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Abstract 

The aim of this work is to use molecular simulation to investigate the role of 

three-body interatomic potentials in noble gas systems for two distinct 

phenomena: phase equilibria and shear flow. In particular we studied the 

vapour-liquid coexisting phase for pure systems (argon, krypton and x enon) and 

for an argon-krypton mixture, utilizing the technique called Monte Carlo Gibbs 

ensemble. We also studied the dependence of the shear viscosity, pressure and 

energy with the strain rate in planar Couette flow, using a non-equilibrium 

molecular simulation (NEMD) technique. 

The results we present in this work demonstrate that three-body interactions 

play an important role in the overall interatomic interactions of noble gases. This 

is demonstrated by the good agreement between our simulation results and the 

experimental data for both equilibrium and non-equilibrium systems.  

The good results for vapour-liquid coexisting phases encourage performing 

further computer simulations with realistic potentials. This may improve the 

prediction of quantities like critical temperature and density, in particular of 

substances for which these properties are difficult to obtain from experiment.  

We have demonstrated that use of accurate two- and three-body potentials for 

shearing liquid argon and xenon displays significant departure from the 

expected strain rate dependencies of the pressure, energy and shear viscosity.  

For the first time, the pressure is convincingly observed to vary linearly with an 

apparent analytic 2γ&  dependence, in contrast to the predicted 2/3γ&  dependence 

of mode -coupling theory. Our best extrapolation of the zero -shear viscosity for 

argon gives excellent agreement (within 1%) with the known experimental data. 

To the best of our knowledge, this the first time that such accuracy has been 



achieved with NEMD simulations. This encourages performing simulations with 

accurate potentials for transport properties. 
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Chapter 1 

 

 

Molecular Simulation of Fluids 

 

This work is the result of research conducted on the molecular simulation of fluids. 

Traditionally, science, in order to understand the phenomena occurring in nature, used 

two different approaches: experiment and theory. These two approaches are not 

necessarily separate. In fact, the ‘art’ of collecting experimental data usually requires 

profound theoretical knowledge, while on the other hand, models require a necessary 

minimum amount of experimental data to derive some of their parameters. It is better to 

view them as complementary approaches that together strengthen the scientific 

investigation. Molecular simulation, since the advent of the computer, has become an 

important means of carrying out scientific research.  

Despite the commonly used term ‘computer experiments’, molecular simulation 

belongs to the theoretical approach, unless we intend to investigate a ‘virtual’ reality.  

We can envisage two main reasons why molecular simulation is associated with the 

experimental approach. The first reason is a suggestive one and is due to its ability to 

reproduce the motion of the particles as it occurs in nature. In this regard, even if 

simulation techniques could reproduce molecular motion in detail, they would be, in any 

case, a representation of real systems. Moreover techniques that try to simulate closely 

real systems, show less predictive power than others, which use more artificial 

implementations. The other reason is more a procedural one. Usually molecular 
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simulation is used to test the validity of a theory or a theoretical conjecture, or even to 

discriminate between two theories. While this is indeed true, ultimately it is experiment 

that will decide the matter.                  

More interesting, and maybe more speculative, is to consider if molecular simulation 

is a deductive or an inductive method. The use of semiempirical models, such as for 

example intermolecular potentials fitted on experimental data, could be indeed 

indicative of an inductive procedure. However, these models are usually supposed to be 

applied under a range of conditions wider than those used to derive the models 

themselves. Furthermore, ab initio  techniques [Gal93] are meant to predict general 

behaviour, utilizing very elementary initial assumptions.  

The appeal and usefulness of molecular simulation is that it often allows accurate 

calculation of natural phenomena without the plethora of approximations and 

assumptions that limit conventional theoretical approaches to prediction and estimation. 

The key theoretical assumption of molecular simulation is to envisage any physical 

system as a collection of particles. In general, all the macroscopic properties such as 

temperature, pressure and density can be related to the motion or the state of these 

particles. Consequently, knowing the motion or the state of the particles enables one to 

deduce the macroscopic properties of the system. From a classical dynamics viewpoint, 

to derive the motion of a collection of particles it is required to know the forces acting 

on them. One may then use Newton’s equations of motion to solve for the particle 

positions and momenta. From a statistical mechanics viewpoint, the knowledge of the 

state of an ensemble of particles is related to the energy of the particles, which allows 

the derivations of probabilities relative to that state.  

Molecular simulation techniques, therefore, require the adoption of an intermolecular 

potential to represent the interactions between the particles of any physical system 
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(solid, liquid or gas). The intermolecular potential and a limited number of 

approximations, represent the model of a physical system that is used to test against 

experimental data or preexisting theoretical models. The computer generates either the 

motion or different states of the particles, and the average values of the physical 

quantities of interest can be calculated. The two main molecular simulation techniques, 

molecular dynamics (MD) and Monte Carlo  (MC) techniques [All87, Hey98], 

implement these ideas. The first follows a dynamical approach, utilizing Newton 

equations of motion, the second a statistical mechanics approach, using the concept of 

configuration space. Nowadays these techniques have reached such a level of 

sophistication that they are able to reproduce experimental results with good accuracy 

[Ant97, Buk01]. 

It is commonly assumed that intermolecular interactions are confined to pairs of 

molecules [Pan87, Pan88, Pla97, Sad96a], and contributions involving three, four or 

more atoms are ignored. When this assumption is invoked, the molecular properties are 

assumed to be ‘pair-additive.’ Generally, interactions between pairs of molecules make 

the overwhelming contribution to the overall intermolecular interaction. However, it is 

also documented [Elr94] that three-body interactions can make a significant 

contribution to intermolecular interactions in liquids, (see Chapter 2). Despite this, 

molecular simulations rarely account rigorously for the effect of three-body interactions 

[Sad96b, Sad98a, Sad98b, Sad98c, Ant97]. Instead, the typical molecular simulation 

assumes pair additivity, and uses a simple ‘effective’ intermolecular potential in which 

many-body effects are said to be included in the values of the intermolecular 

parameters.  
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In the following sections we summarize the aims of our work (section 1.1) and give a 

brief account of the background and progress in molecular simulation regarding the 

topics we investigated (section 1.2 and 1.3).    

 

1.1 Aims 

The aim of this work is to use molecular simulation to investigate the role of three-

body interatomic potentials in noble gas systems for two distinct phenomena: phase 

equilibria and shear flow. In particular we studied the vapour-liquid coexisting phase for 

pure systems (argon, krypton and xenon) and for an argon-krypton mixture. We also 

studied the dependence of the shear viscosity, pressure and energy with the strain rate in 

planar Couette flow. We give here a brief review of the previous work in these fields to 

better delineate our task. The rest of the thesis is arranged as follows: in Chapter 2 we 

give details of the interatomic potentials and of the techniques used. In Chapter 3 and 

Chapter 4 we report the results obtained for phase equilibria and planar Couette flow 

simulations respectively. Chapter 5 contains our conclusions and recommendations. 

 

 1.2 Background 

Previous work [Sad96b, Ant97, Sad98a] regarding the role of three-body interactions 

on the phase behaviour of pure atomic systems has been restricted to the Axilrod-Teller 

term [Axi43] and the calculations have been confined mainly to argon. In addition, 

calculations on the influence of three-body interactions on phase behaviour of some 

theoretical binary mixtures are also available [Sad98b, Sad98c]. Sadus and Prausnitz 

[Sad96b] reported that the Axilrod-Teller term contributes typically 5% of the overall 

energy of the liquid phase of argon. Calculations for the vapour-liquid coexistence of 

argon by Anta et al. [Ant97] and Sadus [Sad98a] using a combination of the Lennard-
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Jones and Axilrod-Teller potentials indicate that the inclusion of three-body interactions 

deteriorates the agreement between theory and experiment for the coexisting liquid 

phase densities. This failure can be attributed to the effective nature of the Lennard-

Jones potential (see Chapter 2). The use of ‘effective’ intermolecular potentials is a 

source of considerable inaccuracy and uncertainty in molecular simulations. For 

example, in Chapter 3 we show that three-body interactions contribute significantly to 

the phase behaviour of fluids, whereas this effect had been hidden previously by the use 

of effective intermolecular potentials. The agreement between experiment and theory 

for the phase envelope is improved considerably by explicitly accounting for three-body 

interactions. However, accounting for three-body interactions requires considerably 

more computing resources than simple pair interactions. In the worst case, the 

computing time of a system of N molecules scales in proportion to N2 for pair 

interactions, compared with N3 for three-body interactions. Although computation-time 

saving algorithms have been developed [Sad99, see also Appendix 2] to avoid the worst 

case scenario, accounting for three-body interactions typically requires at least one order 

of magnitude more computing time than simple pair calculations. This means that such 

calculations are far from routine, even with today’s high performance computers. 

However, because of the importance of three-body interactions, it is highly desirable to 

include them in molecula r simulations.  

Anta et al. [Ant97] reported good results for vapour-liquid coexistence of argon 

using the Aziz-Slaman [Azi86, Azi93] potential in conjunction with the Axilrod-Teller 

term. Unlike the Lennard-Jones potential, the Aziz-Slaman potential is a genuine pair 

potential and it is thought to be the best representation of the two-body interactions for 

argon. However, its mathematical expression is rather complicated. For argon we used 

the Barker-Fisher-Watts (BFW) potential [Bar71a], for computational convenience and 
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because equivalent expressions are available for krypton and xenon. We also show in 

Chapter 3 that the Aziz-Slaman potential and BFW potential produce similar results for 

the argon vapour-liquid coexisting curve.     

Non-equilibrium molecular dynamics (NEMD) simulations of Couette flow (see 

Chapter 2) are commonly reported using either the Lennard-Jones or Weeks-Chandler-

Anderson (WCA) intermolecular potentials to describe interatomic interactions [Eva90, 

Sar98]. However, both the Lennard-Jones and WCA potentials are effective multi-body 

potentials and as such they do not represent two-body interactions accurately [Bar76]. 

Earlier simulations [Eva80, Eva81] with these potentials appear to confirm the non-

analytic dependence of viscosity (η ) with shear rate in the limit of low strain rate (γ& ).  

However, more recent work questions the 2/1γ&  dependence of the shear viscosity. For 

example, Ryckaert et al. [Ryc88] and Ferrario et al. [Fer91a] found a 2γ&  dependence of 

the shear viscosity. The significance of these results is unclear because of the high strain 

rates and large statistical uncertainties in the data [Tra98]. Furthermore, using profile 

biased thermostats, namely thermostats that make some assumption about the form of 

the streaming velocity profile [Eva90], under conditions of large strain rates, can induce 

unwanted string-phases in the fluid, which consist of highly ordered solid-like 

configurations [Erp84]. This significantly reduces both the shear viscosity and the 

hydrostatic pressure from their true values [Eva86, Eva92]. Bhupathiraju et al. [Bhu96] 

demonstrated that in the limit of zero strain rate the shear viscosity behaves in a 

Newtonian manner, i.e., the shear viscosity becomes independent of γ& . Travis et al. 

[Tra98] showed that the shear viscosity may be fit by a number of functions that do not 

have any theoretical basis. They also showed that the viscosity profile may be 

successfully fit by two separate linear functions of 2/1γ&  in two different strain rate 

regimes. Alternatively a Cross equation [Cro65], or the Quentrec local-order theory for 
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isotropic fluids [Que82, Tro84] were also found to give reasonable agreement with 

simulation data.  

Of particular relevance for our current work is the mode-coupling theory [Kaw73] 

which predicts that in the limit of zero shear rate the shear viscosity is a non-analytic 

function of the strain rate, 2/1γη &≈ . This theory also predicts that the hydrostatic 

pressure varies as 
2/3γ& . Mode coupling theory does not provide guidance on how small 

the strain rate must be in order to observe the predicted 2/1γ&  and 2/3γ& dependence for 

the shear viscosity and hydrostatic pressure, respectively. As NEMD simulations are 

typically performed at relatively high rates of strain to obtain high signal to noise ratios, 

such simulations cannot confirm the predictions of mode coupling theory. In the 

absence of simulation data at field strengths several orders of magnitude smaller than 

those typically achievable, the question of the validity of mode coupling theory remains 

open. However, most previous NEMD simulations using effective multi-body 

intermolecular potentials have shown that the hydrostatic pressure and internal energy 

do behave as predicted by the theory, even at these relatively high strain rates. 

We are aware of only one previous NEMD study of simple atomic fluids interacting 

via accurate two- and three-body intermolecular potentials. Lee and Cummings [Lee94] 

reported NEMD simulations of planar Couette flow for a system of 108 atoms 

interacting via a potential composed of the Barker-Fisher-Watts two-body potential  

[Bar71a] plus the three-body triple-dipole potential of Axilrod and Teller (AT) [Axi43]. 

The three-body interaction was observed to reduce the value of the shear viscosity by 

only 3%. In the range of strain rates studied, Lee and Cummings found that the strain 

rate behaviour of the energy, pressure and shear viscosity all conformed to the 

predictions of mode coupling theory. 
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1.3 Progress in molecular simulation    

 

Phase equilibria 

It is found by experiment that only a certain number of the physical properties of a 

substance can have arbitrary values. The remaining properties are determined by the 

nature of the system. For example, considering a gas at temperature T with a given mass 

m and held in a container of volume V, the value of its pressure P can be obtained via an 

equation in m, V and T; 

f(P,m,V,T) = 0                                                    (1.1) 

such an expression is known in general  as the equation of state [Sea75]. In this work we 

are interested in thermodynamic systems, the state of which can be determined by 

properties like density, temperature, pressure, chemical potential, etc. The phase of the 

system, namely gas, liquid or solid, is an important characteristic and in particular phase 

transitions represent an important field of study. Both technological and scientific 

applications require a detailed knowledge of phase behaviour of fluids and their 

mixtures. For example, chemical industries need to know transition phenomena and the 

relative parameters (critical temperatures, pressures, etc.) to separate particular 

substances from their original mixtures. This wide interest is demonstrated by the large 

amount of experimental data [Wic73] collected and the number of semiempirical and 

theoretical models proposed regarding phase equilibria. Despite the substantial 

knowledge so far gained much more remains to be learned. For example, 

multicomponent mixture experiments are very rare and performed in limited 

temperature and pressure ranges because of their high realization costs [Gub89]. 

Significant information comes from equation-of-state models [San94], but they can not 
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be used to accurately predict properties outside the range of experiments adopted to 

obtain the parameters of the models. 

In this regard, molecular simulation represents a complementary method [Gub96, 

Qui01]. Utilizing intermolecular potentials obtained from either quantum mechanics or 

semi-empirical calculations, and adopting fewer approximations, molecular simulation 

can be applied over a wider range of conditions. In fact, even if their parameters are 

determined from particular experimental data, they can be used under more general 

conditions [Bar76]. Here we give a brief description of some of the molecular 

simulation techniques dedicated to phase equilibria. For further details we refer to the 

following reviews in the literature [Gub89, All93, Pan94a, Pan95, Fre96, Pan00]. 

The most direct procedure to simulate phase equilibria may simply consist of 

adequately changing the temperature or the pressure of the system and observing the 

occurrence of a phase transformation. This is possible via either Monte Carlo or 

molecular dynamics methods. Reviews of these techniques were given by Rowlinson 

and Widom [Row82] and by Gubbins [Gub89]. Unfortunately, important difficulties 

characterize these direct methods. First-order transitions [Hua63] may show hysteresis 

due to a large free energy barrier separating the two phases at or near to the coexistence 

[Fre96]. This free energy barrier consists of the free energy of the interface. The larger 

the area of the interface, the higher the barrier. In a normal simulation, even with large 

size systems, a significant number of particles are in the proximity of the interface, 

which can alter the outcomes of the simulation. Long equilibration times are required 

and it is very difficult to maintain the coexisting phases when the two values of the 

densities are similar. On the other hand, the direct methods do not require random 

particle exchanges as other techniques do [Pan00], in order to achieve the equality of 

the chemical potentials (material equilibrium) in the coexisting phases. For systems with 
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high densities the direct method would be preferable, since particle insertions are 

characterized by low probabilities. However, the material equilibrium by diffusion 

through the interface requires long simulation times under high density conditions 

[Yan96]. Despite these deficiencies, the direct methods provide useful information 

regarding the interface properties and surface tension.  

Simulating the phase coexistence without interfaces is the basic and innovative idea 

of the Monte Carlo (MC) Gibbs ensemble method introduced by Panagiotopoulos 

[Pan87, Pan88]. As discussed in more detail in Chapter 2, the coexisting phases take 

place in separate simulation boxes. Importantly, material equilibrium between the 

different phases is achieved by exchanging particles between the boxes. This also 

represents the weakness of the method. The higher the density of at least one phase, the 

lower is the probability to successfully exchange the particles. Molecular dynamics 

(MD) implementation of the Gibbs ensemble method was proposed by Palmer and Lo 

using an extended system Hamiltonian [Pal94]. Baranyai and Cummings [Bar95] 

reported a simpler version of the MD Gibbs ensemble, using Hoover-type equations of 

motion [Mel93, Mel94] and particle exchanges like in the traditional MC version 

[Pan88]. The MD versions are able to well reproduce the results from MC Gibbs 

ensemble simulations. Other versions of the technique are reviewed in the literature 

[Pan95, Fre96, Pan00]. In particular, for multisegment or polymeric systems, versions 

of the Gibbs ensemble, using biased sampling methods for particle insertion, have been 

proposed [Sie93, Smi95, Fre96]. Also parallel versions were presented [Loy95, Ess95, 

Str00]. In general, the Gibbs ensemble technique is easy to implement and can be used 

to get information on the properties of coexisting phases from a single simulation.   

 Material equilibrium is achieved when the chemical potentials of all the coexisting 

phases are equal. Methods for calculating the (excess) chemical potential via molecular 
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simulation are available [Wid63, Kof97, see also Chapter 2]. The chemical potential can 

be calculated also from grand canonical Monte Carlo simulations [Fre96]. Performing 

several canonical simulations with, for example, Widom test particle insertions [Wid63] 

or grand canonical Monte Carlo simulations, it is possible to determine curves of the 

chemical potential as a function of the pressure for the different phases of interest. The 

coexisting condition is found at the point of intersection of the curves [Pan94a]. Möller 

and Fischer [Möl90] and Lotfi et al. [Lot92] used this scheme and calculated with high 

accuracy the coexistence properties of pure Lennard-Jones fluids. For multicomponent 

systems and for pure systems near the critical point this scheme requires a significant 

number of simulations [Pan94a], hence other techniques are preferable.     

A method that does not require the equilibration or the calculation of the chemical 

potential of the coexisting phases, is the Gibbs-Duhem integration introduced by Kofke 

[Kof93a, Kof93b]. This method for pure systems consists of the numerical integration 

of the (first-order nonlinear) Clausius-Clapeyron differential equation [Fre96]:  

VT
H

dT
dP

∆
∆

=                                                       (1.2) 

where H∆  and V∆  are the differences of the enthalpy and volume in the two phases 

respectively. The method requires the knowledge of a coexisting point at a given 

temperature and pressure, which can be obtained using other techniques. A complete 

phase diagram is then determined by integrating Eq. (1.2), usually by a predictor-

corrector method [Gea71]. Standard molecular simulations are used to calculate the 

right-hand side of Eq. (1.2) relative to infinitesimal and consecutive changes in the 

temperature. This method was applied for vapour-liquid [Kof93a, Kof93b] and solid-

liquid coexistence [Agr95] of the Lennard-Jones fluid and for vapour-liquid coexistence 

of the two-centre Lennard-Jones fluid [Lis96a]. For multicomponent fluids, Gibbs-

Duhem integration has to use particle exchanges, but exchanges can be avoided for one 
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component, usually the one most difficult to be exchanged. Lisal and Vacek used 

Gibbs-Duhem integration for mixtures of two-centre Lennard-Jones fluids [Lis96b]. 

Even though numerical errors in the integration and inaccuracy of the initial coexisting 

point may lead to deviations from the actual phase diagram, the method is very reliable, 

and for the solid and highly structured phases is the most efficient among the other 

techniques. 

In a standard Monte Carlo technique, averages of the thermodynamics quantities are 

calculated for the parameters chosen in the simulation. For example, to obtain values of 

thermodynamic quantities relative to a number of different temperatures, an equivalent 

number of simulations have to be performed. Ferrenberg and Swendsen envisaged a 

method [Fer88] that, considering only a single simulation at given values of some 

parameters, allows calculating the thermodynamic quantities for different values of 

those parameters. This concept was first applied with the Ising model [Fer88, Fer89, 

Dru96], using multipole histogram techniques to collect data at different points of the 

parameter space in order to calculate a distribution for the density of the states. The 

same scheme, known as histogram reweighting methods, can be used for continuous-

space fluids. Details of how this procedure can be applied for phase equilibria of pure 

and multicomponent systems are given in the references [Wil95, Pot98, Pot99, Pan98, 

Pan00]. The histogram reweighting methods show better accuracy in comparison with 

the Gibbs ensemble [Pot98] for a given amount of computer time, and they are more 

reliable in deriving critical points in conjunction with finite-size formalism [Pot98]. The 

disadvantages of these methods are that their implementation requires more effort and 

their efficiency decreases rapidly with increasing system size.  
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Considering that we wanted to study the vapour-liquid equilibria of fluids with 

relatively complex intermolecular potentials requiring a reasonable accuracy, the choice 

of the Gibbs ensemble method suited our needs best.                   

 

Transport phenomena 

Statistical mechanics devoted to equilibrium systems provides, using a molecular 

description, phase averages of macroscopic quantities such as for example pressure and 

specific heat. These phase averages are obtained through probabilistic assumptions, 

associating a probability to each state of the system and using analytic tools for the 

construction of asymptotic formulae [Khi49].  

Viscous flow and thermal conduction phenomena are examples of non-equilibrium 

systems. They are usually called transport processes. The transport properties of atomic 

or molecular fluids under shear are of significant scientific and technological interest. 

The dependence of the shear viscosity (see Chapter 2) as a function of applied strain 

rate is of major importance in the design of suitable lubricants, and the viscoelastic 

properties of polymer melts under extensional and shear flows is important to the 

industrial processing of plastics. The structural design of molecules under appropriate 

flow fields can be aided by application of simulation methods such as non-equilibrium 

molecular dynamics [Eva90, Dai92]. In addition, NEMD can also be used to assess 

rheological models such as the Rouse or Doi-Edwards models of viscoelasticity for 

polymer solutions and melts [Doi86], or the mode-coupling theory of Kawasaki and 

Gunton [Kaw73].  

Shear viscosity is one of the Navier-Stokes transport coefficients [Eva90], which 

relate thermodynamic fluxes to their conjugate thermodynamic forces. Fluid mechanics 

is able to determine the macroscopic behaviour of non-equilibrium systems, but its laws 
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need to be supplemented with the specification of adequate boundary conditions and 

with thermophysical constants like the above mentioned transport coefficients. These 

quantities are usually obtained through experiments. One of the aims of statistical 

mechanics, devoted to non-equilibrium systems, is to derive these quantities from a 

microscopic description of the system. For dilute gases, kinetic theory [Hey98] is able 

to provide values of the transport coefficients in excellent agreement with the 

experimental data [Bar71b]. Unfortunately, this theory can not take account of higher 

density fluids. It has been proved that Navier-Stokes transport coefficients are non-

analytic functions of the density [Dor70, Dor72], which means that a power-series 

expansion is not possible.    

Kubo [Kub57] demonstrated that a linear transport coefficient can be determined 

through the equilibrium fluctuations of the relative flux. For example, the (Green-Kubo) 

relation for shear viscosity, η, in the limit of zero shear rate is: 

  ∫
∞

=

0

)()0( dttPP
Tk

V
xyxy

B

η                                  (1.3) 

where xyP−  is the shear stress, Bk  is the Boltzmann constant and  represents an 

equilibrium ensemble average. Eq. (1.3) and the equivalent Green-Kubo relations 

[Eva90] for the remaining transport coefficients can be calculated via equilibrium 

molecular dynamics simulations. Time correlation functions, like Eq. (1.3), are the 

average response of system properties to spontaneous fluctuations, which are 

consequently very small. The signal-to-noise ratio is poor at long times, which may give 

an important contribution to the integral in Eq. (1.5) or in the Green-Kubo relations for 

other transport coefficients. Furthermore, the finite size of the system limits the time the 

correlation functions can be calculated for [All87, Hey98]. To counter these limitations 

NEMD techniques were invented, in which the response of the system to an induced  
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perturbation is calculated. The perturbation the system experiences is larger and 

consequently the signal-to-noise ratio is improved. Furthermore, these techniques can 

consider the steady state response to the perturbation, thus the long-time behaviour of 

correlation functions is avoided.  

A common practice to generate a non-equilibrium state in a molecular simulation, for 

example to induce a momentum or energy flow, is to introduce in the simulation cell 

boundary regions which act on the particles as momentum or energy reservoirs. The 

idea behind these techniques is to simulate closely what occurs in real systems. For this 

reason they are called ‘realistic’ techniques. For example Ashurst and Hoover [Ash73, 

Ash75] simulated planar Couette flow using fluid-like sliding walls [Lie92] and 

calculated the Lennard-Jones fluid shear viscosity. Tenenbaum et al. [Ten82] used 

stochastic boundary conditions to simulate the contact with thermal walls. These 

methods can not use full periodic boundary conditions, therefore they are characterized 

by surface effects and inhomogeneities in the thermodynamic properties of the fluid. 

Lees and Edwards developed periodic boundary conditions [Lee72], which enable one 

to simulate homogeneous planar Couette flow in which the low-Reynolds-number 

velocity profile is linear [Eva90].   

A different approach to simulate a non-equilibrium system consists in altering the 

standard equations of motion, introducing ‘artificial’ mechanical fields, which exert the 

perturbation on the systems [Hoo80, Eva84c, Eva90]. Techniques adopting this concept 

are called ‘synthetic’. Importantly, they do not suffer from surface effects and spatial 

inhomogeneities. Since the mechanical fields exert work on the systems, which is 

converted into heat, adequate thermostats have to be used [Hoo85, Eva90] to avoid 

heating up the system. Gosling et al. [Gos73] used a spatially periodic field to simulate 

a system under a sinusoidal transverse force and calculated the viscosity utilizing an 
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extrapolation to infinite wavelengths of the induced velocity profile. They did not use a 

thermostat, but they adopted an adequately small amplitude of the force, which avoided 

the temperature rising too rapidly. A further step in this direction is represented by the 

techniques adopting non Hamiltonian dynamics [Eva90]. For example, for a Nosé-

Hoover [Hoo85] thermostat, the particles of the system are weakly coupled to a thermal 

reservoir, which can add or remove kinetic energy. This is achieved introducing an extra 

term in the acceleration equations. The resulting equations of motion can not be derived 

from a Hamiltonian. The Evans-Gillan equations of motion for heat flow [Eva90] are a 

modification of the standard equations of motion obtained with the introduction of a 

synthetic field acting on each particle. This synthetic field reproduces the effect on the 

system of a real temperature gradient. No Hamiltonian is known which is able to 

generate the Evans-Gillan equations of motion. Both Gaussian [Eva90] and SLLOD 

[Eva90] equations of motion, which are described in detail in Chapter 2, can not be 

derived from any Hamiltonian.  

Green-Kubo relations can be applied not only at equilibrium, but also to adiabatic 

linear (weak fields) response theory [Eva90]. When thermostats are used, to keep for 

example the kinetic energy constant, equivalent relations can be obtained to calculate 

the transport coefficients [Eva90]. Evans and Morris [Eva84a] showed that time 

correlation functions using either Newtonian or Gaussian isothermal equations of 

motion for Navier-Stokes transport coefficients like shear viscosity, self diffusion 

coefficient and thermal conductivity, are equivalent in the large-system limit.        

A further advantage of NEMD techniques is that they can be used to study the non-

linear response of systems, where the Green-Kubo relations can not be used. For strong 

fields, the transport coefficients can be obtained directly by relating the thermodynamic 

fluxes to the relevant thermodynamic forces. In the NEMD SLLOD technique for planar 
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Couette flow, the viscosity is derived via the ratio of the shear stress to the strain rate 

(see Chapter 2). It is noteworthy to point out that this direct method can not be applied 

efficiently for weak fields because of the deterioration in the signal to noise ratio.  

The most efficient way to calculate the transport coefficients in the small field 

regime is to use ‘synthetic’ NEMD techniques in conjunction with the transient-time 

correlation function (TTCF) relations [Eva90]. As Green-Kubo relations extract 

transport coefficients from fluctuations of microscopic fluxes at equilibrium, similarly, 

TTCF relations extract them from fluctuations of microscopic fluxes arbitrarily far from 

equilibrium. TTCF can be applied to genuinely non-linear transport processes. 

Moreover, TTCF relations in the linear response regime reduce to the Green-Kubo 

relations [Eva90]. It has been shown also that the TTCF and NEMD direct method lead 

to the same results for strong fields. The subtraction response method [Cic75, Cic76, 

Cic79] can also be applied in the small field regime, but it has been demonstrated that 

TTCF is in general preferable in the long time limit [Eva90]. 
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Chapter 2 

 

 

Theory and Computational Techniques 

 

This chapter is dedicated to the explanation of all the technical details regarding the 

simulation methods we used in this work. It is meant to supply a sound description of 

these methods, but for a deeper understanding we refer to the literature [All87, Fre96, 

Pan88, Pan00, Eva89, Eva90, Hey98]. The actual implementation of the algorithms can 

be found elsewhere [All87, Sad99, Fre96, Eva84a]. However in Appendix 2 we report 

the algorithm for three-body forces, because to the best of our knowledge, it has not 

been given previously in the literature. 

We give details of the intermolecular potentials used to study argon, krypton and 

xenon, in both equilibrium and non-equilibrium simulations reported here. We draw 

particular attention to the three-body potentials, since they represent the focus of our 

investigation. We introduce the Gibbs ensemble Monte Carlo technique that is used to 

investigate the vapour-liquid phases of the noble gases. The general concepts of non-

equilibrium systems are discussed, in order to explain the algorithms used to implement 

planar Couette flow simulations.  

 

2.1 Intermolecular potentials  

In this work we study properties of the noble gases argon, krypton and xenon with 

realistic potentials, the predictions of which have been extensively proved to be in good 
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agreement with experimental results. The remaining stable noble gases, helium and 

neon, were not considered because of uncertainties arising from quantum effects. Some 

molecular dynamics studies and ab initio  calculations for helium and neon have been 

reported recently [Azi95, Erl98, Kir98]. Several accurate intermolecular potentials are 

available in the literature [Mai81] for argon, krypton and xenon. We have chosen to use 

the intermolecular two-body potentials proposed by Barker et al. [Bar71a, Bar74] and 

three-body potentials proposed by Axilrod-Teller [Axi43] and Bell [Bel71], because of 

their well-known accuracy and the availability of intermolecular potential parameters 

for argon, krypton and xenon. A recent review of intermolecular potentials is available 

elsewhere [Sad99]. 

In section 2.1.1 we introduce briefly the Born-Oppenheimer approximation, which is 

commonly adopted in relation to intermolecular potentials. In section 2.1.2 we give 

details of the two-body potentials used. In section 2.1.3 a short review on three-body 

potentials is given.    

 

2.1.1 Born -Oppenheimer approximation 

An intermolecular potential function can be derived from quantum mechanical 

calculations or from experimental data fits, or from both. In general it requires the use 

of the Born-Oppenheimer approximation  [Dob57]: if H  is the total Hamiltonian of an 

atomic or molecular system and Ψ the total wave function, the state of the nuclei and 

the electrons can be obtained from the Schroedinger equation: 

HΨ = EΨ                                                           (2.1) 

where E is the total energy. H is the sum of the kinetic energy of the nuclei Tn, the 

kinetic energy of the electrons Te and the electrostatic potential energy U:  

HΨ = (Tn + Te + U) Ψ= EΨ       .                                  (2.2) 
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In a real system, since the velocity of the nuclei is much slower than the velocity of 

the electrons, Tn is much smaller than Te. For this reason the state of the electrons can be 

derived adopting the approximation that the nuclei are fixed. This assumption enables 

one to write the total wave function Ψ as a product of a first function, χ , depending only 

on the nuclei coordinates, and a second function, φ , depending on the electron 

coordinates and depending on nuclei positions in a parametric way:  

Ψ =χ(xn)φ(xn, xe)                                                       (2.3) 

where xe are the electron coordinates and xn are the nuclei positions. Considering the 

nuclei fixed, the Schroedinger equation for the electrons becomes: 

(Te +U)φ (xn, xe) = Eφ (xn, xe)                                          (2.4) 

Both the energy E and the wave functions φ(xn, xe) depend on the configuration xn of the 

nuclei, so changing xn as a parameter changes the energy and the wave function. For 

many condensed systems, given the nuclei configuration x’n, the electrons remain in the 

lowest energy level (ground state) Eo(x’n) for a wide range of temperature and pressure 

values. Hence, for any configuration (xn, xe) it is possible to use the relative ground state 

eigenvalue Eo(xn) to write the Schroedinger equation for the nuclei: 

(Tn + Eo(xn)) χ(xn)=E χ (xn)                                           (2.5) 

In this way Eo(xn) has the role of an intermolecular potential, u (xn), to be determined by 

theoretical calculations or by experimental data. The Born-Oppenheimer approximation 

(or adiabatic approximation) states that the electrons are moving as though the nuclei 

were fixed in their instantaneous positions. The nuclear motion only deforms the 

electronic ground state; electronic transitions from the ground state to excited ones are 

excluded. This approximation is applicable to the noble gases [Bor54].  

The intermolecular potential u(xn) in the absence of external forces may in general be 

written as function of the nuclear coordinates r1…rN  as [Bel76]: 
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where u2, u3… are respectively pair, triplet, etc. potential functions. Experimental 

evidence [Bar76] indicates that this series is rapidly convergent and for many 

measurable properties the pairwise additive approximation (u2 term only) is a valid 

description. In principle the pairwise additive approximation is inconsistent, since any 

quantum mechanical estimate of the pair potential u2 must include effects due to higher 

terms (u3, u4…) [Ege94]. The wide use of the pairwise additive approximation is 

motivated by its simplicity. Furthermore, the above inconsistency is overcome by using 

effective potentials, namely, two-body potentials that accounts for the overall effects of 

the other multi-body interactions. The Lennard-Jones potential [Mai81, All87, Sad99] is 

an example of an effective two-body potential since its parameters are evaluated from 

bulk experimental data which include many-body effects. In our work, focused on the 

noble gases argon, krypton and xenon, we intend to study the role of three-body 

potentials (u3), used in conjunction with an authentic two-body potential (u2), making 

the assumption that higher order terms are negligible. 

 

2.1.2 Two-body intermolecular potential  

 

Information to determine the intermolecular potential 

The general shape of the intermolecular potential function for a noble gas dimer is 

known. To acquire detailed information on different regions of this function, several 

types of experiments may be used. To achieve this task three conditions must be 

satisfied, as Barker pointed out [Bar76]: 
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1) the experimental quantity must depend reasonably sensitively on some feature of 

the potential; 

2) it must be possible to measure the quantity with sufficient accuracy; 

3) adequate theory and computational procedures must exist to permit calculation of 

the experimental quantity from a given potential or, preferably, of the potential 

from the experimental quantity.          

   

Quantum mechanics calculations can be used to accurately determine the short-range 

repulsion part of the potential [Mur76] (Hartre-Fock and multi-configuration Hartre-

Fock calculations). This short-range contribution arises from the overlap of the electron 

wave functions of two atoms. It is a rapidly varying function of the interatomic distance 

and is usually represented as an exponential function or as an inverse high power of the 

interatomic distance [Mur76]. Important information on the repulsion part of the 

potential comes from molecular beam scattering experiments that allow high-energy 

total cross-section measurements [Bar76].  

For the long-range attraction part (dispersion or van der Waals forces) second-order 

perturbation theory [Bra83, van98] provides an asymptotic form: 

( ) ...' 10
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C
ru −−−=                                        (2.7) 

where r is the interatomic distance and the coefficients C6, C8 and C10 are related to the 

dipole and multipole oscillator strengths which can be measured from optical properties 

[Leo75]. The dispersion forces follow from the correlation between the fluctuating 

charge densities of the two atoms and they are largely independent of the overlap of the 

electron wave functions of the two atoms [Mur76]. In particular, the term in r-6 depends 
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on the fluctuating dipole -dipole interaction, the term in r-8 on the dipole -quadrupole 

interaction, and so on. 

Van der Waals forces in inert gases enable the formation of bound states (dimers); it 

is possible to observe and measure band systems [Tan70] due to transitions from ground 

electronic states to excited electronic states of these dimers. These measurements 

provide information about the curvature at the potential minimum and about the 

anharmonicity of the potential [Bar76]. Other information on the potential function 

comes from gas transport properties such as viscosity, thermal conductivity, diffusion 

coefficients, thermal diffusion ratio and second virial coefficient [Bar76].  

All the kinds of measurement discussed so far depend only on the two-body 

potential. For example, the second virial coefficient, B, from the equation of state 

...1 2 +++=
V

C
V
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RT
PV                                                  (2.8) 

is related to the potential by the classical relationship [All87]: 
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It is possible to show with the Wigner-Kirkwood [Bar71a] expansion of the partition 

function that the quantum contributions to the second virial coefficient for argon, 

krypton and xenon can be neglected.  

The third virial coefficient depends on both two-body and three-body potentials, and 

it has been shown [Bar76 and Bar68] that the inclusion of a three-body interaction, such 

as the Axilrod-Teller term [Axi43], can improve significantly the agreement between 

the calculated value and the experimental one. The same approach has to be used with 

condensed phase data where three-body effects are important. 
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The solid state, in particular the crystal structure, provides additional useful 

information [Bar76]. The sublimation energy at 0 K depends significantly on the depth 

of the minimum of the two-body potential. The lattice parameter depends on the 

distance where the potential has a minimum. The bulk modulus near 0 K is closely 

proportional to the second derivative of the potential at its minimum, and the 0 K Debye 

parameter to the square root of the same quantity. The low-temperature thermal 

expansion coefficient is related to the third derivative of the potential near its minimum. 

It is particularly noteworthy that most of the pair potentials for noble gases predict the 

hexagonal close-packed (hcp) crystal as the most stable structure, while noble gases 

crystallize in face-centred cubic (fcc) structures. It has been suggested that the use of 

many-body potentials can instead favor the cubic structure [Nie76, Lot97a]. 

Liquid state properties give the opportunity to test the potential, comparing 

experimental values of quantities such as pressure with calculated values obtained with 

Monte Carlo  and molecular dynamics techniques. With the same techniques it is 

possible to calculate the radial distribution function g(r) and compare it with the one 

determined from X-ray and neutron diffraction data.     

 

Argon 

 Most of the techniques to derive intermolecular potentials were applied to argon 

since a large collection of experimental data was available. An equivalent amount of 

data is accessible for helium but quantum effects are now important and make the 

calculation more difficult. In the literature several intermolecular potentials for argon 

were proposed [Mai81, Sad99, Azi93]. We decided to use the two-body potential by 

Barker, Fisher and Watts (BFW) [Bar71a] for its accuracy and also since similar 

analytic expressions are available for other noble gases (krypton and xenon [Bar74]). 
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The BFW potential is a true two-body potential since it was derived only by properties 

depending on two-body interactions. 

The BFW potential is a linear combination of the Barker-Pompe [Bar68] (uBP) and 

Bobetic-Barker [Bob70] (uBB) potentials: 

u r u r u rBB BP2 0 75 0 25( ) . ( ) . ( )= +                                      (2.10) 

where the potentials of Barker-Pompe and Bobetic-Barker have the following form: 
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In Eq. (2.11), x = r/rm where rm is the intermolecular separation at which the 

potential has a minimum value. The other parameters are summarised in Table 2.1: 

 

Table 2.1 Parameters of the Barker-Pompe [Bar68], Bobetic-Barker [Bob70] and 
Barker-Fisher-Watts (BFW) [Bar71a] potentials. 

   
  

Barker-Pompe 
 
Bobetic-Barker 

 
Barker-Fisher-Watts 

ε/k(K)          147.70     140.235       142.095 
σ (Å)           3.7560         3.7630           3.3605 
rm(Å)           3.341         3.3666           3.7612 
A0           0.2349         0.29214           0.27783 
A1         -4.7735       -4.41458         -4.50431 
A2       -10.2194        -7.70182         -8.331215 
A3         -5.2905       -31.9293       -25.2696 
A4          0.0   -136.026     -102.0195 
A5          0.0   -151.0     -113.25 
C6          1.0698         1.11976          1.10727 
C8          0.1642        0.171551          0.16971325 
C10          0.0132        0.013748          0.013611 
α         12.5      12.5        12.5 
δ          0.01        0.01          0.01 

 

 

The BFW potential can be written as in Eq. (2.11) with the potential parameters taken 

from the 4th column of Table 2.1. The σ  term is the value where the potential is zero 

and it is usually defined as the atomic diameter.  
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Barker et al. [Bar71a] used the following experimental data to determine the 

potential:  

1) high-energy molecular beam data; 

2) the zero-temperature and -pressure lattice spacing, energy and Debye parameter, 

derived from specific heat measurements of solid argon; 

3) the known long-range coefficients of r-6, r-8 and r-10; 

4) second virial coefficients; 

5) the liquid-phase pressure at one temperature and density; 

6) the known coefficient of the Axillord-Teller interaction [Axi43]. 

The BFW potential used with Axilrod-Teller three-body interactions was 

demonstrated to be in good agreement with several experimental properties of argon 

[Bar71a]. These include pressure and internal energy of the liquid state, solid state 

properties (specific heat, pressure), zero-shear viscosity, thermal diffusion ratio and 

molecular beam scattering data. Contributions from third-order dipole -quadrupole and 

fourth-order triple-dipole interactions cancel each other almost completely in condensed 

phase proprieties of argon [Bar72a and Mar99].  

 

Krypton and xenon     

The molecule-specific nature of the BFW potential is illustrated by attempts to use 

Eq. (2.11) for other noble gases such as krypton and xenon. Barker et al. [Bar74] 

reported that modifications to Eq. (2.11) were required to obtain an optimal 

representation for these larger noble gases.  For krypton and xenon, they determined a 

potential of the form: 

u r u r u r2 0 1( ) ( ) ( )= +                                                       (2.12) 

where u0(r) is identical to Eq. (2.11) and u1(r) is given by 
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and α’, P and Q are additional parameters obtained by fitting data for differential 

scattering cross-sections. We have used Eqs. (2.12) and (2.13) to calc ulate the properties 

of krypton and xenon with the parameters [Bar74] summarised in Table 2.2. It is 

important to stress that )(1 ru  in Eq. (2.13) is continuous everywhere together with its 

first three derivatives and has a long-range asymptotic behavior. 

 

Table 2.2 Parameters of the two-body potentials for krypton and xenon [Bar74]. 
 

  
krypton 

 
xenon 

ε/k(K)          201.9     281.0 
σ (Å)           3.573         3.890 
rm(Å)           4.0067         4.3623 
A0           0.23526         0.2402 
A1         -4.78686        -4.8169 
A2         -9.2      -10.9 
A3         -8.0      -25.0 
A4       -30.0      -50.7 
A5     -205.8    -200.0 
C6           1.0632          1.0544 
C8           0.1701          0.1660 
C10           0.0143          0.0323 
P         -9.0        59.3 
Q        68.67        71.1 
α         12.5        12.5 
α ’        12.5        12.5 
δ          0.01          0.01 

 

 

The experimental data used to derive these potentials were [Bar74]: 

1) lattice spacing and cohesive energy of the crystal at 0 K;   

2) bulk modulus and Debye parameter at 0 K; 

3) lower vibrational level spacings derived from spectroscopic data; 

4) gas viscosity data; 

5) differential scattering cross sections; 
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6) second virial coefficients.  

For krypton all these data turned out to be consistent. For xenon the depth of the 

potential, ε , had to be changed from the value suggested by the cohesive energy 

[Bar74]. In Table 2.3 some solid state proprieties at 0 K are compared with values 

calculated using the potentials from Baker et al. [Bar74]. The comparison indicates 

relatively good agreement supporting the accuracy of the potentials. 

 

Table 2.3 Solid state proprieties at 0 K compared with values calculated using the 
potentials from Baker et al [Bar74]. 
 

 Nearest-
neighbour 
distance (Å) 

Cohesive 
energy 
(cal/mol) 

Bulk 
modulus 
(kbar) 

Debye 
parameter 
Θ (K) 

 
Experimental Kr 

 
3.9922 

 
-2666 

 
34.3 

 
71.9 

Calculated Kr 3.9917 -2665 35.7 71.1 
 
Experimental Xe 

 
4.3357 

 
-3830 

 
36.5 

 
64.0 

Calculated Xe 4.3355 -3754 38.2 60.9 
 

 

2.1.3 Many-body potentials 

Modern developments in experimental techniques and computing technology have 

allowed an increase in the interest and the effort towards understanding many-body 

effects. More accurate knowledge of the 2-body potential and access to new 

experimental and theoretical methods has encouraged many researchers to investigate 

higher many-body effects, which are necessary to describe macroscopic proprieties 

from a microscopic viewpoint. For a comprehensive survey on this topic we refer to the 

review of Elrod and Saykally [Elr94]; here we intend to highlight the most important 

and established aspects in order to explain and justify the use of the 3-body potential 

functions we have chosen.          
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Many-body effects in any system are usually at least one order of magnitude smaller 

than the two-body effects, hence, any investigation on this topic requires the knowledge 

of an accurate two-body potential. Noble gases satisfied this requirement and 

consequently they were the first system studied in this context.  

Even neutral atoms, with spherical charge distributions, are characterized by long-

range interactions. When atoms are brought in close proximity, the instantaneous 

interaction between the electrons in their orbits induces mutual polarization of the 

charge distributions. Usually, this effect is envisaged in terms of multipole components, 

dipole (D), quadrupole (Q), octopole (O) etc., in the perturbed charge distributions 

[Bel76].  In 1943 Axilrod and Teller [Axi43], using third-order perturbation theory, 

found the expression for the three-body triple-dipole long-range (dispersion) energy 

(DDD or AT term), valid for atoms with spherical and non-overlapping charge 

distributions [Mur76]. In 1970, Bell [Bel70] found a more general long-range 

(dispersion) third-order potential: 

u3bodyDisp= DDD+DDQ+DQQ+QQQ                                      (2.14) 

Doran and Zucker [Dor71] used these terms plus the third-order dipole-dipole-octupole 

and fourth-order third-dipole to investigate the preferred crystal structure of the noble 

gases. They found again that this was the hcp lattice and not the fcc as experimental 

data show. 

The effect of short-range many-body forces has not been investigated as deeply as 

the many-body dispersion. As for the two-body case, short-range many-body effects 

originate from the overlap of the wave functions of the atoms (triplets, quadruplets etc.) 

[Mur76]. When the overlap of the wave functions is not negligible the exchange forces 

due to the Pauli exclusion principle [Bra83] become relevant. Unfortunately, the 

derivation of higher-order exchange energies is difficult [Mur76] and established 
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expressions for these interactions are not available. Only recently, the role of these 

terms is becoming clear [LeS83, Lot97a, Buk01]. For example, Lotrich and Szalewicz 

[Lot97a], using fully ab initio three-body potentials containing short-range contributions 

calculated via a symmetry-adapted perturbation theory [Lot97b], computed the binding 

energy of solid argon. They found that the fcc crystal is favoured over the hcp crystal by 

0.01%, in agreement with experimental observation.  

Barker and Pompe [Bar68] in 1968 found a two-body potential for argon which, 

when used in conjunction with the AT potential, was able to reproduce the experimental 

crystal cohesive energy and third virial coefficient accurately. Even better agreement 

was found using the third-order QQQ and the forth-order DDD terms. Bobetic and 

Barker [Bob70], with the AT potential and a slightly different two-body potential, could 

reproduce the experimental data of specific heat, thermal expansion coefficient and the 

bulk modulus of crystalline argon. Barker et al. [Bar71a] using a combination of the 

previous potentials were able to reproduce gas, liquid and solid properties of argon with 

Monte Carlo  and molecular dynamics simulations. Similar potentials were reported for 

krypton and xenon [Bar74]. Even if the pair + AT model was successful in reproducing 

experimental data, a theoretical justification for the exclusion of the three-body short-

range terms was not given. A better evaluation and understanding of the many-body 

short-range potentials was necessary.  

Other work followed to investigate this issue more deeply. Molecular beam 

scattering experiments on noble gases absorbed onto graphite substrate were performed 

to highlight the importance of short-range many-body effects. They could not provide a 

definitive solution, due to the lack of an accurate atom-substrate potential, but they 

showed the necessity of more accurate potentials [Azi89]. From a theoretical viewpoint, 

the first simultaneous implementation of the supermolecular Møller-Plesset perturbation 
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theory (MPPT) and intermolecular MPPT methods [Cha88] on Ar3 showed that the 

second-order exchange effects were important for the total three-body effect near the 

potential minimum [Cha90]. 

A possible explanation of the contradiction between the success of the pair + AT 

model and the apparent importance of more recent work [Cha90] on the exchange 

effects can be provided by LeSar's crystal perturbation approach [LeS83]. LeSar used a 

‘crystal perturbation method’ to obtain an approximate Hartree-Fock many-body 

interaction for the argon crystal. He found that the atomic orbitals in the crystal contract 

in comparison with those of the gas-phase atoms, resulting in less exchange repulsion. 

Equivalently in the gas-phase it can be thought that the higher-order exchange terms 

may cancel each other reducing the total short-range many-body effect significantly. 

McLean et al. [McL88] using the crystal perturbation many-body interaction + AT 

model for argon found excellent agreement with experimental solid state data.  

Recently, Bukowsky and Szalewicz [Buk01] using symmetry-adapted perturbation 

theory potentials [Lot97b], performed simulations of liquid, gas and liquid-vapour 

equilibrium of argon. They found that even if three-body short-range contributions are 

large, cancellations occur at the interatomic distances typical for the liquid state, making 

the total three-body effect very similar to that given by the triple-dipole potential.  

 

Experimental investigations  

There are two main kinds of experiments to study the effects of many-body 

potentials: to the first kind belong those experiments that measure macroscopic 

properties, so they are sensitive just to the overall contribution of the many-body terms. 

Experiments of the second kind measure instead microscopic properties (mainly gas 
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phase interactions) and they are able to distinguish low-order terms in the many-body 

expansion. 

The crystal structure of noble gases is evidence of the importance of the many-body 

potentials: X-ray diffraction reveals a face centered structure for the noble gases; instead 

the pair potentials predict a hexagonal close-packed structure (helium excluded). The 

inclusion of three-body terms in the potential provides a better agreement. Crystal 

cohesive energy measurements [Elr94] showed a 10% deviation from the pair potential 

prediction, suggesting again the presence of many-body effects. Crystal spacings, as 

well, provide information on repulsive and attractive contributions of many-body 

potentials.     

Measurements of the radial distribution function of liquids with X-ray and neutron-

scattering techniques [Ege88] give important indications, but they are not accurate 

enough to discriminate many-body effects. A recent detection of three-body effects was 

performed by Formisano et al. [For98] measuring the static structure factor S(k ) for 

xenon. The authors claimed to have obtained the first direct experimental determination 

of the triple -dipole Axilrod-Teller interaction. Many-body induced dipole moments and 

polarizability tensors can cause absorption and scattering of light in noble gases 

[Gui89a, Gui89b], while the two-body induced moment is exactly zero. Measurements 

of this kind of absorption spectrum can indicate many-body effects. It is more difficult 

to discern many-body effects from two-body ones using properties like viscosity, 

thermal conductivity and diffusion in gases.  

So far we have briefly described experiments belonging to the first kind. Now we can 

examine those experiments measuring microscopic properties. The third virial 

coefficient, C in Eq. (2.8), depends on both two-and three-body potentials. Given a two-
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body potential, 2u , the contribution from the three-body terms, 3u , is proportional to 

[Bar76]:  
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where αβr  is the distance between atom α  and β, whereas αβr is the corresponding 

vector. It was shown [Bar68] that C∆ contributes up to 50% of the value of the 

experimental C for noble gases. 

The spectroscopy of van der Waals molecules provides a useful insight into the study 

of many body interactions. Recent high-resolution techniques have been used to 

measure intramolecular vibrational modes, which give direct information on the pair 

and higher order potentials [Elr94]. 

 

Theoretical techniques 

From a theoretical viewpoint there are two complementary approaches to study the 

many-body effects: quantum mechanics and statistical mechanics. The latter consists 

mainly of molecular dynamics and Monte Carlo  methods [All87]. As discussed later, 

modern developments in computer resources means that these methods can be used to 

investigate many-body potentials extensively.  

Axilrod and Teller [Axi43, Axi51] were the first to use quantum mechanics 

calculations to find an analytic expression of a three-body potential. Nowadays there are 

two general methods used in ab initio  techniques of weakly interacting systems: 

supermolecular and perturbation theory [Cha88]. In the supermolecular approach, the 

interaction energy between two systems is the difference between the energy of the 

complex and the monomers’ energy. Perturbation theory considers the infinitely 
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separated monomers as the zero-order term, and the interaction energy comes from 

higher-order perturbations. This method provided the most important theoretical 

information about many-body interactions. Another relevant theoretical method is the 

Gaussian effective-electron model [Jan62] in which the exchange effects are 

approximated by placing on each atom one "effective" electron, with a Gaussian charge 

distribution. 

A recent development of the perturbation theory technique is a simultaneous 

implementation of the supermolecular MPPT and intermolecular MPPT [Cha88]. This 

method allows the potential energy to be separated into exchange, electrostatic, 

induction and dispersion contributions [Szc92] as is generally done in the study of 

interaction forces. In this method the many-body induction (polarization) and exchange 

forces appear immediately in the perturbation expansion, while the many-body 

dispersion terms appear with each corresponding perturbation order. Another recent and 

promising technique is the mentioned symmetry-adapted perturbation theory [Lot97b].   

 

Three-body dispersion potentials 

Different types of interaction are possible depending on the distribution of multipole 

moments between the atoms.  In principle, the dispersion, or long-range non-additive 

three-body interaction, is the sum of these various combinations of multipole moments 

[Bel70]. In this work, we have considered contributions from dipoles (D) and 

quadrupoles (Q) which are likely to make the most substantial effects on three-body 

dispersion: 

QQQDDDDQQDDQDDDbodyDisp uuuuuu ++++= 43   .                               (2.16) 

These terms are all third-order with the exception of the contribution of the fourth-order 

triple dipole term (uDDD4). The main contribution to the three-body dispersion 
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interaction is the third-order triple-dipole term (uDDD). The other terms collectively 

(uDDQ + uDQQ  + u QQQ + u DDD4) are the higher multipole contributions. 

The triple -dipole potential can be evaluated from the formula proposed by Axilrod 

and Teller [Axi43]: 

( )
( )3

coscoscos31
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kjiDDD
DDD

rrr

v
u
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=                                   (2.17) 

where the angles and intermolecular separations refer to a triangular configuration of 

atoms (see Figure 2.1) and where vDDD is the non-additive coefficient which can be 

estimated from observed oscillator strengths [Leo75]. 

 

 

Figure 2.1 Triplet configuration of atoms i, j and k . 
 

The contribution of the AT potential can be either negative or positive depending on 

the orientation adopted by the three atoms. The potential is positive for an acute 

triangular arrangement of atoms whereas it is negative for near linear geometries. The 

potential can be expected to make an overall repulsive contribution in a close-packed 

solid and in the liquid phase.  The r-3 terms indicate that the magnitude of the potential 

is very sensitive to intermolecular separation.  

Bell [Bel70] has derived the other multipolar non-additive third-order potentials: 
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where Eqs (2.18), (2.19) and (2.20) represent the effect of dipole-dipole-quadrupole, 

dipole-quadrupole-quadrupole and quadrupole-quadrupole-quadrupole interactions, 

respectively.  Formulae for the different ordering of the multipole moments on the three 

atoms (i.e., QDD, DQD, QDQ and QQD) can be generated from Eqs. (2.18) and (2.19) 

by cyclic permutation of the indices i, j and k . The dipole-dipole-octupole term has also 

been evaluated by Doran and Zucker [Dor71] but it is not considered in this work 

because of uncertainties in evaluating the DDO  coefficient. The fourth-order triple -

dipole term can be evaluated from [Dor71]: 
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The coefficients for these three-body terms are summarised in Table 2.4.  

 

Table 2.4 Coefficients for the three-body potentials in Eqs. (2.17), (2.18), (2.19), (2.20) 
and (2.21) 
 
  argon krypton xenon 
νDDD(a.u.) a        517.4    1554       5603 
νDDQ(a.u.) b       687.5    2272       9448 
νDQQ(a.u.) b       2687    9648     45770 
νQQQ(a.u.) b     10639  41478   222049 
νDDD4(a.u.) c  -10570 -48465  -284560 

a from ref. [Leo75] 
b from ref. [van98] 
c from ref. [Bad58] 
 



Theory and Computational Techniques                                                                                                                                                        

 

37 

 

Strategies for calculating multipole moments have been discussed recently [van98]. 

Combining the contributions from two-body and three body interactions yields an 

overall intermolecular potential for the fluid: 

)()()( 32 rururu bodyDisp+= .                                             (2.22)  

Table 2.5 displays the contributions to the internal energy and pressure of liquid 

argon that Barker et al. [Bar71a] calculated with Monte Carlo simulations using the pair 

+ AT model, compared with the relevant experimental quantities.     

 

Table 2.5 Contributions to the internal energy and to the pressure of liquid argon 
[Bar71a].   
 
T 
(K) 

V 
(cm3/mol) 

E(a) 

(cal/mol) 
E3-body 

(cal/mol) 
EQuant. 

(cal/mol) 
ETot. 

(cal/mol) 
EExp. 

(cal/mol) 
P(a) 

(atm) 
P3-body 

(atm) 
PQuant. 

(atm) 
PTot. 

(atm) 
PExp. 

(atm) 
100.00 27.04 -1525.2 87.1 15.6 -1423 -1432  239.9 364.2 42.2 646 652 
100.00 29.66 -1393.6 67.9 12.5 -1313 -1324 -148.0 238.8 25.3 116 105 
140.00 30.65 -1284.7 62.8 9.3 -1213 -1209  348.9 214.3 16.7 580 583 
140.00 41.79 -951.4 39.5 6.4 -906 -922   -33.7   49.0   2.7   18   37 
150.87 70.73 -603.8 26.6 4.6 -573 -591    34.5   13.2   1.2   49   49 

 (a)kinetic part + 2-body potential part   

 

 

As shown in Table 2.5 the agreement with experiment is very good. Just the pressure 

at T = 140 K and V = 41.79 cm3/mol diverges significantly from the experimental value. 

It is particularly noteworthy that the three-body contribution for the pressure plays a 

fundamental role to match the experimental results. For both energy and pressure, 

however, the quantum contribution is of minor importance.  

As for argon, Barker et al. [Bar74], in using condensed phase data to derive two-

body potentials for krypton and xenon in Eq. (2.12), considered three-body interactions 

as well. For krypton the Axilrod-Teller potential is the most relevant 3-body interaction, 

since the third-order dipole-quadrupole and the forth-order triple-dipole interactions 
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roughly cancel each other. For xenon instead, this cancellation is not complete, so 

Barker et al. [Bar74] considered the latter contributions deriving the two-body potential. 

 

2.2 Monte Carlo simulation of phase equilibria  

 

Here we give details of a molecular simulation technique, Gibbs ensemble [Pan88], 

which allows one to study coexisting phases of fluids. We used this technique to 

simulate the noble gas vapour-liquid phase. Molecular simulation is a complementary 

tool to the experiments and theory used to investigate the properties of thermodynamic 

systems and phase behavior of fluids. The latter task is not an easy one from a 

computational viewpoint. Phase transitions are collective phenomena that occur over 

long time and length scales that are difficult to reproduce by traditional molecular 

simulation techniques [All87]. In a system at liquid-vapour equilibria, the interface 

between the two phases has a prominent influence on the bulk properties if the number 

of particles used in the simulation is small. Hence, a large number of particles is 

required to avoid this problem. New simulation techniques are now available [Pan00] 

and amongst them the Gibbs ensemble is outstanding for its simplicity and predictive 

power. It eliminates the problem of the interface, performing the simulation in two 

different boxes, each of which contains one of the two phases considered. Even if they 

are separate, the boxes are correlated through particle exchanges and volume 

fluctuation. This characteristic permits simulations of phase equilibria utilizing a 

reasonable number of particles. 

In section 2.2.1 we give some details of the Metropolis method, which is largely used 

in the Monte Carlo techniques [All87]. In section 2.2.2 we introduce the Gibbs 

ensemble technique, discussing the theoretical foundations and how to implement it.      
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2.2.1 Metropolis method 

Monte Carlo simulations may be used to study molecular systems utilizing statistical 

mechanics. Considering for simplicity a canonical ensemble at temperature T, with N 

particles and a hamiltonian H(rN, pN), where rN and pN are positions and momenta of the 

particles respectively, the average value of any quantity A(rN, pN) is given by [Fre96]: 
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where the integrals are calculated over the phase space of the system. Usually the 

hamiltonian has a quadratic dependence on the momenta and for any quantity A(pN), 

depending just on the momenta, Eq. (2.23) is easy to calculate. More difficult is the 

evaluation of the average value of quantities A(rN). In this case Eq. (2.23) becomes:  
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There are different techniques to calculate Eq. (2.24). A naive method is to generate 

a number of random configurations (rN) of the particles, calculate the relative values of 

A(rN) and energy u(rN) and to give each configuration a weight according to the 

Boltzmann factor ( )/)(exp( kTu Nr− ). Unfortunately, for the majority of configurations 

the Boltzmann factor ( )/)(exp( kTu Nr− ) is vanishingly small. It is more convenient 

instead to use the Monte Carlo importance-sampling method introduced by Metropolis 

et al. [Met53]. 

The expression in Eq. (2.24) 
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represents the probability density to find the system in a configuration around rN. The 

Metropolis method then consists in generating configurations according to the 

probability density P(rN), in order to consider configurations which give relevant 

contributions to Eq. (2.24) and then weight them evenly. An initial configuration (old) is 

chosen with a non-vanishing Boltzmann factor ( )/exp( kTuold− ), usually positioning 

the atoms in crystalline lattice sites. A new configuration is generated, for example by 

adding a small displacement to the old position of an atoms; the relative Boltzmann 

factor ( )/exp( kTunew− ) is calculated. At this stage it has to be decided whether to 

accept or reject the new configuration. Namely a transition probability, π ) ( newold → , 

to go from configuration old  to new has to be determined. This transition probability can 

be expressed as: 

π ) ( newold →  = α ) ( newold →  × acc ) ( newold →                         (2.26) 

where α ) ( newold →  is a transition matrix (Markov chain matrix [All87, Hoh93]) that 

indicates the probability to perform a trial move from old  to new, and where 

acc ) ( newold →  is the probability of accepting a trial move from old to new. It is useful 

to point out here that the Metropolis method does not need to have any knowledge about 

the momenta of the particles, and the temperature of the system is chosen a priori as a 

parameter.  

In the Metropolis method α ) ( newold →  is chosen to be a symmetric matrix, 

α ) ( newold → =α ) ( oldnew →  (even if non symmetric matrixes could be chosen 

[Fre96]), and it is assumed that at equilibrium the average number of accepted moves 
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from old to any other new state is exactly cancelled by the number of reverse moves. 

The former is the detailed balanced condition that implies: 

P(old )π ) ( newold →  = P(new )π ) ( oldnew →      .                        (2.27) 

Since α is symmetric, Eq. (2.27) can be written as:  

P(old ) × acc ) ( newold → = P(new) × acc ) ( oldnew →                     (2.28) 

or:  
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Eq. (2.29) can be satisfied with many different choices for acc ) ( newold → . In the 

Metropolis method the following choice is used: 
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This means that if )()( oldPnewP ≥ ,  ( oldnew uu ≤ ), the trial move has to be accepted, 

otherwise it has to be accepted with a probability ( )kTuu
oldP
newP

oldnew /)(exp
)(
)( −−= . In 

the latter case a random number, from a uniform distribution in the interval [0,1], is 

generated and if this number is less than acc ) ( newold →  the trial move is accepted. It 

is important to stress that the only condition imposed on α ) ( newold →  is that it has to 

be symmetric. For this reason several trial moves can be chosen, according to the 

ensemble under study. The Metropolis method, in fact, can be used for any ensemble 

but obviously the acceptance criteria depends on the partition function of the ensemble 

considered. Importantly, any choice of the trial moves has to satisfy the ergodic 

condition, namely that every point in configuration space can be reached in a finite 

number of Monte Carlo steps from any other point. 
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In the following sections the trial moves used in the Gibbs ensemble technique and 

the relative acceptance criteria are given.  

 

2.2.2 Gibbs ensemble technique 

The condition for achieving coexistence of two or more phases I, II, … at 

equilibrium is that the pressure and temperature in each phase must be equal (PI = PII 

=… = P; TI = TII =… = T), as do the chemical potentials of all the species ( αµ I  = αµ II  = 

…  = αµ ). Unfortunately, it is impossible to study such systems with an ensemble 

where pressure, temperature and chemical potentials are fixed, since they are linearly 

dependent quantities, or equivalently, because constraining only intensive quantities like 

pressure, temperature and chemical potentials leaves the extensive quantities unbounded 

[Fre96].  

The Gibbs ensemble technique [Pan87, Pan88] is able to study phase equilibria under 

the conditions that the pressure, temperature and chemical potential of the coexisting 

phases are equal. This is possible because even if the difference between the chemical 

potentials in different phases is fixed ( 0=∆µ ) the absolute values are undetermined. 

We applied the Gibbs ensemble technique to simulate noble gas vapour-liquid phase 

equilibria. 

 

Theoretical foundations of the NVT  Gibbs ensemble  

The Gibbs ensemble Monte Carlo technique is used to simulate phase equilibria in 

fluids. To reproduce a macroscopic system with two coexisting phases in equilibrium, 

the Gibbs ensemble method simulates two separate microscopic regions within the bulk 

phases, away from the interface. Standard periodic boundary conditions, namely the 
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minimum image convention [All87], are applied. Three types of Monte Carlo moves are 

performed: displacements of particles within each region to satisfy internal equilibrium; 

fluctuations in the volume of the regions to achieve equality of the pressure; and 

exchanges of particles between regions to achieve equality of chemical potentials of all 

the species. Figure 2.2 depicts the three different moves. 

 

 
 

 

Figure 2.2 Representation of the Gibbs ensemble Monte Carlo simulation methodology.  
 

Panagiotopoulus [Pan87] first derived the acceptance criterion from fluctuation 

theory, making an approximation for the particle exchange which led to a difference 

proportional to 1/N, relative to the exact expression given later [Pan88]. A rigorous 

statistical mechanics derivation of the ensemble was reported by Smit at al. [Smi89a] 

and by Smit and Frenkel [Smi89b].  
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We are interested in the version of the Gibbs ensemble where the temperature (T), 

the total number of particles (N= nI + n II) and the total volume (V= VI+ VII) of the two 

regions (boxes), I and II, are fixed. The partition function counts the number of 

possibilities in which N particles can be distributed in those two boxes with variable 

volumes, and can be expressed as [Pan95]: 
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where ξ  are the scaled coordinates of the particles in two boxes, )( and )( IIII n
II

n
I uu ξξ are 

the total potential energies in each box (depending on the intermolecular potential used) 

and Λ  is the thermal de Broglie wavelength ( )2/(2 Tmkh Bπ=Λ ). It can be 

demonstrated that the constant-volume Gibbs ensemble in the thermodynamic limit is 

equivalent to the canonical ensemble [Smi89a].  

Eq. (2.31) states that the probability of finding the system with nI particles in box I 

(with volume VI) and positions In
Iξ  and the rest of the particles in positions InN

II
−ξ , is 

given by: 
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Using Eq. (2.32) and the detailed balance condition (Eq. (2.27)) it is possible to derive 

the acceptance rules [Pan88, Fre96] for trial moves for the Gibbs ensemble simulations.  

For the particle displacement, the new configuration is generated from the old  one, 

displacing randomly a particle in box I. The ratio between the probability relative to the 

new configuration and the probability relative to the old  configuration is given by:  
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Substituting Eq. (2.33) in Eq. (2.29) allows one to derive the probability of accepting 

the new configuration:  

})/)]()([exp{;1min()( kTuunewoldacc II n
oldI

n
newI −− −−=→ ξξ              (2.34) 

In general, if the move is rejected, the old  configuration is kept. 

For the volume fluctuation, the box to be expanded is randomly chosen. If the chosen 

box (say box I) is expanded by V∆ ( VVV I
old

I
new ∆+= ) the other is compressed by 

V∆ ( VVV II
old

II
new ∆−= ), in order to keep the total volume constant. Using eq (2.32), the 

ratio between the probability relative to the new  configuration and the probability 

relative to the old configuration can be expressed as: 
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and the probability of accepting the new configuration is given by:  


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In writing Eq. (2.36) we assumed that the Markov chains sampled by each box are not 

effected by the perfectly correlated volumes. This is a good approximation away from 

the critical point [Pan88].   

For the particle exchange one of the two boxes is randomly chosen  (say box I). One 

particle is removed from the box and inserted into the other box randomly choosing the 

new coordinates. The ratio between the probability relative to the new  configuration and 

the probability relative to the old  configuration can be expressed as: 
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and the probability of accepting the new configuration is given by:       















−+−
−−

=→
}/)]([exp{)1(

}/)]([exp{)(
;1min)(

kTuVnN
kTuVVn

newoldacc N
old

I
I

N
new

I
I

ξ
ξ

.           (2.38) 

 

Implementation 

The method we used to generate trial configurations is the original implementation 

[Pan88] where the different trial moves are performed in a fixed order. The simulation 

is carried in cycles. Each cycle consists of N displacements to move all the particles in 

each box, one attempt to change the volume and N attempts to exchange all the 

particles. We chose, as the initial configuration of each simulation, a face-centred cubic 

lattice with the desired number of particles in each box positioned randomly. A number 

of cycles were carried out to reach equilibrium; after this phase the macroscopic 

physical quantities are accumulated.  

For the particle displacement moves, the old  coordinates of the randomly selected 

particle (more precisely its center of mass) are changed adding random numbers 

between  - max∆  and max∆ , where max∆  is the maximum displacement allowed:  

max

max

max

)12(

)12(

)12(

∆×−×+←

∆×−×+←

∆×−×+←

randzz

randyy

randxx

oldnew

oldnew

oldnew

                                           (2.39) 

rand is a random number from a uniform distribution in the interval [0,1]. We chose 

max∆  in order to have at least 50% acceptance rate. The 50% acceptance rate has no 

theoretical basis. Mountain and Thirumalai discussed criteria for determining the 

efficiency of the particle displacement moves [Mou94]. The potential energies with the 
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particle in the old  position and in the new position respectively are calculated and the 

acceptance criterion (Eq. (2.34)) applied. It is noteworthy to stress that Eq. (2.34) 

requires the difference between the potential energies relative to the two configurations, 

so only the intermolecular energy relative to the displaced particle and the rest of the 

particles are required.  

For the volume fluctuation move, one box, chosen randomly, is expanded by V∆  

and the other compressed by - V∆ . The quantity V∆ is given by: 

);min(max
III VVVV ×∆×=∆ ζ                                         (2.40) 

where ζ  is a uniformly distributed random number in the range [0,1] and maxV∆  is the 

maximum fractional volume change allowed. Typically, maxV∆  is chosen in order to 

have at least 50% acceptance rate, which should guarantee that equilibrium is achieved 

efficiently. However, this does not have any theoretical justification. The following 

quantities are calculated: 

  ,                3 IIIi
V
V

Rat i
old

i
newi ==                                (2.41) 

and used to scale the coordinates of the particles in each box: 

ii
old

i
new

ii
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i
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ii
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i
new

Ratzz

IIIiRatyy

Ratxx

×←

=×←

×←

  ,                       .                (2.42) 

The potential energies relative to the old  and new coordinates are calculated and the 

acceptance criterion (Eq. (2.36)) applied.  

For the exchange particle move, a randomly selected particle is ‘cancelled’ from its 

original box and inserted into the other. The new coordinates of the particle are 

randomly assigned in the following way (the centre of the simulation box is the origin 

of the coordinates): 
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   .                     (2.43) 

As with the particle displacement, in order to apply the acceptance criterion in the 

exchange move (Eq. (2.38)) only the potential energy between the exchanged particle 

and the rest of the particles is required. For the exchange particle moves, in our 

simulations we had at least 20% acceptance rate. 

 

NPT ensemble for binary mixtures 

A constant pressure Gibbs ensemble [Pan88] can be performed only with mixtures, 

since for pure components the two-phase region is a line in the P-T plane. Thus any 

choice of P and T corresponds to a vanishingly small probability that the system is at the 

phase transition.  For two-component systems the two-phase region is a finite area in the 

P-T plane [Fre96].  

In the case of a NPT ensemble for binary mixtures, total number of particles, 

pressure and temperature are kept constant. The total number of particles is the sum of 

the total number of particles of both species, a  and b , (N = ba NN   + ). The acceptance 

criterion for the particle displacement is the same as in Eq. (2.34). In the particle 

exchange acceptance criterion (Eq. (2.38)) n I and n II = N-nI now represent the number of 

particles of the species, for example a, being exchanged, ( a
I

aa
II

a
I nNnn  - and = ) 

[Pan88]. The volume fluctuation acceptance criterion (Eq. (2.36)) becomes [Pan88]: 
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where in this case it is possible that III VV ∆−≠∆ since the total volume is not constant. 
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Calculation of the chemical potential 

One of the requirements for phase equilibrium is the equality of the chemical 

potential (material equilibrium). A common technique used to calculate the chemical 

potential is the Widom test particle method [Wid63], which utilizes the interaction 

energy of a ‘ghost’ particle inserted into the system. The Gibbs ensemble technique 

does not rely on the knowledge of the chemical potential, but its calculation during the 

simulation can provide a useful check to ensure that equilibrium is achieved. During an 

exchange trial the energy of the particle inserted corresponds to the energy of a ‘ghost’ 

particle, so it is possible to calculate the chemical potential with ease. 

Following the procedure reported by Smit et al. [Smi89b], the chemical potential is 

given by: 



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Q
kT 1lnµ                                                         (2.45) 

where NQ  is the partition function (here we use the Gibbs ensemble NQ , eq (2.31), at 

constant (N, V, T)). Substituting Eq. (2.31) in Eq. (2.45) and assuming that the boxes do 

not change ‘identity’ during the simulation, the expressions for the chemical potentials 

in both phases are: 
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where I  represents an ensemble average in the Gibbs ensemble restricted to box I 

and +∆ Iu  is the energy of a “ghost” particle in box I (equivalently for 
II

and +∆ IIu ). 
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Finite -size effects at criticality   

In general, phase transitions consist of changes between an ordered state and a 

disordered state. Thermodynamic properties of systems approaching the transition point 

can show anomalies due to complex microscopic behaviour which gives rise to 

observable macroscopic effects. As the disordered region of the transition approaches 

the ordered one, individual microscopic fluctuations start to have a strongly correlated 

behavior. Close to the transition, the size of the region over which this coherence 

extends becomes so large that it persists out to macroscopic lengths. 

In the Gibbs ensemble technique the use of a finite system and periodic boundary 

conditions makes the study of phase transitions close to the critical points difficult. In a 

real system the correlation length that measures the spatial extent of density fluctuations 

tend to infinity. The finite size simulation cell can not capture this behaviour. Work 

regarding the finite-size effects on the Gibbs ensemble was reported [Rec93, Pan94b] in 

two- and three-dimension, for symmetric square-well and Lennard–Jones fluids.       

In the Gibbs ensemble, away from the critic al region of the phase transition, the 

densities and compositions of both phases can be evaluated by averaging these 

quantities in each simulation box. When approaching the critical point, anomalous 

fluctuations in the density and composition are observed, due to the formation of 

droplets or bubbles of the opposite phase in one of the two boxes. Under these 

conditions, a procedure of collecting information is to use histograms of the frequency 

of occurrence of a certain density in each of the two boxes. The equilibrium densities 

can be defined as the densities relative to the peaks of the probability distribution 

function [Pan95]. Getting even closer to the critical point, the free energy penalty for 

formation of interfaces in both boxes becomes smaller [Sm89a] and exchanges of 
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identities of the two boxes are observed. The coexisting densities can not be determined 

with high accuracy [Pan95]. 

To predict the critical temperature and density using the Gibbs ensemble simulations 

the rectilinear diameter rule and scaling relationship are applied [Pan95]: 

βρρρ
ρρ

)(       );(
2 .....

.. TTTTC critvapliqcritcrit
vapliq −∝−−+=

−
               (2.47) 

where β is an exponent that experimental results and modern theories of critical 

phenomena indicate to be ≈0.325 in three-dimension [Pan95]. It was shown that for 

Lennard-Jones fluids [Pan94b] the use of Eq. (2.47) predicts the critical temperature 

within an accuracy of  ±1%, but it gives a significantly larger uncertainty for the critical 

density. 

At this stage we point out that it is not the interest of our work to determine critical 

temperature and density of the systems simulated, since our aim is only to test the 

interatomic potentials for coexisting phases.    

 

Some mathematical considerations 

The NVT Gibbs ensemble is characterized by a simple mathematical constraint that, 

to our knowledge, has never been highlighted. The only reference found to this issue is 

reported by Bruce [Bru97] which we quote to introduce the issue itself: 

“In Gibbs ensemble one needs only to ensure that the overall density lies somewhere 

in the range between those of the coexisting phases; this constraint sharpens with the 

approach to the critical point” [Bru97] . 

Considering the one species case we can write the system of equations: 

II

II
II

I

I
IIIIIII V

N
V
N

VVVNNN ==+=+= ρρ   ;   ;    ;                      (2.48) 
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where IN ( IIN ), IV ( IIV ) and 
Iρ (

IIρ ) are the number of particles, the volume and 

density at any time in box I (II) respectively. For each simulation the total number of 

particles, N, the total volume, V, and consequently the total density (
V
N

=ρ ) are fixed. 

The question we want to answer is:  

given the total density 
V
N

=ρ , is it possible to accommodate any value of Iρ  and IIρ  

in box I and II at any time during the simulation?  

For this purpose we have to find the solutions for the variables (unknowns) IN , IIN , 

IV  and IIV  of the system in Eq. (2.48), where N and V are fixed values (chosen from 

the simulation) and Iρ and IIρ  are any given positive values. Using simple methods of 

linear algebra one can show that, if 

III ρρ ≠                                                       (2.49)  

the system in Eq. (2.48) always has the solution:  

    ;   
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=
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=                                     (2.50) 

but we have to impose that : 

VVNN II ≤≤≤≤ 0   ;   0                                        (2.51) 

which are satisfied if: 

 III ρρρ ≤≤  or III ρρρ ≤≤   .                                  (2.52) 

So the answer to the above question is ‘yes’ as long as Iρ and IIρ  satisfy Eq. (2.52). 

This means that during the simulation the density in one box is at any instant greater 

than or equal to ρ  while in the other box is less than or equal to ρ , as physical 

intuition suggests. In order to obtain the expected results, ρ  must be chosen to lie 
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between the expected densities of the two coexisting phases, if they are known. If they 

are not known, explorative runs have to be performed. When ρ  is chosen outside the 

coexisting diagram the densities in both boxes happen to fluctuate near the value of ρ . 

This is a clear signal that a different value of ρ  has to be chosen.           

In the case of NPT Gibbs ensemble for binary mixture we have to follow the same 

scheme. The total number of particles of both species, ba NN  and , are fixed. The 

question we want to answer now is:  

given the total number of particles of both species, ba NN  and , is it possible to 

accommodate in box I and II any value of Iρ  and IIρ  and any value of the 

compositions ( b
II

a
II

b
I

a
I xandxxx   , , ) at any time during the simulation? 

 The system of equations we now have to consider is: 
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where the unknowns are IV , IIV , a
IN  , a

IIN , b
IN  and b

IIN  and the conditions to impose 

are: 

 0 aa
I NN ≤≤                                                  (2.54) 

bb
I NN ≤≤0                                                    (2.55) 

which are satisfied if: 

a
II

a
Ib

I

a
I

b

a

b
II

a
II xx

x

x

N

N

x

x
 for    ≥≤≤                                           (2.56) 

or equivalently: 
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Again, the answer to the above question is ‘yes’ as long as ba NN   and  satisfy Eqs. 

(2.56) or (2.57). Eqs. (2.56) and (2.57) state that the ratio ba NN /  should not to be 

chosen greater (or less) than both  /  and  / b
I

a
I

b
II

a
II xxxx , as physical intuition suggests. 

For a NPT Gibbs ensemble with more than two components the answer to the above 

question is in general negative. This is because the equivalent system to Eq. (2.53), for 

example in a three-component mixture case, would contain 9 equations in 8 unknowns, 

which is in general not solvable. This does not mean that the simulation is not feasible. 

In fact, in the Gibbs ensemble technique the average values of the compositions and 

densities are important and not just the instantaneous values. However, Eq. (2.57) must 

be satisfied for each component. Similar considerations apply for a multicomponent 

NVT Gibbs ensemble, in which Eqs. (2.52) and (2.57) must be satisfied.  

   

2.3 Synthetic Non-Equilibrium Molecular Dynamics  

 

In this section we focus on planar Couette flow where adjacent parts of the fluid are 

moving with different relative velocities. Such systems are not in thermodynamic 

equilibrium, so viscous forces generate the transport of momentum between co-moving 

layers. A non-equilibrium molecular dynamics computer simulation [All87, Eva90] 

allows one to solve the equations of motion of each molecule of the system, and directly 

calculate the transport coefficients. In the following sections we describe the computer 

technique known as synthetic non-equilibrium molecular dynamics (NEMD) [Eva90] 

applied to planar Couette flow, which is used to calculate the shear viscosity of the fluid 

directly from the dynamics of the system (see Chapter 4). 
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In section 2.3.1 we give some details of homogeneous planar Couette flow, 

introducing the physical quantities necessary to describe the transport of momentum, 

namely the pressure tensor, strain rate and shear viscosity. In section 2.3.2 we describe 

how to derive these quantities from a microscopic description. In section 2.3.3 we give 

some details of the NEMD algorithm to simulate planar Couette flow, and in the last 

section we introduce the non-equilibrium pair distribution function which provides 

insight into the structure of the fluid and allows one to calculate the pressure, energy 

and viscosity indirectly. 

 

2.3.1 Planar Couette flow  

Figure 2.3 depicts a planar Couette flow where an atomic fluid is confined by two 

parallel plates of area A, distant L apart.  

 

 
 

Figure 2.3 Laminar flow of an atomic fluid between a moving upper plate and stationary 
lower plate. 
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The upper plate slides in the positive x-direction at a constant velocity v0, while the 

other plate is stationary. Here L is a macroscopic quantity, or more precisely, L is much 

larger than the range of the interatomic interactions. 

Two general types of behaviour can occur depending on the nature of the fluid. With 

some fluids the force F used to maintain the velocity of the upper plate constant is 

proportional to the velocity itself; these fluids are called Newtonian. Fluids for which 

the force is not proportional to the velocity are called non-Newtonian [Pry66]. A more 

general definition states that a fluid is Newtonian if the stress exerted is directly 

proportional to the rate of deformation and does not depend on the deformation itself 

[Fer91b]; a fluid is non-Newtonian otherwise. 

Consider, for simplicity, that the liquid in Figure 2.3 is Newtonian. The velocity of 

each atom is the sum of two different components; one is due to the thermal motion, the 

other is due to the streaming velocity of the fluid. For weak to moderate flows, it can be 

experimentally proved that the streaming velocity (directed in the x-direction) of the 

fluid varies linearly if measured in the y-direction, from zero at the lower plate to v0 at 

the upper one. The fluid is thus said to be in a condition of steady laminar flow with a 

velocity gradient 
L

v0  [Pry66]. At steady state, the force fluid
xF  per unit area exerted by 

the fluid in the x-direction on the upper plate is equal (but with opposite sign) to the 

force F used to drag the plate itself. fluid
xF  is related to v0 by the expression: 

L
v

A
F

A
F fluid

x 0η−=−=                                              (2.58) 

where η  is the coefficient of shear viscosity, and the negative sign indicates that the 

force is in the negative x-direction [Pry66].  
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Considering Eq. (2.58), it becomes convenient to define two quantities that account 

for the mutually perpendicular directions of the force fluid
xF  (x-direction) and of the 

velocity gradient 
L
v0  (y-direction): 

y
v

P x
xy ∂

∂
−= η                                                        (2.59) 

where 
A
F

A
F

P
fluid

x
xy −==  is simply the force per unit area exerted by the fluid on the 

upper plate and it is a negative quantity. The x-subscript represents the direction of the 

force, whereas the y-subscript is the direction perpendicular to the plate. 
L
v

y
vx 0=

∂
∂  is 

the velocity gradient (or the strain rate). Here the x-subscript represents the component 

of the velocity that is not zero, and can only vary in the y-direction. The introduction of 

these quantities is necessary to describe satisfactorily the system under study, and their 

experimental measurements allow the calculation of η  via Eq. (2.59). 

The upper plate exerts a force APF xy−=  on the adjacent fluid, and during a time 

t∆  it will transfer a momentum equal to tAPxy ∆− . The fluid itself will transfer this 

momentum to the lower plate with a rate equal to 
t

L
∆

− . This is the x-component of the 

momentum being transferred along the negative y-direction, ‘layer by layer’ in the fluid. 

The momentum flow is given by:       

VP
t

L
tAP xyxy =








∆
−×∆−                                               (2.60) 

where V is the volume of the fluid between the plates. 

In the following sections we discuss how to treat the momentum flow in Eq. (2.60) 

and the strain rate 
y
vx

∂
∂

 within a molecular description.  
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2.3.2 Pressure and strain rate tensors 

Eq (2.60) states that the x-component of momentum flows throughout the fluid, from 

the upper plate to the lower. Describing a homogeneous fluid as a collection of particles 

interacting via central forces, the x-component of momentum can be transferred in the y-

direction in two ways:  

1) a particle i with thermal momentum ixp  and iyp  (x- and y-component respectively), 

moves, in an infinitesimal time t∆ , a distance t
m

piy ∆  in the y-direction. Hence the 

particle transports its own x-component momentum ixp  in the y-direction at a rate 

m

pp

t

t
m

p

p iyix

iy

ix =
∆

∆
× . This is valid for each particle of the fluid, so adding the 

contributions from all the particles, the kinetic contribution to momentum flow is 

given by: 

  ∑
i

iyix

m

pp
    .                                    (2.61) 

2) The second contribution comes from the intermolecular forces. Let )( ijrF be the 

magnitude of the (central) force between two particles i and j, where ijr  is their 

distance apart. The x-component of the force acting on particle j is 
ij

ij
ij r

x
rF )( , where 

ijx  is the distance between i and j in the x-direction. In the time t∆  this force will 

produce a change in the x-component momentum of particle j equal to t
r

x
rF

ij

ij
ij ∆)( . 

Due to Newton’s third law of dynamics, particle i experiences an equal change of 

momentum but of opposite sign. It can be thought that particle j gains momentum 
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and particle i loses it. If ijy  is the distance between the particles in the y-direction, 

the velocity with which this momentum transfer occurs is simply 
t

yij

∆
. Hence the 

momentum flow is 
ij

ijij
ij

ij

ij

ij
ij r

yx
rF

t

y
t

r

x
rF )()( =

∆
×∆ . Adding the contributions from 

all the pairs of particles, the contribution to the momentum flow due to the 

intermolecular forces can be expressed as: 

∑∑
>i ij

ij

ijij
ij r

yx
rF )(   .                                  (2.62) 

Adding together the contributions from Eq. (2.61) and Eq. (2.62) and using Eq. (2.60), 

the momentum flow for a homogeneous fluid can be related to the molecular properties 

as follows [Pry66, Irv50]: 
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VP )(   .                      (2.63) 

We note here that the above expression is only valid for a homogeneous fluid. The 

derivation for an inhomogeneous fluid is more complex, but may be found in references 

[Irv50, Tod95].   

Eq. (2.63) can be generalized for any kind of arbitrary flow geometry by writing 

similar relationships for all the possible combinations of the subscripts (α , β=x, y, z), 

which generates a 2nd rank tensor of the form [Pry66]: 
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Eq. (2.63) is a general relationship, but for a detailed derivation with three-body forces 

see Appendix 2. Interchanging x and y in Eq. (2.63) it is clear that the tensor P is 
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symmetric ( βααβ PP = ). In the equilibrium case the off-diagonal elements are zero (in 

the kinetic part in Eq. (2.63), ixp  and iyp  have the same probability to be positive or 

negative, so the sum of the contributions from all the particles turns out to be zero) and 

the diagonal elements are all the same. They can be identified as the instantaneous 

hydrostatic pressure [All87]:   
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It is common practice to use Eq. (2.65) as the definition of hydrostatic pressure also in 

the non-equilibrium case and to call the tensor P in Eq. (2.64) the pressure tensor. In 

general the pressure tensor is a function of temperature, density and strain rate, 
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The strain rate 
y
vx

∂
∂  can also be defined as a tensor. In general, it represents the 

change of the α-component of the velocity of the fluid in the β-direction, namely: 
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Considering all the possible combinations of the suffixes, we can write the following 

tensor, identified as the strain rate tensor: 
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For planar Couette flow, the only non-zero element of the tensor in Eq. (2.67) is 

( )
y

v x
xy ∂

∂
=∇v  which is usually defined by the symbol γ& , i.e. the strain rate. 
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In the following sections we will describe how synthetic NEMD may be used to 

simulate a planar Couette flow. 

 

2.3.3 Synthetic NEMD for planar Couette flow 

Consider a system of N particles interacting via an intermolecular potential u(r1,…, 

rN) (see for example section 2.1). In a molecular dynamics simulation [All87] one 

solves Newton’s (or Hamiltonian’s) equations of motion for each particle: 
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where ir  is the position of particle i, ip  its momentum and iF  is the total force acting 

on the particle ( ∑∑
≠≠

−==
NN

r
FF

ij ij

ij

ij

iji d

du
). Usually periodic boundary conditions 

[All87] are applied to simulate bulk properties, since they minimize boundary effects. 

Several algorithms [All87] can be used to solve the equations of motion in Eq. (2.68); in 

our (NEMD) simulations we used a fourth-order Gear predictor-corrector method 

[All87, Eva84b, Gea71, see also below].   

In order to calculate transport coefficients, inhomogeneous non-equilibrium 

molecular dynamics techniques try to closely simulate the conditions used in the 

experimental apparatus to measure the same transport coefficients [Lie92]. To maintain 

the system under non-equilibrium steady state flow, these techniques adopt boundary 

conditions (for example sliding walls) which, unfortunately, affect the transport 

properties of the fluid because the size of the simulated system is comparable with the 

range of the interatomic interactions [Lie92, Tod95]. For these reasons synthetic 

algorithms [Eva90], which use fictitious forces, were implemented to maintain the 
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system in a homogeneous non-equilibrium steady state. The fictitious forces 

continuously exert work on the system to prevent relaxation to equilibrium. This work 

causes a heating of the system, which must be removed by a thermostat. Fictitious 

forces and thermostats are introduced by modifying the Newtonian equations of motion. 

In what follows we describe how the synthetic NEMD SLLOD method [Eva84c, 

Eva90], used in our work, re-casts the equations of motion to simulate planar Couette 

flow.  

 

SLLOD equations of motion 

Consider a canonical ensemble of N particles at temperature T. The distribution 

function is: 
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0H  is seen to be the total internal energy of the system. 

Consider now the instant at which the system is subject to a linear velocity profile. 

At time t=0 the distribution function is changed to the local distribution function 
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                                            ( x̂ : x-direction unit vector)  
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by transforming the x-component of the velocity of each particle, imposing a linear 

velocity profile [Eva84c, Eva90]:  

iii yxx γ&&& += −+ )0()0(  .                                        (2.72) 

This is a canonical ensemble (locally in equilibrium) upon which is superimposed a 

linear velocity profile with strain rate dydv x /=γ&  (zero-wave-vector strain rate 

[Eva90]). It is important to realize that fl is simply a local equilibrium distribution 

function, i.e. molecular relaxation has not yet taken place. The distribution function of 

this ensemble can be obtained by considering the response of a canonical ensemble f0 at 

t=0 to a fictitious strain rate field )(tγ&  where the system evolves with the following 

equations of motion [Eva84c]: 
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Eq. (2.73) are equivalent to the following first-order equations of motions: 
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It is important to point out that Eq. (2.74) and Eq. (2.75) can not be derived from a 

Hamiltonian. pix is the peculiar (thermal) momentum ( tot.
ixp  – .lstream. ve

ixp ) rather than the 

laboratory momentum.  

The shear viscosity is defined as: 
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where 
∞→t

 represents a time average on the dynamics of the system.  

Differentiating H0 in Eq. (2.70), and using Eqs. (2.74), (2.75) and (2.63) we have the 

following equation: 

VPH xyγ&& −=0                                              (2.77) 

which states that the work exerted by the external field in an adiabatic  planar Couette 

flow results in a change of the internal energy. As a consequence, the system heats up. 

This behaviour is revealed by an increase of the kinetic energy, where as usual, the 

kinetic energy is identified with the kinetic temperature as: 

 ∑
=

•
=

N

i

ii

m
NkT

1
22

3 pp
  .                                       (2.78) 

Since we want to simulate Couette flow at constant temperature, we need to introduce a 

thermostat in the equations of motion. For this purpose Eq. (2.75) is re-written as:   
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where α is a Gaussian thermostatting multiplier [Eva90] derived by constraining the 

kinetic energy (hence the temperature) to be constant: 
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In Eqs. (2.74), (2.79) and (2.80) it is assumed that the linear velocity profile is stable, 

which is true at low Reynolds number [Eva90].  

The SLLOD equations of motions must be implemented with compatible periodic 

boundary conditions [Eva90]. For planar Couette flow (Eq. (2.74) and Eq. (2.79)), Lees-
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Edwards boundary conditions [All87, Eva90] can be used. In the next section we give 

some details of these boundary conditions. 

 

 
Figure 2.4 Representation of the Lees-Edwards boundary conditions [All87, Eva90]. 
 

Lees-Edwards boundary conditions  

Figure 2.4 depicts an infinite periodic system subjected to shear in the x-y plane. Box 

1 is the simulation box. The boxes in the middle layer (2, 1 and 6) are stationary. Boxes 

in the lower layer (3, 4 and 5) move in the negative x-direction at a speed Lγ& , where L is 

the length of the (cubic) box. The boxes in the upper layer (7, 8 and 9) move in the 

positive x-direction at a speed Lγ& . At each step of the simulation the relative distances 

( ijijij zyx  and  , ) between pairs of particles i and j are calculated with Lees-Edwards 

boundary conditions [All87, Eva90] in the following way: 
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In Eq. (2.81)  

dxd = mod(γ&  × tel.; L)  ,                                      (2.82) 
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where mod(a  ; b ) is a function that returns the remainder of the division of b into a and 

tel. is time elapsed during the simulation. anint(a) is a function that returns the nearest 

integer to a .  

It is convenient to replace particles in the simulation box as they cross the 

boundaries. After each step of the simulation, the following algorithm (similar to Eq. 

(2.81)) must be used for the coordinates (xi, yi, zi) of the particles: 
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                                     (2.83) 

where we note that the origin of the coordinate system is the centre of the simulation 

box. If the particle crosses the lower x-z face of the simulation box it will ‘reappear’ at 

the upper x-z face, and the streaming velocity ( Lγ& ) will be added to its total velocity. If 

it crosses the upper x-z face reappearing in the lower x-z face, the streaming velocity 

( Lγ& ) will be subtracted from its total velocity. In the other cases the total velocity is not 

changed. 

 

Gear predictor-corrector method 

To solve the first-order SLLOD equations of motion (Eqs. (2.74) and (2.79)), we 

used a fourth-order Gear predictor-corrector method [All87, Eva84b, Gea71] for its 

efficiency and accuracy. Despite its 4th order accuracy it requires only first derivatives 

of the intermolecular potential which is calculated once per time-step. Let ri be the 

position of particle i, the scaled time derivatives can be defined as: 
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where  t∆ is the time step. Equivalently for the momentum pi, we have:   



Theory and Computational Techniques                                                                                                                                                        

 

67 

 

  )(
24
1 ;  )(

6
1 ;  )(

2
1 ;  )(

4

4
4

43

3
3

32

2
2

21
dt

d
t

dt

d
t

dt

d
t

dt
d

t i
i

i
i

i
i

i
i

p
p

p
p

p
p

p
p ∆=∆=∆=∆= (2.85) 

The Taylor series expansion for ri and p i is truncated at the 4th order, and using a matrix 

form we can write the predicted values (superscript p) of ri and pi and their derivatives 

in the following way: 
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When the predicted values are calculated, Lees-Edwards periodic boundary conditions 

(Eq. (2.83)) are applied to reintroduce particles into the simulation box, which may have 

crossed the boundaries. The relative distances between pairs of particles are first 

calculated by Eq. (2.81) and then used to determine the forces acting on each atom. 

Finally, Eq. (2.74) and Eq. (2.79) are used in the corrector step to calculate the corrected 

values (superscript c) of ri and pi and their derivatives: 
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where: 
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Here c0, c1, c2, c3 and c4 are the corrector coefficients which depend upon the order of 

the differential equation being solved [Gea71]. In our case, c0=251/720, c1=1, c2=11/12, 

c3= 1/3 and c4 =1/24.  

Other methods can be used to integrate equations of motion of the particles. The 

commonly used leap frog method [Ver67] solves second order equations of motion, 

hence it is not suitable to solve first order Eqs. (2.74) and (2.79). The Runge-Kutta 

method [Gea71] is appropriate but expensive computationally. We have chosen to use 

the fourth-order Gear predictor-corrector method for its good accuracy and because of 

programming convenience.  

 

2.3.4 Non-equilibrium pair distribution functions  

Given a canonical ensemble (NVT), where the origin of the coordinate system is 

arbitrarily chosen, it is possible to define distribution functions for the particle positions. 

The simplest such function is the pair (2nd order) distribution function g(r1, r2). In a 

homogeneous atomic fluid, it is proportional to the probability of finding a particle at r2 
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in a volume element dr2 if, at the same time, there is a particle at r1 in volume dr1 

[Ege94]. This function is useful since it can be easily calculated from a molecular 

simulation, providing insight into the liquid structure. It can also be measured 

experimentally [Ege94], allowing a direct comparison between theory and experiment. 

Furthermore, the pair distribution function, when known, provides an alternative way to 

calculate any pair function of the system, such as the two-body configurational pressure, 

energy and viscosity. Hence it can be used to test the correctness of those pair functions 

calculated directly from a molecular simulation. Higher order distribution functions can 

be defined in a similar way [Ege94].  

For a homogeneous liquid in thermal equilibrium or under steady state uniform flow, 

g(r1, r2) does not depend upon the choice of the origin of the coordinates [Ege94]. 

Hence g(r1, r2) depends upon the difference r = r1 - r2 and can be defined as an ensemble 

average over all possible pairs [All87]:  
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where )( ijrr −δ is the delta function. Further, for an isotropic liquid g(r) depends only 

upon the magnitude of r, so it is a spherically symmetrical function. In this case g(r) is 

easily calculated as:  

drr

N
rg r

2 4
)(

πρ
=                                                     (2.93) 

where rN  is the average number of particles between a spherical shell of radius r and 

thickness dr. In planar Couette flow g(r) is not a spherically symmetrical function and 

can be approximated as [Gre52, Han80]: 

  φφθνγ cossin sin)( )()( 2rrgg &+=r                                   (2.94) 

where we use the polar coordinates: 
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In Eq. (2.94), g (r) is the standard radial distribution function (Eq. 2.93). In this work we 

have calculated this quantity for a system in equilibrium and for planar Couette flow 

(see Chapter 4). The function )(rν represents the purely radial part of the distortion and 

it can be estimated by the expression [Han80]:       
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where 2
ij
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yx
 is the average of the quantity 

2
ij

ijij

r

yx
 for each particle contained in a 

spherical shell of radius r and thickness dr. We have calculated )(rν  for planar Couette 

flow (see Chapter 4). For a system in equilibrium )(rν is zero. 

In what follows we give the expressions of the two-body potential contributions to 

the pressure, energy and viscosity in terms of )(rg  and )(rν . 

 

Two-body potential pressure, energy and viscosity as functions of g(r) and ν(r) 

The two-body potential contribution for the pressure can be written as [All87]: 
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Using Eq. (2.92) and Eq.(2.94) we can write: 
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∫
∫
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where: 

 0   sincossin sin)( 
6

3
2

2
2

=− ∫ drddr
dr

du
r

b

φθθφφθνγ
ρ &                 (2.99) 

since:                                            0  cossin

2

0

=∫
π

φφφ d        .                                   (2.100) 

Hence: 

∫∫
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φθθ
ρ   .          (2.101) 

Equivalently for the two-body potential energy we can write: 

∫
∞

=

0

222 )(2 drrurgNE bb ρπ       .                             (2.102) 

Eq. (2.101) and Eq. (2.102) state that bb EP 22  and  do not depend on the radial part of 

the distortion, )(rν , and the only dependence on the shear rate γ&  comes from the 

distortion of g(r) under shear (since .. )()( equilnonequil rgrg −≠ ). Following the same 

procedure we can write a similar expression for the 2-body potential shear contribution 

to the viscosity which depends only on )(rν : 

∫
∞

=

0

3
22

2 )(
15

2 drr
dr

dur
b

b νπρη    .                                     (2.103) 
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Chapter 3 

 

 

Investigation of Three-Body Interactions on the Phase 

Behaviour of Noble Gases  

 

In the following sections we report the results obtained studying the role of three-

body interatomic potentials on noble gas coexisting phases. Section 3.1 gives details of 

the Gibbs ensemble simulations for vapour-liquid coexisting phases of argon, krypton 

and xenon as pure fluids and of an argon-krypton mixture. In section 3.2 we report the 

analytic expression of an effective potential which we found to reproduce the main 

feature of the two-body + three-body potentials. The significance of this relationship is 

that three-body interactions can be estimated with sufficient accuracy from two-body 

interactions without incurring the computational penalty of three-body calculations. The 

relationship has the potential of improving both the accuracy and predictive value of 

pair interaction molecular simulations.   

 

3.1 Vapour-liquid coexisting phases of noble gases 

 

The aim of this work is to investigate the role of the dipole-dipole-dipole term and 

other mutipole three-body dispersion terms on the vapour-liquid phases observed for 

argon, krypton and xenon. As discussed in Chapter 2, we have used the potentials 
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proposed by Barker et al. [Bar71a, Bar74, see Eqs. (2.11), (2.12) and (2.13)] for the 

two-body interactions. The three-body interactions were obtained from considering the 

dipole-dipole-dipole (third-order DDD or Axilrod-Teller term, Eq. (2.17)), the dipole -

dipole-quadrupole (third-order DDQ, Eq. (2.18)) the dipole-quadrupole -quadrupole 

(third-order DQQ , Eq. (2.19)), quadrupole-quadrupole-quadrupole (third-order QQQ, 

Eq. (2.20)) and the dipole-dipole-dipole (forth-order DDD, Eq. (2.21)).  

   

3.1.1 Simulation details  

 

Pure fluids  

The NVT Gibbs ensemble technique (for details see Chapter 2) was implemented for 

a system of 500 atoms. The simulations were performed in cycles consisting typically of 

500 attempted displacements, an attempted volume change and 500 interchange 

attempts. Typically, 1000-1500 cycles were used for equilibration and a further 1500-

2000 cycles were used to accumulate ensemble averages. The normal convention was 

adopted for the reduced density (ρ∗ = ρσ3), temperature (T∗ = kT/ε), energy (E∗ = E/ε), 

pressure (P∗ = Pσ3/ε) and chemical potential (µ∗ = µ/ε). 

Periodic boundary conditions were applied.  The two-body potentials were truncated 

at half the box length and appropriate long range correction terms (see Appendix 1) 

were evaluated to recover the contribution to pressure, energy and chemical potential of 

the full intermolecular potential. Some care needs to be taken with the three-body 

potentials because the application of a periodic boundary can potentially destroy the 

position-invariance of three particles (see Appendix 2). We examined the behaviour of 

the three-body terms for many thousands of different configurations and intermolecular 

separations. All the three-body terms asymptote rapidly to zero with increasing 
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intermolecular separation.  For a system size of 500 or more atoms, we found truncating 

the three-body potentials at intermolecular separations greater than a quarter of the 

length of the simulation box to be an excellent approximation to the full potential that 

also avoided the problem of three-body invariance to periodic boundary conditions.  

The chemical potential was determined from the equation proposed by Smit et al. 

[Smi89a, see Chapter 2]. The uncertainties in the ensemble averages for density, 

temperature, energy and pressure were calculated by dividing the post-equilibrium 

results into ten sections. The estimated errors represent the standard deviations of the 

section averages.  An error estimate for the chemical potential cannot be estimated in 

this way because it is the average of the entire post-equilibrium simulation. 

 

Binary mixture  

The NPT Gibbs ensemble technique was used for an argon-krypton mixture. The 

details of the simulations are similar to those discussed above for the pure fluids. In this 

work we analyzed the pressure-composition behaviour of the mixture and compared it 

with experimental data. The pressure-density behaviour was also studied.        

The intermolecular potentials mentioned previously were developed originally for 

pure fluids, but they can be applied directly to binary mixtures by assuming suitable 

combining rules for the intermolecular parameters. In general if we denote the energy-

like parameters ν and ε  (see Chapter 2) by the symbol W, the cross potential parameters 

of interacting pairs and triplets can be calculated from: 







=

=
2

3

jjiiij

kkkjjjiiiijk

WWW

WWWW
                                                  (3.1) 
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In general if we denote all the remaining parameters such as σ, A, C6 etc  (see Chapter 

2) by the symbol Y, the cross potential parameters of interacting pairs can be calculated 

from: 

2
jjii

ij

YY
Y

+
=                                                     (3.2) 

In the argon-krypton mixture simulations the potential parameters of argon ε  and σ were 

used to obtain reduced quantities in the standard way. It is important to stress that these 

commonly used combining rules do not have physical rationale. 

The three-body simulations commonly require 20 and 12 CPU hrs on the Fujitsu 

VPP300 and NEC SX-4/32 supercomputers, respectively. 

 

3.1.2 Results and discussion 

 

Pure fluids 

The results of Gibbs ensemble simulations for the vapour-liquid properties of argon, 

krypton and xenon are reported in Tables 3.1-3.6. A comparison of simulation results 

with experiment is given in Figures 3.1, 3.3 and 3.4.  The relative contribution to energy 

of the various three-body interactions for the liquid phase of argon is illustrated in 

Figure 3.2. The total pressure versus the temperature is reported in Figure 3.5.  
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Table 3.1 Vapour-liquid coexistence properties of argon from molecular simulation 
using the two-body BFW potential [Bar71a].  
 

       

   *T             *
Lρ               *

LP                    *
LE            *

Lµ         *
Vρ                *

VP                  *
VE             *

Vµ   

0.700       0.806(4)       -0.018(38)        -5.18(3)       -3.67       0.006(1)         0.004(1)        -0.06(2)        -3.70 
0.750       0.781(3)        0.007(21)        -4.98(2)       -3.67       0.008(1)         0.006(1)        -0.08(3)        -3.68 
0.825       0.741(4)        0.020(14)        -4.66(3)       -3.43       0.021(2)         0.015(2)        -0.19(3)        -3.39 
0.850       0.727(5)        0.022(19)        -4.56(3)       -3.49       0.023(2)         0.017(3)        -0.21(3)        -3.42 
0.875       0.711(5)        0.017(16)        -4.44(4)       -3.47       0.030(2)         0.022(3)        -0.26(3)        -3.36 
0.900       0.696(5)        0.022(19)        -4.33(4)       -3.39       0.033(3)         0.025(3)        -0.29(3)        -3.38 
0.925       0.678(3)        0.036(10)        -4.20(2)       -3.40       0.041(2)         0.031(3)        -0.35(3)        -3.32 
0.950       0.661(10)      0.037(22)        -4.08(6)       -3.35       0.049(5)         0.037(7)        -0.41(4)        -3.30 
0.975       0.644(6)        0.049(16)        -3.97(4)       -3.34       0.057(5)         0.042(6)        -0.47(4)        -3.28 
1.000       0.622(7)        0.056(13)        -3.81(4)       -3.24       0.073(7)         0.051(12)      -0.59(6)        -3.23 
1.025       0.597(8)        0.062(17)        -3.66(5)       -3.25       0.082(6)         0.058(11)      -0.64(6)        -3.23 
1.050       0.574(9)        0.071(21)        -3.50(5)       -3.22       0.104(7)         0.069(13)      -0.82(6)        -3.18 
1.075       0.540(12)      0.080(27)        -3.31(7)       -3.20       0.112(10)       0.075(19)      -0.86(8)        -3.20 

 
 
 

 
 
Table 3.2 Vapour-liquid coexistence properties of krypton from molecular simulation 
using the two-body Barker et al. potential [Bar74]. 
 

       

   *T            *
Lρ               *

LP                    *
LE            *

Lµ         *
Vρ                *

VP                  *
VE             *

Vµ   

0.700        0.800(4)       -0.002(33)       -5.05(3)      -3.58       0.007(2)          0.005(1)       -0.07(3)        -3.55 
0.750        0.774(3)        0.001(21)       -4.84(3)      -3.55       0.010(1)           0.007(1)      -0.09(2)        -3.53 
0.825        0.735(5)        0.020(19)       -4.53(4)      -3.39       0.024(2)           0.017(2)      -0.21(2)        -3.31 
0.850        0.718(4)        0.013(12)       -4.41(3)      -3.35       0.026(2)           0.019(2)      -0.22(3)        -3.34 
0.875        0.700(5)        0.020(15)       -4.28(4)      -3.33       0.031(4)           0.023(4)      -0.27(4)        -3.32 
0.900        0.687(5)        0.034(12)       -4.18(3)      -3.28       0.041(4)           0.030(4)      -0.36(4)        -3.24 
0.925        0.666(7)        0.036(16)       -4.04(4)      -3.26       0.048(7)           0.034(10)    -0.41(7)        -3.23 
0.950        0.647(3)        0.044(13)       -3.91(2)      -3.23       0.059(3)           0.041(5)      -0.48(3)        -3.18 
0.975        0.624(9)        0.048(18)       -3.76(6)      -3.19       0.067(5)           0.047(7)      -0.54(4)        -3.18 
1.000        0.609(6)        0.065(14)       -3.66(3)      -3.16       0.087(4)           0.059(7)      -0.68(5)        -3.12 
1.025        0.573(17)      0.073(26)       -3.44(9)      -3.16       0.098(12)         0.065(20)    -0.75(8)        -3.13 
1.050        0.548(18)      0.084(31)       -3.28(9)      -3.12       0.131(18)         0.080(33)    -0.98(14)      -3.09 
1.065        0.530(23)      0.094(46)       -3.18(12)    -3.11       0.141(16)         0.082(33)    -1.05(11)      -3.08 
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Table 3.3 Vapour-liquid coexistence properties of xenon from molecular simulation 
using the two-body Barker et al.  potential [Bar74]. 
 

       

   *T            *
Lρ               *

LP                    *
LE            *

Lµ         *
Vρ                *

VP                  *
VE             *

Vµ   

0.700       0.801(5)         -0.010(36)     -5.07(3)       -3.72         0.006(1)         0.004(1)        -0.06(2)       -3.63 
0.750       0.777(4)         -0.005(21)     -4.88(3)       -3.43         0.011(2)         0.008(1)        -0.10(2)       -3.49 
0.825       0.733(4)          0.005(15)     -4.54(2)       -3.32         0.022(3)         0.016(3)        -0.20(4)       -3.35 
0.850       0.715(6)          0.021(20)     -4.41(4)       -3.42         0.027(3)         0.020(3)        -0.24(3)       -3.32 
0.875       0.701(3)          0.027(20)     -4.31(2)       -3.37         0.032(3)         0.023(4)        -0.28(3)       -3.30 
0.900       0.682(4)          0.026(19)     -4.17(3)       -3.34         0.037(3)         0.027(4)        -0.32(3)       -3.29 
0.925       0.664(8)          0.031(16)     -4.05(5)       -3.28         0.047(6)         0.034(7)        -0.39(4)       -3.24 
0.950       0.644(9)          0.038(22)     -3.91(6)       -3.25         0.055(3)         0.040(4)        -0.46(3)       -3.22 
0.975       0.623(9)          0.045(21)     -3.77(6)       -3.20         0.068(6)         0.048(10)      -0.55(7)       -3.18 
1.000       0.605(9)          0.063(23)     -3.65(6)       -3.18         0.082(6)         0.056(10)      -0.65(4)       -3.15 
1.025       0.583(11)        0.072(19)     -3.51(7)       -3.15         0.099(9)         0.066(15)      -0.77(6)       -3.12 
1.050       0.549(14)        0.083(27)     -3.30(8)       -3.15         0.123(10)       0.077(19)      -0.94(8)       -3.10 
1.075       0.501(88)        0.103(183)   -3.02(48)     -3.10         0.160(17)       0.088(34)      -1.18(12)     -3.07 
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T
able 3.4 V

apour-liquid coexistence properties of argon from
 m

olecular sim
ulation using the tw

o-body B
FW

 potential [B
ar71a] + three-body 

(D
D

D
 + D

D
Q

 + D
Q

Q
 + D

D
D

4) interm
olecular potentials. 

 

                                                                                                                                         T
∗ 

 
 0.750                   0.825                  0.850                  0.875                  0.900                  0.925                 0.950                   0.975                 1.00 

 

ρ
∗L  

 0.742(5) 
 0.685(8) 

 0.671(10) 
 0.658(10) 

 0.639(11) 
 0.613(11) 

 0.600(10) 
 0.564(11) 

 0.513(30) 
P

∗L tot 
 0.044(89) 

 0.017(38) 
 0.020(50) 

 0.028(41) 
 0.033(52) 

 0.035(41) 
 0.049(36) 

 0.045(39) 
 0.052(100) 

P
∗L 2body  

-0.914(77) 
-0.854(21) 

-0.825(30) 
-0.809(21) 

-0.788(30) 
-0.743(20) 

-0.718(17) 
-0.673(19) 

-0.591(51) 
P

∗L D
D

D 
 0.375(8) 

 0.271(9) 
 0.250(10) 

 0.235(8) 
 0.218(9) 

 0.190(9) 
 0.175(7) 

 0.149(7) 
 0.117(15) 

P
∗L D

D
Q  

 0.125(3) 
 0.090(3) 

 0.083(3) 
 0.078(3) 

 0.072(3) 
 0.062(3) 

 0.057(2) 
 0.049(3) 

 0.038(5) 
P

∗L D
Q

Q  
 0.0254(7) 

 0.0186(7) 
 0.0170(7) 

 0.0159(6) 
 0.0147(6) 

 0.0127(7) 
 0.0117(6) 

 0.0099(6) 
 0.0076(11) 

P
∗L Q

Q
Q  

 0.0023(1) 
 0.0017(1) 

 0.0015(1) 
 0.0014(1) 

 0.0013(1) 
 0.0011(1) 

 0.0010(1) 
 0.0009(1) 

 0.0007(1) 
P

∗L D
D

D4  
-0.124(3) 

-0.074(2) 
-0.068(2) 

-0.063(2) 
-0.058(1) 

-0.052(2) 
-0.046(1) 

-0.040(1) 
-0.033(3) 

E
∗L tot conf. 

-4.53(3) 
-4.13(6) 

-4.01(7) 
-3.97(5) 

-3.89(7) 
-3.68(6) 

-3.57(6) 
-3.39(6) 

-3.09(16) 
E

∗L 2body  
-4.73(3) 

-4.33(6) 
-4.16(6) 

-4.06(7) 
-3.99(6) 

-3.83(7) 
-3.71(6) 

-3.49(6) 
-3.19(16) 

E
∗L D

D
D 

 0.169(3) 
 0.132(3) 

 0.125(3) 
 0.119(3) 

 0.113(3) 
 0.103(3) 

 0.097(2) 
 0.088(3) 

 0.076(6) 
E

∗L D
D

Q  
 0.046(1) 

 0.036(1) 
 0.034(1) 

 0.032(1) 
 0.031(1) 

 0.028(1) 
 0.026(1) 

 0.023(1) 
 0.020(2) 

E
∗L D

Q
Q  

 0.0079(2) 
 0.0063(2) 

 0.0059(2) 
 0.0056(1) 

 0.0053(1) 
 0.0048(2) 

 0.0045(1) 
 0.0040(2) 

 0.0034(3) 
E

∗L Q
Q

Q  
 0.00061(2) 

 0.00049(1) 
 0.00046(1) 

 0.00043(1) 
 0.00041(1) 

 0.00037(1) 
 0.00035(1) 

 0.00031(1) 
 0.00026(2) 

E
∗L D

D
D

4  
-0.0419(10) 

-0.0268(4) 
-0.0256(4) 

-0.0240(5) 
-0.0227(4) 

-0.0212(5) 
-0.0192(4) 

-0.0178(5) 
-0.0161(7) 

µ
∗L  

-3.47 
-3.48 

-3.53 
-3.40 

-3.35 
-3.36 

-3.29 
-3.26 

-3.28 
 

ρ
∗V  

 0.0095(17) 
 0.0174(15) 

 0.0218(18) 
 0.0295(37) 

 0.0350(48) 
 0.0401(38) 

 0.0536(56) 
 0.0605(52) 

 0.0655(32) 
P

∗V tot  
 0.0067(16) 

 0.0128(17) 
 0.0162(21) 

 0.0216(46) 
 0.0259(64) 

 0.0301(51) 
 0.0388(83) 

 0.0440(83) 
 0.0490(56) 

P
∗V 2body  

-0.0005(4) 
-0.0016(4) 

-0.0024(5) 
-0.0043(13) 

-0.0057(20) 
-0.0071(15) 

-0.0126(28) 
-0.0155(31) 

-0.0172(23) 
P

∗V D
D

D  10 -3 
 0.0005(22) 

 0.0212(156) 
 0.0432(198) 

 0.0846(533) 
 0.1350(726) 

 0.1911(609) 
 0.442(116) 

 0.567(145) 
 0.700(138) 

P
∗V D

D
Q 10 -4 

 0.001(4) 
 0.070(65) 

 0.128(66) 
 0.249(172) 

 0.406(217) 
 0.572(188) 

 1.313(341) 
 1.67(418) 

 2.067(428) 
P

∗V D
Q

Q 10 -5 
 0.001(6) 

 0.148(167) 
 0.239(142) 

 0.468(364) 
 0.775(418) 

 1.092(374) 
 2.486(636) 

 3.135(773) 
 3.896(864) 

P
∗V Q

Q
Q 10 -6 

 0.001(4) 
 0.135(170) 

 0.198(132) 
 0.390(336) 

 0.659(362) 
 0.931(327) 

 2.106(532) 
 2.648(646) 

 3.307(779) 
P

∗V D
D

D4 10 -4 
-0.0016(25) 

-0.048(28) 
-0.111(55) 

-0.234(135) 
-0.385(220) 

-0.530(168) 
-1.249(330) 

-1.628(408) 
-2.015(371) 

E
∗V tot conf.  

-0.07(2) 
-0.15(3) 

-0.20(3) 
-0.26(5) 

-0.30(5) 
-0.34(3) 

-0.45(4) 
-0.49(5) 

-0.52(3) 
E

∗V 2body  
-0.07(2) 

-0.15(3) 
-0.20(3) 

-0.26(5) 
-0.30(5) 

-0.34(3) 
-0.46(4) 

-0.49(5) 
-0.52(3) 

E
∗V D

D
D 10 -3 

 0.02(7) 
 0.39(28) 

 0.64(28) 
 0.87(45) 

 1.21(49) 
 1.55(37) 

 2.65(46) 
 2.98(55) 

 3.47(60) 
E

∗V D
D

Q 10 -3 
 0.003(10) 

 0.11(9) 
 0.16(8) 

 0.21(12) 
 0.30(12) 

 0.38(9) 
 0.65(11) 

 0.72(13) 
 0.84(16) 

E
∗V D

Q
Q 10 -4 

 0.002(12) 
 0.19(20) 

 0.25(15) 
 0.33(23) 

 0.48(21) 
 0.62(16) 

 1.04(17) 
 1.14(20) 

 1.34(27) 
E

∗V Q
Q

Q 10 -5 
 0.001(7) 

 0.15(18) 
 0.18(12) 

 0.24(18) 
 0.35(16) 

 0.46(13) 
 0.76(13) 

 0.84(15) 
 0.98(22) 

E
∗V D

D
D4 10 -3 

-0.004(6) 
-0.066(36) 

-0.124(59) 
-0.182(83) 

-0.259(111) 
-0.322(75) 

-0.563(102) 
-0.642(115) 

-0.750(119) 
µ

∗V  
-3.57 

-3.51 
-3.46 

-3.36 
-3.34 

-3.34 
-3.25 

-3.25 
-3.26 
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T
able 3.5 V

apour-liquid coexistence properties of krypton from
 m

olecular sim
ulation using the tw

o-body B
arker et al. [B

ar74]
+ three-body (D

D
D

 + D
D

Q
 + D

Q
Q

 + D
D

D
4) interm

olecular potentials. 
 

                                                                                                                T
∗ 

 0.750                   0.825                  0.850                  0.875                  0.900                  0.925                 0.950                   0.975 
  

ρ
∗L  

 0.712(6) 
 0.671(9) 

 0.642(9) 
 0.631(8) 

 0.616(7) 
 0.585(14) 

 0.528(23) 
 0.509(23) 

P
∗L tot 

 0.051(75) 
 0.026(45) 

 0.028(35) 
 0.036(39) 

 0.040(26) 
 0.048(48) 

 0.045(77) 
 0.066(71) 

P
∗L 2body  

-0.899(46) 
-0.848(23) 

-0.807(15) 
-0.784(21) 

-0.758(12) 
-0.703(20) 

-0.616(40) 
-0.573(34) 

P
∗L D

D
D 

 0.390(25) 
 0.306(12) 

 0.273(9) 
 0.255(11) 

 0.233(7) 
 0.202(13) 

 0.157(13) 
 0.138(12) 

P
∗L D

D
Q  

 0.127(9) 
 0.098(4) 

 0.088(3) 
 0.082(4) 

 0.074(2) 
 0.064(4) 

 0.049(4) 
 0.043(4) 

P
∗L D

Q
Q  

 0.0253(18) 
 0.0194(9) 

 0.0172(7) 
 0.0160(8) 

 0.0146(5) 
 0.0125(9) 

 0.0095(9) 
 0.0084(8) 

P
∗L Q

Q
Q  

 0.0022(2) 
 0.0017(1) 

 0.0015(1) 
 0.0014(1) 

 0.00125(5) 
 0.0011(1) 

 0.0008(1) 
 0.0007(1) 

P
∗L D

D
D

4  
-0.135(11) 

-0.105(3) 
-0.096(2) 

-0.087(4) 
-0.079(2) 

-0.071(3) 
-0.056(3) 

-.049(4) 
E

∗L tot conf. 
-4.28(3) 

-3.98(6) 
-3.83(5) 

-3.72(5) 
-3.59(4) 

-3.43(8) 
-3.13(10) 

-3.00(11) 
E

∗L 2body  
-4.49(4) 

-4.08(7) 
-3.97(5) 

-3.88(6) 
-3.75(4) 

-3.55(8) 
-3.23(10) 

-3.10(11) 
E

∗L D
D

D 
 0.183(11) 

 0.152(4) 
 0.141(3) 

 0.134(4) 
 0.126(2) 

 0.115(5) 
 0.098(4) 

 0.090(5) 
E

∗L D
D

Q  
 0.049(3) 

 0.040(1) 
 0.037(1) 

 0.035(1) 
 0.033(1) 

 0.030(1) 
 0.025(1) 

 0.023(1) 
E

∗L D
Q

Q  
 0.0082(6) 

 0.0067(2) 
 0.0062(2) 

 0.0058(2) 
 0.0055(1) 

 0.0049(2) 
 0.0041(2) 

 0.0038(2) 
E

∗L Q
Q

Q  
 0.00061(4) 

 0.00050(2) 
 0.00046(1) 

 0.00043(2) 
 0.00041(1) 

 0.00036(2) 
 0.00030(2) 

 0.00028(2) 
E

∗L D
D

D4  
-0.047(4) 

-0.039(1) 
-0.0372(5) 

-0.035(1) 
-0.032(1) 

-0.030(1) 
-0.027(1) 

-0.024(1) 
µ

∗L  
-3.62 

-3.37 
-3.38 

-3.24 
-3.15 

-3.24 
-3.20 

-3.17 
 

ρ
∗V  

 0.0105(12) 
 0.0203(15) 

 0.0246(20) 
 0.0348(37) 

 0.0429(17) 
 0.0477(31) 

 0.0578(33) 
0.0737(61) 

P
∗V tot  

 0.0074(12) 
 0.0148(18) 

 0.0183(25) 
 0.0253(50) 

 0.0316(25) 
 0.0350(45) 

 0.0409(46) 
0.0507(104) 

P
∗V 2body  

-0.0005(3) 
-0.0020(6) 

-0.0027(8) 
-0.0054(17) 

-0.0073(9) 
-0.0095(16) 

-0.0146(14) 
-0.0224(42) 

P
∗V D

D
D  10 -3 

 0.006(6) 
 0.0374(148) 

 0.0653(232) 
 0.171(77) 

 0.269(44) 
 0.338(67) 

 0.652(117) 
 1.20(29) 

P
∗V D

D
Q 10

-4 
 0.018(24) 

 0.111(42) 
 0.185(75) 

 0.497(228) 
 0.795(142) 

 0.971(183) 
 1.86(36) 

 3.44(85) 
P

∗V D
Q

Q 10
-5 

 0.029(53) 
 0.205(81) 

 0.327(153) 
 0.908(423) 

 1.47(29) 
 1.74(32) 

 3.33(69) 
 6.22(1.58) 

P
∗V Q

Q
Q 10

-6 
 0.024(50) 

 0.168(71) 
 0.257(131) 

 0.738(345) 
 1.21(26) 

 1.40(25) 
 2.67(58) 

 5.05(1.31) 
P

∗V D
D

D4 10 -4 
-0.036(24) 

-0.127(34) 
-0.225(58) 

-0.601(255) 
-0.978(156) 

-1.27(26) 
-2.38(40) 

-4.40(1.08) 
E

∗V  tot conf.  
-0.09(2) 

-0.18(3) 
-0.21(2) 

-0.29(4) 
-0.36(2) 

-0.38(3) 
-0.47(3) 

-0.58(6) 
E

∗V 2body  
-0.09(2) 

-0.18(3) 
-0.21(2) 

-0.30(4) 
-0.36(2) 

-0.39(3) 
-0.47(3) 

-0.58(6) 
E

∗V D
D

D 10
-3 

 0.18(17) 
 0.59(22) 

 0.86(24) 
 1.56(55) 

 2.08(30) 
 2.31(33) 

 3.64(46) 
 5.27(90) 

E
∗V D

D
Q 10

-3 
 0.04(5) 

 0.14(5) 
 0.20(6) 

 0.37(14) 
 0.50(8) 

 0.54(7) 
 0.85(12) 

 1.24(22) 
E

∗V D
Q

Q 10
-4 

 0.05(10) 
 0.23(9) 

 0.30(11) 
 0.58(23) 

 0.79(14) 
 0.82(11) 

 1.28(20) 
 1.89(35) 

E
∗V Q

Q
Q 10

-5 
 0.04(8) 

 0.16(7) 
 0.20(8) 

 0.41(16) 
 0.56(11) 

 0.57(8) 
 0.89(15) 

 1.33(26) 
E

∗V D
D

D4 10 -3 
-0.082(50) 

-0.149(38) 
-0.222(48) 

-0.411(138) 
-0.567(77) 

-0.649(94) 
-0.996(113) 

-1.45(25) 
µ

∗V  
-3.52 

-3.40 
-3.37 

-3.25 
-3.20 

-3.21 
-3.19 

-3.13 

 



Chapter 3 80 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

T
able 3.6 V

apour-liquid coexistence properties of xenon from
 m

olecular sim
ulation using the tw

o-body B
arker et al. [B

ar74]                
+ three-body (D

D
D

 + D
D

Q
 + D

Q
Q

 + D
D

D
4) interm

olecular potentials. 
 

                                                                                                               T
∗ 

 
 0.750                   0.825                  0.850                  0.875                  0.900                  0.925                 0.950                   0.975 

 

ρ
∗L   

 0.706(6) 
 0.671(9) 

 0.634(12) 
 0.617(15) 

 0.599(11) 
 0.578(13) 

 0.517(23) 
 0.511(26) 

P
∗L  tot 

 0.009(38) 
 0.024(53) 

 0.010(46) 
 0.030(64) 

 0.031(44) 
 0.059(61) 

 0.039(79) 
 0.060(89) 

P
∗L  2body  

-0.947(26) 
-0.875(29) 

-0.828(20) 
-0.779(31) 

-0.751(21) 
-0.696(34) 

-0.611(39) 
-0.596(42) 

P
∗L  D

D
D

 
 0.444(9) 

 0.364(15) 
 0.314(14) 

 0.288(18) 
 0.260(13) 

 0.235(14) 
 0.178(16) 

 0.169(20) 
P

∗L  D
D

Q  
 0.140(3) 

 0.114(5) 
 0.098(5) 

 0.090(6) 
 0.081(4) 

 0.073(5) 
 0.054(5) 

 0.052(6) 
P

∗L  D
Q

Q  
 0.0268(6) 

 0.0216(10) 
 0.0184(9) 

 0.0168(12) 
 0.0150(8) 

 0.0136(9) 
 0.0100(10) 

 0.0095(13) 
P

∗L  Q
Q

Q  
 0.0022(1) 

 0.0018(1) 
 0.0015(1) 

 0.0014(1) 
 0.0012(1) 

 0.0011(1) 
 0.0008(1) 

 0.0008(1) 
P

∗L  D
D

D
4  

-0.191(5) 
-0.157(5) 

-0.139(4) 
-0.128(5) 

-0.114(5) 
-0.102(5) 

-0.082(5) 
-0.074(6) 

E
∗L  tot conf. 

-4.21(4) 
-3.96(6) 

-3.78(6) 
-3.63(8) 

-3.52(6) 
-3.40(8) 

-3.07(10) 
-3.02(13) 

E
∗L  2body  

-4.48(4) 
-4.10(7) 

-3.93(7) 
-3.80(9) 

-3.64(7) 
-3.53(8) 

-3.17(11) 
-3.13(14) 

E
∗L  D

D
D

 
 0.209(3) 

 0.181(5) 
 0.165(5) 

 0.155(6) 
 0.145(5) 

 0.135(5) 
 0.114(5) 

 0.109(7) 
E

∗L  D
D

Q  
 0.054(1) 

 0.047(1) 
 0.042(1) 

 0.040(2) 
 0.037(1) 

 0.034(1) 
 0.028(2) 

 0.027(2) 
E

∗L  DQ
Q  

 0.0087(2) 
 0.0075(3) 

 0.0067(2) 
 0.0063(3) 

 0.0058(2) 
 0.0054(2) 

 0.0044(3) 
 0.0043(4) 

E
∗L  Q

Q
Q  

 0.00062(1) 
 0.00053(2) 

 0.00047(2) 
 0.00044(2) 

 0.00041(2) 
 0.00038(2) 

 0.00031(2) 
 0.00030(3) 

E
∗L  D

D
D

4  
-0.067(1) 

-0.059(1) 
-0.055(1) 

-0.052(1) 
-0.048(2) 

-0.044(2) 
-0.039(1) 

-0.036(1) 
µ

∗L  
-3.41 

-3.28 
-3.33 

-3.30 
-3.22 

-3.20 
-3.18 

-3.15 
 

ρ
∗V                                0.0109(17) 

 0.0227(27) 
 0.0245(27) 

 0.0313(36) 
 0.0414(45) 

 0.0513(67) 
 0.0566(46) 

 0.0746(33) 
P

∗V  ot  
 0.0075(16) 

 0.0163(31) 
 0.0180(31) 

 0.0229(43) 
 0.0301(57) 

 0.0366(97) 
 0.0419(66) 

 0.0514(54) 
P

∗V 2body  
-0.0006(3) 

-0.0025(8) 
-0.0030(8) 

-0.0046(11) 
-0.0075(15) 

-0.0113(34) 
-0.0125(21) 

-0.0227(20) 
P

∗V  D
D

D  10
-3 

 0.0050(75) 
 0.0686(472) 

 0.0838(364) 
 0.148(62) 

 0.311(116) 
 0.542(177) 

 0.717(105) 
 1.546(217) 

P
∗V  D

D
Q

 10
-4 

 0.009(24) 
 0.198(151) 

 0.233(111) 
 0.411(175) 

 0.883(345) 
 1.518(472) 

 2.031(296) 
 4.365(650) 

P
∗V  D

Q
Q

 10
-5 

 0.002(50) 
 0.357(299) 

 0.400(216) 
 0.706(307) 

 1.559(640) 
 2.642(798) 

 3.573(524) 
 7.67(121) 

P
∗V  Q

Q
Q

 10
-6 

-0.006(41) 
 0.282(251) 

 0.302(184) 
 0.534(241) 

 1.213(519) 
 2.039(613) 

 2.789(412) 
 5.969(982) 

P
∗V  D

D
D

4 10
-4 

-0.0317(242) 
-0.299(163) 

-0.367(136) 
-0.637(291) 

-1.416(559) 
-2.475(791) 

-3.293(514) 
-7.17(102) 

E
∗V  tot conf.  

-0.11(2) 
-0.21(3) 

-0.21(3) 
-0.27(4) 

-0.34(5) 
-0.42(6) 

-0.45(3) 
-0.59(3) 

E
∗V  2body  

-0.11(2) 
-0.21(4) 

-0.21(3) 
-0.27(4) 

-0.35(5) 
-0.42(6) 

-0.45(3) 
-0.60(3) 

E
∗V  D

D
D

 10
-3 

 0.15(25) 
 0.94(57) 

 1.08(45) 
 1.50(49) 

 2.39(66) 
 3.38(73) 

 4.12(34) 
 6.67(68) 

E
∗V  D

D
Q

 10
-3 

 0.02(7) 
 0.22(15) 

 0.25(11) 
 0.34(12) 

 0.56(17) 
 0.78(16) 

 0.95(8) 
 1.54(17) 

E
∗V  D

Q
Q

 10
-4 

-0.01(13) 
 0.34(25) 

 0.36(19) 
 0.49(17) 

 0.83(27) 
 1.15(23) 

 1.42(13) 
 2.29(27) 

E
∗V  Q

Q
Q

 10
-5 

-0.02(9) 
 0.23(18) 

 0.24(14) 
 0.32(12) 

 0.56(19) 
 0.77(16) 

 0.96(9) 
 1.55(19) 

E
∗V  D

D
D

4 10
-3 

-0.078(65) 
-0.307(144) 

-0.356(120) 
-0.479(168) 

-0.815(237) 
-1.158(234) 

-1.415(127) 
-2.316(241) 

µ
∗V  

-3.50 
-3.34 

-3.38 
-3.32 

-3.23 
-3.19 

-3.20 
-3.13 
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The coexistence properties obtained from argon using the BFW potential are 

summarised in Table 3.1 and the BFW + three-body calculations are reported in Table 

3.4. In Figure 3.1, experimental data for the vapour-liquid phase envelope of argon are 

compared with simulation results obtained in this work and data reported by Anta et al. 

[Ant97] for the Aziz-Slaman [Azi86] and Aziz-Slaman + Axilrod-Teller intermolecular 

potentials. The comparison with experiment in Figure 3.1 indicates that both the BFW 

and Aziz-Slaman potentials do not predict the liquid phase coexisting density of argon 

adequately. There is generally fair agreement for the vapour-branch of the coexistence 

curve. This contrasts with calculations using the Lennard-Jones potential, which 

normally yields good agreement with experiment for liquid densities. The good 

agreement often reported [Sad96b] with the Lennard-Jones potential is fortuitous and 

probably arises for the “effective” many-body nature of the potential. It is apparent from 

Figure 3.1 that genuine two-body potentials cannot predict the liquid phase densities of 

argon adequately. The results obtained from the BFW and Aziz-Slaman potentials are 

almost identical.  

Anta et al. [Ant97] reported that the addition of the Axilrod-Teller term to the Aziz-

Slaman potential [Azi86, Azi93] resulted in a considerable improvement in the 

agreement between theory and experiment as illustrated in Figure 3.1. In Figure 3.1 we 

also show that the addition of the three-body term to the BFW potential results in good 

overall agreement of theory with experimental data. The absolute average deviations 

(AAD) [Sad95] for the vapour and liquid densities are 36.4% and 2.3%, respectively. 

The lower the value of the AAD, the closer the simulation values are with the 

experimental data. The experimental liquid branch of the coexisting phase curves is well 

reproduced by our results. The agreement with the vapour branch is not equally good. It 

should be noticed from the simulation data, that the three-body contribution to the total 
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potential energy is less than 0.7% in the vapour side (in the liquid side it is greater than 

3%). This means that the inclusion of three body potentials does not significantly affect 

the properties of the vapour. That is why we have similar results in the vapour side for 

the simulations with only the two-body potential and the simulations with two-body + 

three-body potentials. The work of Anta et al. [Ant97, see Figure 3.1] for the Aziz  + 

AT potentials shows that the calculated vapour branch is shifted closer towards the 

experimental curve. However, the AAD is about 10%. Therefore, even if their results 

are more accurate, it seems that the inclusion of the three-body potentials is not 

sufficient to reproduce the experimental data. We believe that this is due to a lack of 

accuracy of the two-body potential for vapour densities. Interestingly, in their work on 

argon, Leonhard and Deiters [Leo00] observed behaviour similar to our findings using 

the Hloucha ab initio potential [Dei99] + AT potential. Using their own ab initio 

potential + AT they found a behaviour similar to Anta et al.  

The contributions to both pressure and configurational energy of the various 

multipole terms to the three-body interactions of argon are identified in Table 3.4. The 

contribution of three-body interactions to the vapour phase is negligible whereas they 

make an important contribution to the liquid phase. The various three-body 

contributions to the configurational energy of the liquid phase of argon are compared 

graphically in Figure 3.2. Although Anta et al. [Ant97] reported values of density, 

temperature, pressure and configurational energies, they did not report the contribution 

of three-body interactions to either the pressure or energy. It is evident from both the 

data in Table 3.4 and the comparison in Figure 3.2 that the triple-dipole term makes the 

dominant contribution to three-body interactions. The other third-order multipole 

interactions ( u u uDDQ DQQ QQQ+ + ) contribute approximately 32% of the triple-dipole 

term. However, the effect of this contribution is offset largely by an approximately 
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equal contribution (26% of the triple-dipole term) from fourth-order triple-dipole 

interactions of opposite sign. A similar behaviour is seen by the three-body 

contributions of the pressure. Consequently, the Axilrod-teller term alone is an excellent 

approximation of three-body dispersion interaction. This conclusion is consistent with 

earlier work [Dor71] on the relative magnitude of three-body interactions. It is also 

consistent with other work [Bar72b] on the relative contributions of three-body 

interactions to the third virial coefficient. 

To the best of our knowledge, previous work on the effect of three-body interactions 

on the phase behaviour of fluids has been confined exclusively to argon.  In Tables 3.2, 

3.3, 3.5 and 3.6 we report calculations for the vapour-liquid coexistence of krypton and 

xenon.  The coexistence properties calculated from two-body potentials are summarised 

in Tables 3.2 (krypton) and 3.3 (xenon) whereas calculations including two-body and 

three-body terms are found in Tables 3.5 (krypton) and 3.6 (xenon). The krypton and 

xenon atoms are considerably larger than argon and it can be anticipated that their 

increased polarizability may result in an increase in the relative importance of three-

body interactions. The comparison of experiment with theory for the vapour-liquid 

coexistence of krypton and xenon is illustrated in Figures 3.3 and 3.4, respectively. For 

both krypton and xenon, the two-body potentials fail to represent the liquid phase 

densities adequately whereas there is generally fair agreement for the vapour phase. 

However, it is evident that the addition of three-body interactions results in very good 

agreement of theory with experiment for sub-critical liquid-phase densities. For krypton, 

the AAD for the vapour and liquid densities are 34.5% and 1.9% respectively. For 

xenon, the average absolute deviations for the vapour and liquid densities are 35.8% and 

1.4%, respectively. It should be stressed that in all cases the agreement between theory 
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and experiment represent genuine predictions and no attempt has been made to optimise 

the agreement by altering the intermolecular potential parameters. 

The relative contribution of the various multipole terms (Tables 3.5 and 3.6) to the 

three-body interactions of krypton and xenon is similar to that observed for argon.  

Interestingly, for xenon, the magnitude of the contribution from the fourth order triple -

dipole term (DDD4) is actually slightly greater than the dipole-dipole-quadrupole 

(DDQ), dipole-quadrupole-quadrupole (DQQ) and triple -quadrupole (QQQ) terms 

combined. Therefore, for krypton and xenon, the Axilrod-Teller term alone is a good 

representation of three-body interactions because the contribution of other multipole 

terms is offset by the contribution from the fourth-order triple dipole term. 

In Figure 3.5 we report the logarithm of the total pressure (two-body + three-body) 

versus the inverse of the temperature, for argon, krypton and xenon. The experimental 

data [Var75] are also shown. We plot only the vapour pressure because the liquid 

pressure is characterized by large errors. The simulated pressure is shifted down in 

comparison with the experimental data. This is simply due to the density shift observed 

in the vapour branch. In fact, for the vapour the main contribution to pressure comes 

from the ideal part, ρ×≈ TP  (see Eq. (2.65)), so an inaccuracy in the density causes 

an inaccuracy in the pressure. 

A significant error relative to the total pressure in the liquid side occurs because the 

kinetic part and potential part of the pressure are very similar but with opposite sign. For 

example if we consider in Table 3.4 the value of the temperature T∗ = 0.9 and the 

relative liquid density ρ∗= 0.639, the kinetic pressure is 0.575  *** ≈×= ρTPkin . The 

potential part is: 

 0.54- *
4

*****
2

*
 ≈+++++= L DDDL QQQL DQQL DDQL DDDbodyL potL PPPPPPP .  
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The total pressure is 0.035  * ≈totP  which is just 15% of the two different contributions. 

Thus a small fluctuation in the values of both kinetic and potential parts can cause a 

significant fluctuation in the total pressure.        

This work has not considered the possibility of interactions from three-body 

repulsion. Sadus and Prausnitz [Sad96b] used a three-body repulsive potential [She66]  

in conjunction with Lennard-Jones and AT potentials. They found that three-body 

repulsion may offset the contribution of Axilrod-Teller interactions by as much as 45%. 

However, this conclusion is based largely on approximate models [She66] of three-body 

repulsion that are tied closely the Lennard-Jones potential. It has been suggested [Rit90] 

that three-body repulsion may improve the prediction of the thermodynamic properties 

of xenon. Recently, Bukowsky and Szalewicz [Buk01] reported calculations for argon 

using an ab initio  potential, which includes three-body repulsion potentials [Lot97b]. 

They found that the triple -dipole potential alone is an excellent approximation of the 

total three-body energy because the other contributions cancel. Also our good results 

obtained for argon, krypton and xenon without including three-body short-range terms 

may indicate that those potentials do not contribute significantly to the vapour-liquid 

coexistence. Bukowsky and Szalewicz attribute the cause of the small discrepancies to 

the neglected quantum effects. Barker et al. [Bar71a] showed that these quantum effects 

are repulsive and amount to 15-17% of the three-body contributions. They inferred that 

their inclusion might bring the calculated coexistence curve even closer to the 

experimental data. 
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Figure 3.1 Comparison of experiment (•, [Var75]) with calculation using the BFW 
potential [Bar71a] (£), the Aziz-Slaman potential (×, [Ant97]), the Aziz-Slaman + 
Axilrod-Teller (+, [Ant97]) and the BFW + three-body (DDD + DDQ + DQQ + QQQ  
+ DDD4) potentials (+) for the vapour-liquid coexistence of argon. 
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Figure 3.2. Comparison of the contribution of the various three-body terms to the 
configurational energy of the liquid phase of argon.  
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Figure 3.3 Comparison of experiment (•, [Var75]) with calculation using the two-body 
potential of Barker et al. [Bar74] (£) and the Barker et al. [Bar74] + three-body (DDD  
+ DDQ + DQQ + QQQ + DDD4) potentials (+) for the vapour-liquid coexistence of 
krypton. 
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Figure 3.4 Comparison of experiment (•, [Var75]) with calculation using the two-body 
potential of Barker et al. [Bar74] (£) and the Barker et al. [Bar74] + three-body (DDD  
+ DDQ + DQQ + QQQ + DDD4) potentials (+) for the vapour-liquid coexistence of 
xenon. 
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Figure 3.5 Logarithm of the pressure vs. the inverse of the temperature. Comparison 
between simulation results (Argon +, krypton �, xenon ¯) and experimental data 
[Var75] (Argon �, krypton �, xenon ¿)  
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Argon-krypton mixture  

The results of Gibbs ensemble simulations for the vapour-liquid properties of argon 

+ krypton are reported in Tables 3.7 and 3.8. In Tables 3.7 and 3.8, x denotes the mole 

fraction of the liquid (L) and vapour (V) phases. The motivation for studying the argon + 

krypton mixture is that it provides a rare example of a binary mixture for which 

quantitatively accurate intermolecular potentials are available. Therefore, comparison of 

the results of two-body only simulations with two-body + three-body simulations allows 

us to make observations concerning the role of three-body interactions. Calculations 

were performed for both two-body and two-body + three-body terms. The temperature 

of *T = 1.148 (163.15 K) was selected because the vapour-liquid envelope at this 

temperature is representative of the vapour-liquid phase of the argon + krypton system. 

Since for pure fluids we found that the two-body + AT potentials represent the dominant 

terms, we did not include the other multipole three-body terms (see Chapter 2). 

A comparison of theory with experiment for the pressure-composition behaviour of 

argon + krypton is illustrated in Figure 3.6.  In general, there is good agreement between 

theory and experiment [Sch75] for the overall phase envelope. The liquid-phase 

properties are predicted accurately whereas there are noticeable deviations from 

experiment for the vapour-phase branch of the coexistence curve.  These observations 

are consistent with the calculations reported for pure component phase equilibria in 

section 3.1. Interestingly, the results for two-body only and two-body + three-body 

calculations are almost identical. At a given pressure, three-body interactions do not 

appear to have a significant role in determining the coexistence composition. This is 

despite the fact that the data in Table 3.8 indicates that three-body interactions typically 

contribute approximately 5% of the overall configurational energy. 
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The pressure-density behaviour of the argon + krypton mixture is illustrated in 

Figure 3.7. The coexistence density of the vapour-branch is unaffected by three-body 

interactions. In contrast, Figure 3.7 indicates that three-body interactions can 

significantly affect the coexisting liquid-phase density. Experimental density data is not 

available for comparison with the calculations. In section 3.1 we have reported a similar 

density-shift for the vapour-liquid equilibria of pure noble gases resulting in good 

agreement with experimental data. The reduction in the liquid-phase density can be 

attributed to an increase in volume caused by an additional repulsive influence of the 

three-body term.  

 

 

Table 3.7 Molecular simulation results for the vapour-liquid equilibria of argon + 

krypton at *T = 1.148 using the two-body potential. 
 

 
*P         Kr

Lx          Kr
Vx            *

 totLP          *
 totVP         

*
Lρ            *

Vρ           *
2 bLE         *

2 bVE       *
 KrLµ *

 KrVµ *
 ArLµ *

 ArVµ  

 
 
0.0350   0.831(5)    0.544(25)   0.019(40)   0.031(6)    0.618(6)    0.032(3)    -6.00( 6)   -0.39(4)    -5.12   -5.08  -5.10  -5.12 
0.0445   0.760(11)  0.409(18)   0.066(44)   0.039(7)    0.619(6)    0.042(4)    -5.80( 9)   -0.41(5)    -5.04   -5.23  -4.66  -4.62 
0.0495   0.680(9)    0.329(38)   0.067(43)   0.048(17)  0.613(8)    0.055(9)    -5.50(8)    -0.51(10)  -5.34   -5.33  -4.48  -4.25 
0.0543   0.665(8)    0.323(24)   0.062(40)   0.052(11)  0.620(8)    0.060(7)    -5.52(10)  -0.57(7)    -5.25   -5.28  -4.25  -4.18 
0.0642   0.547(7)    0.257(30)   0.064(49)   0.058(15)  0.600(8)    0.067(8)    -5.01(7)    -0.63(12)  -5.62   -5.51  -4.02  -3.99 
0.0737   0.475(6)    0.216(18)   0.091(47)   0.067(19)  0.605(9)    0.093(10)  -4.85(9)    -0.82(9)    -5.48   -5.60  -3.88  -3.75 
0.0787   0.432(5)    0.177(18)   0.092(55)   0.070(20)  0.596(14)  0.095(10)  -4.66(12)  -0.80(10)  -5.73   -5.80  -3.69  -3.66 
0.0837   0.385(4)    0.175(14)   0.106(52)   0.074(39)  0.592(10)  0.103(19)  -4.51(8)    -0.86(17)  -5.73   -5.80  -3.66  -3.63 
0.0933   0.319(5)    0.148(12)   0.069(48)   0.082(29)  0.577(6)    0.121(13)  -4.23(3)    -1.00(13)  -5.96   -5.99  -3.58  -3.52 
0.0986   0.266(5)    0.138(13)   0.070(55)   0.088(40)  0.573(14)  0.168(16)  -4.08(11)  -1.36(15)  -6.20   -6.14  -3.44  -3.40 
0.1041   0.225(6)    0.115(11)   0.113(30)   0.097(36)  0.573(8)    0.165(16)  -3.98(6)    -1.31(14)  -6.36   -6.30  -3.40  -3.36 
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able 3.8 M

olecular sim
ulation results for the vapour-liquid equilibria of argon + krypton at T* = 1.148 using the tw

o-body +
 

three-body interm
olecular potential. 

  
 

 
 

 
 

P
* 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

0.035 
0.0445 

0.0495 
0.0543 

0.0642 
0.0737 

0.0787 
0.0837 

0.0933 
0.0986 

0.1041 
 

  
 

  
  

  
  

  
 

  
  

 
xL(K

r)   
 0.847(5) 

 0.738(5) 
 0.688(15) 

 0.624(3) 
 0.556(11) 

 0.474(6) 
 0.445(9) 

 0.389(5) 
 0.312(4) 

 0.264(2) 
 0.221(6) 

xV(K
r)   

 0.579(20) 
 0.429(19) 

 0.380(23) 
 0.332(14) 

 0.292(25) 
 0.234(19) 

 0.208(10) 
 0.184(16) 

 0.154(9) 
 0.133(6) 

 0.119(12) 
P

*L tot   
 0.029(85) 

 0.039(55) 
 0.048(72) 

 0.071(62) 
 0.083(75) 

 0.086(79) 
 0.059(81) 

 0.073(76) 
 0.069(50) 

 0.081(86) 
 0.096(78) 

P
*V tot   

 0.033(7) 
 0.036(7) 

 0.044(11) 
 0.047(18) 

 0.063(24) 
 0.066(19) 

 0.063(19) 
 0.069(19) 

 0.079(22) 
 0.080(14) 

 0.090(19) 
P

*L2b   
-0.973(47) 

-0.918(44) 
-0.886(51) 

-0.828(30) 
-0.812(50) 

-0.764(54) 
-0.737(40) 

-0.713(34) 
-0.661(21) 

-0.563(45) 
-0.574(40) 

P
*V2b   

-0.0086(22) 
-0.0085(26) -0.0131(37) 

-0.0144(68) 
-0.0267(80) 

-0.0353(82) 
-0.0245(71) 

-0.0367(74) 
-0.0446(91) 

-0.0479(58) 
-0.0668(66) 

P
*L3b   

 0.340(22) 
 0.304(7) 

 0.282(11) 
 0.261(17) 

 0.246(12) 
 0.214(11) 

 0.186(17) 
 0.177(18) 

 0.145(12) 
 0.111(13) 

 0.115(13) 
P

*V3b   
 0.00024(11)  0.00020(8)  0.00040(15)  0.00039(29)  0.00126(59)  0.00147(49) 

 0.00108(43)  0.00164(48) 
 0.00261(83) 

 0.00279(42) 0.00428(97) 
 ρ

*L  
 0.577(13) 

 0.569(4) 
 0.568(9) 

 0.556(13) 
 0.566(11) 

 0.554(12) 
 0.532(20) 

 0.530(21) 
 0.510(15) 

 0.464(24) 
 0.483(23) 

ρ
*V   

 0.036(4) 
 0.038(4) 

 0.049(6) 
 0.053(10) 

 0.077(13) 
 0.087(9) 

 0.075(10) 
 0.090(9) 

 0.105(11) 
 0.109(7) 

 0.133(10) 
E

*L2b   
-5.65(14) 

-5.27(4) 
-5.12(11) 

-4.85(11) 
-4.74(11) 

-4.44(11) 
-4.21(17) 

-4.07(15) 
-3.76(11) 

-3.37(15) 
-3.39(15) 

E
*V2b   

-0.44(8) 
-0.40(4) 

-0.49(7) 
-0.49(13) 

-0.71(13) 
-0.75(9) 

-0.65(8) 
-0.76(7) 

-0.88(10) 
-0.89(5) 

-1.04(8) 
E

*L3b   
 0.196(8) 

 0.178(3) 
 0.165(4) 

 0.156(7) 
 0.144(5) 

 0.129(4) 
 0.116(7) 

 0.111(7) 
 0.094(5) 

 0.079(5) 
 0.079(5) 

E
*V3b   

 0.0021(8) 
 0.0017(4) 

 0.0026(8) 
 0.0021(11) 

 0.0051(17) 
 0.0054(14) 

 0.0046(11) 
 0.0058(11) 

 0.0080(19) 
 0.0083(9) 

 0.0105(17) 
µ

*L(K
r)   

-4.9 
-5.16 

-5.02 
-5.31 

-5.37 
-5.49 

-5.62 
-5.7 

-5.9 
-5.98 

-6.24 
µ

*V(K
r)   

-4.96 
-5.23 

-5.21 
-5.32 

-5.32 
-5.49 

-5.66 
-5.76 

-5.9 
-6.06 

-6.19 
µ

*L(A
r)   

-5.11 
-4.63 

-4.33 
-4.23 

-3.9 
-3.75 

-3.82 
-3.67 

-3.57 
-3.52 

-3.41 
µ

*V(A
r)   

-5.15 
-4.72 

-4.44 
-4.29 

-3.98 
-3.79 

-3.83 
-3.68 

-3.57 
-3.51 

-3.41 
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Figure 3.6 Comparison of experimental vapour-liquid equilibria at T * = 1.148 (163.15 
K) (•, [Sch75]) with calculations using only two-body (£) and two-body + three -body 
(∆) intermolecular potentials of argon + krypton. 
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Figure 3.7 Comparison of the effect of two-body only (£) and two-body + three-body 
(∆) interactions on the vapour and liquid coexistence densities and pressures of argon + 
krypton. 
 

 
 
 
 
 
 
 
 
 

 

0.0 0.2 0.4 0.6 0.8
ρ∗

0.02

0.04

0.06

0.08

0.10

0.12

P*



Chapter 3 96 

3.2 A simple relationship between two-body and three-body potentials 

 

The introduction of the three-body potential increases the computing time of a 

normal two-body potential simulation by a factor of ten. This is the main reason to 

adopt an effective potential that accounts for the three-body effects without incurring 

expensive routine calculations. Several effective potentials have been proposed [Cop68, 

Mur71, Miy94, Ste94, van99]. Smit et al. [Smi92] pointed out that a convenient way to 

account for three- and higher-body interactions consists in using pair potentials that 

depend on the density. In their work they report the equation of state of a fluid with a 

particular class of density-dependent potential in terms of the equation of state and 

energy of a reference fluid.      

Analyzing the data from NVT Gibbs ensemble simulations shown in previous 

sections, we noticed that two- and three-body potential energies are linked by a simple 

relationship. We also performed standard NVT Monte Carlo  [Sad99] simulations for 500 

atoms of argon, krypton and xenon, to check if this relationship holds for different 

systems. The simulations were performed in cubic boxes, and the conventional periodic 

boundary conditions were applied [Sad99]. For pair interactions, long-range corrections 

were used to recover the full contribution to the intermolecular potential (see Appendix 

1), whereas three-body interactions were assumed to be zero at separations greater than 

a quarter of the box length (see Appendix 2). A total of 40000 cycles were used with 

averages being accumulated after 20000 cycles. The two-body energy (E2) was obtained 

by averaging the contribution of the pair potential over all distinct pairs of atoms, 

whereas the three-body energy (E3) is the average of the Axilrod-Teller potential for all 

distinct triplets of atoms.   
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The ratio of three-body (E3) to two-body (E2) energies obtained from NVT Gibbs 

ensemble simulations is shown in Figure 3.8 as a function of reduced number density, 

ρ*. Also results from NVT Monte Carlo simulations, reported in Table 3.9, are shown in 

Figure 3.8 to supplement Gibbs ensemble data. The temperatures used covered the 

temperature range for vapour-liquid coexistence of a pure fluid.  

 

Table 3.9 NVT Monte Carlo simulation results for argon, krypton and xenon at 
different densities and temperatures. 

 *ρ  *T  *
ATE  *

2bE  *
ATP  *

2bP  

 
 Ar 0.350 1.30 0.031(1) -1.97(2) 0.033(1) -0.24(5) 
 0.400 1.20 0.044(2) -2.35(2) 0.053(2)  -0.33(7) 
 Kr 0.450 1.25 0.068(2) -2.63(4)  0.091(2) -0.36(9) 

 0.475 1.00 0.074(1) -2.82(1) 0.106(2) -0.59(5) 
 Xe 0.375 1.20 0.058(2) -2.17(2) 0.065(2) -0.29(5) 

 0.425 1.00 0.075(2) -2.54(2) 0.095(3) -0.49(4) 
 

 

 

It is apparent that the ratio is a linear function of density which is consistent with 

theoretical considerations [Ste94, Mur71]. Furthermore, within the statistical 

uncertainties of the simulation, the results for argon, krypton and xenon appear to obey 

the same relationship. A least-squares fit of the simulation data for argon, krypton and 

xenon yields the following empirical relationship between two-body and three-body 

energies: 

6
2

3 3
2

εσ
νρE

E −=                                                        (3.3) 

As 2E  is generally negative, 3E  is positive which is consistent with simulation data. 

The above equation is a remarkably simple result that fits all the simulation data with an 

average absolute deviation of 2.0 %. The only constants in Eq. (3.3) are the triple-dipole 
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coefficient ν, and the pair potential parameters ε  and σ. The relationship is independent 

of temperature for the range of densities at which the fluid is normally a liquid. 

The benefit of Eq. (3.3) is that an accurate estimate of the three-body energy 

contribution for fluid densities can be obtained from two-body calculations alone. To 

test the accuracy of this relationship, we performed Gibbs ensemble simulations for the 

phase equlibria of argon with the energies calculated from the BFW potential plus the 

contribution from Eq. (3.3). The Gibbs ensemble calculations were performed by first 

determining the contribution of two-body interactions. The two-body contribution was 

used in Eq. (3.3) to determine the contribution of three-body interactions. The combined 

two-body and three-body energies were then used to determine the acceptance of the 

Monte Carlo move. The results of these calculations are compared in Figure 3.9 with 

both experimental data [Var75] and the full two-body + three-body calculation reported 

in section 3.1 [Mar99]. The comparison indicates that the results obtained using Eq. 

(3.3) are nearly identical to the full two-body + three-body calculations. 

It should be noted that, strictly speaking, the validity of the relationship is tied to the 

pair and three-body potentials used in the simulations, and only three different atomic 

species were considered.  However, if these potentials genuinely reflect the contribution 

of two-body and three-body interactions, the result could be valid generally. We 

emphasise that the relationship should not be used for effective potentials such as the 

Lennard-Jones potential. The accuracy of the single relationship for argon, krypton and 

xenon may also indicate that the result is valid for other atoms.  
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Figure 3.8 The ratio of three-body and two-body energies obtained from molecular 
simulation at different reduced densities. Results are shown for argon (∆), krypton (+) 
and xenon (£). The line through the points was obtained from Eq. (3.3). 
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Figure 3.9 Comparison of NVT Gibbs ensemble calculations with experiment (l) 
[Var75] for the vapour-liquid equilibria of argon in the reduced temperature-density 
projection. Results are shown for the BFW potential (×), the BFW + Axilrod-Teller 
potential (∆) and the BFW + three-body contribution from Eq. (3.3) potential (�). 
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Chapter 4 

 

 

Shear Rate Dependence of Pressure, Energy and Viscosity in 

Planar Couette Flow    

 

In this chapter, NEMD simulations of the shear viscosity of argon and xenon are 

presented. In the simulations with argon, the atoms interact via the Barker-Fisher-Watts 

(BFW) [Bar71a] and Axilrod-Teller (AT) [Axi43] intermolecular potentials (see 

Chapter 2). In the simulations with xenon, the atoms interact via the potential devised 

by Barker et al. [Bar74] and Axilrod-Teller (AT) [Axi43] potentials (see Chapter 2). An 

adequate system size of 500 atoms was used, resulting in greater statistical accuracy 

than reported elsewhere [Lee93, Lee94]. We show that the pressure is clearly not a 

linear function of 2/3γ& , but can be described by an analytic 2γ&  dependence. This 

relationship is independent of the three-body potential interaction and is only a 

consequence of two-body interactions. Our results also demonstrate that the shear 

viscosity is not necessarily a linear function of 
2/1γ& . The statistical accuracy of the 

viscosity data is however not sufficient to unambiguously determine an accurate 

dependence on the strain rate. In section 4.1 we give the details of the simulations 

performed and report the results in section 4.2. In section 4.3 we analyze for the non-

equilibrium case the ratio between the three-body energy and two-body energy as done 

in section 3.2.  
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4.1 Simulation details 

 

NEMD Algorithm  

The NEMD simulations were performed by applying the standard SLLOD equations 

of motion for planar Couette flow (see Chapter 2). The SLLOD equations for a one-

component atomic fluid flowing with streaming velocity vx in the x-direction and 

constant strain rate 
dy
dvx=γ&

 
were applied (see Eq. 2.72 and Eq. 2.77). The equations of 

motion were integrated by a 4th order Gear predictor-corrector scheme (see Chapter 2), 

with a reduced integration time step ( 2* / σε mtt = ) of 0.001. A non-equilibrium 

simulation trajectory is typically run for 250000 time steps. To equilibrate the system, 

each trajectory is first run without a shearing field.  After the shearing field is switched 

on, the first 50000 time steps of each trajectory are ignored, and the fluid is allowed to 

relax to a non-equilibrium steady-state. In the simulations with argon atoms averages 

were taken over 5 independent trajectories, each starting at a new configuration. Thus, 

every pressure, energy and viscosity data point represents a total run length of 

5x200000=106 time steps. In the simulations with xenon, averages are taken over 2 

independent trajectories, resulting in the same statistical accuracy.   

 

Intermolecular potentials 

The total intermolecular potential adopted consists in contributions from two-body 

interactions (u2b) and three-body dispersion interactions (u3b). As previously mentioned, 

for argon we used BFW + AT potentials and for xenon Barker et al. [Bar74] + AT 

potentials. The two-body potentials were truncated at half the box length and 

appropriate long-range correction terms were evaluated to recover the contribution to 
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the pressure and energy for the full intermolecular potential (see Appendix 1). The 

three-body potentials were truncated at a quarter of the box length (see Appendix 2) and 

the long-range correction terms for energy and pressure were evaluated as:  

∫∫
−>

<<

− =

offcut
b

rr
rrr

b
rangeLong

b drdrrrrurrrgNE

323

231312

13122313123231312
)3(2

3 ),,(),,(ρ              (4.1) 

where ),,( 231312
)3( rrrg  is the 3rd order radial distribution function written as: 

 )()()(),,( 23
)2(

13
)2(

12
)2(

231312
)3( rgrgrgrrrg =                            (4.2) 

using the superposition approximation [Bar71a] and setting )( 23
)2( rg to unity. 

The long-range correction for the three-body pressure was calculated as: 

V
E

P
rangeLong

brangeLong
b

−
− = 3

3
3

                                              (4.3)  

where we used the fact that the Axilord-Teller potential is a homogeneous function 

[Bar71a, see also Appendix 2]. 

Before applying the SLLOD algorithm using these intermolecular potentials, we 

repeated simulations on a Lennard-Jones (LJ) fluid at the LJ triple point 

( 8442.0 ,722.0 ** == ρT , where the superscript * stands for reduced units), reported by 

Evans et al. [Eva89]. Our simulations were in excellent agreement with these results, 

and are displayed in Figures 4.1, 4.2 and 4.3. The pressures and energies were found to 

vary linearly with 2/3γ& , whereas the viscosity varied as 
2/1γ& , as previously observed. 

We further note that all subsequent simulations performed on the BFW + AT and 

BWLSL + AT fluids are made with exactly  the same computer program. The only 

difference is the form of the intermolecular potentials, and hence forces, used in the 

calculation of fluid properties. This limits any possible errors that could be introduced 

by comparing results generated from different code. 
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Figure 4.1 Comparison of Evans et al. [Eva89] pressure  (�) with our own (Ï) for a 
system of 2048 Lennard-Jones atoms and a cut-off =3.5 (reduced units).   
 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 4.2 Comparison of Evans et al. [Eva89] configurational energy (�) with our own 
(Ï) for a system of 2048 Lennard-Jones atoms and a cut-off =3.5 (reduced units).  
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Figure 4.3 Comparison of Evans et al. [Eva89] viscosity (�) with our own (Ï) for a 
system of 2048 Lennard-Jones atoms and a cut-off =3.5 (reduced units). 
 

 

4.2 Results 

 

The results of the NEMD simulations for the pressure, energy and shear viscosity of 

argon at different strain rates are reported in Table 4.1. Results for xenon are reported in 

Table 4.2. The normal convention was adopted for the reduced density )( 3* ρσρ = , 

temperature )/( * εkTT = , energy )/( * εEE = , pressure )/( 3* εσPP = , viscosity 

))(( 2/12* −= εηση m  and strain rate ]))/([( 2/1* εσγγ m&& = . All simulations for argon 

were performed at the state point (ρ ∗, *T ) = (0.592 [1.034 gcm-3], 0.95 [135 K]); for 

xenon at the state point (ρ∗, *T ) = (0.6 [2.222 gcm-3], 0.9 [252.9 K]). These points were 

chosen because they are representative of the liquid phase being approximately mid-

way between the triple point and the critical point (for both argon and xenon). The 
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number of atoms in our systems was N = 500, and the size of our simulation cell, L, was 

9.453 (reduced units) for argon and 9.410 (reduced units) for xenon. The three-body 

terms were truncated at 0.25L, whereas the two-body terms were truncated at 0.5L. 

These cut-off distances further ensured that the total non-equilibrium pair distribution 

function was constant (i.e., equal to unity) over the range of r where long-range 

corrections are applied. 

 
Table 4.1 Pressure, energy and shear viscosity at different strain rates for argon. 
 
               
                2-body potential without 3-body potential      2-body potential with 3-body potential 
  

*γ&  *P  
*

.confE  
*η   *P  

*
.confE  

*η  

        
0.0 -0.103(2) -3.682(2)   0.017(2) -3.557(1)  
0.078 -0.105(1) -3.683(1) 0.72(2)  0.019(2) -3.555(1) 0.72(3) 
0.1755 -0.108(1) -3.679(1) 0.754(5)  0.020(2) -3.554(1) 0.742(6) 
0.24 -0.102(2) -3.683(2) 0.747(6)  0.022(1) -3.552(1) 0.732(6) 
0.312 -0.103(2) -3.677(1) 0.753(2)  0.024(2) -3.551(1) 0.733(5) 
0.4 -0.099(1) -3.673(1) 0.747(1)  0.031(2) -3.550(1) 0.725(1) 
0.5 -0.092(4) -3.667(3) 0.746(6)  0.034(3) -3.541(1) 0.725(6) 
0.702 -0.079(2) -3.656(1) 0.727(2)  0.054(1) -3.529(1) 0.719(1) 
0.9555 -0.050(1) -3.631(2) 0.715(1)  0.084(2) -3.511(1) 0.703(2) 
1.248  0.002(1) -3.595(1) 0.699(1)  0.135(1) -3.480(1) 0.689(1) 
1.5795  0.076(1) -3.558(1) 0.677(1)  0.214(1) -3.443(1) 0.668(1) 
1.95  0.179(2) -3.506(1) 0.653(1)  0.312(2) -3.396(1) 0.644(1) 
 
 
 
Table 4.2 Pressure, energy and shear viscosity at different strain rates for xenon. 
 
               
           2-body potential without 3-body potential           2-body potential with 3-body potential 
  

*γ&  *P  
*

.confE  
*η   *P  

*
.confE  

*η  

        
0.0 -0.161(1) -3.696(1)   0.012(4) -3.512(2)  
0.2 -0.156(6) -3.672(4) 0.77(1)  0.0150(1) -3.509(1) 0.76(1) 
0.4 -0.152(5) -3.688(2) 0.772(3)  0.0243(9) -3.5022(4) 0.765(2) 
0.6 -0.138(2) -3.683(5) 0.758(4)  0.0387(2) -3.4938(1) 0.749(1) 
0.8 -0.1187(8) -3.660(1) 0.753(4)  0.065(1) -3.4795(6) 0.739(1) 
1 -0.088(6) -3.6354(7) 0.7438(7)  0.092(2) -3.4628(8) 0.7263(8) 
1.2 -0.0527(1) -3.611(2) 0.733(2)  0.132(3) -3.443(3) 0.716(2) 
1.4 -0.0073(9) -3.5875(5) 0.717(1)  0.184(4) -3.4211(1) 0.706(1) 
1.6  0.046(3) -3.5577(4) 0.7021(3)  0.237(1) -3.395(1) 0.6892(7) 
1.8  0.1073(6) -3.5304(6) 0.6882(9)  0.298(1) -3.3689(3) 0.6789(8) 
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The uncertainties in the time averages for the energy, pressure and viscosity, reported 

in Tables 4.1 and 4.2, represent the standard errors of the averages over 5 independent 

non-equilibrium trajectories for argon and over 2 independent non-equilibrium 

trajectories for xenon. The data include calculations with the two-body potential alone 

and a combined two-body + AT potential. We confirmed that the two and three-body 

energies and pressures at equilibrium were correct by comparing them with independent 

calculations of these quantities obtained by Monte Carlo simulations [All87].  

These results, and various attempts to fit the simulation data, are illustrated in 

Figures 4.4 - 4.10. In Tables 4.3 and 4.4 the coefficients of the fits are presented, as well 

as their respective errors. Additionally, the coefficients of both fitted equations and the 

absolute average deviations (AAD) [Sad95] are given. The AAD is a measure of the 

overall accuracy of the agreement between the fits and the simulation data and is 

defined as: 

AAD(%)= ∑
=

−
×

s

i i
simul

i
fit

i
simul

f

ff
s

1

.

.

)(

)()(1100
γ

γγ
&

&&                                  (4.4) 

where s is the number of data points, )(. i
simulf γ&  is the simulation value of the quantity 

considered (pressure, energy or viscosity) as a function of iγ&  and )( i
fitf γ&  is the value 

taken from the fitting curve.  
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Table 4.3 Coefficients of the fits and relative errors for argon. 
 

 
   a*   b* AAD % 

 
P = a+ bγ& 3/2 

 
 0.0032(6) 

  
 0.1039(5) 

 
26.72 

P = a+ bγ& 2  0.0164(6)  0.0781(4)   3.97 

E = a+ bγ& 3/2 -3.5607(4)  0.0592(3)   0.08 

E = a+ bγ& 2 -3.5554(4)  0.0430(2)   0.09 

η = a+ bγ& 1/2  0.800(2) -0.105(2)   1.60 

η = a+ bγ&   0.752(1) -0.0535(8)   0.74 

η = a+ bγ& 3/2  0.7360(8) -0.0339(5)   0.45 

η = a+ bγ& 2  0.7279(7) -0.0229(3)   0.69 

 

 

 
Table 4.4 Coefficients of the fits and relative errors for xenon.  
 

 
a* b* AAD % 

 
P =  a + bγ& 3/2 

 
 0.0027(1) 

  
 0.1054(3) 

 
16.04 

P =  a + bγ& 2  0.0108(1)  0.0868(3)   3.49 

E =  a + bγ& 3/2 -3.5224(1)  0.0616(1)   0.08 

E =  a + bγ& 2 -3.5094(1)  0.0447(1)   0.04 

η =  a + bγ& 1/2  0.849(2) -0.125(2)   0.86 

η =  a + bγ&  0.7863(2) -0.0598(8)   0.38 

η =  a + bγ& 3/2  0.7654(8) -0.0367(5)   0.31 

η = a + b γ& 2  0.7549(7) -0.0247(3)   0.57 

 
 

 

Mode-coupling theory [Kaw73] predicts that the pressure of a fluid under shear has a 

linear dependence with 
2/3γ& . To test this prediction, we plot the total pressure of the 

fluid against 2/3γ&  in Figure 4.4(a) for argon and in Figure 4.5(a) for xenon. If the 

pressure were a linear function of 2/3γ& one would expect random statistical fluctuations 

in the data points about the linear fit. However, a careful analysis of the data suggests a 

systematic deviation from the expected 2/3γ&  linear behaviour.  
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In Figure 4.4(b) for argon and in Figure 4.5(b) for xenon the total pressure is 

presented as a function of 
2γ& . We find that the pressure is more closely represented by 

an analytic 2γ&  dependence. 
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Figure 4.4a Total pressure of argon as function of 2/3γ&  using 2-body + 3-body 
potentials. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 4.4b Total pressure of argon as function of 2γ&  using 2-body + 3-body potentials. 

0 1 2 3

(γ∗)

0.0

0.1

0.2

0.3

0.4

P*

3/2.

0 1 2 3 4

(γ∗)

0.0

0.1

0.2

0.3

0.4

P*

2.



Chapter 4                                                                                                                                                     

 

111 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 4.5a Total pressure of xenon as function of 2/3γ&  using 2-body + 3-body 
potentials. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 4.5b Total pressure of xenon as function of 2γ&  using 2-body + 3-body potentials. 
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For argon at equilibrium, a pressure of approximately 1 MPa is predicted compared 

with an experimental value of 4 MPa [Var75]. The main contribution to the overall 

pressure comes from the kinetic component and two-body interactions which are of 

similar magnitude but of opposite sign. This means that small statistical fluctuations in 

the two-body contribution can greatly affect both the magnitude and sign of the total 

pressure. Unfortunately, a similar comparison for the xenon pressure at equilibrium is 

not possible because to the best of our knowledge, experimental data for the state point 

we used are not available.  

To determine whether the 2γ&  dependence is due to the addition of three-body 

interactions, we plot the two-body and full two- plus three-body contributions to the 

total pressure separately in Figures 4.6a and 4.6b (for argon and xenon respectively). 

The results for the two-body pressures are obtained from simulations involving only the 

two-body BFW potential interactions, without the three-body terms. It is evident that the 

2γ&  dependence is caused by two-body interactions. The three-body contributions serve 

only to shift the pressures higher by approximately 0.1 for argon and 0.18 for xenon. 

Although it could be reasonably expected that the three-body contribution to the total 

pressure might depend on strain rate, our simulation results suggest that any dependence 

is very weak for the strain rates covered.  
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Figure 4.6a Total pressure of argon using only two-body potential (�); total pressure 
using 2-body + 3-body potentials (�). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6b Total pressure of xenon using only two-body potential (�); total pressure 
using 2-body + 3-body potentials (�). 
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The configurational energy per particle is presented as a function of 2/3γ&  and 2γ&  in 

Figures 4.7 (a-b) for argon and Figures 4.8 (a-b) for xenon. The E vs. 2/3γ&  plot does 

show a weak systematic departure from linearity. For argon the fits in 2/3γ&  and 2γ&  are 

similar in accuracy, but for xenon the fit in 2γ&  is much better. The coefficients of the 

fits, along with the absolute average deviation are presented in Table 4.3 for argon and 

in Table 4.4 for xenon. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.7a The 2-body + 3-body potential energy of argon as function of 2/3γ& . 
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Figure 4.7b The 2-body + 3-body potential energy of argon as function of 2γ& . 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 4.8a The 2-body + 3-body potential energy of xenon as function of 2/3γ& . 
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Figure 4.8b The 2-body + 3-body potential energy of xenon as function of 2γ& . 

 

The shear viscosity of the fluid, calculated as γ
η

&2
yxxy PP +−

= , is plotted against γ&  

in Figure 4.9 for argon and in Figure 4.10 for xenon. The viscosity is not a simple 

function of 2/1γ& , which is consistent with the conclusion reached by Travis et al 

[Tra98]. The statistical errors in our viscosity calculations are not sufficiently small to 

unambiguously determine the functional form of the viscosity profile. Any fit of η vs. 

nγ&  is reasonable, where 22/1 ≤≤ n . For argon however, when the data is extrapolated 

to zero strain-rate, the values of the equilibrium viscosity predicted by the γ& , 2/3γ&  and 

2γ&  fits [ 710)1757( ×± , 710)1741( ×± , 710)1733( ×± Nsm-2, respectively] are in good 

agreement with the experimental value of 740.2 × 107 Nsm-2 [Var75].  The 2/1γ&  fit 

actually gives the worst agreement [ 710)3805( ×± Nsm-2] with the experiment. 

0 1 2 3 4

(γ∗)

-3.52

-3.48

-3.44

-3.40

-3.36

-3.32

E*

. 2



Chapter 4                                                                                                                                                     

 

117 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9 Viscosity of argon as function of the strain rate. The lines illustrate different 
fits with strain rate dependence to the power of (a) 1/2, (b) 1, (c) 3/2 and (d) 2. The 
parameters of  these fits are in Table 4.3.  
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Figure 4.10 Viscosity of xenon as function of the strain rate. The lines illustrate 
different fits with strain rate dependence to the power of (a) 1/2, (b) 1, (c) 3/2 and (d) 2. 
The parameters of these fits are in Table 4.4. 
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Our results differ to those of Lee and Cummings [Lee93, Lee94], who observed the 

standard 2/3γ&  dependence of the pressure with strain rate. Lee and Cummings used a 

system size of 108 argon atoms for both the BFW and BFW + AT calculations. 

Quantitative error estimates were not reported with their data. Normally, large errors in 

pressure can be expected for simulations involving such a small number of atoms, 

which can hinder the correct identification of the strain-rate dependency of pressure. We 

repeated their simulations for 108 argon atoms at the same state point with only the two-

body BFW potential, and present the results for the pressure and energy dependence on 

strain rate in Figures 4.11 and Figure 4.12, respectively. Our simulations were 

performed by time averaging over a total of 2x106 time-steps, and our statistics are thus 

more reliable. We do not include long-range corrections to this set of data, which would 

only add a constant term to shift the pressure and energy profiles. It does not change the 

shape, which is what we are interested in. Once again our results confirm the 2γ&  

dependence of both pressure and energy.  

We make the observation that a system size of 108 particles is actually too small to 

account fully for all the possible three-body interactions, and for this reason we 

performed the 108 atom simulations only with the two-body BFW potential. The cut-off 

value for the three-body potential should not exceed one quarter of the length of the 

simulation cell, for geometrical constraints imposed by the three-body interactions (see 

Appendix 2). In their system, Lee and Cummings used a cell length, L, of 5.67 (reduced 

units). Their cut off radius was 0.5L = 2.835 (reduced units), which is too large for their 

small system size. It is primarily for such reasons that we choose to study a larger 

system size of 500 atoms. 
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Figure 4.11a Total pressure of argon as function of 2/3γ&  for 108-atom system.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.11b Total pressure of argon as function of 2γ&  for 108-atom system.  
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Figure 4.12a Potential energy of argon as function of 2/3γ&  for 108-atom system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 4.12b Potential energy of argon as function of 2γ&  for 108-atom system. 
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The pressure tensor of the fluid was calculated by the standard Irving-Kirkwood 

expression [Irv50], modified to include 3-body contributions (see Appendix 2): 
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where p i is the peculiar momentum of atom i. b
ij
2F is the two-body force between atom i 

and j, and terms involving 
αβ

αβκ
καβ r

F )( ∂
∂

=
b

b u3
3  are the corresponding three-body 

contributions to the total force. The definition of the pressure we used is one third of the 

of the trace of the pressure tensor (see also Chapter 2): 

zzyyxx PPP
V

TrP ++==
3
1

3
1

P                                        (4.6) 

To check that there was no error in the evaluation of Eq. (4.5), we calculated the 

configurational part of the pressure by another independent method, namely by 

integrating over the total non-equilibrium pair distribution function. This method will 

allow us to calculate the two-body potential contribution to the pressure. The three-body 

potential contribution to the pressure was checked by the relationship VEP b /33 =  

([Bar71a], see also Appendix 2). Since we keep the temperature and density constant, 

the kinetic contribution to the pressure is constant and given simply by TP Kin ρ=  (see 

Eq. (2.65)). 

During the simulation we calculated the pair radial distribution function, g(r), via Eq. 

(2.93). Therefore, we were able to calculate the two-body potential pressure in two 

ways: directly using Eqs. (4.5) and (4.6) (2-body potential part) and indirectly  using g (r) 

with Eq. (2.101). 

Following the same procedure, we calculated the two-body potential energy directly 

using the expression: 
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and indirectly using Eq. (2.102). Furthermore, we calculated the quantity ν(r) using Eq. 

(2.96) during the same simulation to calculate the shear viscosity indirectly via Eq. 

(2.103).  

In Table 4.5 we show the two-body components of the pressure, energy and viscosity 

(for argon) calculated by Eqs. (2.101), (2.102) and (2.103) alongside of the direct values 

for different strain rates γ& . For every value of γ& , the quantities were calculated over a 

single trajectory of 50000 time-steps. Very good agreement (up to the fourth decimal 

place) is found between the direct calculations and those involving ),( γ&rg  and ),( γν &r . 

This agreement suggests that the observed dependencies of the pressure, energy and 

viscosity with strain rate are not a result of an error in the direct calculations of these 

properties. 

 

Table 4.5 Two-body contributions of the pressure, energy and viscosity of argon. 
 

*γ&  *
2bodyP  

(simulation) 

*
2bodyP  

( ),( γ&rg ) 

*
2bodyE  

(simulation) 

*
2bodyE   

( ),( γ&rg ) 

*
2bodyη   

(simulation) 

*
2bodyη   

( ),( γν &r ) 

0.0 -0.7136 -0.7136 -3.6384 -3.6382 - - 
0.702 -0.6720 -0.6720 -3.6118 -3.6118 0.6017 0.6016 
0.9555 -0.6382 -0.6383 -3.5941 -3.5941 0.5899 0.5899 
1.248 -0.5869 -0.5870 -3.5547 -3.5547 0.5837 0.5837 
1.549 -0.5018 -0.5019 -3.5165 -3.5165 0.5671 0.5671 
1.95 -0.4045 -0.4046 -3.4738 -3.4738 0.5436 0.5436 

 

 

In Figure 4.13 we display ),( γ&rg and ),( γν &r  for the fluid shearing with a strain rate 

of *γ&  = 1.95. Additionally, we include ),( γ&rg  at equilibrium )0( * =γ&  for comparison 

purposes. The difference between ),( γ&rg  for *γ&  = 0 and *γ&  = 1.95 reflects the change 
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in the fluid structure with imposed strain rate, which is to be expected.  It is well known 

that ),( γ&rg (Eq. (2.94)) is no longer spherically symmetric at large values of γ&  [Eva90], 

but becomes distorted at an angle of 45 degrees to the fluid velocity streamlines.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.13 ),( γ&rg  and ),( γν &r  for the argon fluid shearing at the highest strain rate 

used ( *γ& =1.95). ),( γ&rg  at equilibrium ( *γ& =0) is also reported. 
 

 

There is an additional check we can perform to ensure that the SLLOD algorithm 

was correctly implemented, and that the pressure tensor was correctly calculated. For  

thermostatted planar Couette flow, the rate of energy dissipation may be expressed as: 
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where )(tH&  is the time derivative of the total internal energy. For the algorithm to be 

working correctly, and for the shear stress to be correctly calculated, the right-hand-side 

(RHS) of Eq. (4.8) must equal the left-hand-side (LHS) for all t. This was indeed found 

to be the case in all our simulations, as seen in Figure 4.14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14 Comparison of RHS of Eq. (4.8) (Ç), and LHS (�). Note that at t*=0 the 
strain rate is imposed, and the fluid takes time to relax to a non-equilibrium steady state. 
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Figure 4.14 displays the results for a simulation where the shear stress is applied at 

t*=0, from an equilibrium state. The high peak close to t*=0 reveals that an initial 

amount of energy, provided by the shearing, goes to change the internal structure of the 

fluid, from an equilibrium state to a non-equilibrium one. Referring to Figure 4.13, this 

amount of energy is utilized to distort the equilibrium g (r). After this initial transition, 

the system reaches a steady state.            

Additionally, we checked that the hydrostatic pressure calculation was correct by 

calculating the dissipation for a fluid undergoing planar elongation. The dissipation is 

related to differences in the diagonal elements of the pressure tensor, and the dissipation 

rate is given as:  

[ ] ∑
=

•
−−−=

N

i

ii
yyxx m

PPVtH
1

)(
pp

αε&&                            (4.9) 

Here ε&  is the elongation strain rate, and the fluid expands in the x-direction, whilst 

simultaneously contracting in the y-direction. Details of the simulation algorithm for 

planar elongation can be found elsewhere [Tod97, Tod99]. Our simulations confirmed 

the equivalence of the RHS and LHS of Eq. (4.9).  

Previous work [Ryc88] that had attempted to show the analytic dependence of the 

viscosity on γ&  was criticized for the relatively high rates of strain used [Tra98]. Large 

strain rates can induce unwanted string phases, i.e., highly ordered solid-like 

configurations. These string phases arise for high Reynolds number flows [Erp84], 

where the assumption of a linear streaming velocity profile is questionable. The linear 

profile is imposed upon the flow via the SLLOD equations of motion. For a freely 

shearing system with Lees-Edwards periodic boundary conditions, high Reynolds 

number flows should exhibit an S-shaped kink in the streaming velocity profile. If the 

assumed (linear) and actual streaming velocities are not the same, the thermostat 
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interprets this deviation as heat, and applies an additional force to the equations of 

motion for the momenta (see Eq. (2.79)). It is this additional force appearing in the term 

involving α  that serves to stabilize the linear velocity profile and enhance the ordering 

of the fluid by reducing the rate of entropy production. Once the fluid's ordering is 

enhanced, its viscosity and pressure are reduced dramatically from their true values, 

which can lead to incorrect dependencies onγ& . 

In Figure 4.15 we project a 3-dimensional snapshot of the argon fluid onto a 2-

dimensional surface in the x-y plane. The fluid was sheared at the highest value of γ&  

which we simulated, *γ&  = 1.95.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 4.15 Two-dimensional projection onto the x-y plane of a three-dimensional 
snapshot of the argon fluid, shearing at the highest strain rate used ( *γ&  = 1.95).      
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There is no obvious enhancement in the structure of the fluid. For our system, strings 

were only noticeable at very high values of γ& , typically *γ&  > 5. This is in contrast to 

work by Evans et al. [Eva92], who found evidence of strings for values of *γ&  as low as 

~ 2. However, their simulations were performed on a Weeks-Chandler-Anderson 

(WCA) fluid [Wee71]. Our simulations have been performed on BFW fluids, both with 

and without the additional three-body term, where the range over which fluid atoms 

interact is significantly greater than for WCA fluids. In Figure 4.16 we show a full 3-

dimensional snapshot of the fluid sheared at *γ&  = 11, where now the appearance of 

strings is very pronounced. If strings were formed in our simulations, the anticipated 

side-effect should be to dramatically reduce the values of the viscosity and hydrostatic 

pressure at higher strain rates. Our data clearly does not support this. 

 

 
 

 

Figure 4.16 Full three-dimensional snapshot of the argon fluid, shearing at high value of 
11* =γ& . 
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Finally, we checked the dependence of the pressure, energy and viscosity profiles on 

the size of the cut-off potential radius used. While the results presented here for argon 

were performed with a two-body cut-off radius of 726.45.02 ==− Lr b
offcut  (reduced 

units), we also performed simulations at a smaller cut-off of 28.22 =−
b

offcutr  (reduced 

units) for an argon system of 500 atoms. The shapes of these profiles remained 

unchanged.  

 

4.3 Relationship between two-body and three-body potentials from NEMD 

simulation 

 

It is of interest to determine the effect of different strain rates on the validity of the 

relationship (Eq. (3.3)). The validity of such a simple relationship for NEMD was 

uncertain because of the added influence of factors such as variation in the strain rate. 

Consequently, we analyzed the ratio between the two ( 2E ) and the three ( 3E ) body 

potential energies obtained with planar Couette flow simulations for different state 

points and strain rates.  

The ratio of three-body to two-body energies for argon at different densities and 

temperatures is shown in Figure 4.17 as a function of strain rate. The temperatures and 

densities represent different state points on the liquid-phase branch of the vapour-liquid 

coexistence curve of pure argon. Irrespective of the state point, it is apparent that the 

ratio of the energies is largely independent of the strain rate. The dependence of the 

energy ratio on density is illustrated in Figure 4.18. The values predicted by Eq. (3.3) 

are also illustrated for comparison. This simple relationship fits the NEMD simulation 

data with an average absolute deviation of 2.3%. This is close to the same quality of 
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agreement (2%) that was obtained for the Monte Carlo study of equilibrium properties 

reported in section 3.2.  

As seen in the previous sections, the transport properties of fluids, such as shear 

viscosity, are an aspect of fluid behaviour that could potentially benefit from the use of 

accurate pair-potentials and three-body interactions.  In common with other applications 

of molecular simulation, the transport properties of fluids have largely been investigated 

using effective potentials. Therefore, other investigations are necessary to determine if   

Eq. (3.3) may be used in NEMD simulations to incorporate the effect of three-body 

interactions without the computational cost of a full three-body calculation. 
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Figure 4.17 The ratio of three-body and two-body energies of argon obtained from 
NEMD at different state points and different strain rates. 
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Figure 4.18. The ratio of three-body and two body energies for argon obtained from 
NEMD at different strain rates ( *γ&  = 0 (�), 0.702 (∆), 1.428 (£)) as a function of 
density. The line through the points was obtained from Eq. (3.3). 
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Chapter 5 

 

 

Conclusions and Recommendations  

 

The results we present in this work and in the literature [Mar99, Mar00, Mar01a, 

Mar01b, Mar01c, Mar01d] demonstrate that three-body interactions play an important 

role in the overall interatomic interactions of noble gases. This is demonstrated by the 

good agreement between our simulation results and the experimental data for both 

equilibrium and non-equilibrium systems. It is our opinion that the inclusion of the 

three-body forces in molecular simulations attempting to reproduce accurately 

experimental data is worthwhile and necessary. This practice would be beneficial since 

it would provide new insight into the three-body effects. In fact, it may be inferred that 

in other atomic and molecular systems three-body forces have an equivalent importance. 

It is desirable to investigate this more extensively. Studying three-body potentials in 

complex systems requires a significant effort in terms of experimental development, 

theoretical approaches and computational costs [Elr94]. Nevertheless, we strongly 

believe that it is an important area worthy of continued investigation.   

The use of effective pair potentials is obviously justified if applied either to 

corroborate a theory or to compare two similar molecular simulation techniques. For 

example the attempt, in earlier work, to validate the predictions of mode coupling 

theory [Kaw73] using the Lennard-Jones potential or even more simplistic potentials 

was reasonable. In fact, mode coupling theory predicts the general behaviour of the 



Conclusions and Recommendations                                                                                                           134 

viscosity and pressure vs. the strain rate, and is consequently not restricted to realistic 

potentials. On the other hand, the reproduction of experimental data with high accuracy 

and for a wide range of state points may be a prohibitive task with effective pair 

potentials. However, the intent to predict the experimental results with sufficient 

accuracy using effective pair potentials without incurring excessive computational costs 

is understandable and apparently feasible. There are indications that three-body effects 

in different properties may be accounted via mean field models [Ege88]. This approach 

consists in considering the many-body forces experienced by the molecules as a uniform 

background. The total intermolecular interactions are then considered pair-additive 

since they are given by a realistic pair potential corrected with this background 

contribution. Mean field potentials are usually temperature independent and density 

dependent. Their predictions are more accurate for bulk properties. Estimates on 

microscopic properties show some deficiencies [Ege88].  

The relationship in Eq. (3.3) represents a density dependent pair potential, and it may 

be envisaged as an effective potential. It has the feature to have been derived from full 

two-body + three-body calculations. The correction term appearing in Eq. (3.3) may be 

considered as a background contribution due to three-body effects. The relationship was 

not the result of a mean field derivation, but it may represent evidence that a mean field 

model can be applied for the systems studied.  

It is noteworthy to point out that the relationship in Eq. (3.3) is not supposed to 

provide high accuracy and, strictly speaking, it should be used in the range of densities 

and temperatures in which it was derived.  To the best of our knowledge, this is the first 

time that such a relationship has been derived using simulation data from full two-body 

+ three-body potential simulations. We believe that this procedure can be used to derive 

similar effective potentials for other systems. 
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In this work we did not apply three-body short-range potentials. Our results seem to 

demonstrate that, at least for the systems and the state points studied, these potentials 

should not give a significant contribution. Naturally, ours is just an a posteriori 

inference. But, very recent findings from Bukowsky and Szalewicz [Buk01] concerning 

the cancellations between three-body short-range potentials also strongly indicate that 

the triple-dipole potential is an excellent approximation of the total three-body energy. 

Further theoretical investigations in this direction are necessary.  

A further deficiency in the literature is the investigation of the third order distribution 

function, g(r1, r2, r3). From a molecular simulation viewpoint the calculation of g(r1, r2, 

r3) is feasible, even if it is considerably more time consuming than that of the pair 

distribution function. The knowledge of g(r1, r2, r3) enables one to choose more 

correctly the three-body cut-off and to test accurately the superposition approximation 

[Bar71a] used for long range corrections. A more precise calculation of the liquid state 

pressure may be a beneficial consequence of such an investigation. As pointed out in 

Chapter 3, the total pressure is the sum of the kinetic and potential contributions. These 

are of the same magnitude and opposite sign. The contribution from the three-body 

long-range corrections may be crucial in order to match the experimental data for the 

liquid state. 

In the past, some simulations with three-body potentials used 108-atom systems 

[Mur71, Bar71a, Lee94]. The size of such systems may not be compatible with an 

accurate determination of the three-body effects. In our work we used a 500-atom 

system, which was demonstrated to provide a good accuracy. However, investigations 

on possible scale effects may be beneficial. This is true also for mean field theory. In 

fact, there is the suspicion that many-body potentials show mean field behaviour 

because of the short cut-off applied in the simulations [Ege88].      
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The results for vapour-liquid coexisting phases encourage performing further 

computer simulations with realistic potentials. This may improve the prediction of 

quantities like critical temperature and density, in particular of substances for which 

these properties are difficult to obtain from experiment. It also very interesting to pursue 

the suggestion of Frenkel and Smit [Fre96] to use direct molecular dynamics techniques 

to investigate coexisting phases, since nowadays the increasing computer speed and use 

of parallel computers can allow such attempts.          

We have demonstrated that use of accurate two- and three-body potentials for 

shearing liquid argon and xenon displays significant departure from the expected strain 

rate dependencies of the pressure, energy and shear viscosity.  For the first time, the 

pressure is convincingly observed to vary linearly with an apparent analytic 2γ&  

dependence, in contrast to the predicted 2/3γ&  dependence of mode-coupling theory. 

This dependence results primarily from the two-body potential. The 3-body term only 

serves to raise the magnitude of the total pressure. Recent work using a Lennard-Jones 

potential found a similar deviation from mode-coupling theory [Mat00, GeJ01]. In 

particular, they found deviations from mode coupling theory predictions away from the 

triple point.  Further work is required to understand this behaviour. The shear viscosity 

is also seen not to be a simple function of 2/1γ& , and our data are in general agreement 

with recent work of other authors [Tra98]. Our best extrapolation of the zero-shear 

viscosity for argon gives excellent agreement (within 1%) with the known experimental 

data. From the best of our knowledge, this the first time that such accuracy has been 

achieved with NEMD simulations. Once again, this encourages performing simulations 

with accurate potentials for transport properties.    
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Appendix 1 

 

 

Long-Range Corrections for BFW Potential 

 

In this appendix we give the analytic derivation of the long-range corrections for the 

BFW potential [Bar71, see also Chapter 2], more precisely for the two-body pressure 

and energy assuming the pair distribution g(r) function equals unity over the cut-off. In 

the cases of the krypton and xenon potentials [Bar74, see also Chapter 2], the procedure 

is similar.  

The two-body energy in terms of g (r) may be expressed as [All87, see also Eq. 

(2.102)]: 

∫
∞

=

0

222 )(2 drrurgNE bb ρπ     .                                  (A1.1) 

With a simulation cut-off rc and assuming g (r) can be approximated by unity after the 

cut-off (see for example Figure 4.13), the long-range corrections for the energy can be 

written as: 

∫
∞

=

cr

bb
lrc drruNE 222 2 ρπ  .                                     (A1.2) 

Substituting the BWF potential in Eq. (A1.2) gives:  
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where 
mr
r

x =  and rm is the value where the potential is a minimum. To solve the 

integral in Eq. (A1.3) we have to solve each term. Consider the following terms: 
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where: 
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Now consider the following integrals: 
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Using these expressions and the following relations: 
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we can solve the following integrals as: 
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Using these integrals, Eq. (A1.4) can be solved: 
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Consider now the rest of the terms in Eq. (A1.3): 
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for J8 and J10 an approximation has to be used. Since δ = 0.01 and 
mr

r
x = >0.9 

(practically always), we can infer that δ>>8x  and δ>>10x  so it is possible to write: 
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Using the integrals calculated, we can finally write: 
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For the pressure we have the expression (see Eq. (2.101)):  
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Considering the formula for integration by part: 
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we can write: 
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Appendix 2 

 

 

Three-Body Potential Molecular Simulation Implementation  

 

In this appendix we report an easy and correct way to implement the 3-body potential 

(namely, the Axillord-Teller potential [Axi43]) in a molecular dynamics and Monte 

Carlo computer simulation program. 

In the first section we show how to verify Newton’s third law of dynamics with the 

3-body potential, since in this way we are able to find useful expressions. In the second 

section we point out the problem arising using the minimum image convention with the 

3-body potential, suggesting also the correct method to avoid mistakes. In the third 

section we write the expressions for the forces and the pressure, and in the last section 

we implement these expressions in an algorithm optimized for vector computers and 

designed to be fast enough to make the simulations feasible. 

 
 

A2.1 Newton’s third law of dynamics for 3-body potential 

   

Considering three atoms i, j and k  the 3-body Axilrod-Teller potential is (see Chapter 

2): 
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where DDDv  is a non-additive coefficient and where the angles and intermolecular 

separations  

( ) ( ) ( )2222
jijijiij zzyyxxr −+−+−=       (A2.2) 

refer to a triangular configuration of atoms (see Figure 2.1). Using the cosine law: 
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the potential in eq (A2.1)can be written as: 
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Expressing the potential as a function of the relative coordinates:  
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the derivatives in the coordinates are easily obtained by: 
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Here xb
jkiF ;3

)(  is the total 3-body force (due to atoms j and k) on atom i in the x direction, 

xb
kjiF ;3

)(  is the contribution from atom j only. There are similar expressions for the other 

coordinates: 
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Using the previous relationships, it is possible to show that the total forces on the atoms 

i and j are equal and opposite to the total force on the atom k .         
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We point out that to obtain the previous result we have only used the fact that the 3-

body potential is a function of the relative distances between the three atoms. 

 

A2.2 Three-body potential and minimum image convention 

 

Given a triplet of atoms, applying the minimum image convention requires some 

care. In general the minimum image convention does not keep the ‘shape’ of the 

triangle. Let us analyze the ijk  triplet in the following picture: 

 

 

 

 

 

 

 

 

 

 

When we apply the minimum image convention on the length ij, we have to consider 

the imagine of j (j’), because (xi- xj) is longer than half the box length; so we consider 

the side 'ij .  
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In the case of the side ik , we do not have to consider the images because (xi- xk) is not 

longer than half the box length. So the triangle now should be ij’k, but when we 

consider the atoms j and k , we have to calculate the side jk  and not 'k j . So we have a 

“triangle” with the shape: 

 

 

 

 

 

 

 

 

Using a cut-off for the 3-body potential for which a triangle is accepted if each side 

is less than a quarter of the box length, avoids these undesirable situations. Even if this 

condition is very strict, we have tested that for simulations at liquid densities with 500 

argon atoms, the relative cut-off guarantees a good accuracy for the Axillord-Teller 

potential ([Mar99], see also Chapter 3). It is worthwhile to point out that the condition 

for the cut-off works also with Lees-Edwards sliding brick boundary conditions 

([Eva90], see also Chapter 2).  
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In his work [Att92] Attard recognized this problem, but suggested a different 

solution. He implemented a different minimum image algorithm to be applied only for 

triplets of atoms and he adopted a cut-off for the three-body potential smaller than half 

the box length, as is the case for the two-body potential. Even if this mathematically 

solves the problem, we can not attribute to it a clear physical meaning. In the case 

depicted in the first figure, all the pair interactions between the three atoms are 

calculated, since all the three sides are less than half of the box length, according to the 

traditional minimum image convention. On the other hand, when Attard’s algorithm is 

applied to calculate the three-body interactions, the same triplet of atoms is rejected, 

since jk  is greater than half the box length. Furthermore, it is not clear if Attard’s 

algorithm can be generalized for Lees-Edwards sliding brick boundary conditions.  

Sometimes, a misleading condition for the three-body potential cut-off is adopted 

[Cor00]. The three-body force on atom i is considered different from zero if and only if 

both atoms j and k  lie within the cut-off distance to atom i. No additional requirement is 

made on the distance between atoms j and k . This leads to non-symmetric situations. Let 

us consider the case where the distances between i and j and i and k  are less than the 

cut-off, and the distance between j and k  is greater than the cut-off. The three-body 

force on atom i is not zero. For atoms j and k  the three-body force is zero. This clearly 

violates Newton’s third law of dynamics, as expressed in Eq. (A2.9), since the total 

three-body force on the triplet of atoms is not zero.   

 

A2.3 Forces and pressure for 3-body potential  

 

In general, the αβ (α ,β = x,y,z) component of the configurational pressure tensor is 

usually defined by [Ala87]: 
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Considering for simplicity the xx component, it is possible to write: 
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The left-hand-side of Eq. (A2.11) is not suitable to be used with the minimum image 

convention, since in general it changes the value of ijx ; we are forced to work with the 

second term of the relation (A2.11) [All87], i.e. with expressions which contain ijr  

rather than ir . In particular we also have to do this with the 3-body potential. 

A similar relation holds for the 3-body case: 

∑∑∑∑
≠ ≠

==
i ij jk

xb
jkii

i

xb
ii

b
xx FxFxVP ;3

)(
;33     .              (A2.13) 

We can also write: 
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since the indices i,j,k are equivalent. 

Furthermore, 
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Here we write xb
jkiF ;3

)(  = xb
jki

xb
kji FF ;3
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;3
)( + , and similarly for the other triplet terms. 

Substituting Eqs. (A2.7) and (A2.8) in Eq. (A2.15) gives:  
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Since 
ij

ijkxb
kji x

u
F

∂
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−=;3

)(  (and similarly for all the other terms), we achieve the goal of 

expressing the pressure as a function of pair distances. Now we need to find an 

expression for 
ij

ijk

x

u

∂

∂
. The potential is:  
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Similar expressions exist for all other derivatives of the triplet potential. This expression 

is ‘easy’ to implement in a program, as we report in the following section.  

 

 

A2.4 Algorithm  

 

In what follows we report an algorithm to implement the 3-body potential for a 

system of n  atoms. We optimize the algorithm in order to take advantage of the 

vectorisation, hence this algorithm is not suitable for a parallel computer.  

As a first step we have to calculate the dis tances between all the pair of atoms, and 

apply the minimum image convention (note that this loop in not time consuming in 

comparison with the 3-body algorithm): 
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loop i ← 1,N-1                                                  
 loop  j ← i+1,N 
 

// coordAtomX(i), coordAtomY(i) and coordAtomZ(i) are the coordinates of atom i.   
// distanceAtomsX, distanceAtomsY and distanceAtomsZ are the distances between two 
// atoms in the x, y, z directions respectively.  

 
 distanceAtomsX ← coordAtomX(i) - coordAtomX(j) 
 distanceAtomsY ← coordAtomY(i) - coordAtomY(j) 
 distanceAtomsZ ← coordAtomZ(i) - coordAtomZ(j) 
 

// Minimum image convention [All87]. boxLength  is the box length. The  
// efficiency of different algorithms for the implementation of the minimum image  
// convention is studied in the work of Hloucha and Deiters [Hlo97].  

 

distanceAtomsX  ← distanceAtomsX - boxLength* NINT(distanceAtomsX / boxLength) 
distanceAtomsY  ← distanceAtomsY - boxLength * NINT(distanceAtomsY / boxLength) 
distanceAtomsZ  ← distanceAtomsZ - boxLength * NINT(distanceAtomsZ / boxLength) 

 

// distanceAtoms1(i,j),distanceAtoms2(i,j),…distanceAtoms6(i,j) are arrays where the  
// distances between atoms (and their respective powers) are stored. These arrays  
// should be symmetrised, (d(i,j)=d(j,i)), but in what follows it is not necessary.   
 
distanceAtoms2(i,j) ← distanceAtomsX**2 + distanceAtomsY**2 + 

distanceAtomsZ**2 
distanceAtoms1(i,j) ← SQRT(distanceAtoms2(i,j)) 
distanceAtoms3(i,j) ← distanceAtoms2(i,j)*distanceAtoms1(i,j) 
distanceAtoms4(i,j) ← distanceAtoms2(i,j)*distanceAtoms2(i,j) 
distanceAtoms5(i,j) ← distanceAtoms2(i,j)*distanceAtoms3(i,j) 
distanceAtoms6(i,j) ← distanceAtoms2(i,j)*distanceAtoms4(i,j) 

 

 

 // x(i,j),y(i,j) and z(i,j) are arrays to store the relative distances in the x, y, z directions. 

x(i,j) ← distanceAtomsX  
y(i,j) ← distanceAtomsY 
z(i,j) ← distanceAtomsZ  
 

 
 end j loop 
end  i loop  

 

 

 



Three-Body Potential Molecular Simulation Implementation                                                                    154 

As usual, a double loop can be used at this stage to calculate the 2-body potential and 

forces:  

loop i ← 1,N-1                                                  
 loop  j ← i+1,N 
 
 // Calculation of two-body potential and forces 
 
 end j loop 
end  i loop  
 

This loop is not time consuming in comparison with the 3-body algorithm; note that 

we do not use a neighbor list, since it could be complicated to implement with a 3-body 

potential and because it would probably compromise the vectorisation. 

Before the algorithm for the 3-body terms is implemented, some variables have to be 

initialized:       

// total3BodyEnergy is the total 3-body energy. total3BodyForceX(i),  
// total3BodyForceY(i), total3BodyForceZ(I) are the total forces on the atom i in the x,  
// y, z directions. pressureTensor3body(1),….pressureTensor3body(6) are the xx, xy, xz,  
// yy, yz, zz elements of the 3-body pressure tensor. The hydrostatic pressure is 1/3 of the 
// pressure tensor’s trace.  
 
total3BodyEnergy ←0.0  
loop i←1,N 
 
total3BodyForceX(i) ←0.0  
total3BodyForceY(i) ←0.0 
total3BodyForceZ(i) ←0.0 
 
end  i loop 
 

loop i←1,6 
 
pressureTensor3body(i)  ←0.0 
 
end  i loop 
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Now we have to apply the cut-off condition to know which triplets of atoms 

(triangles) can be counted. To do that we use the usual triple-loop:  

 

// d1a(lc), d2a(lc),…d6a(lc) are arrays to store the first side (and powers) of the  
// lc-th accepted triangle. d1b(lc), d2b(lc),…d6b(lc) are arrays to store the second 
// side (and powers) of the lc-th accepted triangle. d1c(lc), d2c(lc),…d6c(lc) are 
// arrays to store the third side (and powers) of the lc-th accepted triangle. dXa(lc),  
// dYa(lc), dZa(lc) are arrays to store the relatives coordinates of the first side of  
// the lc-th accepted triangle. 

 

lc←0.0  
loop i←1,N-2 
 loop  j←i+1,N-1 
 loop k←j+1,N 
 
 if  (distanceAtoms1(i,j) < boxLength/4 .and.  
 distanceAtoms1(i,k) < boxLength/4 .and. 
 distanceAtoms1(j,k) < boxLength/4) 
 

// This is the cut-off condition: a triangle is accepted if each of its sides is less than 
// a quarter of the box length.  

 
lc←lc+1 
d1a(lc) ←distanceAtoms1(i,j) 
d2a(lc) ←distanceAtoms2(i,j) 
d3a(lc) ←distanceAtoms3(i,j) 
d4a(lc) ←distanceAtoms4(i,j) 
d5a(lc) ←distanceAtoms5(i,j) 
d6a(lc) ←distanceAtoms6(i,j) 
  
dXa(lc) ←x(i,j) 
dYa(lc) ←y(i,j) 
dZa(lc) ←z(i,j)  
 
d1b(lc) ←distanceAtoms1(i,k) 
d2b(lc) ←distanceAtoms2(i,k) 
d3b(lc) ←distanceAtoms3(i,k) 
d4b(lc) ←distanceAtoms4(i,k) 
d5b(lc) ←distanceAtoms5(i,k) 
d6b(lc) ←distanceAtoms6(i,k) 
 
dXb(lc) ←x(i,k) 
dYb(lc) ←y(i,k) 
dZb(lc) ←z(i,k)  
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d1c(lc) ←distanceAtoms1(j,k) 
d2c(lc) ←distancetoms2(j,k) 
d3c(lc) ←distanceAtoms3(j,k) 
d4c(lc) ←distanceAtoms4(j,k) 
d5c(lc) ←distanceAtoms5(j,k) 
d6c(lc) ←distanceAtoms6(j,k) 
 
dXc(lc) ←x(j,k) 
dYc(lc) ←y(j,k) 
dZc(lc) ←z(j,k)  

 

// l1(lc), l2(lc), l3(lc) are integer arrays to store the indices of the 3 atoms in the  
// lc-th triangle; these arrays will be used to calculate the forces. 

 
l1(lc) ←i      
l2(lc) ←j      
l3(lc) ←k       

 
 

 end if  
 
 end k  loop   
 end j loop  
end i loop 
 

The next loop will be a ‘long’ loop over the number of all accepted triangles to 

calculate energy, forces and pressure. This loop speeds up the program, since it can be 

vectorised more intensely than a normal triple loop. 

 
loop l←1,lc 
 

// dVdRa, dVdRb, dVdRc are 
ijij r
u

r ∂
∂ν , 

ikik r
u

r ∂
∂ν , 

jkjk r
u

r ∂
∂ν  respectively (see section A2.3). 

// nonAdditiveCoef is the non-additive coefficient ν. 
 

 
dVdRa ← (3.*nonAdditiveCoef/(8.*d1a(l)))*( 

-8./(d4a(l)*d3b(l)*d3c(l))-1./(d5b(l)*d5c(l)) 
+5.*d1b(l)/(d6a(l)*d5c(l))+5.*d1c(l)/(d6a(l)*d5b(l)) 
-1./(d2a(l)*d3b(l)*d5c(l))-1./(d2a(l)*d5b(l)*d3c(l)) 
-3./(d4a(l)*d1b(l)*d5c(l))-3./(d4a(l)*d5b(l)*d1c(l)) 
-5./(d6a(l)*d1b(l)*d3c(l))-5./(d6a(l)*d3b(l)*d1c(l)) 
+6./(d4a(l)*d3b(l)*d3c(l)) ) 
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dVdRb ← (3.*nonAdditiveCoef/(8.*d1b(l)))*( 
-8./(d4b(l)*d3a(l)*d3c(l))-1./(d5a(l)*d5c(l)) 
+5.*d1a(l)/(d6b(l)*d5c(l))+5.*d1c(l)/(d6b(l)*d5a(l)) 
-1./(d2b(l)*d3a(l)*d5c(l))-1./(d2b(l)*d5a(l)*d3c(l)) 
-3./(d4b(l)*d1a(l)*d5c(l))-3./(d4b(l)*d5a(l)*d1c(l)) 
-5./(d6b(l)*d1a(l)*d3c(l))-5./(d6b(l)*d3a(l)*d1c(l)) 
+6./(d4b(l)*d3a(l)*d3c(l)) ) 

 
dVdRc ← (3.*nonAdditiveCoef/(8.*d1c(l)))*( 

-8./(d4c(l)*d3b(l)*d3a(l))-1./(d5b(l)*d5a(l)) 
+5.*d1b(l)/(d6c(l)*d5a(l))+5.*d1a(l)/(d6c(l)*d5b(l)) 
-1./(d2c(l)*d3b(l)*d5a(l))-1./(d2c(l)*d5b(l)*d3a(l)) 
-3./(d4c(l)*d1b(l)*d5a(l))-3./(d4c(l)*d5b(l)*d1a(l)) 
-5./(d6c(l)*d1b(l)*d3a(l))-5./(d6c(l)*d3b(l)*d1a(l)) 
+6./(d4c(l)*d3b(l)*d3a(l)) ) 

 

// This is the calculation of the forces: 
 
// total3BodyForceX(l1(l)) is the force on the atom i in the X direction. 
// total3BodyForceX(l2(l)) is the force on the atom j in the X direction. 
// total3BodyForceX(l3(l)) is the force on the atom k  in the X direction. 
 
total3BodyForceX(l1(l)) ←total3BodyForceX(l1(l))-dXa(l)*dVdRa-dXb(l)*dVdRb 
total3BodyForceY(l1(l)) ←total3BodyForceY(l1(l))-dYa(l)*dVdRa -dYb(l)*dVdRb 
total3BodyForceZ(l1(l)) ←total3BodyForceZ(l1(l))-dZa(l)*dVdRa -dZb(l)*dVdRb 
 
total3BodyForceX(l2(l)) ←total3BodyForceX(l2(l))-dXa(l)*(-dVdRa)-dXc(l)*dVdRc 
total3BodyForceY(l2(l)) ←total3BodyForceY(l2(l))-dYa(l)*(-dVdRa)-dYc(l)*dVdRc 
total3BodyForceZ(l2(l)) ←total3BodyForceZ(l2(l))-dZa(l)*(-dVdRa)-dZc(l)*dVdRc 
 
total3BodyForceX(l3(l)) ←total3BodyForceX(l3(l))-dXb(l)*(-dVdRb)-dXc(l)*(-dVdRc) 
total3BodyForceY(l3(l)) ←total3BodyForceY(l3(l))-dYb(l)*(-dVdRb)-dYc(l)*(-dVdRc) 
total3BodyForceZ(l3(l)) ←total3BodyForceZ(l3(l))-dZb(l)*(-dVdRb)-dZc(l)*(-dVdRc) 
 
// Note, it is accumulating all the contributions of the same atom from all triangles  
// where the atom is present). 
 
// Calculation of the elements of the 3-body pressure tensor. 

pressureTensor3body(1) ←pressureTensor3body (1)  
  -dXa(l)*dXa(l)*dVdRa -dXb(l)*dXb(l)*dVdRb -dXc(l)*dXc(l)*dVdRc 
pressureTensor3body(2) ←pressureTensor3body(2) 
 -dXa(l)*dYa(l)*dVdRa -dXb(l)*dYb(l)*dVdRb -dXc(l)*dYc(l)*dVdRc 
pressureTensor3body(3) ←pressureTensor3body(3) 
 -dXa(l)*dZa(l)*dVdRa -dXb(l)*dZb(l)*dVdRb -dXc(l)*dZc(l)*dVdRc 
pressureTensor3body(4) ←pressureTensor3body(4) 
 -dYa(l)*dYa(l)*dVdRa -dYb(l)*dYb(l)*dVdRb -dYc(l)*dYc(l)*dVdRc 
pressureTensor3body(5) ←pressureTensor3body(5) 
 -dYa(l)*dZa(l)*dVdRa -dYb(l)*dZb(l)*dVdRb -dYc(l)*dZc(l)*dVdRc 
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pressureTensor3body(6) ←pressureTensor3body(6) 
 -dZa(l)*dZa(l)*dVdRa -dZb(l)*dZb(l)*dVdRb -dZc(l)*dZc(l)*dVdRc 
 

// Calculation of the 3-body energy. 

total3BodyEnergy ←total3BodyEnergy+nonAdditiveCoef*(1.0/(d3c(l)*d3b(l)*d3a(l))  
+(3.0*(d2c(l)+d2b(l)-d2a(l))*(d2c(l)-d2b(l)+d2a(l)) 
*(-d2c(l)+d2b(l)+d2a(l))/(8.*d5c(l)*d5b(l)*d5a(l)) )) 

 
 
end  l loop 

 

 

To check the validity of the previous calculations it is worthwhile to verify the 

relationship: 

( )b
zz

b
yy

b
xx

b
tot PPP

V
u 333

3

3
13

++=      (A2.21) 

which holds since the Axilrod-Teller potential is a homogenous function of degree -9 in 

the variables jkikij rrr  and ,  [Bar71]. We did this test to check our program, and Eq. 

(A2.21) turned out to be verified.  

Using a NEC SX-4 supercomputer we found that this algorithm used for molecular 

dynamics simulations with 500 particles makes the program 10 times faster than a 

program using normal triple-loops. 
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