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A. Yoldas1, F. De Angeli1, P. Burgess1, G. Busso1, R. Busuttil25, T. Butterley26,
K. C. Chambers27, C. Copperwheat28, A. B. Danilet29, V. S. Dhillon5, D. W. Evans1,
L. Eyer20, D. Froebrich30, A. Gomboc31, G. Holland1, T. W.-S. Holoien15, J. F. Jarvis25,
N. Kaiser27, D. A. Kann32, D. Koester33, U. Kolb25, S. Komossa34, E. A. Magnier27,
A. Mahabal10, J. Polshaw17, J. L. Prieto35,36, T. Prusti37, M. Riello1, A. Scholz38,
G. Simonian15, K. Z. Stanek15, L. Szabados39, C. Waters27, R. W. Wilson26
1Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA, UK
2Department of Physics, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
3CBA (Huelva), Observatorio del CIECEM, Matalascañas, E-21076 Almonte, Huelva, Spain
4Departamento de Fı́sica Aplicada, Universidad de Huelva, E-21071 Huelva, Spain
5Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, UK
6Warsaw University Astronomical Observatory, Al. Ujazdowskie 4, 00-478 Warszawa, Poland
7INAF, Osservatorio Astronomico di Bologna, I-40127 Bologna, Italy
8Astronomical Observatory, Volgina 7, 11060 Belgrade 38, Serbia
9Sorbonne Universitès, UPMC Universite Paris 6 et CNRS, UMR 7095, Institut d’Astrophysique de Paris, 98 bis Bd. Arago, F-75014 Paris, France.
10California Institute of Technology, 1200 E. California Blvd, CA 91225, USA
11Kavli Institute for Cosmology Cambridge, Madingley Road, Cambridge, CB3 0HA, U.K
12SRON, Netherlands Institute for Space Research, Sorbonnelaan 2, NL-3584 CA, Utrecht, The Netherlands
13Dept. of Astrophysics, IMAPP, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
14Center for Cosmology and AstroParticle Physics (CCAPP), The Ohio State University, 191 W. Woodruff Ave., Columbus, OH 43210, USA
15Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210, USA
16Instytut Astronomiczny, Uniwersytet Wrocławski, Kopernika 11, 51-622 Wrocław, Poland
17Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, UK
18INAF - Osservatorio Astrofisico di Catania, Via Santa Sofia 78, I-95123 Catania, Italy
19INAF, Osservatorio Astronomico di Padova, I-35122 Padova, Italy
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ABSTRACT
We report the discovery and characterisation of a deeply eclipsing AM CVn-system,
Gaia14aae (= ASSASN-14cn). Gaia14aae was identified independently by the All-Sky Auto-
mated Survey for Supernovae and by the Gaia Science Alerts project, during two separate
outbursts. A third outburst is seen in archival Pan-STARRS-1 and ASAS-SN data. Spec-
troscopy reveals a hot, hydrogen-deficient spectrum with clear double-peaked emission lines,
consistent with an accreting double degenerate classification. We use follow-up photometry
to constrain the orbital parameters of the system. We find an orbital period of 49.71 min,
which places Gaia14aae at the long period extremum of the outbursting AM CVn period dis-
tribution. Gaia14aae is dominated by the light from its accreting white dwarf. Assuming an
orbital inclination of 90◦ for the binary system, the contact phases of the white dwarf lead to
lower limits of 0.78 M� and 0.015 M� on the masses of the accretor and donor respectively
and a lower limit on the mass ratio of 0.019. Gaia14aae is only the third eclipsing AM CVn
star known, and the first in which the WD is totally eclipsed. Using a helium WD model, we
estimate the accretor’s effective temperature to be 12900 ± 200 K. The three outburst events
occurred within 4 months of each other, while no other outburst activity is seen in the previous
8 years of CRTS, Pan-STARRS-1 and ASAS-SN data. This suggests that these events might
be rebrightenings of the first outburst rather than individual events.

Key words: Cataclysmic Variable: general, Binaries: eclipsing

1 INTRODUCTION

AM Canum Venaticorum (AM CVn) stars are a rare class of com-
pact hydrogen-deficient interacting binaries, comprised of white
dwarfs (WDs) accreting He-rich material from low mass degen-
erate or semi-degenerate companions (see Nelemans 2005; Sol-
heim 2010, for recent reviews). The orbital periods of these sys-
tems range from 5 to 65 min. This implies highly evolved com-
ponents and makes them, along with their ultra-compact X-ray bi-
nary equivalents, one of the most compact classes of binary system
known. The prototype system for the class of object was discovered
in 1967, and has an orbital period of 17 min (Smak 1967; Paczyn-
ski 1967). Since then, 43 confirmed AM CVn systems have been
discovered (Levitan et al. 2015). Not only are these systems inter-
esting as one of the possible end points for binary WD evolution
(Nelemans et al. 2001), they are also potentially strong sources
of gravitational wave emission due to their compact configurations
(Nelemans 2003), and they may be the progenitors of peculiar “dot
Ia” supernovae (Solheim & Yungelson 2005; Bildsten et al. 2007;
Inserra et al. 2015).

As binaries, AM CVn systems can yield detailed information
on the masses and radii of the two components if eclipses and radial
velocity variations can be observed. Eclipsing systems in particular
offer the possibility of measuring full system parameters, includ-
ing inclination and component masses, from time-series photom-
etry alone. The most robust results come from systems in which
the white dwarf is totally eclipsed. The extreme mass ratios of
AM CVns mean that the likelihood of observing such systems is
low and currently only two eclipsing AM CVn systems are known.
SDSSJ0926+3624 was the first eclipsing AM CVn star to be dis-
covered (Anderson et al. 2005; Copperwheat et al. 2011; Szypryt
et al. 2014), however its WD is only partially eclipsed. A second
partial eclipser (PTF1 J191905.19+481506.2, Levitan et al. 2014)
was recently discovered, but it only eclipses the edge of the disc and
not the WD, and so cannot be used for parameter determination.

Determining the nature of the secondary (donor) star is critical

? E-mail:hcc@ast.cam.ac.uk

to our understanding of the past evolution of the system, since the
three binary evolution channels proposed to form AM CVn stars
are best distinguished by the state of the donor star at the onset
of mass transfer. If the primary WD is accreting from another He-
rich WD, the binary must have undergone two common envelope
events in the past to reduce it to the observed compact configu-
ration. This is known as the double degenerate channel (Paczyn-
ski 1967; Faulkner et al. 1972). Alternatively, if the donor is not
fully degenerate at the time when it leaves the second common
envelope, the donor will be more massive than in the case of the
double-degenerate channel. Mass loss will cause it to become in-
creasingly degenerate as the binary evolves (Savonije et al. 1986;
Iben & Tutukov 1987). At the longest observed orbital periods
(i.e., the oldest AM CVn systems), the two channels become in-
distinguishable. The donor is predicted to reach the same near-zero
temperature, low entropy configuration in both cases (Deloye et al.
2007). A third possibility is that the binary may start mass trans-
fer as a hydrogen-rich cataclysmic variable. Such a system could
evolve to an AM CVn star if the donor star had already started to
evolve by the time mass transfer starts, and results in a hotter, more
massive donor star and traces of hydrogen may be expected in such
systems (Podsiadlowski et al. 2003).

In this paper, we present follow-up observations and pre-
liminary modelling of the AM CVn system Gaia14aae (RA =
16:11:33.97, Dec= +63:08:31.8, Rixon et al. 2014). Gaia14aae
was first detected in outburst by the All-Sky Automated Survey
for Supernovae (ASAS-SN, Shappee et al. 2014) at V = 13.6 on
2014 June 14, who gave it the designation ASASSN-14cn. This
was before the formal start of the Gaia Science Alerts project.
However, about 2 months later, Gaia14aae underwent a second out-
burst, which was detected by Gaia on 2014 August 11 at G = 16.04,
during the science commissioning phase. As this was significantly
(1.52 mag) brighter than the historic Gaia magnitude of the source
at this position, it was identified and announced as a Gaia science
alert1.

Gaia14aae was discovered as part of the Gaia Science Alerts

1 http://gaia.ac.uk/selected-gaia-science-alerts
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AM CVn: Gaia14aae 3

(GSA) project (Hodgkin et al. in prep.; Wyrzykowski et al. 2012),
which aims to identify such photometric transients in the Gaia
satellite data, and publicly announce their discovery on a rapid
timescale. Gaia is scanning the entire sky at sub-milliarcsecond res-
olution with precise photometry and astrometry down to a limiting
magnitude of G∼20 (G is the Gaia white light bandpass; Jordi et
al. 2010). Over the five year mission each position on the sky will
be observed on average 70 times. These repeated observations of
the entire sky mean that alongside the primary science mission of
Gaia, to provide spatial, kinematic and physical parameters for a
billion stars in the Milky Way, the satellite will also observe many
transient and time-domain phenomena, which will be explored sys-
tematically by the GSA project.

Many of the known AM CVn systems display outbursts and
super-outbursts in their long-term light curves (Levitan et al. 2015;
Ramsay et al. 2012), during which they brighten by 3-4 mag over
timescales of 1-2 days and last weeks to months. Currently, it ap-
pears that about 60 per cent (27/44) of the known AM CVn systems
display outbursts (Levitan et al. 2015). Gaia will play an impor-
tant role in the discovery of new cataclysmic variables (CVs), both
in outburst, and also through their decrease in magnitude during
eclipses. From pre-launch simulations, we expect that ∼1000 new
CVs, including a number of evolved systems and AM CVn systems
will be found by Gaia over its mission lifetime.

2 OBSERVATIONAL DATA

A 300s long-slit spectrum of Gaia14aae was taken on the night of
2014 October 13 (MJD 56943.88751 at the mid-point of the expo-
sure), when the system had returned to its quiescent state (i = 18.74
± 0.02 mag). This spectrum was obtained using the ACAM cam-
era, with the V400 grating, on the 4.2-m William Herschel Tele-
scope (WHT). The data were reduced within IRAF in the standard
fashion. The extracted and calibrated spectrum has a resolution of
∼12 Å and a S/N of ∼20 in the continuum. The spectrum, plotted
in Fig. 1, shows clear He emission lines, but no detectable H lines.
The emission lines are broad (FWHM = 2415± 100 km/s) and dis-
play double-peaked profiles, which are typical of AM CVn stars,
revealing the presence of an He-dominated accretion disc. Based
on this spectrum, we classified Gaia14aae as an AM CVn system.
The spectral classification and similarities to other eclipses moti-
vated the acquisition of further photometry. The peak velocities of
the two emission components are at 800 ± 50 km/s relative to rest
frame, averaged over all detected emission lines. Measurements
of the peak separation of the individual double peaked lines all
agree within 3σ of the average value. We do not see a sharp central
spike between the lines, which is observed in many AM CVn stars
and thought to originate on the surface of the WD (Marsh 1999;
Morales-Rueda et al. 2003; Roelofs et al. 2007, 2009). This might
be due to the low resolution of the spectrum, although it could also
be because of the high inclination of this system, as appears to be
the case with SDSSJ0926+3624 (Copperwheat et al. 2011). On the
ephemeris given in Section 3, the WHT spectrum was taken away
from eclipse at phase 0.22. Thus, the absence of the emission spike
is not due to the white dwarf eclipse.

The historic optical and infrared fluxes of Gaia14aae in pre-
sumed quiescence are also shown in Fig. 1. The optical fluxes are
from the Sloan Digital Sky Survey (SDSS) DR 10 (Aihara et al.
2011), while the infrared fluxes are from forced photometry at the
SDSS source location (Lang 2014) on Wide-Field Infrared Survey
Explorer (WISE; Wright et al. 2010) images. Ultraviolet (UV) im-

Table 1. Log of photometric observations of Gaia14aae used in this work.

Observatory Obs. date (UT) Filter Exposures (s)

Gaia 2014 08 11 G 45
ASAS-SN 2012 - 2015 V 129×180
Loiano 1.5m Cassini 2014 10 24 g 3×300, 91×30
Telescope + BFOSC 2014 10 25 g 135×30
Bialkow 0.6m, Poland 2014 10 18 BV 30×120

2014 10 19 BV 37×120
CIECEM 0.35m, Spain 2014 10 21 to clear 40×180, 8×150

2014 11 18 111×120, 399×90
pt5m, La Palma 2014 10 25 V 61×60

2014 10 22 V 36×60, 21×120
0.6m ASV, Serbia 2014 10 21 BV RI 6×300
Belogradchik AO 0.6m, 2014 10 21 BV R 2× 300
Bulgaria
Asiago 1.82m Copernico 2014 12 11 r 169×20

2014 12 12 g 169×20
4.2m WHT+ACAM 2014 12 18 V 491×5
Mercator 2015 01 15 g r+i 232×30
Catalina (historic) 2005 - 2014 clear 107×30
Pan-STARRS1 (historic) 2010 - 2014 grizy 66×30

ages are also available from Galaxy Evolution Explorer (GALEX;
Martin et al. 2005) DR 6. The GALEX archive contains three pairs
of FUV & NUV observations for Gaia14aae, one obtained on 2005
March 9, and the other two on 2007 May 24. All three observations
had short exposure times, 143–195 s. One of the May 2007 obser-
vations shows the system at a significantly fainter level than the
other two. While our current ephemeris is not sufficiently accurate
to establish the orbital phases of the GALEX observations, it is most
likely that the system was caught close to the eclipse of the primary.
The eclipse duration, discussed in Section 3, is 111 s, shorter than
but comparable to the GALEX observations. All fluxes have been
corrected for Galactic extinction towards the source, E(B − V ) =
0.018 (Schlegel et al. 1998). The absolute flux calibration of the
WHT+ACAM spectrum has been scaled to match the SDSS r and
i band magnitudes for Gaia14aae.

The initial determination that Gaia14aae was eclipsing was
made by the “Centre for Backyard Astrophysics” project (Skill-
man & Patterson 1993); who established a preliminary period
for Gaia14aae of 49.7 min (de Miguel 2014). Following this,
an intensive photometric monitoring campaign was undertaken for
Gaia14aae at a number of telescopes, as detailed in Table 1. In ad-
dition to this, we searched the databases of the Catalina Real-time
Transient Survey (CRTS; Drake et al. 2009), Pan-STARRS-1 (PS1;
Magnier et al. 2013; Schlafly et al. 2012; Tonry et al. 2012) and
ASAS-SN (Shappee et al. 2014) for pre-discovery images cover-
ing the position of Gaia14aae. The cadence of the CRTS data is
relatively low, but during those observations no outbursts were ob-
served. The average quiescent magnitude in CRTS for Gaia14aae is
18.64 ± 0.14 mag. PS1 detected an outburst of Gaia14aae on 2014
July 7, when it reached 15.38 mag in i-band, compared to 18.74 ±
0.02 mag in quiescence. Two eclipses of Gaia14aae are also visible
in the PS1 data. ASAS-SN has many upper limits for the light curve
and detected the decline of the outburst they discovered, as well as
some data on the second outburst, but only place limits on the third
outburst. The combined light curve for Gaia14aae spanning 8 years
of PS1, CRTS, ASAS-SN and Gaia data is shown in Fig. 2. The
first Gaia data point shown is the average of the 1.5 days of data

c© RAS, MNRAS 000, 2–9



4 H. Campbell et al.

Figure 1. WHT+ACAM spectrum of Gaia14aae taken on 2014 October 13 during quiescence, showing double-peaked He emission and an absence of H lines.
The historical GALEX and SDSS photometry are also shown as red points; the fainter GALEX magnitudes probably cover an eclipse. The blue and magenta
lines are Teff = 12700 K and 13100 K respectively He-atmosphere models fitted to the optical flux and two different epochs of UV flux. The top-right inset
shows the spectral energy distribution (SED) fit with the WISE data included, the bottom-right inset shows a zoom in of the He I λ6678 line in velocity space.

Gaia had observed before the outburst was discovered. This may
already included some of the rise of the outburst and thus be higher
than the true historic magnitude.

From the combined light curve, it appears that Gaia14aae un-
derwent at least three outbursts between 2014 June and September.
The first outburst was seen by ASAS-SN on 2014 June 14. The sec-
ond outburst was seen by PS1 in i-band on 2014 July 7 and ASAS-
SN on 2014 July 8. The limits measured by ASAS-SN between
2014 June 20 (6 days after the first outburst) and June 27 (9 days
before the second outburst) rule out the possibility that the first and
second outburst are in fact one continuing event. The third outburst
of the system was caught by Gaia on 2014 August 13, and is con-
strained by the Gaia historic data 1.5 days prior, the PS1 detections
of the system in quiescence in i band 24 days prior and in z band 7
days after, as well as ASAS-SN limits 1 day after, suggesting this
outburst had a short duration.

A number of follow-up studies were conducted. Imaging ob-
tained with the pt5m, La Palma (Hardy et al. in prep.) was re-
duced using the ULTRACAM pipeline (Dhillon et al. 2007), while
for all other instruments with the exception of WHT+ACAM, the
data were debiased and flatfielded using standard techniques. The
ACAM data was taken using a small CCD window and a fast
readout mode; as no suitable flatfield or bias frames were avail-
able, these calibrations have not been applied. However, as we are
performing differential photometry over a small area on a single
night, this should not affect our results significantly. ASTROME-
TRY.NET (Lang et al. 2010) was run on each image, excluding
the Cassini+BFOSC, Asiago 1.82m Copernico and WHT+ACAM
data, to register it to a common World Coordinate System. SEX-
TRACTOR (Bertin & Arnouts 1996) was used to detect, deblend

and measure the instrumental magnitudes of all sources in the
field. Finally, the list of sources detected in each image was up-
loaded to the Cambridge Photometry Calibration Server (CPCS2;
Wyrzykowski et al. 2013), which calibrates all the data from dif-
ferent telescopes to a common photometric system. To measure
the magnitude of Gaia14aae on the BFOSC, Asiago and ACAM
images, we used co-located list-driven differential photometry as
described in Irwin et al. (2007), using the CASUTOOLS pack-
age, yielding a precision of 15-18 millimag for Gaia14aae while
out of eclipse. The comparison stars were checked and found to
be photometrically stable. To correct for light travel times, we con-
verted the MJD (UTC) times of all data to the barycentric dynami-
cal timescale (TDB).

3 ANALYSIS

In order to estimate the WD temperature, we assume that the con-
tribution of the accretion disc to the GALEX FUV and NUV fluxes
is negligible, and fit the three ultraviolet observations with helium-
atmosphere models from Koester (2010), as shown in Fig. 1. We
estimate the contribution of the accretion components from the r-
band light curve (discusses below), which is consistent with the as-
sumptions used in the DB model. The two sets of “bright” GALEX
FUV and NUV fluxes are consistent with effective temperature esti-
mates of Teff = 12900±200 K (from Teff = 12700 K, magenta line
and 13100 K, blue line, respectively). DB white dwarfs have very
weak lines at such low temperatures, and thus are not detectable

2 gsaweb.ast.cam.ac.uk/followup/
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Figure 2. Historic light curve from CRTS (black crosses) and Pan-STARRS1 (filled circles) spanning eight years of observations. Pan-STARRS1 clearly
detected outbursts from Gaia14aae in 2014, and appears to have seen two eclipses. The ASAS-SN and Gaia detections are shown by the turquoise diamonds
(and limits as grey triangles) and a purple stars respectively. This historic light curve begins on 2006 January 5 and ends on 2015 March15.

given the much stronger emission lines at this resolution, which
might explain the lack of broad WD absorption features in the spec-
trum. Adopting a primary mass of M1 = 0.78 M�, corresponding
to the lower limit from the light curve fit (see below), implies a ra-
dius ofR1 = 7.44×108 cm (using the cooling models of Holberg &
Bergeron 2006), and hence a distance of 225 ± 10 pc. There ap-
pears to be an IR excess in the WISE photometry when compared
to the He-atmosphere model. The IR excess is unlikely to be due to
outbursts as the WISE photometry is from observations taken over
2 weeks separated by 6 months. The first set of WISE data was
taken over a period from 2010 July 17–23, while the second set
was taken over 2010 December 23–29; there are 7 CRTS measure-
ments during the first set of WISE observations which constrain the
system to be in quiescence. The cause of the WISE flux excess is
unclear.

The ephemeris of Gaia14aae was first determined by fitting a
light curve model (Copperwheat et al. 2010) to all the photometric
data divided into 16 night-long chunks. The model is composed of
a WD, accretion disc and a bright-spot where the gas stream hits
the disc. The model took into account the finite exposure lengths
of the images, including their readout time, by computing over
sub-steps in each exposure. We found the ephemeris of Gaia14aae
to be

BMJD (TDB) = 56980.0557197 (13) + 0.034519487 (16) E,

where the zero phase corresponds to the mid-point of the eclipse,
based on the time series data from Loiano, Asiago, and WHT. The
time of zero phase was chosen to give minimal correlation between
the two fitted parameters and the quoted uncertainties are the 1σ
errors. At present the estimate of the ephemeris suffers from a few
caveats. First, the long (30s or 20s) exposures used for the Loiano
and Asiago data, and the small number of eclipse times used (3, 1
and 2 from Loiano, Asiago and WHT, respectively) are not ideal.
Second, none of these instruments are built for precise timing and
may suffer from systematics.

We also modelled the high cadence ACAM light curve shown
in Fig. 3. The light from this system is dominated by the WD, with
a small contribution from the disc and bright spot. It is estimated
that the accretion components (bright spot plus accretion disk) con-
tribute ∼30 per cent of the r-band flux, although of course this
component is variable. The pre-eclipse “hump” which originates
in the bright spot seems unusually variable, and sometimes can
barely be seen, although this may be due to severe flickering. These
are aperiodic brightness variations with characteristic timescales of
seconds to minutes (Middleditch & Cordova 1982). The amplitude
of the flickering exceeds the noise and limits the current model fit.
Further observations are required to average the flickering out. The
eclipses are sharp-sided and deep, and the mid eclipse depths reach

c© RAS, MNRAS 000, 2–9
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Figure 3. Top: Observed r-band WHT+ACAM light curve for Gaia14aae (points) with the best fitting model (lines) comprising of a WD (which is the main
contributor to the light), accretion disc and bright-spot where the gas stream hits the disc. Bottom: Zoom in around the eclipses of the light curve shown above.

around 2 mag. In order to constrain the scaled white dwarf radius,
r1 = R1/a (where R1 is radius of the primary and a is the bi-
nary separation), we determined the phase of the WD eclipse to be
∆Φ = 0.0373 ± 0.0005 from our model fit. The ingress and egress
phases were deduced from the parameterised model of the binary
fitted to the WHT+ACAM light curve. This gives us r1 as a func-
tion of the mass ratio q and the inclination i. If we then assume a
WD mass – radius relation, we can solve for M1 and M2 using q,

r1 and the orbital period using Kepler’s laws. Here, we assume the
relation of P. Eggleton as quoted in Verbunt & Rappaport (1988),
scaling the relation by a factor of 1.05 to account for the finite tem-
perature of the WD.

There are a range of parameters which fit the current data with
our model. The model fits shown in Fig. 3 are for i = 88◦. The
lower limits to both M1 and M2 correspond to i = 90◦, q = 0.019,
r1 = 0.026 and a = 0.413R�. The lower limit onM1 ' 0.782 M� is

c© RAS, MNRAS 000, 2–9
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consistent with the average mass of WDs in cataclysmic variables
(Zorotovic et al. 2011). For i = 90◦, the companion star M2 has a
mass of 0.015 M�, which is consistent with expectations for a near-
zero entropy donor at a period of ∼50 min (Deloye et al. 2007).
For a lower inclination model with i = 80◦, q = 0.133, r1 = 0.013,
a = 0.488 R�, M1 and M2, increase to 1.159 M� and 0.154 M�
respectively. From our current data, we are unable to derive a se-
cure value of the mass ratio q, due to the flickering and the weak
bright-spot. Hence, we cannot select between the low mass, highly
degenerate donor stars characteristic of the double WD route as
found for i ∼ 90◦, and more massive hot donors that one might ex-
pect from the post-CV route (i ∼ 80◦). Future high cadence, high
S/N observations over multiple orbits might allow us to measure
the bright-spot features and break the degeneracy in our derived
parameters.

4 DISCUSSION

The orbital periods of AM CVn stars are thought to increase as
mass is transferred from donor to accretor, leading to a decrease in
the rate of mass transfer as the system evolves (Tsugawa & Osaki
1997; Nelemans et al. 2001). Thermal instabilities are expected
and often observed in AM CVn He accretion discs with interme-
diate mass-transfer rates, and these are sometimes seen as dwarf
nova (DN) type outbursts (Tsugawa & Osaki 1997). Intermediate
mass-transfer rates are thought to occur for systems with orbital
periods of 20 min to ∼40 min (Ramsay et al. 2012; Levitan et al.
2015; Nelemans 2005). Longer period objects (Porb & 40 min)
are thought to have low mass transfer rates and stable cool discs, so
that these should not have outbursts, which is mostly confirmed by
observations (Ramsay et al. 2012). However, the low mass transfer
rate could also mean that the intervals between outbursts are very
long, so we have simply not observed that many outbursts (Levitan
et al. 2015; Kotko et al. 2012; Cannizzo & Nelemans 2015).

Interestingly, Gaia14aae has experienced three outbursts
within only three months, while no outbursts were detected in ∼8
years, although we cannot rule out that some could have occurred
during gaps in data coverage. Thus to see three outbursts in just
a few months, suggests that they are likely to be “rebrightening”
outbursts (also known as echo outbursts), rather than independent
events. Multiple rebrightenings are frequently observed in outburst-
ing AM CVn stars and evolved cataclysmic variables (e.g. Patter-
son et al. 1998; Shears et al. 2012; Kato et al. 2014; Meyer &
Meyer-Hofmeister 2015). Echo outbursts are very similar to “nor-
mal” dwarf nova outbursts, except that they happen in quick succes-
sion in a system with otherwise few observed outbursts, and they
always happen on the decline from a superoutburst. From Fig. 2 it
can be seen that each outburst reaches a lower peak magnitude than
the previous outburst, consistent with echo outbursts, where over-
all, the target is fading, but it has a few echo outbursts following
the superoutburst. In between the rebrightenings it fades to near-
quiescence. WZ Sge stars and the outbursting AM CVn stars, such
as Gaia14aae, both have low mass transfer rates and extreme mass
ratios, which are likely to impact on the duration and frequency
of outbursts. Levitan et al. (2015) investigates the correlation be-
tween orbital period and outburst recurrence time, by extrapolating
to rare, long outbursts for long period systems. For our system, with
a period of 49.7 mins, they predict outbursts to recur every ∼10
years, although this does not consider rebrightenings.

It is somewhat surprising that Gaia14aae shows outbursts at
all, because a system with such a long orbital period is expected to

have a stable, cool disc (Solheim 2010). However, recent studies
by Cannizzo & Nelemans (2015) and Kotko et al. (2012) used a
disc instability model and the observed outburst properties of sys-
tems, as compiled by Levitan et al. (2015), to find that systems with
higher mass accretors, have lower outburst thresholds and are more
likely to undergo outbursts. Along with other long period AM CVn
stars which experience outbursts, SDSS J090221.35+381941.9
(Kato et al. 2014) and CSSJ045019.7+093113 (Woudt et al. 2013),
these authors suggest that the transition to a stable disc may happen
at longer orbital periods in some cases (or perhaps not at all).

The temperature of the WD implies an accretion rate, if
accretion-heated, of 7− 8× 10−11 M� yr−1 for 0.75M� (Towns-
ley & Gänsicke 2009). Combined with the masses we derive, this
accretion rate is more consistent with a degenerate donor (Deloye
et al. 2007), suggesting that the system may have descended from
a merging double WD, and that it may have had a much shorter
orbital period in the past (<10 min).

For comparison, we can compare the accretion rate implied
from the WD temperature to the stability criteria of the disc insta-
bility model in Kotko et al. (2012). A disc will be stable in the
high state if it is too hot and it will be stable in the low state if it
is too cold. For the system to be unstable, the accretion rate in the
disk must be between the limits for the critical accretion rate for hot
(Ṁ+

cr) and cold (Ṁ−
cr) stable equilibrium accretion rates. For an in-

clination of 90◦, with no hydrogen, 98 per cent helium and 2 per
cent metals, the upper critical rate is Ṁ+

cr = 5.2×10−9 M� yr−1

and lower critical rate is Ṁ−
cr = 4.3×10−12 M� yr−1. The WD

temperature inferred accretion rate of 7 − 8 × 10−11 M� yr−1 is
between the these limits. In fact, for any plausible parameters of
the disk instability model, the inferred accretion rate is orders of
magnitude below the hot, stable state, and a factor ∼20 above the
cool, stable state. Thus, Gaia14aae is consistent with the disc insta-
bility models for AM CVn stars, since the accretion rate inferred
from the WD temperature lies in the unstable regime at this orbital
period and mass. Our estimate of the accretion rate could be too
high because the WD temperature at the long period of Gaia14aae
may be set by simple WD cooling (Bildsten et al. 2006). However,
it would need to be a factor of 20 lower than we estimate to have
an accretion rate below the lower critical rate Ṁ−

cr .

In the future, there is a variety of data which will be essen-
tial for fully characterising Gaia14aae. Firstly, more precise, high
cadence photometry can be used to average out flickering, which
is limiting the analysis of the light curve at present. It is vital to
observe the bright spot in the system, as this will precisely pin
down the orientation, thus allowing the system parameters to be
accurately calculated. Further spectra may allow us to detect the
same narrow spikes between the double peaked emission lines that
are seen in other AM CVn stars. Combined with the phase from
eclipses, this could allow a definitive proof that the spike originates
on the accreting WD. Spectra will also provide information on the
elements present in the system, useful for understanding the evo-
lutionary history of Gaia14aae. Gaia will also provide parallax and
proper motion, and having an accurate distance to the system will
allow system parameters, such as the WD temperature, to be bet-
ter constrained. Finally, long term precision timing will be needed
to detect the expected period change due to gravitational radiation-
driven mass transfer. This effect should cause a progressive delay
in the arrival time of eclipses, but it may be at least a decade before
this can be detected.
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5 CONCLUSIONS

Gaia14aae was found as a transient in Gaia data on 2014 August
11. We undertook spectroscopic and photometric follow-up and
identify it as an AM CVn system. Gaia14aae is a deeply eclips-
ing system, with the accreting white dwarf being totally eclipsed
on a period of 0.034519 days (49.71 min). It is the third eclipsing
AM CVn known, the second in which the white dwarf is eclipsed,
and the first in which the white dwarf is totally eclipsed. We de-
tected three outbursts over ∼4 months. The orbital period places
Gaia14aae at the long period extremum of the outbursting region
of the AM CVn distribution. A helium WD model was used to es-
timate an effective temperature of ∼12900 ± 200 K for the white
dwarf. We used the contact phases of the WD eclipse to place lower
limits of 0.78M� and 0.015M� on the masses of the accretor and
donor respectively, which correspond to an inclination of 90◦, a
mass ratio of 0.019 and an orbital separation of 0.41R�. The deep
eclipses shown by Gaia14aae, suggest that future observation have
the potential to lead to the most precise parameter determinations
of any AM CVn star discovered to date.
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