as

b= ||BY Pal| - gmee (33)

The control function of K3(t) is designed as
K (1) = —%771%531TP:E (34)

in which 1%5 is updated by the adaptive law
ks = —gmee ks + | BT PR (39)

Remark 4. From the expression of (33) and (35), it is
obvious k4 > 0 and ks > 0 can be ensured by choosing the
appropriate initial value of k4(0) and k5(0). \Y%

Let K1 = K; — Ky, ky = ky — ky and ks = ks — k5. Then
it is ready to present the following theorem.

Theorem 1. Considering the closed-loop system formed by
system (26) and the controllers (32) and (34) with adaptive
laws (31), (33) and (35), in which P is provided by
LMIs (22) and (23). Then under Assumption 1-5 the
signal {Z, K1, ka, ks} of the closed-system are uniformly
bounded and the states T goes to zero asymptotically with
Wy = O, 7;.6.,

lim 7 = 0. (36)
t—o00
When ws # 0,
t
Jy <~ / w0l @odt + 27 (0)T7(0). (37)
0

Proof. The proof is composed of two steps:
step 1. Choose a Lyapunov function for the loss of
effectiveness faulty system as follows:

Vi =27 Pz + tr(p(t) KTT 1K), (38)

The time derivative of V7 with u = u, = K 1T is given by
Vi <z"He(P(A+ AA;y + Bip(t) K1)z + 22" PBp(t) K12
+ 22" PBais (t) + potr(p(t) K] T~ K1)
+ 2tr(p(t) KIT71K,).
o (39)
Denote —Q = He(P(A + AA; + Bip(t)Ky)). For large
enough T, based on (29), it has
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Vi < —27Qz + 22" PBp(t) K1 + 2potr(p(t) K{ T~ K1)
— potr(p(t) K{ T Ky ) + 2tr(p(t) K] T K7)
+ 22" PByin(t)
< —27Qz + 227 PBois (t).

(40)
step 2. Choose a Lyapunov function for system (26) as
the following form:

Vo = Vi + pvy kG + oy R2.
The time derivative of V5 with u = u. + u,, is
Va < Vi + 22" PByp(t) Ky (t) + 227 PB1p(t) K (t)
+22" PBy ||(wi + f(1)) | + 2[|" PQ| 12 (1)} |z
+ 20y Vhaky + 2075 Thsks,

(41)

(42)
Based on Lemma 3, the control function (32) and the
adaptive law (33),

227 PB1p(t) K (1) + 287 PBy Jwr (1) + £ ()| + 2u75 kaks
21|27 PBy|| 12
T ||#TPBy | ky + ceft
+ 2,u’yfll;:412:4
< 2uee Pt 4 iuse*ﬁtkz.

+ 2# ||Q_3TP31H k’4

(43)
Based on Young’s inequality 2ab < %(12 +cb?, Va, b, c¢>
0, it has

1
227 PQ| I ()| 2]l < I**n||2" PQ||” + 5\@”2
< ks|ZTPB.| + %II@“HQ
where ks = I"2n(/pu.

Based on Lemma 3, from the control gain (34) and the
adaptive law (35), we have

2LETPB1K3 (t) + ,UHfTPB1H2k5 + 2u’y27112;5l;<;5 <

1
—uee
< e

(45)
In light of the inequality of the form 0 < a"—fb <a, Va, b >

0 and —a? —ab < %, it is concluded that

. . 1
Vo < V4 + EH@HQ +ee Pty (46)

where Kk =

(245 (+ k).

Denote o (t) = fot ce PTdt = 5 (1—eP) < &7, then
o(0) = 5, =75
When @, = 0, integrating both sides of (46) from 0 to ¢,

t
Vs (1) +/0 Amin (Q + %)an?dT <V (0)+ ko, (47)

which means that & € Lo and V3(t) € Lo, and thus
T € Lo and {1%4, Ky, ks, 155} € L. Note that the right
hand side of (47) does not involve with time, {Z, k4, ks}
are uniform bounded.

Furthermore, (46) implies that
t

lim
t—oo Jo

Amin(Q + %)II:%IIQdT < Vs (00) + 5o (00) . (48)

3.

Since {Z, k4, ks} are uniform bounded, it follows that
from (31), (33) and (35), {Z, k4, ks} is continuous,
which implies that it is uniformly continuous. Therefore
Amin(Q + %)H.’EH? is also uniformly continuous. Applying
the Barbalat lemma Ioannou, P. A. (2012) yields that
im0 fy Amin(Q + 2)1]%dr =0, ie.

lim z =0, lime=0. (49)
t—o00 t—o0
when @2 () # 0, based on Ye D. (2006)
t
J <~ / w0l @odt + 27 (0)T7(0). (50)
0
Hence, the results follow. a

Remark 5. Let yg = x, then 4y = ¥ = é = g, — Ct.
If the y, is the constant given reference signal, it can get
that é = —C4. Based on the system structure (7), it’s
easy to see that y,. has no influence on = in the open
system. Therefore, the designed controller can guarantee
that £ € Lo, ¢ € Lo when y, is constant. Because of
e =y, —Czx, e € Ly N Ly, it can be concluded that

lim e = 0.
t—o00

4. SIMULATION

To show the effective of the presented adaptive approach,
the parameters of the controller are given as follow
z(0) = [0,0,0,0,1], K1(0) =[3,2,0,1,0],
ka(0) = 1, ks(0) =2,
I' =51, v1 = v = 1000,
17 =>500, po =3, a =2, §=0.01.

The simulated speed is given by V = 360 km/h and the
aerodynamic force is simulated by gaussian-white-noise
with power 100. The actuator fault mode is assumed to
be as follows:

0s <t < 10s,

1

p(t) = { 1—4(t—10) 10s <t < 10.2s,
0.2 10.2s < t.

1 (t) = 20sin(3t)

The parameters for pantograph-catenary are summarized
in table 4 as Xiaodong, Z. (2011), with component pa-
rameters uncertainty values in AA;(t) and AAs(t) being
6; =1fori=1---8, k.;y = 7000, and b.; = 240.

Table 1. Pantograph-Catenary Parameters

Parameter Notation Value
Head mi 12kg
parameter b1 70N - s/m

k1 4740N/m
Frame mo 13kg
parameter bo 70N - s/m
Catenary ke1 = keo 7000N/s
parameter  be1 = beo 240N - s/m

Figure 2,3 shows the evolution of vertical positions and
their deviations during the period, resulted by actuator
faults, the time-varying catenary’s parameters and the
aerodynamic force. Note that x; is the point of contact
between the contact wire of the catenary and the pan-
tograph and x5 is the states represents variation in the
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vertical positions of the mass msy. These states reflect the
vertical displacements of the pantograph-catenary.

o & au Ak p

Fig. 2. Simulation of displacement and velocities of the
masses of the model 1

ne

. o=

I
afs

P
0
b
BEWCIDEboOK
;

[

Fig. 3. Simulation of displacement and velocities of the
masses of the model 2

Figure 4 shows that the contact force between pantograph
and catenary tracking the given value asymptotically in
the presence of the actuator fault, time-varying parameter
uncertainties and aerodynamic influence.

1=

11n

Fig. 4. Contact force for pantograph-catenary

The evolution of 1 and x» indicates that the contact dis-
tance between the pantograph and the catenary is stable
in a position. The observed oscillations show the vertical
movements of the pantograph. The fault of violently loss
of effectiveness on the air pressure results in fluctuation
of the positions x; and z2, but under the designed con-
troller, the contact force back to the desired value 100V
asymptotically.

5. CONCLUSION

This paper establishes the dynamic model of the pantograph-
catenary and converts it into a linear-time invariant system
with uncertainties. Considering the aerodynamic force,
actuator time-varying loss of effectiveness faults and bias
faults, an adaptive and robust controller is proposed
to guarantee the system asymptotically tracking a pre-
specified value. Simulation results show that the designed
controllers are robust and effective.
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