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Abstract

The aim of thiswork is to use molecular simulation to investigate the role of
three-body interatomic potentials in noble gas systems for two distinct
phenomena: phase equilibria and shear flow. In particular we studied the
vapour-liquid coexisting phase for pure systems (argon, krypton and x enon) and
for an argon-krypton mixture, utilizing the technique called M onte Carlo Gibbs
ensemble. We also studied the dependence of the shear viscosity, pressure and
energy with the strain rate in planar Couette flow, using a non-equilibrium
molecular smulation (NEM D) technique.

Theresultswe present in thiswork demonstrate that three-body interactions
play an important rolein the overall interatomic inter actions of noble gases. This
isdemonstrated by the good agreement between our simulation resultsand the
experimental data for both equilibrium and non-equilibrium systems.

The good results for vapour-liquid coexisting phases encour age performing
further computer simulations with realistic potentials. This may improve the
prediction of quantities like critical temperature and density, in particular of
substances for which these properties are difficult to obtain from experiment.

We have demonstrated that use of accurate two- and three-body potentialsfor
shearing liquid argon and xenon displays significant departure from the
expected strain rate dependencies of the pressure, energy and shear viscosity.

For thefirst time, the pressureis convincingly observed to vary linearly with an
apparent analytic g2 dependence, in contrast to the predicted ¢*? dependence

of mode-coupling theory. Our best extrapolation of the zero-shear viscosity for
argon givesexcellent agreement (within 1% ) with theknown experimental data.

To the best of our knowledge, this the first time that such accuracy has been



achieved with NEM D simulations. This encour ages per for ming simulationswith

accurate potentials for transport properties.
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Chapter 1 1

Chapter 1

Molecular Simulation of Fluids

This work is the result of research conducted on the molecular smulaion of fluids.
Traditiondly, science, in order to understand the phenomena occurring in nature, used
two different approaches experiment and theory. These two approaches are not
necessarily separate. In fact, the ‘at’ of collecting experimenta data usudly requires
profound theoreticd knowledge, while on the other hand, modds require a necessary
minimum amount of experimental data to derive some of ther parameters. It is better to
view them as complementary gpproaches that together dtrengthen the scientific
invedtigation. Molecular smulation, snce the advent of the computer, has become an
important means of carrying out scientific research.

Degpite the commonly used term ‘computer experiments, molecular Smulation
beongs to the theoretical gpproach, unless we intend to investigae a ‘virtud’ redlity.
We can envisage two man reasons why molecular amulation is associated with the
experimenta goproach. The fird reason is a suggestive one and is due to its ability to
reproduce the motion of the particles as it occurs in nature. In this regard, even if
amulation techniques could reproduce molecular motion in detal, they would be, in any
cae, a representation of rea systems. Moreover techniques that try to Smulae closdy
red sysdems, show less predictive power than others, which use more atificid

implementetions. The other reason is more a procedurd one Usudly molecular
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smuation is usad to tes the vdidity of a theory or a theoretical conjecture, or even to
discriminate between two theories. While this is indeed true, ultimatdy it is experiment
that will decide the matter.

More interesting, and maybe more speculdive, is to condder if molecular smulation
is a deductive or an inductive method. The use of semiempiricd modds, such as for
example intermolecular potentids  fitted on  experimenta daa could be indeed
indicative of an inductive procedure. However, these modds are usuadly supposed to be
goplied under a range of conditions wider than those used to derive the modds
themsdlves. Furthermore, ab initio techniques [GA93] are meant to predict generd
behaviour, utilizing very dementary initid assumptions.

The gpped and ussfulness of molecular smulation is that it often alows accurate
cdculation of naurd phenomena without the plehora of gpproximations and
assumptions that limit conventiona theoreticd gpproaches to prediction and estimation.
The key theordticd assumption of molecular smulation is to envisage any physcd
system as a collection of paticles In generd, dl the macroscopic properties such as
temperature, pressure and densty can be reated to the motion or the Sate of these
paticles. Consequently, knowing the motion or the Sate of the particles endbles one to
deduce the macroscopic properties of the system. From a classical dynamics viewpoint,
to derive the mation of a collection of particles it is required to know the forces acting
on them. One may then use Newton's equaions of motion to solve for the particle
postions and momenta From a daidticd mechanics viewpoint, the knowledge of the
date of an ensemble of paticles is rdated to the energy of the particles, which dlows
the derivations of probabilities rlative to thet Sate.

Molecular smulaion techniques, therefore, require the adoption of an intermolecular

potentia to represent the interactions between the particles of any physcd system



Chapter 1 3

(lid, ligud or gas). The inteemolecular potentid and a limited number of
goproximations, represent the modd of a physicd sysem that is used to test agangt
experimentd data or preexiging theoreticd modds. The computer generates ether the
motion or different dates of the particles, and the average vadues of the physicd
quantities of interet can be cdculaed. The two main molecular smulation techniques,
molecular dynamics (MD) and Monte Carlo (MC) techniques [AllI87, Hey9g],
implement these idess The firg follows a dynamicd approach, utilizing Newton
equations of motion, the second a datigicd mechanics gpproach, using the concept of
configuration space. Nowadays these techniques have reached such a levd of
sophidication thet they are able to reproduce experimenta results with good accuracy
[Ant97, Bukod].

It is commonly assumed that intermolecular interactions are confined to pairs of
molecules [Pan87, Pan88, Fa&d7, Sad9%6d], and contributions involving three, four or
more aoms ae ignored. When this assumption is invoked, the molecular properties are
assumed to be ‘par-additive’ Generdly, interactions between pars of molecules make
the overwheming contribution to the overdl intermolecular interaction. However, it is
dso documented [EIr94] that three-body interactions can meke a ggnificant
contribution to intermolecular interactions in liquids, (see Chepter 2). Despite this,
molecular smulations rardly account rigoroudy for the effect of threebody interactions
[Sad96b, Sad98a, Sad98b, Sad98c, Ant97]. Instead, the typicd molecular Smulation
assumes pair additivity, and uses a smple ‘effective intermolecular potentid in which
many-body effects ae sad to be incuded in the vdues of the intermolecular

parameters.
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In the following sections we summarize the ams of our work (section 1.1) and give a
brief account of the background and progress in molecular Smulaion regarding the

topics we investigated (section 1.2 and 1.3).

1.1 Aims

The am of this work is to use molecular smulatiion b invedigate the role of three-
body interatomic potentids in noble gas sysems for two diginct phenomena phase
equilibria and shear flow. In particular we dudied the vapour-liquid coexiging phese for
pure sysems (argon, krypton and xenon) and for an argon-krypton mixture. We aso
sudied the dependence of the shear viscosty, pressure and energy with the drain rate in
planar Couette flow. We give here a brief review of the previous work in these fidds to
better delineate our task. The rest of the hess is aranged as follows: in Chapter 2 we
give detals of the interatomic potentids and of the techniques used. In Chapter 3 and
Chapter 4 we report the results obtained for phase eguilibria and planar Couette flow

smulations respectively. Chapter 5 contains our conclusions and recommendations.

1.2 Background

Previous work [Sad96b, Ant97, Sad98a] regarding the role of three-body interactions
on the phase behaviour of pure atomic sysems has been redtricted to the Axilrod-Teller
term [Axi43] and the cdculaions have been confined manly to argon. In addition,
cdculations on the influence of threebody interactions on phase behaviour of some
theoreticd binary mixtures are dso avalable [Sad98b, Sad98c]. Sedus and Prausnitz
[Sad96b] reported that the Axilrod-Tdler term contributes typicaly 5% of the overdl
enagy of the liquid phase of agon. Cdculdaions for the vapour-liquid coexigence of

argon by Anta et d. [Ant97] and Sadus [Sad98a] usng a combination of the Lennard-
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Jones and Axilrod-Teller potentids indicate thet the incuson of three-body interactions
Oeteriorates the agreement between theory and experiment for the coexiging liquid
phase densties This falure can be dtributed to the effective nature of the Lennard-
Jones potentid (see Chapter 2). The use of ‘effective intermolecular potentids is a
source of condderéble inaccuracy and uncertainty in molecular  smulations.  For
example, in Chapter 3 we show that three-body interactions contribute sgnificantly to
the phase behaviour of fluids, wheress this effect had been hidden previoudy by the use
of effective intermolecular potentiads. The agreement between experiment and theory
for the phase enveope is improved condderably by explicitly accounting for three-body
interactions. However, accounting for threebody interactions requires condderably
more computing resources than sSmple par interactions. In the worst case, the
computing time of a sysem of N molecules scales in proporion to N? for pair
interactions, compared with N*® for three-body interactions Although computation-time
saving dgorithms have been developed [Sad99, see dso Appendix 2] to avoid the worst
cae scenario, accounting for three-body interactions typicaly requires @ least one order
of magnitude more compuing time than smple pair cdculations. This means that such
cdculaions ae fa from routine even with today’s high performance computers.
However, because of the importance of threebody interactions, it is highly desirable to
indude them in molecular smulations.

Anta e d. [Ant97] reported good results for vapour-liquid coexigence of argon
uing the Aziz-Saman [Azi86, Azi93] potentid in conjunction with the AxilrodTeller
term. Unlike the LennardJones potentid, the Aziz-Saman potentid is a genuine pair
potentidd and it is thought to be the best representation of the two-body interactions for
argon. However, its mathematica expresson is rather complicated. For argon we used

the Barker-Fisher-Waits (BFW) potentia [Bar71a], for computationa convenience and
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because equivaent expressons are available for krypton and xenon. We adso show in
Chapter 3 tha the Aziz-Saman potentid and BFW potentid produce smilar results for
the argon vapour -liquid coexiding curve.

Non-equilibrium molecdar dynamics (NEMD) smulations of Couette flow (see
Chapter 2) are commonly reported using ether the Lennard-Jones or Weeks-Chandler-
Anderson (WCA) intermolecular potentids to describe interatomic interactions [Evad0,
Sar98]. However, both the LennardJones and WCA potentids are effective multi-body
potentidds and as such they do not represent twobody interactions accurately [Bar76].
Ealier amulaions [Eva80, Eva8l] with these potentids appear to confirm the non-

andytic dependence of viscodty () with shear rate in the limit of low Srain rate (g).
However, more recent work questions the ¢¥? dependence of the shear viscosity. For

example, Ryckaert et a. [Ryc88] and Ferrario et d. [Fer9ld] fand a ¢ 2 dependence of
the shear viscosty. The sgnificance of these results is unclear because of the high srain
rales and large daidicd uncertainties in the data [Tra8]. Furthermore, usng profile
biased thermogtats, namey thermodas that make some assumption about the form of
the streaming velocity profile [Eva90], under conditions of large drain rates, can induce
unwanted dringphases in the fluid, which conds of highly ordered <olid-like
configurations [Erp84]. This dgnificantly reduces both the shear viscodty and the
hydrogstatic pressure from ther true vaues [Eva86, Evad2Z]. Bhupathirgu et d. [Bhu9g)
demondrated that in the limit of zero drain rate the shear viscodty behaves in a
Newtonian manner, i.e, the shear viscosty becomes indgpendent of ¢. Travis e 4.
[Tra98] showed that the shear viscosty may be fit by a number of functions that do not

have any theoreticd bass. They dso showed that the viscodty profile may be
successfully fit by two separate linear functions of gY2 in two different dtrain rate

regimes. Alternaively a Cross equation [Cro65], or the Quentrec locd-order theory for
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isotropic  fluids [QueB2, Tro84] were dso found to give reasonable agreement with
smulétion data
Of paticular relevance for our current work is the mode-coupling theory [Kaw73]

which predicts that in the limit of zero shear rate the shear viscosty is a non-andytic

function of the stran rate, h »gY2. This theory dso predicts that the hydrostatic
pressure varies as g>'2. Mode coupling theory does not provide guidance on how small

the gtrain rate must be in order to observe the predicted g¥? and ¢* 2 dependence for
the shear viscosty and hydrodetic pressure, respectivdy. As NEMD smulations are
typicaly peformed a rdatively high rates of dran to obtan high sgnd to noise raios,
such dmulaions cannot confirm the predictions of mode coupling theory. In the
absence of dmulation data a fidd drengths severd orders of magnitude smaler than
those typicdly achievable the quedion of the vdidity of mode coupling theory remains
open. However, mogt previous NEMD dmulations usng effective  multi-body
intermolecular potentids have shown that the hydrodatic pressure and internd energy
do behave as predicted by the theory, even a these relatively high drain rates.

We are aware of only one previous NEMD sudy of simple atomic fluids interacting
via accurate twe and three-body intermolecular potentids. Lee and Cummings [Lee94]
reported NEMD smulaions of planar Couette flow for a sysem of 108 aoms
interacting via a potentid composed of the Baker-Fishe-Watts twobody potentid
[Bar71a) plus the three-body triple-dipole potentid of Axilrod and Tdler (AT) [Axi43].
The three-body interaction was obsarved to reduce the value of the shear viscosty by
only 3%. In the range of drain rates studied, Lee and Cummings found thet the drain
rate behaviour of the energy, pressure and shear viscodty dl conformed to the

predictions of mode coupling theory.
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1.3 Progress in molecular simulation

Phase equilibria
It is found by experiment that only a certain number of the physcd properties of a
substance can have alitrary vaues. The remaning properties are determined by the

nature of the sysem. For example, considering a gas a temperature T with a given mass
m and held in a container of volume V, the vaue of its pressure P can be dbtained via an
equationin m Vand T;

fPmV,T) =0 ()
such an expresson is known in generd  as the equation of date [Sear5]. In this work we
are interested in thermodynamic systems, the dtate of which can be determined by
properties like dendty, temperature, pressure, chemicad potentid, etc. The phese of the
sysem, namdy gas, liquid or solid, is an important characteridic and in paticular phase
trandtions represent an important fidd of dudy. Both technologicd and scientific
goplications  require a detaled knowledge of phase behaviour of fluids and their
mixtures. For example, chemica indudtries need to know trangtion phenomena and the
reldive parameters (criticd temperatures, pressures, efc) to sSeparate paticular
substances from their origind mixtures. This wide interest is demongrated by the large
amount of experimenta data [Wic73] collected and the number of semiempiricd and
theoreticd models proposed regarding phese  equilibria Despite  the  subdtantid
knowledge so fa ganed much more remans to be leaned. For example,
multicomponent mixture experiments ae very rae and peformed in limited
temperature and pressure ranges because of ther high redization costs [Gub89).

Sonificant information comes from equaion-d-gate modds [San94], but they can not
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be used to accurady predict properties outsde the range of experiments adopted to
obtain the parameters of the models.

In this regard, molecular Imulation represents a complementary method  [Gub96,
Qui01]. Utilizing intermolecular potentids obtained from either quantum mechanics or
semiempiricdl cdculations, and adopting fewer approximetions, molecular  Smuletion
can be gpplied over a wider range of conditions. In fact, even if ther paramees ae
determined from particular experimental data, they can be used under more generd
conditions [Ba76]. Here we give a brief description of some of the molecular
smulation techniques dedicated to phase equilibria For further detaills we refer to the
following reviews in the literature [Gub89, All93, Pan94a, Pan95, Fred6, Pan00].

The mog direct procedure to dmulate phese equilibria may smply condst of
adequatdy changing the temperaure or the pressure of the system and observing the
occurrence of a phase trandormation. This is possble via ether Monte Calo or
molecular dynamics methods. Reviews of these techniques were given by Rowlinson
and Widom [Row82] and by Gubbins [Gub89]. Unfortunately, important difficulties
characterize these direct methods. Fird-order trandtions [Huab3] may show hydteress
due to a large free energy barrier separating the two phases a or near to the coexistence
[Fred6]. This free energy barrier conssts of the free energy of the interface. The larger
the area of the interface, the higher the barrier. In a norma smulation, even with large
gze sysgems, a dgnificant number of paticles ae in the proximity of the interface,
which can dter the outcomes of the smulation. Long equilibretion times are required
ad it is vay difficult to mantain the coexiging phases when the two vdues of the
dendties are dmila. On the other hand, the direct methods do not require random
particle exchanges as other techniques do [Pan00Q], in order to achieve the equdity of

the chemicd potertids (maerid equilibrium) in the coexisding phases. For sysems with
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high dendties the direct method would be preferable, snce particle insations are
characterized by low probabilities However, the maerid equilibrium by diffuson
through the interface requires long Smulaion times under high dendty conditions
[Yan96]. Despite these deficiencies, the direct methods provide useful information
regarding the interface properties and surface tension.

Smulaing the phase coexigence without interfaces is the badc and innovative idea
of the Monte Calo (MC) Gibbs ensamble method introduced by Panagiotopoulos
[Pan87, PanB8]. As discussed in more detall in Chapter 2, the coexiging phases take
place in sgpade dmulation boxes Importantly, materid equilibrium between the
different phases is achieved by exchanging paticles between the boxes This dso
represents the weekness of the method. The higher the dendty of at leest one phase, the
lower is the probability to successfully exchange the particles. Molecular dynamics
(MD) implementation of the Gibbs ensemble method was proposed by Pdmer and Lo
usng an extended sysem Hamiltonian [Pd94]. Baanya and Cummings [Bar95]
reported a smpler verson of the MD Gibbs ensemble, usng Hoover-type equaions of
motion [Md93, Md94] and patice exchanges like in the tradiiond MC verson
[Pan88]. The MD versons are able to well reproduce the results from MC Gibbs
ensemble smulations. Other versons of the technique are reviewed in the literature
[Pan95, Fred6, Pan00]. In particular, for multissgment or polymeric sysems, versons
of the Gibbs ensamble, usng biased sampling methods for paticle insertion, have been
proposed [Se93, Smi%5, Fred6]. Also pardld versons were presented [Loy95, Ess95,
Str0Q]. In generd, the Gibbs ensemble technique is easy to implement and can be used
to get information on the properties of coexisting phases from a sngle smulation.

Materia equilibrium is achieved when the chemicd potentids of dl the coexising

phases are equd. Methods for cdculating the (excess) chemicd potentid via molecular
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smulaion are avalable [Wid63, Kof97, see dso Chapter 2]. The chemicd potentid can
be cdculaed dso from grand canonicd Monte Calo smulations [Fre96]. Performing
severd canonicd gmulatiions with, for example, Widom test particle insertions [Wid63]
or grand canonicd Monte Calo smulaions, it is possble to determine curves of the
chemicd potentid as a function of the pressure for the different phases of interest. The
coexiging condition is found a the point of intersection of the curves [Pan944. Mdller
and Fischer [M0OI90] and Lotfi et d. [Lot92] used this scheme and caculated with high
accuracy the coexistence properties of pure LennardJones fluids. For muticomponent
sysdems and for pure sysems near the critical point this scheme requires a sgnificant
number of smulations [Pan94a], hence other techniques are preferable.

A method that does not require the equilibration or the cdculation of the chemicd
potentid of the coexiding phases is the Gibbs-Duhem integration introduced by Kofke
[Kof93a, Kof93h]. This method for pure sysems conssts of the numericd integration
of the (firgt-order nonlinear) Clausius-Clapeyron differentid equation [Fred6]:

dT TDV

where DH and CV ae the differences of the enthdpy and volume in the two phases
respectivdly. The method requires the knowledge of a coexiding point & a given
temperature and pressure, which can be obtained usng other techniques. A complete
phese diagram is then determined by integrating Eq. (1.2), usudly by a predictor-
corrector method [Gearl]. Standard molecular smulations are used to cdculae the
rignthand sde of Eq. (12) rdative to infinitesma and consecutive changes in the
temperaure. This method was gpplied for vapour-liquid [Kof93a Kof93bl and solid-
liquid coexigence [Agro5] of the Lennard-Jones fluid and for vepour-liquid coexistence
of the twocentre Lennarddones fluid [Lis96d. For multicomponent fluids Gibbs-

Duhem integration has to use particle exchanges, but exchanges can be avoided for one
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component, usudly the one mog difficult to be exchanged. Lisal and Vacek used
Gibbs-Duhem integration for mixtures of two-centre Lennard-Jones fluids [Lis96by.
Even though numericd erors in the integration and inaccuracy of the initid coexisting
point may lead to deviaions from the actud phese diagram, the method is very rdigbdle,
and for the solid and highly structured phases is the mogt efficient among the other
techniques.

In a sandard Monte Carlo technique, averages of the thermodynamics quantities are
cdculated for the parameters chosen in the smulaion. For example, to obtain vaues of
thermodynamic quantities relative to a number of different temperatures, an equivdent
number of smulations have to be performed. Ferenberg and Swendsen envisaged a
method [Fer88] that, conddering only a sngle smuldion a given vadues of some
parameters, dlows cdculating the thermodynamic quantities for different vaues of
those parameters. This concept was fird gpplied with the 1sng modd [Fer88, Fer89,
Dru96], usng multipole hisogram techniques to collect daa a different points of the
parameter space in order to caculate a didribution for the densty of the dates The
same scheme, known as higogram reweighting methods, can be used for continuous-
goace fluids. Details of how this procedure can be gpplied far phase equilibria of pure
and multicomponent systems are given in the references [Wil95, Pot98, Pot99, Pan98,
Pan00]. The histogram reweighting methods show better accuracy in comparison with
the Gibbs ensemble [Pot98] for a given amount of computer time, and they are more
reigble in deriving citicad points in conjunction with finite-size formdism [Pot98]. The
disadvantages of these methods are that their implementation requires more effort and

their efficiency decreases rapidly with increasing sysem size.
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Conddeing that we wanted to dudy the vepour-liquid equilibria of fluids with
relativdly complex intermolecular potentids requiring a reasonable accurecy, the choice

of the Gibbs ensemble method suited our needs best.

Transport phenomena

Satidicd mechanics devoted to equilibrium sysems provides, usng a molecular
description, phase averages of macroscopic quantities such as for example pressure and
goecific heat. These phase averages ae obtained through probabiligtic assumptions,
asociding a probability to each date of the sysem and usng andytic tools for the
congtruction of asymptotic formulae [Khi49)].

Viscous flow and thermd conduction phenomena are examples of non-equilibrium
systems. They are usudly caled trangort processes. The transport properties of atomic
or molecular fluids under shear ae of dgnificant scientific and technologica interest.
The dependence of the shear viscodty (see Chepter 2) as a function of gpplied drain
rae is of mgor importance in the dedgn of suitable lubricants and the viscodadtic
properties of polymer mdts under extensond and shear flows is important to the
industriad  processng of plagics The dructurd design of molecules under appropriate
flow fidds can be aded by goplication of smulaion methods such as non-equilibrium
molecular dynamics [Eva90, Da92]. In addition, NEMD can dso be used to asess
rheologicd modds such as the Rouse or Doi-Edwards modds of viscodadicity for
polymer solutions and mdts [Doi86], or the mode-coupling theory of Kawasaki and
Gunton [Kaw73].

Shear viscodty is one of the Navier-Stokes trangport coefficients [Eva90], which
relate thermodynamic fluxes to their conjugate thermodynamic forces. Huid mechanics

is adle to determine the macroscopic behaviour of non-equilibrium systems, but its laws
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need to be supplemented with the specification of adequate boundary conditions and
with thermophysical congants like the above mentioned transport coefficients These
quantities are usudly obtaned through experiments. One of the ams of dHaidica
mechanics, devoted to non-equilibrium sysems is to derive these quantities from a
microscopic description of the system. For dilute gases, kinetic theory [Hey98] is adle
to provide vdues of the trangport coefficients in excdlent agreement with the
experimental data [Bar71b]. Unfortunately, this theory can not teke account of higher
dendty fluids. It has been proved that Navier-Stokes transport coefficients are non-
andytic functions of the dengty [Dor70, Dor72], which means that a power-series
expangonisnot possble

Kubo [Kub57] demondrated that a linear transport coefficient can be determined
through the equilibrium fluctuations of the rdative flux. For example the (GreenKubo)

relationfor shear viscogty, h, in the limit of zero sheer rate is

_V x
__Td (O)P, (t) (13)

0

where - P, is the shear stress, k, is the Boltzmann congtant and ( ) represents an

xy
equilibrium ensamble average. Eg. (1.3) and the equivdent Green-Kubo reations
[Eva90] for the remaning trangport coefficients can be cdculated via equilibrium
molecular dynamics gmulaions. Time corrdation functions, like Eg. (1.3), ae the
average response of sysem propeties to spontaneous fluctuations, which  ae
consequently very smdl. The dgnd-to-noise ratio is poor a long times, which may give
an important contribution to the integrd in Eq. (1.5) or in the GreenKubo reaions for
other trangport coefficients. Furthermore, the finite Sze of the systlem limits the time the
corrdation functions can be caculated for [All87, Hey98]. To counter these limitations

NEMD techniques were invented, in which the response of the system to an induced
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perturbation is caculated. The perturbation the sysem experiences is larger and
consequently  the sgnakto-noise ratio is improved. Furthermore, these techniques can
condder the deady date response to the perturbation, thus the long-time beraviour of
corrdation functions is avoided.

A common practice to generate a norrequilibrium gate in a molecular smulation, for
example to induce a momentum or energy flow, is to introduce in the smulation cdl
boundary regions which act on the patices as momentum or energy reservoirs. The
idea behind these techniques is to smulae closdy what occurs in red systems. For this
reason they ae cdled ‘redidtic’ techniques. For example Ashurst and Hoover [Adh73,
Ash75] smulaed planar Couette flow usng flud-like diding wadls [Lie92] and
cdculated the Lennardtdones fluid shear viscosty. Tenenbaum e d. [Ten82] usd
sochadtic boundary conditions to sSmulate the contact with themd wals Thee
methods can not use full periodic boundary conditions, therefore they are characterized
by surface effects and inhomogeneities in the thermodynamic properties of the fluid.
Less and Edwards deveoped periodic boundary conditions [Lee72], which enable one
to gmulae homogeneous planar Couette flow in which the low-Reynolds-number
velocity profileislinear [Evad(].

A different gpproach to smulae a non-equilibrium sysem condds in dtering the
sandard equations of motion, introducing ‘atificid’ mechanicd fidds, which exet the
perturbation on the sygtems [Hoo80, EvaBAc, Evadl]. Techniques adopting this concept
ae cdled ‘synthetic’. Importantly, they do not suffer from surface effects and spatid
inhomogeneities. Since the mechanicd fidds exet work on the sysems, which is
converted into hest, ackquate thermostats have to be used [Hoo85, Evad0] to avoid
heating up the sysem. Goding & d. [Gos73] used a Satidly periodic fidd to smulate

a sydem under a snusoidd transverse force and cdculaied the viscodty utilizing an
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extrgpolation to infinite wavelengths of the induced velocity profile They did not use a
thermodtat, but they adopted an adequatdy smdl amplitude of the force, which avoided
the temperature risng too rapidly. A further sep in this direction is represented by the
techniques adopting non Hamiltonian dynamics [Eva90]. For example, for a Nos:-
Hoover [Hoo85] thermostat, the particles of the system are weakly coupled to a therma
reservoir, which can add or remove kingtic energy. This is achieved introducing an extra
teem in the accderation equations. The resulting eguations of motion can not be derived
from a Hamiltonian. The Evans-Gillan equations of motion for heat flow [Evad0] are a
modification of the andard equations of motion obtained with the introduction of a
gyntheic fiedd acting on each particle. This synthetic field reproduces the effect on the
system of a red temperature gradient. No Hamiltonian is known which is able to
generate the Evans-Gillan equaions of motion. Both Gaussan [Eva90] and SLLOD
[Evad0] equaions of motion, which are described in detall in Chepter 2, can not be
derived from any Hamiltonian.

GreenKubo rdations can be goplied not only a equilibrium, but dso to adiabatic
linear (wesk fidds) response theory [Evad0]. When thermodiats are used, to keep for
example the kinetic energy condant, equivdent relaions can be obtaned to cdculae
the transport coefficients [Eva90]. Evans and Morris [EvaB4al showed that time
corrdaion functions usng ether Newtonian or Gaussan isothermda  eguations of
motion for Navier-Stokes trangport coefficients like shear viscosty, sdf diffuson
coefficient and thermd conductivity, are equivaent in the large-system limit.

A further advantage of NEMD techniques is that they can be used to study the non-
linear response of systems, where the GreenKubo relations can not be used. For srong
fidds, the trangport coefficients can be obtained directly by rdating the thermodynamic

fluxes to the relevant thermodynamic forces. In the NEMD SLLOD technique for planar
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Couette flow, the viscosty is derived via the ratio of the shear dress to the drain rate
(see Chapter 2). It is noteworthy to point out that this direct method can not be gpplied
efficently for wesk fields because of the deterioration in the Sgnd to noiserdio.

The mogt efficient way to cdculate the transport coefficients in the smdl fidd
regime is to use ‘synthetic  NEMD techniques in conjunction with the trangent-time
corrdation function (TTCF) reatons [Evaf0]. As GreenKubo reations extract
trangport  coefficents from fluctuetions of microscopic fluxes a  equilibrium, smilarly,
TTCF reations extract them from fluctuations of microscopic fluxes arbitrarily far from
equilibrium. TTCF can be goplied to genuindy nonlinear transport processes.
Moreover, TTCF rdations in the linear response regime reduce to the Green-Kubo
relaions [Evad0]. It has been shown dso that the TTCF and NEMD direct method lead
to the same reaults for strong fidds. The subtraction response method [Cic75, Cic76,
Cic79] can ds0 be gpplied in the smdl fidd regime, but it has been demondrated that

TTCFisin generd preferable in the long time limit [Evad(0].
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Chapter 2

Theory and Computational Techniques

This chapter is dedicated to the explandtion of dl the technicd detals regarding the
smulation methods we usad in this work. It is meant to supply a sound description of
these methods, but for a degper understanding we refer to the literature [All87, Fred6,
Pan88, Pan00, Eval9, Evad0, Hey98]. The actud implementation of the dgorithms can
be found dsewhere [AlI87, Sad99, Fred6, EvaBdal. However in Appendix 2 we report
the dgorithm for three-body forces, because to the best of our knowledge, it has not
been given previoudy in the literature.

We give ddals of the inteemolecular potentids used to sudy argon, krypton and
xenon, in both eguilibium and non-equilibrium smulaions reported here We draw
particular atention to the three-body potentids, snce they represent the focus of our
invedtigation. We introduce the Gibbs ensemble Monte Carlo technique that is used to
invesigate the vapour-liquid phases of the noble gases The generd concepts of non-
equilibrium sysems are discussed, in order to explain the dgorithms used to implement

planar Couette flow smulations.

2.1 Intermolecular potentials

In this work we dudy properties of the noble gases argon, krypton and xenon with

redigic potentids, the predictions of which have been extensvely proved to be in good
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agreement with experimental results The remaning dable noble gases, hdium and
neon, were not considered because of uncertainties arisng from quantum effects. Some
molecular dynamics dudies and ab initio cdculaions for hdium and neon have been
reported recently [Azi95, Erl98, Kir98]. Severd accurate intermolecular potentids are
avalable in the literature [Ma81] for argon, krypton and xenon. We have chosen to use
the intermolecular two-body potentias proposed by Baker e d. [Ba7la, Ba74] and
three-body potentials proposed by AxilrodTeler [Axi43] and Bdl [Bd71], because of
their wdl-known accuracy and the avalability of intermolecular potentid parameters
for argon krypton and xenon. A recent review of intermolecular potentids is avalable
elsewhere [Sad99].

In section 2.1.1 we introduce briefly the Born-Oppenhemer gpproximation, which is
commonly adopted in rdation to intermolecular potentids In section 212 we give
details of the twobody potentids used. In section 2.1.3 a short review on three-body

potentids is given.

2.1.1 Born-Oppenheimer approximation

An inteemolecular potentid function can be derived from quantum mechanicd
cdculdions or from experimenta deta fits or from both. In generd it requires the use
of the Born-Oppenheimer approximation [Dob57]: if H is the totd Hamiltonian of an
aomic or molecular sysem and Y the totd wave function, the date of the nucde and
the electrons can ke obtained from the Schroedinger equetion:

HY = EY (2.1)

where E is the totd energy. H is the sum of the kinetic energy of the nude Tn, the
kinetic energy of the eectrons T, and the dectrogtatic potentiad energy U:

HY = (To+ Te+U) Y= EY . (2.2)
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In a red sysem, since the veocity of the nucle is much dower than the velocity of
the dectrons, T, is much smdler than Te. For this reason the dtate of the eectrons can be
derived adopting the approximation that the nucdle ae fixed. This assumption enables
one to write the total wave function Y as a product of a first function, ¢, depending only
on the nude coordinaes and a second function, f, depending on the deciron
coordinates and depending on nuclel positionsin a parametric way:

Y =c(0)f (% Xo) (2.3)
where xe are the dectron coordinaes and xn ae the nude podtions. Conddering the
nucle fixed, the Schroedinger equation for the dectrons becomes:

(Te+U)f (Xn, X9 = Ef (Xn, X9 (2.4)
Both the energy E and the wave functions f (X, Xe) dgpend on the configuration x, of the
nude, so changing x, as a parameter changes the energy and the wave function. For
many condensad systems, given the nucle configuration X'n, the eectrons remain in the
lowest energy leve (ground state) Eo(X ) for a wide range of temperature and pressure
vaues. Hence, for any configuration (X, Xe) it is possble to use the rdaive ground State
eigenvaue Eq(Xn) to write the Schroedinger equation for the nuclei:

(Th + Eo(Xn)) ¢ (%)=E C (Xn) (2.9)
In this way Eo(Xn) has the role of an intermolecular potentid, u(xn), to be determined by
theoretical caculations or by experimentd data The Born-Oppenhemer gpproximation
(or adidbatic gpproximation) deates that the dectrons are moving as though the nudei
were fixed in thdr indantaneous postions. The nudear motion only deforms the
eectronic ground dae dectronic trangtions from the ground date to excited ones are
excluded. This gpproximeation is gpplicable to the noble gases [Bor54].
The intermolecular potentid u(x,) in the absence of external forces may in generd be

written as function of the nuclear coordinates ri...rn as[Bd76]:
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u(rl,...,rN)=g1u2(ri,l’j)+ g US(rilrj!rk)+"' (2.6)
i<j i<j<k

where Uy, Usz... ae regpectivdy par, triplet, etc. potentid functions. Experimentd
evidence [Ba76] indicates that this series is rapidy convergent and for many
measureble properties the parwise additive gpproximation (u, term only) is a vdid
description. In principle the parwise additive gpproximation is inconsgent, since any
quantum mechanical esimate of the pair potentid u, mus include effects due to higher
terms (us, Us..) [EgeX]. The wide use of the parwise additive goproximation is
motivated by its amplicity. Furthermore, the above inconsstency is overcome by using
effective potentids, namely, twobody potentids thet accounts for the overdl effects of
the other multi-body interactions. The LennardJones potentid [Ma8l, All87, Sad99] is
an example of an effective two-body potentid since its parameters are evauated from
bulk experimenta data which indude many-body effects. In our work, focused on the
noble gases agon, krypton and xenon, we intend to dudy the role of three-body
potentids (usz), used in conjunction with an authentic two-body potentid (uz), meking

the assumption that Hgher order terms are negligible.

2.1.2 Two-body intermolecular potential

Information to deter mine the intermolecular potential

The generd shape of the intermolecular potentia function for a noble gas dimer is
known. To acquire detaled information on different regions of this function, severd
types of experiments may be used. To achieve this task three conditions must be

satisfied, as Barker pointed out [Bar76]:
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1) the experimental quantity must depend reasonably sensitively on some feature of
the potential;

2) it must be possible to measure the quantity with sufficient accuracy;

3) adequatetheory and computational procedures must exist to permit cal culation of
the experimental quantity from a given potential or, preferably, of the potential

from the experimental quantity.

Quantum mechanics caculaions can be used to accurady determine the short-range
repuldon pat of the potentid [Mur76] (Hartre-Fock and multi-configuration Hartre-
Fock cdculations). This short-range contribution arises from the overlgp of the dectron
wave functions of two aoms. It is a rgpidly varying function of the interatomic distance
and is usudly represented as an exponentid function or as an inverse high power of the
interatomic  disance [Mur76]. Important informaion on the repulson pat of the
potentid comes from molecular beam scatering experiments that dlow  hightenergy
total cross-section measurements [Bar76].

For the long-range attraction part (disperson or van der Wadls forces) second-order

perturbation theory [Bra83, van98] provides an asymptotic form:

C, C
e 27

where r is the interatomic disance and the coefficients Cg, Cg and Cig are rdated to the
dipole and multipole oscillaor drengths which can be measured from optica properties
[Leo75]. The disperson forces follow from the corrdaion between the fluctuating
charge dengties of the two atoms and they are largely independent of the overlgp of the

electron wave functions of the two atoms Mur76]. In particular, the term in r® depends
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on the fluduating dipole-dipole interaction, the term in r® on the dipde-quadrupole
interaction, and so on.

Van der Wadls forces in inert gases enable the formation of bound dtates (dimers); it
is possble to observe and measure band systems [Tan70] due to trangtions from ground
eectronic dates to excited eectronic states of these dimers. These messurements
provide informaion gout the curvaure a the potentid minimum and about the
anhamonicity of the potentid [Bar76]. Other information on the potentid function
comes from gas transport properties such as viscodty, thermd conductivity, diffuson
coefficients, therma diffusion ratio and second virid coefficient [Bar76).

All the kinds of messurement discussed so far depend only on the twobody
potentid. For example, the second virid coefficient, B, from the equation of Sate

ﬂ:l+§+£+m (28)
RT vV yv?

isrelated to the potentid by the classical rdationship [All87]:

¥
e 1 9
2pN e K - 17%dr (2.9)

0 %]

It is possble to show with the Wigner-Kirkwood [Bar7la] expandon of the partition
function that the quantum contributions to the second virid coefficient for argon,
krypton and xenon can be neglected.

The third virid coefficient depends on both twebody and three-body potentids, and
it has been shown [Bar76 and Bar68] that the incluson of a three-body interaction, such
a the Axilrod-Tdler term [Axi43], can improve dgnificantly the agreement between
the caculated vaue and the experimenta one. The same gpproach has to be used with

condensed phase data where three-body effects are important.
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The wolid dae, in paticuar the coydd dructure, provides edditiond  useful
information [Bar76]. The sublimation energy a 0 K depends sgnificantly on the depth
of the minimum of the twobody potentid. The latice parameter depends on the
digance where the potentid has a minimum. The bulk modulus near 0 K is dosdy
proportiona to the second derivative of the potentid at its minimum, and the 0 K Debye
parameter to the sgquare root of the same quantity. The low-temperature thermd
expanson coefficient is related to the third derivative of the potentid near its minimum.
It is paticularly noteworthy that mogt of the par potentids for noble gases predict the
hexagond dose-packed (hcp) crysta as the most dable Sructure, while noble gases

cyddlize in facecentred cubic (fcc) structures. It has been suggested that the use of
many-body potentids can ingtead favor the cubic sructure [Nie76, Lot974].

Liquid deae propeties give the opportunity to tet the potentid, comparing
experimenta vaues of quantities such as pressure with cdculated vaues obtained with
Monte Carlo and molecular dynamics techniques. With the same techniques it is
possble to cdculate the radid didribution function g(r) and compare it with the one

determined from X-ray and neutron diffraction data.

Argon

Mogt of the techniques to derive intermolecular potentids were gpplied to argon
gnce a lage collection of experimentd daia was avalable An equivaent amount of
data is accessble for hdium but quantum effects are now important and make the
cdculation more difficdt. In the literature severd intermolecular potentids for argon
were proposed [Ma8l, Sad99, Azi93]. We decided to use the twobody potentid by
Baker, Fisher and Waits (BFW) [Ba71a for its accuracy and dso snce smilar

andytic expressons are avalable for other noble gases (krypton and xenon [Bar74)).
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The BFW potentia is a true twobody potentid since it was derived only by properties
depending on two-body interactions.
The BFW potentid is a linear combination of the Barke-Pompe [Bar68] (ug) and
Bobetic-Barker [Bob70] (ugs) potentids
u,(r) = 0.75u,5(r) +0.25ug,(r) (210

wherethe potentias of Barker-Pompe and Bobetic-Barker have the following form:

_ 9 | S Cop
u(r) =eSg] A(x- 1 expla (1- )] - a — o (2.11)

d X2j+6

e ¥ ey el end

di=0 j=0
In Eq. (211), X = r/ry where rp is the intermolecular separation a which the

potentid has aminimum vaue. The other parameters are summarised in Table 2.1:

Table 2.1 Parameters of the Barker-Pompe [Bar68], Bobetic-Barker [Bob70] and
Barker-Fisher-Watts (BFW) [Bar714] potentids.

Barker-Pompe  Bobetic-Barker Barker-Fisher-Watts
agk(K) 147.70 140.235 142095
s () 3.7560 3.7630 3.3605
rm@) 3341 3.3666 3.7612
A 0.2349 0.29214 0.27783
A -4.7735 -4.41458 -4.50431
A -10.2194 -7.70182 -8.331215
Ag -5.2905 -31.9293 -25.2696
Ay 0.0 -136.026 -102.0195
As 0.0 -1510 -11325
Cs 1.0698 1.11976 110727
Cs 0.1642 0.171551 0.16971325
Cwo 0.0132 0.013748 0.013611
a 125 125 125
d 0.01 0.01 0.01

The BFW potentid can be written as in Eq. (2.11) with the potentid parameters taken
from the 4" column of Table 21. The s term is the value where the potentid is zero

and it isusudly defined asthe atomic diameter.



Chapter 2 26

Baker e d. [Ba7la used the following experimentd data to determine the
potentid:

1) highenergy molecular beam data;

2) the zerotemperature and -pressure lattice spacing, energy and Debye parameter,

derived from specific hest measurements of solid argon;

3) theknown long-range coefficients of r® randr™;

4) second virid coeffidents;

5) theliquid-phase pressure a one temperature and density;

6) the known coefficient of the Axillord Teler interaction [Axi43].

The BFW potentid wused with AxilrodTdler three-body interactions was
demondrated to be in good agreement with severa experimenta properties of argon
[Ba71a. These indude pressure and internd energy of the liquid date, solid Sate
properties (specific heet, pressure), zeroshear viscosty, thermd diffuson ratio and
molecular beam scattering data Contributions from thirdorder dipde-quadrupole and
fourth-order triple-dipole interactions cancd eech other dmost completdly in condensed

phase proprieties of argon [Bar72aand Mar99).

Krypton and xenon

The molecule-specific naiure of the BFW potentid is illusrated by atempts to use
Eq. (211) for other noble gases such as krypton and xenon. Barker et d. [Ba74]
reported tha modifications to Eq. (211) were required to obtan an optimd
representation for these larger noble gases.  For krypton and xenon, they determined a
potentid of the form:

Up(r) = Uy (1) +uy(r) (212

whereug(r) isidentica to Eq. (2.11) and u4(r) isgiven by
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lelP(x- 9% +Q(x- D®lewl '@- 0] x>1

| (213)
0 0 XE1l

uy(r) =

and a’, P and Q ae additiond paranges obtaned by fitting data for differentid

scatering cross-sections. We have used Egs. (212) and (2.13) to caculate the properties

of krypton and xenon with the parameters [Bar74] summarised in Table 22, It is
important to stress that u,(r) in Eg. (213) is continuous everywhere together with its

firgt three derivatives and has along-range asymptatic behavior.

Table 2.2 Parameters of the two-body potentids for krypton and xenon [Bar74].

krypton Xenon

gk(K) 2019 2810

s (A) 3573 3.890
rm) 4.0067 43623
Ao 0.23526 0.242
A -4.78686 -48169
Ao -92 -109

Az -80 -250

Ay -30.0 -50.7

As -205.8 -200.0

Cs 1.0632 1.0544
Cs 0.1701 0.1660
Cwo 0.0143 00323
P -9.0 59.3

Q 68.67 711

a 125 125

a’ 125 125

d 0.01 0.01

The experimenta data used to derive these potentials were [Bar74]:
1) lattice gpacing and cohesive energy of thecrystd at O K;
2) bulk modulus and Debye parameter & O K;
3) lower vibrationd leve spacings derived from spectroscopic data;
4) gasviscogty data;

5) differentid scattering cross sections,
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6) second virid coefficients.

For krypton al these daa turned out to be consgent. For xenon the depth of the
potentid, e, had to be changed from the vadue suggesed by the cohesve energy
[Ba74]. In Table 23 some solid date proprieties & 0 K are compared with vaues
cdculated usng the potentids from Baker e d. [Ba74]. The comparison indicates

relaively good agreement supporting the accuracy of the potentias.

Table 23 Solid dsae proprities & 0 K compared with vaues cdculaed usng the
potentias from Baker et d [Bar74].

Nearest- Cohesive Bulk Debye

neighbour enagy modulus  parameter

disance (&)  (cal/mol) (kbar) Q(K)
Experimental Kr 3.9922 -2666 34.3 71.9
Cdculated Kr 3.9917 -2665 35.7 711
Experimental Xe 4.3357 -3830 36.5 64.0
Calculated Xe 4.3355 3714 382 60.9

2.1.3 Many-body potentials

Modern devdopments in experimenta techniques and computing technology have
dlowed an increese in the interet and the effort towards understanding many-body
effects. More accurate knowledge of the 2-body potentid and access to new
experimental and theoreticd methods has encouraged many researchers to investigae
higher many-body effects, which ae necessary to describe macroscopic  proprieties
from a microscopic viewpoint. For a comprenensve survey on this topic we refer to the
review of Elrod and Saykdly [EIr94]; here we intend to highlight the most important
and edablished agpects in order to explan and judify the use of the 3-body potentid

functions we have chosen.
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Many-body effects in any sysem are usudly & least one order of magnitude smaler
than the two-body effects, hence, any invedtigation on this topic requires the knowledge
of an accurate two-body potentid. Noble gases sidfied this requirement and
consequently they were the first system studied in this context.

Even neutrd aoms, with sphericd charge digributions, are characterized by long-
range interactions. When aoms ae brought in dose proximity, the ingantaneous
interaction between the dectrons in ther orbits induces mutud polarization of the
charge didributions. Usudly, this effect is envisaged in terms of multipole components,
dpde (D), quedrupole (Q), octopole (O) ec, in the perturbed charge didributions
[BA76]. In 1943 Axilrod and Tdler [Axi43], usng thirdorder perturbation theory,
found the expresson for the three-body triple-dipole longrange (disperson) energy
(DDD or AT tem), vdid for aoms with sphericd and nonroverlapping charge
digributions [Mur76]. In 1970, Bdl [Bd70] found a more generd long-range
(dispergon) third-order potentid:

Uanaypi= DDD+DDQ+DQQ+QQQ (2.14)
Doran and Zucker [Dor71] used these terms plus the thirdorder dipole-dipoe-octupole
and fourth-order thirddipole to invedtigate the prefered crystd dructure of the noble
gasss. They found again that this was the hep lattice and not the fcc as experimenta
data show.

The effect of short-range many-body forces has not been investigated as deeply as
the many-body disperson. As for the twebody case short-range many-body effects
originate from the overlap of the wave functions of the atoms (triplets, quadruplets etc.)
[Mur76]. When the overlgp of the wave functions is not negligible the exchange forces
due to the Pauli excduson principle [Bra83] become rdevant. Unfortunady, the

deivation of highe-order exchange energies is difficult [Mur76] and established
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expressons for these interactions are not avalable. Only recently, the role of these
terms is becoming clear [LeS83, Lot97a BukOl]. For example, Lotrich and Szdewicz
[Lot974], usng fully ab initio three-body potentials containing short-range contributions
cdculated via a symmetry-adapted perturbation theory [Lot97b], computed the binding
energy of solid argon. They found that the fcc crystd is favoured over the hep crysd by
0.01%, in agreement with experimenta observation.

Barker and Pompe [Bar68] in 1968 found a two-body potentid for argon which,
when used in conjunction with the AT potentid, was able to reproduce the experimenta
cysd cohesve energy and third virid coefficient accuratdy. Even better agreement
was found using the thirdorder QQQ and the forth-order DDD terms. Bobetic and
Baker [Bob70], with the AT potentid and a dightly different two-body potentid, could
reproduce the expeimentd data of specific heat, thermd expanson coefficient and the
bulk modulus of cryddline argon. Baker e d. [Ba7ld usng a combination of the
previous potentids were able to reproduce gas, liquid and solid properties of argon with
Monte Carlo and molecular dynamics smulations. Smilar potentids were reported for
krypton and xenon [Bar74]. Even if the par + AT modd was successful in reproducing
experimentd data, a theoreticd judification for the excluson of the threebody short-
range teems was not given. A better evauation and understanding of the many-body
short-range potentials was necessary.

Other work followed to invedtigate this issue more deeply. Molecular beam
scatering experiments on noble gases absorbed onto graphite substrate were performed
to highlight the importance of short-range mary-body effects. They could not provide a
definitive solution, due to the lack of an accurate aom-subdraie potentid, but they
showed the necessity of more accurate potentids [Azi89]. From a theoretica viewpoint,

the firg smultaneous implementation of the supermolecular Mgller-Plesset perturbation
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theory (MPPT) and intermolecular MPPT methods [Cha88] on Arz showed that the
second-order exchange effects were important for the total threebody effect near the
potentid minimum [Cha90].

A possble explanation of the contradiction between the success of the pair + AT
model and the agpparent importance of more recent work [Cha90] on the exchange
effects can be provided by LeSar's crysa perturbation approach [LeS83]. LeSar used a
‘cysd perturbation method to obtain an agpproximate Hartree-Fock many-body
interaction for the argon crysd. He found that the atomic orbitals in the crysta contract
in comparison with those of the gas-phase atoms, resulting in less exchange repulson.
Equivdently in the gasphese it can be thought that the higher-order exchange terms
may cancd each other reducing the totd short-range many-body effect sgnificantly.
McLean e d. [McL88] usng the crystd perturbation many-body interection + AT
modd for argon found excdlent agreement with experimentd solid Sate data

Recently, Bukowsky and Szdewicz [BukOl] usng symmetry-adgpted perturbation
theory potentids [Lot97b], peformed smulaions of liquid, ges and liquid-vapour
equilibrium of agon. They found that even if three-body short-range contributions are
large, cancedlations occur a the interatomic distances typicd for the liquid State, making

the totd three-body effect very smilar to that given by the triple-dipole potentid.

Experimental investigations

There are two man kinds of experiments to study the effects of many-body
potentids to the firgd kind bedong those experiments that measure macroscopic
properties, 0 they are sendtive just to the overdl contribution of the many-body terms.

Experiments of the second kind measure instead microscopic properties (manly ges
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phese interactions) and they are able to diginguish low-order terms in the many-body
expangon.

The crystd dructure of noble gases is evidence of the importance of the many-body
potentidls X-ray diffraction reveds a face centered dtructure for the noble gases, instead
the par potentids predict a hexagond closepacked dructure (heium excluded). The
induson of three-body terms in the potentid provides a better agreement. Crysa
cohesive energy measurements [EIr94] showed a 10% deviation from the par potentia
prediction, suggesting agan the presence of many-body effects. Crystd spacings, as
wel, provide information on repulsve and atractive contributions of many-body
potentias.

Measurements of the radid digribution function of liquids with X-ray and neutron-
scattering  techniques [EgeB88] give important indications, but they ae not accurae
enough to discriminate many-body effects. A recent detection of three-body effects was
performed by Formisano et d. [For98] measuring the datic Sructure factor S(k) for
xenon. The authors damed to have obtained the firg direct experimenta determination
of the triple-dipole AxilrodTeler interaction. Many-body induced dipole moments and
polarizability tensors can cause dbosorption and scettering of light in noble gases
[Gui8%%, Gui89)], while the twobody induced moment is exactly zero. Measurements
of this kind of absorption spectrum can indicate many-body effects It is more difficult
to discern many-body effects from twobody ones usng propeties like viscosty,
therma conductivity and diffuson in gases

So far we have briefly described experiments belonging to the firgt kind. Now we can
examine those experiments measuring microscopic  propeties  The  third  virid

coefficient, C in Eq. (2.8), depends on both two-and three-body potentids. Given a two-
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body potertid, Uu,, the contribution from the threebody terms u;, is proportiond to
[Ba76]:

& u, (1,)+u,(r )+u, (r23)9\| & ua(rlz'rls’rx)g u
N\ - - |
DC (Dg N o} T 5. 1ydr,d, (2.15)

i b

where r,, is the disance between atom a and b, whereas r,, is the corresponding

vector. It was shown [Bar68] that DC contributes up to 50% of the vdue of the
experimental C for noble gases.

The spectroscopy of van der Wads molecules provides a useful ingight into the study
of many body interactions. Recent highresolution techniques have been used to
measure intramolecular vibrationd modes, which give direct information on the par

and higher order potentias [EIrd4].

Theoretical techniques

From a theoretica viewpoint there are two complementary approaches to study the
many-body effects quantum mechanics and datisticd mechanics. The latter conssts
mainly of molecular dynamics and Monte Carlo methods [All87]. As discussed later,
modern developments in computer resources means that these methods can be used to
investigate many-body potentids extengvdy.

Axilrod and Tdler [Axi43, Axi51l] were the fird to use quantum mechanics
cdculdions to find an andytic expresson of a threebody potentid. Nowadays there are
two generd methods used in ab initio techniques of weekly interacting systems
supermolecular and perturbation theory [Cha88]. In the supermolecular gpproach, the
interaction energy between two systems is the difference between the energy of the

complex and the monomers energy. Perturbation theory condders the infinitey
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separated monomers as the zercorder term, and the interaction energy comes from
higher-order  perturbations. This method provided the most important theoreticd
information about many-body interactions. Another relevant theoreticd method is the
Gaussan effective-dectron modd [Jan62] in which the exchange effects ae
goproximated by placing on eech aom one "effective’ dectron, with a Gaussan charge
digtribution.

A recent deveopment of the perturbation theory technique is a Smultaneous
implementation of the supermolecular MPPT and intermolecular MPPT [Cha88]. This
method dlows the potentid energy to be separaied into exchange, eectroddtic,
induction and disperson contributions [Szc92] as is genedly done in the dudy of
interaction forces. In this method the many-body induction (polarizetion) and exchange
forces appear immediady in the peturbaion expanson, while the many-body
disperson terms agppear with each corresponding perturbation order. Another recent and

promising technique is the mentioned symmetry-adapted perturbation theory [Lot97b].

Three-body dispersion potentials
Different types of interaction are possble depending on the didribution of multipole
moments between the aoms. In principle, the disperson, or longrange non-additive
three-body interaction, is the sum of these various combinations of multipole moments
[Bd70]. In this work, we have conddered contributions from dipoles (D) and
quedrupoles (Q) which are likdy to meke the mogt subgantia effects on three-body
digperson:
Usznodybisp = Uppp T Uppo TUpgg * Upppa TUgoo - (2.16)
These terms ae dl third-order with the exception of the contribution of the fourth-order

triple dipole teem (uppps). The man contribution to the threebody digperson
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interaction is the thirdorder triple-dipole term (uppp). The other terms collectively
(Uppg + Upgy + Ugoo+ Uppps) arethe higher multipole contributions.

The triple-dipole potentid can be evauated from the formula proposed by Axilrod
and Tdler [Axi43]:

U = Vpop (L + 3cosq, 00sq cosqgy )
DDD —
(rijrikrjk)s

217)

where the angles and intermolecular separdtions refer to a triangular configuration of
atoms (see Figure 2.1) and where vppp is the non-additive coefficient which can be

estimated from observed oscillator srengths [Leo75).

Figure 2.1 Triplet configuration of atomsi,j and k.

The contribution of the AT potentid can be ether negative or podtive depending on
the oriertation adopted by the three a@oms. The potentid is postive for an acute
triangular arrangement of atoms wheress it is negative for near liner geometries. The
potential can be expected to meke an overdl repulsve contribution in a close-packed
wlid and in the liquid phase  The r terms indicate that the magnitude of the potentia
isvery sendtive to intermolecular separation.

Bdl [Bd70] has derived the other multipolar non-additive third-order potentids:
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— 3VDDQ

u =— <~ “19cosqg, - 25cos +6¢co0s(g. - q:)(3+5cos 218
DDQ 16r3(F ) [ P 3 S(d; - 9;)( 2qk)] (218

15vpoeo , 83(cosg; +5cos3y;) +20cos(q; - oy )d- 3cos2y;)u 219
e U i
jsk(rijrik)4 g+ 70cos2(q; - g ) cosq; g

15Voao , & 27+22000sq; COq; CoSq) +49000S2; COSA CO52(416\;'(220)
u - e U(Z.
O 12811 ) @175 [00S2(0; - O;) +00S2(; - O ) +0s2@y - )]

where Egs (218), (219) and (2.20) represent the effect of dipole-dipole-quadrupole,
dpde-quadrupole-quadrupole and quadrupole-quadrupole-quadrupole interactions,
respectivdy. Formulae for the different ordering of the multipole moments on the three
atoms (i.e, QDD, DQD, QDQ and QQD) can be generated from Egs. (2.18) and (2.19)
by cydic permutation of the indices i, ] axd k. The dipole-dpde-octupole term has dso
been evduaed by Doran and Zucker [Dor7l] but it is not conddered in this work
because of uncertainties in evadudaing the DDO coefficient. The fourth-order triple-
dipole term can be evauated from [Dor71]:

Ve 2 2 2 AY

u _ 45Vpppg E1+C0s°q; +1+COS q; +1+003 q Y
DDD4™ = 6 6 6
64 @& (ryer) (riif k) (ki) A

221)

The coefficients for these three-body terms are summarised in Table 2.4.

Table 2.4 Coefficients for the three-body potentids in Egs. (2.17), (2.18), (2.19), (2.20)
and (221)

agon krypton Xenon
nppp(au.) 517.4 1554 5603
Nppoau.) 687.5 2272 9448
Npodau.) 2687 9648 45770
Noodau.) 10639 41478 222049
Npppa(@U.)© -10570 -48465 -284560

@from ref. [Leo79)
® from ref. [van9g]
¢ from ref. [Bad58]
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Strategies for cdculaing multipole moments have been discussed recently [van98g].
Combining the contributions from twobody and three body interactions yidds an

overdl intermolecular potentid for the fluid:
u(r) = Uz (r) + Uzpodypisp () - (222)
Table 25 digplays the contributions to the internd energy and pressure of liquid

agon that Barker @ d. [Ba71g cdculaed with Monte Carlo smulations using the pair

+ AT modd, compared with the revart experimental quantities.

Table 25 Contributions to the internd energy and to the pressure of liquid argon
[Bar71a).

T v = S PRy paAT T pTd R
(K) @Pmol)  (calfmol)  (calimol)  (calimol)  (cal/mol)  (calimol)  (atm) (atm) @m  @m @
10000 27104 -15%52 871 156 1423 1432 2399 3642 422 646 652
1000 2066 1386 679 125 1313 -134 -1480 2388 253 116 105
14000 3065 12847 628 93 213 1209 3489 2143 167 580 583
14000 4™ %14 395 64 06 92 -337 40 27 18 I
15087 7073 6088 266 46 5713 B9l 345 132 12 49 49

" ®@Kinetic part + 2-body potentid part

As shown in Table 2.5 the agreement with experiment is very good. Just the presure
a T =140 K and V =41.79 cm¥mol diverges significantly from the experimenta vaue
It is particulaly noteworthy that the threebody contribution for the pressure plays a
fundamentd role to match the experimenta results For both energy and presure,
however, the quantum contribution is of minor importance.

As for argon, Barker et d. [Bar74], in usng condensed phase data to derive two
body potentids for krypton and xenon in Eq. (212), conddered threebody interactions
as wdl. For krypton the Axilrod-Teler potentia is the most relevant 3-body interaction,

snce the thirdorder dipoe-quadrupole and the forth-order triple-dipole interactions
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roughly cancd eech other. For xenon indeed, this cancdlaion is not complete, 0

Barker et d. [Bar74] consdered the latter contributions deriving the two-body potentid.

2.2 Monte Carlo ssmulation of phase equilibria

Here we give ddails of a molecular smulation technique, Gibbs ensemble [Pan8g],
which dlows one to sudy coexiding phases of fluids. We used this technique to
smulate the noble gas vapour-liquid phese Molecular smuldtion is a complementary
tool to the experiments and theory used to invedtigate the properties of thermodynamic
systems and phase behavior of fluids. The latter task is not an easy one from a
computetiond  viewpoint. Phase trangtions are collective phenomena that occur over
long time and length scdes tha are difficult to reproduce by traditiond molecular
smulaion techniques [All87]. In a system a liquid-vapour equilibria, the interface
between the two phases has a prominent influence on the bulk properties if the number
of paticles used in the smulation is sndl. Hence, a laage number of paticles is
required to avoid this problem. New simulation techniques are now avalable [Pan00]
and amongs them the Gibbs ensemble is outdanding for its amplicity and predictive
power. It diminates the problem of the inteface, performing the smulation in two
different boxes, each of which contains one of the two phases onsidered. Even if they
ae spade, the boxes ae corrdaed through particle exchanges and volume
fluctuation. This characterigic permits Smulations of phase equilibria utilizing a
reasonable number of particles.

In section 2.2.1 we give some detalls of the Metropolis method, which is largely used
in the Monte Calo techniques [All87]. In section 222 we introduce the Gibbs

ensemble technique, discussing the theoretica foundations and how to implement it.
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2.2.1 Metropolis method

Monte Carlo smulaions may be used to sudy molecular sysems utilizing Satistical
mechanics. Conddering for smplicity a canonical ensemble a temperature T, with N
partidles and a hamiltonian H(r", p"), where r™ and p" are positions and momenta of the
particles respectively, the average value of any quantity A(r™, p") is given by [Freo8):

(‘dp’\'drNA(rN , pN)exp(— HrN, pN)/kT)
= (223

(A

Cdp“dr“exp(— H(rN,pN)/kT)

where the integrds are cdculaed over the phase space of the sysem. Usudly the
hamiltonian has a quedratic dependence on the momenta and for any quantity A(p"),
depending just on the momenta, Eq. (223) is essy to cdculate. More difficult is the
evaluation of the average value of quantities A(r™). In this case Eq. (2.23) becomes:

c‘dr VAT M) expl- u(rM)/kT)

(A)==— . (2.24)
(dr N exp(- u(r N)/kT)

There are different techniques to caculate Eqg. (2.24). A naive method is to generate
a number of random configurations (r") of the partidles, caculate the rdative values of

A and energy u(r™ and to give each configuration a weight according to the
Boltzmann factor (exp(- u(r ¥)/KkT)). Unfortunaely, for the mgjority of configurations

the Boltzmann factor (exp(-u(r™)/kT)) is vanishingly smal. It is more convenient

ingead to use the Monte Carlo importance-sampling method introduced by Metropolis
et d. [Met53].

The expression in Eq. (2.24)
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expl- u(r™)/k)

P(r) = (2.25)

(‘drNexp(- u(rN)/KT)

represents the probability density to find the system in a configuration around r™. The
Metropolis method then condds in generding configuraions according to the
probebility densty P(r™), in order to consder configurations which give relevant
contributions to Eq. (2.24) and then weight them evenly. An initid configuration 6ld) is
chosen with a non-vanishing Boltzmann factor (exp(- ugy4 /KkT)), usudly postioning
the atoms in crysdline latice dtes. A new configuration is generated, for example by
adding a smdl digplacemet to the old postion of an @oms the rdative Boltzmann
factor (exp(- Uy /KT)) is cdculated. At this dage it has to be decided whether to

accept or reect the new configuration. Namely a trangtion probability, p (old ® new),

to go from configuration old to new has to be determined. This trangtion probability can
be expressed as:

p(old ® new) =a (old ® new) X acc(old ® new) (2.26)
where a (old ® new) is a trandtion matrix (Markov chan matrix [All87, Hoh93]) thet
indicates the probability to peform a trid move from old to new, and where
acc (old ® new) is the probability of accepting a trid move from old to new. It is useful
to pant out here that the Metropolis method does not need to have any knowledge about

the momenta of the particles, and the temperature of the system is chosen a priori as a

parameter.

In the Metropolis method a (old® new) is chosen to be a symmetric matrix,
a (old ® new)=a (new® old) (even if non symmetric matrixes could be chosen

[Fregg]), and it is assumed that a equilibrium the average number of accepted moves
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from old to any other new date is exactly cancdled by the number of reverse moves.
Theformer isthe detailed balanced condition that implies:
P(old)p (old ® new) = P(new)p (new ® old) . (2.27)
Since a issymmetric, Eq. (2.27) can ke written as.

P(old) x acc (old ® new)= P(new) x acc(new ® old) (2.28)

acc(old ® new) _ P(new) _
acc(new® old) P(old)

XD (Unaw - Ugg) /KT) - (229

Eq. (229 can be stisfied with many different choices for acc(old ® new). In the
Metropolis method the following choiceis used:

acofold ® new = (" P(OId) T P(new) <P(old)

, (2.30)
11 if P(new) 3 P(old)

This means thet if P(new)3 P(old), (U £ Ugyg ), the trid move has to be accepted,

P(new) _

otherwise it has to be accepted with a probahility
P(old)

expl- (Upy - Uyg)/KT). In

the later case a random number, from a uniform didribution in the intervd [01], is
generated and if this number is less than acc (old ® new) the trid move is accepted. It
is important to dress that the only condition imposed on a (old ® new) is thet it has to
be symmetric. For this reason severd trid moves can be chosen, according to the
ensemble under study. The Metropolis method, in fact, can be used for any ensemble
but obvioudy the acceptance criteria depends on the partition function of the ensamble
conddered. Importantly, any choice of the trid moves has to saidfy the ergodic
condition, namey tha every point in configuration oace can be reeched in a finite

number of Monte Carlo steps from any other point.
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In the following sections the trid moves used in the Gibbs ensemble technique and

the relative acceptance criteria are given.

2.2.2 Gibbs ensemble technique

The condition for achieving coexigence of two or more phasss I, I, ... at
equilibrium is that the pressure and temperature in each phase must be equa @ = P
=...= P; Ty =T, =... = T), as do the chemicd potentids of dl the species (nf =nf} =

=nt ). Unfortunatdy, it is impossble to sudy such systems with an ensemble
where pressure, temperature and chemica potentids are fixed, since they ae linearly
dependent quantities, or equivadently, because condraining only intendve quantities like
pressure, temperature and chemica potentids leaves the extensve quantities unbounded
[Freog].

The Gibbs ensemble technique [Pan87, Pan88] is able to study phase equilibria under
the conditions that the pressure, temperaiure and chemicad potentid of the coexigting
phases are equd. This is possble because even if the difference between the chemicd
potentias in different phases is fixed (D =0) the absolute vaues are undetermined.
We goplied the Gibbs ensamble technique to smulae noble gas vapour-iquid phese

equilibria

Theoretical foundations of the NVT Gibbs ensemble

The Gibbs ensemble Monte Carlo technique is used to smulae phase equilibria in
fluds To reproduce a macroscopic system with two coexisting phases in equilibrium,
the Gibbs ensamble method smulates two segparate microscopic regions within the bulk

pheses, away from the interface. Standard periodic boundary conditions, namey the
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minimum image convention [All87], are gpplied. Three types of Monte Carlo moves are
performed: displacements of particles within each region to satidfy internd equilibrium;
fluctuations in the volume of the regions to achieve equdity of the pressure and
exchanges of particles between regions to achieve equdity of chemicd potentids of dl

the species. Figure 2.2 depicts the three different moves.
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Figure 2.2 Representation of the Gibbs ensemble Monte Carlo smulation methodology.

Panagiotopoulus  [Pan87] firg derived the acceptance criterion from  fluctuation
theory, meking an gpproximetion for the particle exchange which led to a difference
proportiond to 1/N, rdative to the exact expresson given later [Pan88]. A rigorous
datisticd mechanics derivaion of the ensemble was reported by Smit a d. [Smi894

and by Smit and Frenkel [Smig9).
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We are interested in the verson of the Gibbs ensemble where the temperature (),
the total number of particles N= n, + n;)) and the tota volume (V= V|+ V) of the two
regions (boxes), | and Il, are fixed. The patition function counts the number of
posshilities in which N particles can be didributed in those two boxes with varigble

volumes, and can be expressed as [Pan95]:

\%
.1 & n AW VY A ex ") IKT
Qnvr _L3NN!a nlln”!O AT GX' p(-u(x,") )
0

n =0

(231)

g (‘jx N exp(- u(x|!") /KT)

where x are the scded coordinates of the particles in two boxes, u(x;")andu(x," ) are

the totd potentiad energies in each box (depending on the intermolecular potentid  used)

and L is the themd de Broglie wavdength (L =+h?/(2omkgT)). It can be

demongrated that the congant-volume Gibbs ensamble in the thermodynamic limit is
equivaent to the canonica ensemble [Smi89].

Eq. (231) dates that the probability of finding the sysem with n; partides in box |

(with volume V;) and postions x" and the rest of the partidles in postions x\*" , is

given by:

n N-n‘
e, Vv, ooy et ) e rue KT . @3)
n!(N-n)!

Using Eq. (232) and the dealed bdance condition (Eq. (2.27)) it is possble to derive
the acceptance rules [Pan88, Fred6] for trid movesfor the Gibbs ensemble smulations.

For the paticle displacement, the new configuration is generated from the old one,
disgplacing randomly a patide in box |. The raio between the probability reative to the

new configuration and the probability relaiveto the old configurationisgiven by:
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P(neVV) - exp{ B [U(X In—I new)]/kT} . (233)
P(OId) ~ exp{- [u(x" )}/ KT)

Subgtituting Eq. (2.33) in Egq. (229) dlows one to derive the probability of accepting
the new configuration:

aco(old ® new) = min(L;exp{- [UX" o) - UK ,)]/KT}) (234)
In generd, if the move isrgected, the old configuration is kept.

For the volume fluctuation, the box to be expanded is randomly chosen. If the chosen
box (say box 1) is expanded by DV (V,,, =V, +DV) the other is compressed by
CV (Vo =Voy - DV), in order to keep the tota volume mnstant. Using eq (2.32), the
raiio between the probability rdative to the new configuration and the probability

relative to the old configuration can be expressed as

P(New) _ (Vi)™ V)" ™ xp{- [U(p, )]/ KT}

2
PId) (V)" (Vaa)" " exp{- [u(xqq )1/ KT} o
and the probahiility of accepting the new configuration is given by:
8 (V)" (Ve ) expl- [0 )1/ KT} 2
acc(old ® new) = min §1;~—new’ % "new new (2.36)

& (Vo)™ (Vo) ™ expl- [ )I/KTY 5
In writing Eq. (2.36) we assumed that the Markov chains sampled by each box are not
effected by the perfectly corrdated volumes. This is a good approximation away from
the critica point [Pan88].
For the paticle exchange one of the two boxes is randomly chosen (say box [). One
paticle is removed from the box and insarted into the other box randomly choosing the
new coordinates. The raio between the probability relative to the new configuraion and

the probability rdaive to theold configuration can be expressed as.
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P(ew) _ n!(N-n)MVH)" v - V)™ O expf - [u(x o, )]/ KT

- I\n I\N-n N (237)
PaId)  (my - DIN - (ny - DIV (V- VYN expf - [ux )]/ KT}
and the probability of accepting the new configuration is given by:
e [ N
acc(old ® new) = min o1 N (V- V') expf- [U(Xnes)]/ KT} (239

0]
§ (N- 0+ DV exp{- U, )I/KTHE

Implementation

The method we used to generate trid configurations is the origind implementation
[Pan88] where the different tridl moves are performed in a fixed order. The smulation
is caried in cycdes Each cycle conssts of N digplacements to move dl the patidesin
eech box, one atempt to change the volume and N atempts to exchange dl the
patices. We chose, as the initid configuration of each smulation, a face-centred cubic
lattice with the desred number of particles in each box pogtioned randomly. A number
of cydes were caried out to reach equilibrium; &fter this phase the macroscopic
physica quantities are accumulated.

For the particle displacement moves, the old coordinates of the randomly sdected

paticle (more precisdy its center of mass) are changed adding random numbers

between -D, . @ D, Where D, isthe maximum displacement alowed:

Xoaw 7 Xgg (27 rand- 1)" D,
Yrew 7 Yold +(2, rand- l)’ Dmax (239)
= Zyg (27 rand-1)” Dy,

Zraw

rand is a random number from a uniform didribution in the intervd [0,1]. We chose

D, INn order to have at least 50% acceptance rate. The 50% acceptance rate has no

theordticd bads. Mountan and Thirumda discussed criteria for  determining  the

efficiency of the paticle displacement moves [Mou94]. The potentid energies with the
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patide in the old pogdtion and in the new postion respectively are cdculated and the
acceptance criterion (Eq. (2.34)) applied. It is noteworthy to dress that Eq. (2.34)
requires the difference between the potentia energies relative to the two configurations,
0 only the intermolecular energy relative to the displaced particle and the rest of the
particles are required.
For the volume fluctuation move, one box, chosen randomly, is expanded by LV
and the other compressed by - DV . The quantity DV isgiven by:
DV =z"Dv, mnV'Vv") (240
where z is a uniformly digributed random number in the range [01] and DV, isthe

maximum fractiond volume change dlowed. Typicdly, DV, is chosen in order to

have a least 50% acceptance rate, which should guarantee that equilibrium is achieved

efficiently. However, this does not have any theoretica judification. The following

. fvi .
Rat' =3 @ =1, (241)
Vold

and used to scae the coordinates of the particles in each box:

quantities are caculated:

x = x  Rat

new old
Yoew ™ Yo REL =10 . 242)

Zoew Zyg Rat
The potentid energies relative to the old and new coordinates are cdculated and the
acceptance criterion (Eq. (2.36)) applied.
For the exchange particle move, a randomly sdected paticle is ‘cancdled” from its
oigind box and insated into the other. The new coordinates of the particle are
randomly assgned in the following way (the centre of the smulaion box is the origin

of the coordinates):
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Xy ' (rand- 0.5)" L
Yew — (rand- 05)° L L =Box length . (243
Ze, — (rand- 057 L

As with the particde displacement, in order to goply the acceptance criterion in the
exchange move (Eq. (2.38)) only the potentid energy between the exchanged particle
and the rest of the paticles is required. For the exchange paticde moves in our

simulations we had at least 20% acceptance rate.

NPT ensemble for binary mixtures

A congant pressure Gibbs ensemble [Pan88] can be performed only with mixtures,
snce for pure components the twophase region is a line in the P-T plane. Thus any
choiceof P and T corresponds to a vanishingly smal probability thet the sysem is a the
phase trandtion. For two-component systems the two-phase region is a finite area in the
P-T plane [Fre9g].

In the case of a NPT ensamble for binary mixtures totd number of particles,
pressure and temperature are kept congtant. The tota number of particles is the sum of
the total number of particles of both species, a and b, (N = N2+ NP). The acceptance
criterion for the particle digdlacement is the same as in Eq. (2.34). In the patice
exchange acceptance criterion (Eq. (2.38)) n; and ny = N-n; now represent the number of
paticdles of the species, for example a, beng exchanged, (n{andnj =N?-n?)
[Pan88]. The volume fluctuation acceptance criterion (Eq. (2.36)) becomes [Pan8g]:

acc(old ® new) = mingi- Vo)™ ™ (Vo) ™™ exp{ - [U(x ) + P(DV' +DV" )]/kT}'EQ

(V0||d)nf‘+nf’ o|||d)n'£‘i+n‘b' exp{- [ux 4y )1/ KT} p
(244)

whereinthiscaseit ispossiblethat DV' - DV'" since the totd volume is not constant.
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Calculation of the chemical potential

One of the requirements for phase equilibrium is the equdity of the chemicd
potentid (materia equilibrium). A common technique used to cdculae the chemica
potentid is the Widom tet patide method [Wid63], which utilizes the interaction
energy of a ‘ghot’ paticle inserted into the sysem. The Gibbs ensemble technique
does not rely on the knowledge of the chemicd potentid, but its caculdion during the
smulation can provide a ussful check to ensure that equilibrium is achieved. During an
exchange trid the energy of the particle inserted corresponds to the energy of a ‘ghost’
patide 0 it is possble to cdculate the chemica potentia with ease.

Following the procedure reported by Smit et d. [Smi8%%], the chemicd potentid is

given by:

%g (2.45)

m=- lené 9
N @

where Q, is the partition function (here we use the Gibbs ensemble Q,, eq (2.31), at
congant (N, V, T)). Subdtituting Eq. (2.31) in Eq. (245) and assuming that the boxes do
not change ‘identity’ during the smulation, the expressons for the chemicd potentids
in both phases are:
1/ V,
=-kTIn—=( ——exp(- Du,
m L3 <n +1 p( | )>I

(2.46)
=-kT 1 VII exp(- D|+
“‘I k In L3< | +1 p( 1 )>”

where ( >| represents an ensemble average in the Gibbs ensemble redtricted to box |

and Du; istheenergy of a“ghost” partidein box | (eguivalently for ( ), and Du).
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Finite-sizeeffectsat criticality

In generd, phase trangtions consst of changes between an ordered date and a
disordered gdate. Thermodynamic properties of sysems gpproaching the trangtion point
can show anomdies due to complex microscopic behaviour which gives rise to
observable macroscopic effects. As the disordered region of the trangtion approaches
the ordered one individud microsocopic fluctuations dart to have a strongly corrdated
behavior. Close to the trandtion, the dze of the region over which this coherence
extends becomes so large thet it perdsts out to macroscopic lengths.

In the Gibbs ensamble technique the use of a finite sysem and periodic boundary
conditions makes the sudy of phase trangtions close to the criticd points difficult. In a
real sysem the corrdation length that measures the spatid extent of dendty fluctuaions
tend to infinity. The finite Sze Imulaion cdl can not capture this behaviour. Work
regarding the finite-size effects on the Gibbs ensemble was reported [Rec93, Pan94b] in
two- and three-dimension, for symmetric squarewell and Lennard-Jones fluids.

In the Gibbs ensemble, away from the criticd region of the phase trangtion, the
dendties and compostions of both phases can be evauated by averaging these
quartities in each dmulaion box. When approaching the criticd point, anomaous
fluctuations in the dendty and compodtion are observed, due to the formation of
droplets or bubbles of the oppodte phase in one of the two boxes Under these
conditions, a procedure of collecting information is to use higograms of the frequency
of occurrence of a certain dengty in esch of the two boxes. The equilibrium densties
can be defined as the dendties rdaive to the pesks of the probability digtribution
function [Pan95]. Getting even doser to the criticd point, the free energy pendty for

formation of interffaces in both boxes becomes smdler [Sm89a and exchanges of
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identities of the two boxes are observed. The coexiding dengties can not be determined
with high accuracy [Pan95].

To predict the criticd temperature and dengty using the Gibbs ensemble smulations
the rectilinear diameter rule and scaling relationship are gpplied [Pan95):

r lig - l’vap. _ . b
T =T it +C(Tcrit. - T)’ r.qu. - rlvap. H (Tcrit. - T) (247)

where b is an exponent that experimentd results and moden theories of criticd
phenomena indicate to be »0.325 in threedimenson [Pan95]. It was shown that for
Lennard-Jones fluids [Pan94b] the use of Eq. (247) predicts the criticd temperature
within an accuracy of +1%, but it gives a ggnificantly larger uncertainty for the critica
density.

At this sage we point out thet it is not the interest of our work to determine critical
temperature and dendty of the systems smulated, sSnce our am is only to test the

interatomic potentias for coexisting phases.

Somemathematical consider ations

The NVT Gibbs ensemble is characterized by a smple mathematica congraint that,
to our knowledge, has never been highlighted. The only reference found to this issue is
reported by Bruce [Bru97] which we quote to introduce the issue itsdlf:

“In Gibbs ensemble one needs only to ensure that the overall density lies somewhere
in the range between those of the coexisting phases; this constraint sharpens with the
approach to the critical point” [Bru97].

Consdering the one species case we can write the system of equations:
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where N, (N,), V, (V,) ad r (r ) ae the number of paticles the volume and

dengty a any time in box | (1) respectively. For each smulaion the totd number of
paticles, N, the totd volume, V, and consequently the totd dendty (r =g) are fixed.
The question we want to answer is.

given thetotal density r = g ,I1sit possible to accommodate any valueof r ; and r

inbox | and |1 at any time during the simulation?
For this purpose we have to find the solutions for the varidbles (unknowns) N, , N,
V, ad V, of the sysem in Eq. (248), where N and V are fixed vaues (chosen from
the smulation) andr, and r,, ae any given podtive vaues Usng smple methods of
linear dgebra one can show thdt, if

SN (2.49)

the system in Eq. (2.48) dways has the solution:

NIZN—r”V;VIZN—r“V (250)
1- M ry-ry
r
but we have to imposethat :
OEN, EN ; O£V, £V (251
which are satisfied if:
rrEr£r,orr, Er £r, . (252

So the answer to the above question is ‘yes aslong as r, and r |, satisfy Eq. (252).
This means that during the smulation the dendty in one box is a any indant greeter

than or equd to r while in the other box is less than or equd to r , as physcd

intuition suggests. In order to obtan the expected results r must be chosen to lie
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between the expected densties of the two coexisting phases, if they are known. If they

are not known, explorative runs have to be peaformed. When r is chosen outside the
coexiding diagram the dendties in both boxes hgppen to fluctuate near the vaue of r .
Thisisacdlear sgnd that adifferent vadue of r hasto be chosen.

In the case of NPT Gibbs ensamble for binary mixture we have to follow the same
scheme. The totd number of partices of both species, N®andN°, are fixed. The
guestion we want to answer now is:

given the total number of particles of both species, N2 andN®, is it possible to

accommodate in box | and Il any value of r, and r, and any value of the
compositions( x*, x’, x2 and x’, ) at any time during the simulation?

The system of equations we now have to condder is

i
N® =N +Ni; N>=NpP+Np i
:
N2+ NP N?- N2+N°- NP
ro=——- 1 r, = ! ")', (253
Vi Vi I
a a ]
o= N NW
N&+NP N@ - N2 +NP- NP b

where the unknowns are V, , V,,, N*, N2, NP and N; and the conditions to impose

are:
O£ N? £N°® (254)
OEN/ £N° (2.55)
which are stiffied if:
a N2 a
Xig " £ X for X2 3 x4 (256)

ey

xh NP x

or equivaently:
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T N® g X
1- x§ N-N? 1-x%

for xp 3 xj . (257)

Again, the answer to the above question is ‘yes as long as N2 and N° saisfy Egs.
(2.56) or (2.57). Egs. (256) and (257) date that the ratio N2/ N° should not to be
chosen geater (or less) than both x3 /x5 and x?/x" , as phydcd intuition suggests
For a NPT Gibbs ensemble with more than two components the answer to the above
quedtion is in generd negdive. This is because the equivdent sysem to Eq. (2.53), for
example in a three.component mixture case, would contain 9 equetions in 8 unknowns,
which is in generd not solvable. This does not mean that the smulation is not feesble.
In fact, in the Gibbs ensemble technique the average vdues of the compostions and
densties are important and not just the ingtantaneous vaues. However, Eq. (257) must

be siidied for each component. Similar condderations goply for a multicomponent

NVT Gibbs ensemble, in which Egs. (2.52) and (2.57) must be satisfied.

2.3 Synthetic Non-Equilibrium Molecular Dynamics

In this section we focus on planar Couette flow where adjacent parts of the fluid are
moving with different reaive vdocties Such sysems ae not in thermodynamic
equilibrium, so viscous forces generate the trangport of momentum between co-moving
layers. A non-equilibrium molecular dynamics computer sSmulaion [AllI87, Evad(]
dlows one to solve the eguations of motion of each molecule of the system, and directly
caculate the transport coefficients In the following sections we describe the computer
technique known as synthetic non-equilibrium molecular dynamics (NEMD) [Evad(Q]
applied to planar Couette flow, which is used to cdculate the shear viscosty of the fluid

directly from the dynamics of the system (see Chapter 4).
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In section 231 we give some detals of homogeneous planar Couette flow,
introducing the physicd quantities necessary to describe the trangport of  momentum,
namey the pressure tensor, drain rate and shear viscosty. In section 2.3.2 we describe
how to derive these quantities from a microscopic description. In section 2.3.3 we give
some ddalls of the NEMD dgorithm to smulate planar Couette flow, and in the last
section we introduce the non-equilibrium pair digribution function which provides
indght into the dructure of the fluid and dlows one to cdculae the pressure, energy

and viscogty indirectly.

2.3.1 Planar Couette flow

Figure 2.3 depicts a planar Couette flow where an atomic fluid is confined by two

pardld plates of area A, distant L apart.

Figure 2.3 Laminar flow of an aomic fluid between a moving upper plate and Sationary
lower plate.
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The upper plate dides in the pogdtive x-direction a a congant velocity vo, while the
other plate is dationary. Here L is a macroscopic quantity, or more precisdy, L is much
larger than the range of the interatomic interactions.

Two generd types of behaviour can occur depending on the nature of the fluid. With
some fluids the force F used to mantain the veocity of the upper plae condan is
proportiona to the veocity itsdf; these fluids are cdled Newtonian. Huids for which
the force is not proportiond to the velocity are caled non-Newtonian [Pry66]. A more
generd definition dates that a fluid is Newtonian if the dress eerted is directly
proportiond to the rate of deformation and does not depend on the deformation itsdf
[Fer91b]; afluid is non-Newtonian otherwise.

Condder, for amplicity, that the liquid in Fgure 23 is Newtonian. The vedocity of
eech aom is the sum of two different components, one is due to the thermd moation, the
other is due to the dreaming velocity of the fluid. For wesk to moderate flows, it can be
expaimentadly proved tha the dreaming veocity (directed in the x-direction) of the
fluid varies linearly if measured in the y-direction, from zero a the lower plae to v at

the upper one. The fluid is thus sad to be in a condition of seady laminar flow with a
velocity gradient VTO [Pry66]. At steady state, the force F,"'“ per unit area exerted by
the fluid in the x-direction on the upper plae is equd (but with opposite sgn) to the
force F used to drag the plate itsdlf. F,"'? isrelated to v by the expression:

FF fluid
A

Vo
L

-_F_.
=-—=-h (259)

where h is the coeffident of shear viscosty, and the negative sign indicates that the

forceisin the negetive x-direction [Pry66].
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Condgdering Eg. (258), it becomes convenient to define two quantities that account

for the mutualy perpendicular directions of the force F,™® (x-direction) and of the
. V) -
velocity gradient T (y-direction):

fiv,

P, =-h (259)
Y Ty
E fluid E
where P, :XT =- A is smply the force per unit area exerted by the fluid on the

upper plate and it is a negative quantity. The x-subscript represents the direction of the

force, whereas the y-substript is the direction perpendicular to the plate. % =VTO is
Yy

the velocity gradient (or the dtrain rate). Here the x-subscript represents the component
of the veocity that is not zero, and can only vary in the y-direction. The introduction of
these quantities is necessary to describe satisfactorily the system under study, and their

experimental measurements dlow the caculation of h via Eq. (2.59).
The upper plate exerts a force F =- P, A on the adjecent fluid, and during a time

Ct it will transfer @ momentum equa to - P, ADt. The fluid itself will trensfer this

momentum to the lower plate with a rate equd to - Dit This is the x-component of the

momentum being trandferred dong the negative y-direction, ‘layer by layer’ in the fluid.
The momentum flow is given by:

e Lo

- PyADt" ¢ —+=P,V (260)
xy g g

whereV isthe volume of the fluid between the plates.

In the following sections we discuss how to trest the momentum flow in Eq. (2.60)

fiv,
iy

and the strain rate

within a molecular description.
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2.3.2 Pressure and strain rate tensors

Eq (2.60) states that the x-component of momentum flows throughout the fluid, from

the upper plate to the lower. Describing a homogeneous fluid as a collection of particles

interacting via centra forces, the x-component of momentum can be trandferred in the y-

direction in two ways.

1) apaticle i with thema momentum p,, ad p;, (% ad y-component respectively),

2)

moves, in an infinitesmd time Ct, a disance th in the y-direction. Hence the
m
particle trangports its own Xx-component momentum p;, in the y-direction a a rate

Py
m Dt — pixply

Dt n

Pix . This is vdid for each patide of the fluid, so adding the

contributions from dl the patides, the kingtic contribution to momentum flow is

givenby:

(o) . n.
a PPy 261)
7 m

The second contribution comes from the intermolecular forces. Let F(r;;) be the

megnitude of the (centrd) force between two particles i and j, where r;; is their
distance apart. The x-component of the force acting on paticle j is F(rij)?, where
ij
X; is the distance between i and j in the x-direction. In the time Dt this force will
produce a change in the x-component momentum of particle j equd to  F (rj; ?Dt
ij
Due to Newton's third law of dynamics, particle i experiences an equd change of

momentum but of opposite dgn. It can be thought that partice j gans momentum
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and paticle i loses it. If y; is the distance between the particles in the y-direction,
the veocity with which this momentum transfer occurs is Smply % Hence the

momentum flow is F(r; )r Dt ﬁ—F(,J) Wik

1) l

. Adding the contributions from

dl the pars of patides the contribution to the momentum flow due to the

intermolecular forces can be expressed as

al y” (262)

aaFu)

i j>i
Adding together the contributions from Eq. (261) and Eq. (262) and using Eqg. (2.60),

the momentum flow for a homogeneous fluid can be rdaed to the molecular properties

asfollows [Pry66, 1r'va0):

Pix ply

L g Fo .J)‘J d 269)

i j>i

Pva

We note here that the above expresson is only vaid for a homogeneous fluid. The
derivation for an inhomogeneous fluid is more complex, but may be found in references
[Irv50, Tod9g)].

Eq. (263) can be generdized for any kind of abitrary flow geometry by writing
smilar rdaionships for dl the possble combinations of the subscripts (@, b=x vy, 2,

which generates a 2™ rank tensor of the form [Pry66]:

P=¢R, P, P,- (264)

Eq. (263) is a genard rddionship, but for a detailed derivation with three-body forces

see Appendix 2. Interchanging x and y in Eq. (263) it is clear that the tensor P is
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symmetric (R, =P, ). In the equilibrium case the off-diagond dements are zero (in
the kinetic pat in Eq. (263), pix and p;, have the same probability to be postive or
negative, so the sum of the contributions from dl the particles turns out to be zero) and

the diagond dements ae dl the same They can be identified as the indantaneous

hydrogtatic pressure [All87]:

Po + Pyt +Pgt 10 ©O
V=NkT+§a a F(r”) I’ij . (265)

i j>i

PV =

It is common practice to use Eq. (2.65) as the definition of hydrostatic pressure dso in
the non-equilibrium case and to cdl the tensor P in Eq. (2.64) the pressure tensor. In
genad the pressure tensor is a function of temperature, dendty and dran rate,

v, ©
]

POPgr,r,

v,
Ty

The dran rae can adso be defined as a tensor. In generd, it represents the

change of the a-component of the velodity of the fluid in the b-direction, namdy:

v
Na = . 2.66
ol a,b=xy,z (2.66)

Congdering dl the possble combinations of the suffixes, we can write the following

tensor, identified as the strain rate tensor:

?va ﬂVy ﬂvz 9
¢cx TITx fx=
N Qﬂvx 1TV)’ ﬂVz -
Nv = C -
¢l Iy My
Qﬂvx 1TV)’ ﬂVz _
&9z 2 Tzo

(267)

For planar Couette flow, the only non-zero edement of the tensor in Eq. (267) is

(Nv),, = 1]""X whichis usudly defined by the symbal g, i.e. the strain rate,
y
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In the following sections we will describe how synthetic NEMD may be used to

smulate a planar Couette flow.

2.3.3 Synthetic NEMD for planar Couette flow
Condder a sysem of N paticles interacting via an intermolecular potential u(r?,...,
™ (see for example section 21). In a molecular dynamics simulation [All87] one

solves Newton's (or Hamiltonian's) equations of motion for each particle:

u

1y (269
b

where r; is the postion of patice i, p its momentum and F; is the total force acting

o 9 du;
on the patide (F, :a Fi :-a %). Usudly periodic boundary conditions
r.

jti jri Y
[AlI87] ae goplied to dmulate bulk properties, snce they minimize boundary effects.
Severd dgorithms [All87] can be used to solve the equaions of motion in Eq. (2.68); in
our (NEMD) smulations we used a fourth-order Gear predictor-corrector method
[AllI87, EvaBab, Gearl, see dso below].

In order to cdculae trangport coefficients inhomogeneous non-equilibrium
molecular dynamics techniques try to dosdy smulate the conditions used in the
experimental gpparatus to measure the same transport coefficients [Lie92]. To maintain
the system under non-equilibrium seady date flow, these techniques adopt boundary
conditions (for example diding wals) which, unfortunately, affect the trangport
properties of the fluid because the sSze of the smulated sysem is comparabdle with the
range of the interaomic interactions [Li€92, Tod95]. For these reasons synthetic

dgorithms [Evad0], which use fictitious forces, were implemented to mantan the
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sydem in a homogeneous nonrequilibrium  deady dae  The fictitious forces
continuoudy exert work on the system to prevent reaxation to equilibrium. This work
causes a hesdting of the sysem, which must be removed by a thermodat. Fictitious
forces and thermodtats are introduced by modifying the Newtonian equations of mation.
In what follows we describe how the synthetic NEMD SLLOD method [Eva4c,
EvafQ], usad in our work, re-cads the equations of motion to smulate planar Couette

flow.

SLLOD equations of motion
Consder a canonical ensemble of N particles a temperature T. The didribution

function is

fo = (2.69)

where
Ho = Ho(rt,....rN, pl,... pN):g M+u(r1 A (2.70)
0 0 ) ’ ’ ’ ) 2m ) ’
i=1
H, isseento bethetota interna energy of the system.

Consder now the ingant a which the sysem is subject to a linear veocity profile

At time t=0 the digtribution function is changed to the locd digtribution function

1 N
+u(r,..r
o ( )

f, = (271)
) “1 (p; +Xxmdy,)- (p; +Xn1§b/|)+u(r1 rN)gJ_(Url dp™

OXpekT ga 2m P

( X : x-direction unit vector)

"1 (P +Xmdy;) - (p +Xmgy;)
ekTga

IS Yoy=at
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by trandorming the x-component of the veocity of esch paticle imposng a linear
veocity profile [EvaB4c, Evadq):

%(07) =% (0)+dy; - 272
This is a canonicd ensemble (locdly in equilibrium) upon which is superimposad a
liner velocity profile with dran rae ¢ =dv,/dy (zero-wave-vector drain rate
[EvaQ]). It is important to redize that f; is smply a locd equilibrium didribution
function, i.e moleaular relaxaion has not yet taken place. The didribution function of
this ensemble can be obtained by consdering the response of a canonicd ensemble fp at
t=0 to a fictitious srain rate fidd g(t) where the sysem evolves with the fdlowing
equations of motion [EvaB4c]:

% =F,/m+g(t)y

i g(t)=0 fort<O0Ou
v. =F.,/m v with Y 273
Z‘ iy Y g(t)=g forts o @3
i = Fiz m p

Eq. (2.73) are equivdent to the following firg-order equetions of mations

X = P/ m+gy; U
. |
Vi =Py /m y (2.74)

z = p,/m Ib

Pix = Fix - qjlyu
|
by =Fy y - 2.75)
, |
Piz = I:iz b
It is important to point out that Eq. (2.74) and Eq. (2.75) can not be derived from a

tot. sream. vel

Hamiltonian. pix is the peculiar (therma) momentum (P, — Piy ') rather than the

laboratory momentum.

The shear viscosity is defined as.

h=- _<ny >t®¥ - %<ny * Pyx>t®¥ (2.76)
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where ( represents a time average on the dynamics of the system.

>t®¥
Differentigting Ho in Eqg. (270), and usng Egs. (2.74), (2.75) and (2.63) we have the
following equation:

Ho =- P,V (1)
which dates that the work exerted by the externd fidd in an adiabatic planar Couette
flow reaults in a change of the internd energy. As a consequence, the syslem heats up.
This behaviour is reveded by an increase of the kinetic energy, where as usud, the

kinetic energy isidentified with the kinetic temperature as:
s 8 pop
2 NKkT= Lt B 2.78
2 a_l- 2m @78)

Since we want to smulate Couette flow a constant temperature, we need to introduce a
thermogtat in the equations of motion. For this purpose Eq. (2.75) is re-written as.
Pix = Fiy - q)iy - apix_[_-]

|

Py = Fy - apy y (2.79)
|

Pz = F; - ap; b

where a is a Gaussan thermodatting multiplier [Eva90] derived by condraining the

kinetic energy (hence the temperature) to be congtant:

2d . .p0 o)
dqT é %: a(Fi'pi'Qpixpiy)

g _ _ =
- — -0 b a=- 5 Y0
BB

i=1
In Egs (274), (279) and (2.80) it is assumed that the linear veocity profile is dable,
which is true a low Reynolds number [Evad0].
The SLLOD equations of motions must be implemented with competible periodic

boundary conditions [Eva90]. For planar Couette flow (Eg. (2.74) and Eq. (2.79)), Lees-
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Edwards boundary conditions [All87, Eva90] can be used. In the next section we give

some details of these boundary conditions.

=

Figure 2.4 Representation of the Lees-Edwards boundary conditions [All87, Evadq).

L ees-Edwards boundary conditions
Fgure 24 depicts an infinite periodic sysem subjected to shear in the x-y plane. Box
1 is the smulation box. The boxes in the middle layer (2, 1 and 6) are daionary. Boxes
in the lower layer (3, 4 and 5) move in the negative x-direction a aspeed ¢, where L is
the lergth of the (cubic) box. The boxes in the upper layer (7, 8 and 9) move in the
podtive x-direction & a speed g . At each step of the smulation the relative distances
(xj,y; and z;) between pars of paticles i and j are calculated with LeesEdwards
boundary conditions [All87, EvadQ] in the following way:
Xj = X; - dxd” anint(y; /L)" L
Xj = X - ani.nt(xi]- /L) " L 281)
Yij = Y - anint(y; /L) L
z; - z; - anint(z; /L)" L
InEq. (2.81)

dxd =mod(g *tg; L) , (282
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where mod(a ; b) is a function that returns the remainder of the divison of binto a and
tq. is time dapsed during the smulaion. anint(a) is a function that returns the nearest
integer toa.

It is convenient to replace patides in the dmulaion box as they cross the
boundaries. After each sep of the smuldion, the following dgorithm (Smilar to Eq.
(2.81)) must be used for the coordinates (%, Vi, z) of the particles:

X = X - dxd” anint(y,/L)" L
X X - ani.nt(xi /L) ’, L (289
y, -y, - anint(y,/L)" L
zZ - z - anint(z;/L)" L
where we note that the origin of the coordinate system is the centre of the smulation
box. If the paticle crosses the lower x-z face of the smulation box it will ‘resppear’ a
the upper x-z face, and the streaming velocity (gL ) will be added to its totd velocity. If
it croses the upper x-z face regppearing in the lower x-z face, the dreaming velocity

(gL ) will be subtracted from its totd velocity. In the other cases the totd velodity is not

changed.

Gear predictor-corrector method

To solve the fird-order SLLOD eguations of motion (Egs. (2.74) and (2.79)), we
used a fourth-order Gear predictor-corrector method [All87, Eva84db, Gearl] for its
efficiency and accuracy. Despite its 4" order accuracy it requires only first derivatives
of the intermolecular potentid which is cdculated once per timestep. Let ri be the

podition of partide i, the scaed time derivatives can be defined as

dr; 1_,d? rI 1_,.d%

)12.—5 ( ;2.—€Dt (F);rZi:

drI

ry =Dt(—-

( (284)

24

where Ct isthe time sep. Equivaently for the momentum p;, we have:
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dp, 2,d°p, 1.,3,d°p d“p.
I} |__ : __u
DXC4H) £ Py =5 DG (

3i _6 dt3

);p4i=£Dt (

Py = ) (285

The Taylor series expansion for r; and p; is truncated at the 4' order, and using a matrix

form we can write the predicted values (superscript p) of r; and p; and their derivatives

in the following way:

@Pt+D)0 24 1 1 1 1ge (1)0

¢ - ¢ %!

¢re(t+Dy+ ¢0 1 2 3 44;r.1(t)—

grig(tmt);:go 01 3 ,z(t)_ (2:86)
¢ro(t+D)* ¢0 0 0 1 4‘_9f.3(t)T

&o+Dy; 0 0 0 0 1Er,mp

aepp(t+Dt)0 A 111 1088p,(t)0

f;pl.(t+Dt)— 0123 442p1.(t)—

pzl(t+Dt) —go 013 G_szl(t)_ (287)
Gpg,(t+Dt): ¢cO 0 01 4jgp3,(t):

plt+D5 & 0 0 0 1fp, v

When the predicted vadues are cdculated, Lees-Edwards periodic boundary conditions
(Eg. (2.83)) are goplied to reintroduce partices into the smulation box, which may have
crossed the boundaries. The reative distances between pars of particles are firgt
cadculated by Eq. (281) and then used to determine the forces acting on eech aom.
Findly, Eq. (274) and Eq. (2.79) are usedin the corrector step to calculate the corrected
vaues (superscript ¢) of ri and p; and their derivatives

2°(t+D)0 &@P(t+Dr)0 a8 0

i+ D0 ¢rf(t+D s ¢+

rlz(t+Dt)_ g rP(t+Dt)- +Drgc2 (289)

@r.s(t+Dt); CrRE+D)T  Goy+
& t+D) Eria(tmt)a s
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P (t+D)0 @P(E+D)O @00
Cpat+D)* Cpa(t+D)*  ¢G+
gP5(t+ D) T= dphy(t+ D)=+ Op fc, (289)
Cp+D)T GphE+D)T  CCst
gpic4(t+D[)Tﬂ gpip4(t+Dt),§ 8045

where:
(?(ﬁ - (pIX +QV.)Dt9
Dri =¢ vi-pyDt = 2.90)
g Zli - pizu 5
Bux - (Fix - apix - &y )OO
Do =G Puy - (Fy -apy)Dt (2.91)

€ - (F,-ap)D
Here o, ¢y ¢, c3 and c4 are the corrector coefficients which depend upon the order of
the differentid equation being solved [Gearl]. In our case, ¢=251/720, ¢;=1, c=11/12,
C3= 13 and ¢4 =1/24.

Other methods can be used to integrate equations of motion of the particles. The
commonly used legp frog method [Ve67] solves second order equaions of motion,
hence it is not suitable to solve firsd order Egs. (2.74) and (2.79). The Runge-Kutta
method [Gearl] is appropriate but expensve computationdly. We have chosen to use
the fourth-order Gear predictor-corrector method for its good accuracy and because of

programming convenience.

2.3.4 Non-equilibrium pair distribution functions

Given a canonicd ensamble (NVT), where the origin of the coordingie sysem is
arbitrarily chosen, it is possble to define didribution functions for the particle postions
The smplest such function is the par (2@ order) disribution function o(ry, ro). In a

homogeneous atomic fluid, it is proportiond to the probability of finding a patice a r;
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in a volume dement dr, if, & the same time, there is a paticle a ry in volume dr;
[Egedd]. This function is useful since it can be eesly cdculaed from a molecular
gmulaion, providing indght into the liqud dructure It can dso be messured
experimentadly [Eged4], dlowing a direct comparison between theory and experiment.
Furthermore, the pair digribution function, when known, provides an dternative way to
cdculate any par function of the system, such as the twobody configurationd pressure,
energy and viscodty. Hence it can be used to test the correctness of those par functions
caculated directly from a molecular smulation. Higher order digtribution functions can
be defined in asmilar way [Ege?4].

For a homogeneous liquid in thermd equilibrium or under seady State uniform flow,
o(r1, rz) does not depend upon the choice of the origin of the coordinates [Eged4].
Hence g(r1, ro) depends upon the difference r = ry - ro and can be defined as an ensemble
average over dl possble pars [All87]:

-V g 2 292
g(r)—v @l_ %d(r'rij) (292
where d(r - r;;) is the deta function. Further, for an isotropic liquid g(r) depends only

upon the magnitude of r, so it is a sphericdly symmetrica function. In this case g(r) is

eedly cdculaied as

N
g(r) = ﬁ (2.9)

where (N, ) is the average number of particles between a spherical shell of radius r and

thickness dr. In planar Couette flow g(r) is not a sphericdly symmetrica function and

can be gpproximated as [Greb2, Han8(]:
g(r) = g(r) +gn(r)sn?q snf cosf (294)

where we use the polar coordinates:
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x=rdgnqcosf {
y:rsinqs'nf{'/. (2.95)
Z=r00sq h

In Eq. (294), g(r) is the Sandard radid didtribution function (Eq. 2.93). In this work we
have cdculated this quantity for a sysem in equilibrium and for planar Couette flow
(see Chapter 4). The function n(r) represents the purely radid pat of the distortion and
it can be estimated by the expresson [Han80):

n(r):E 1 <X” Z”> (2.96)

8 g r2dr r

Xij Yij
2
ij

2 for each particle contained in a
ij

where < ! y,,> is the average of the quantity
gphericd shdl of radius r and thickness dr. We have calculated n(r) for planar Couette
flow (see Chepter 4). For asystem in equilibrium n (r) is zero.

In what follows we give the expressons of the twobody potentid contributions to

the pressure, energy and viscosity intermsof g(r) andn(r) .

Two-body potential pressure, ener gy and viscosity as functions of g(r) and n(r)
The two-body potentid contribution for the pressure can be written as [AlI87]:

§ &
P=2 Q@ (R FPy+F22) =

=1 i

é o 2 2b b A d 4 ,
18 8 @xa® yd®  zd® o 1 0
&/aa-grdrxrdryrdrZ+ aarrdral

i1 j>i

Using Eq. (2.92) and Eq.(2.94) we can write:
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1r? ~ du®® , .
P =. = ~y(N)r r2sn df dr =
32 G() dr adq
r2 . ) du2b 3
-—(3g(r)+gn(r)s'n g anf cosf) r’dnq dq df dr =
6 dr 208
1 A8 2 g dg of o - -
6 O g " N9
i Fgn(r)sin2q snf cosf OILI—2br3sinq dg df dr
6 ( dr
where:
r2 < 2b
-?(gn(r)s'nzqs'nfcosf r r¥snqdg df dr =0 (299)
2
since: c\jnf cosf df =0 . (2.100)
0
Hence:
2 2b 2 ¥ 2b
p2o = % ~ (r)o';l‘r r3snq dq df dr =- ZpTrc‘y(r)%ﬁdr . (2100)
0
Equivdently for the twebody potentia energy we can write:
¥
E? = 2pNr c‘y(r)qurzdr : (2.102)

0

Eq. (2.101) and Eqg. (2.102) state that P?® and E?® do not depend on the radia part of

the digortion, n(r), and the only dependence on the shear rate g comes from the
ddgorion of g(r) under shear (snce g(r)*™" 1 g(r)™*"). Following the same
procedure we can write a Smilar expression for the 2-body potentid shear contribution

to the viscosity which depends only on n(r) :

¥
2 = 20T 2 8 du®

15 dr
0

r3dr . (2.103)
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Chapter 3

Investigation of Three-Body Interactions on the Phase

Behaviour of Noble Gases

In the following sections we report the results obtained sudying the role of three-
body interstomic potentids on noble gas coexiding phases. Section 3.1 gives detals of
the Gibbs ensamble smulaions for vapour-liquid coexiding phases of agon, krypton
and xenon as pure fluids and of an argon-krypton mixture. In section 3.2 we report the
andytic expresson of an effective potentid which we found to reproduce the man
feature of the twobody + three-body potentids The sgnificance of this rdaionship is
that three-body interactions can be estimated with sufficient accuracy from two-body
interactions without incurring the computationa pendty of three-body caculations. The
relaionship has the potentid of improving both the accuracy and predictive vaue of

pair interaction molecular smulations.

3.1 Vapour-liquid coexisting phases of noble gases

The am of this work is to invedigate the role of the dipde-dipde-dipole term and

other mutipole three-body disperson teems on the vapour-liquid phases observed for

argon, krypton and xenon. As discussed in Chapter 2, we have used the potentids
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proposed by Barker et da. [Ba7la Ba74, see Egs. (2.11), (212) and (2.13)] for the
two-body interections. The three-body interactions were obtained from considering the
dpde-dpde-dipole (thirdorder DDD or Axilrod-Tdler teem, Eq. (217)), the dipole-
dpde-quadrupole  (thirdorder DDQ, Eg  (218)) the dipole-quedrupde-quadrupole
(thirdorder DQQ, Eg. (219), quadrupole-quadrupole-quadrupole (thirdorder QQQ,

Eq. (2.20)) and the dipole-dipde-dipale (forth-order DD D, Eq. (2.21)).

3.1.1 Simulation details

Purefluids

The NVT Gibbs ensamble technique (for details see Chapter 2) was implemented for
a sysem of 500 aoms. The smulations were performed in cydes consging typicaly of
500 atempted displacements, an atempted volume change and 500 interchange
atempts. Typicdly, 1000-1500 cycles were used for eguilibraion and a further 1500-
2000 cycles were used to accumulate ensemble averages. The norma convention was
adopted for the reduced density r~ = r s, temperature (T" = kT/e), energy (E = Ele),
pressure (P~ = Ps®/e) and chemical potentid (m = nfe).

Periodic boundary conditions were applied. The twebody potentids were truncated
a hdf the box length and appropriste long range correction terms (see Appendix 1)
were evauated to recover the contribution to pressure, energy and chemicad potential of
the full intermolecular potentid. Some care needs to be taken with the three-body
potentids because the agpplication of a periodic boundary can potentidly destroy the
postioninvariance of three patices (see Appendix 2). We examined the behaviour of
the threebody terms for many thousands of different configurations and intermolecular

sepaations. All the three-body terms asymptote repidly to zero with incressing
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intermolecular separation. For a system size of 500 or more aoms, we found truncating
the three-body potentids a intermolecular separations greater than a quarter of the
length of the smulaion box to be an excdlent gpproximation to the full potentid thet
aso avoided the problem of three-body invariance to periodic boundary conditions.

The chemicd potentid was determined from the equetion proposed by Smit & 4.
[SmiB89%a, see Chapter 2]. The uncetanties in the ensemble averages for dengty,
temperature, energy and pressure were cdculated by dividing the post-equilibrium
results into ten sections. The edimaed erors represent the standard deviations of the
section averages. An error edimate for the chemica potentid cannot be edtimated in

thisway becauseit isthe average of the entire post-eguilibrium Smulation.

Binary mixture

The NPT Gibbs ensamble technique was used for an argonkrypton mixture. The
details of the smulations are smilar to those discussed above for the pure fluids In this
work we andyzed the pressure-compostion behaviour of the mixture and compared it
with experimenta data. The pressure-density behaviour was dso sudied.

The intermolecular potentils mentioned previoudy were developed origindly for
pure fluids, but they can be goplied directly to binary mixtures by assuming suitable
combining rules for the intermolecular parameters. In generd if we denote the energy-
like parameters n and e (see Chapter 2) by the symbol W, the cross potentid parameters
of interacting pairs and triplets can be cdculated from:

Vvijk =31/Niiivvjjj kkkEI
W. = 2w y (32
ij _1/;;“ ii b
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In generd if we denote dl the remaining parameters such as s, A, Cs etc  (see Chapter

2) by the symbadl Y, the cross potentid parameters of interacting pairs can be calculated

from:

1 (32

In the argon-krypton mixture smulations the potentid parameters of argon e and s were
used to obtain reduced quantities in the standard way. It is important to stress that these

commonly used combining rules do not have physicd raionde.

The three-body samulations commonly require 20 and 12 CPU hrs on the Fyjitsu

VPP300 and NEC SX-4/32 supercomputers, respectively.

3.1.2 Results and discussion

Purefluids

The resllts of Gibbs ensamble smulaions for the vgpour-liquid properties of argon,
krypton and xenon are reported in Tables 3.1-36. A compaison of smulaion results
with experiment is given in Fgures 3.1, 3.3 and 34. The redive contribution to energy
of the various threebody interactions for the liquid phese of agon is illusrated in

Figure 3.2. Thetota pressure versus the temperature is reported in Figure 3.5.
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Table 3.1 Vepour-liquid coexigence properties of argon from molecular sSmulaion
using the twebody BFW potentid [Bar714].

* * * * * *

T r P E. m Ty R Ev my

0700 0806(4) 001838 -5183) -367 0006(1) 00041 -006(2) -3.70
0750 0781(3) 0007(21) -4982) -367 0008(1) 00061 -008(3) -368
0825 0741(4) 0020(14) -466(3) -343 0021(2) 00152 -019(3) -3.39
0850 0727(5 0022(19) -4563) -349 00232 0017(3) -021(3) -342
0875 0711(5) 0017(16) -444{4) -347 00302 0022(3) -026(3) -3.36
0900 0696(5) 002219 -433(4) -339 00333 00253 -0293) -338
0925 0678(3) 0036(10) -420(2) -340 00412 00313) -0353) -332
0950 0661(10) 0037(22) -4086) -335 00495 0037(7) -041(4) -330
0975 0644(6) 0049(16) -397(4) -334 0057(5) 00426) -047(4) -328
1000 0622(7) 0056(13) -381(4) -324 00737) 0051(12) -0596) -3.23
1025 0597(8) 0062(17) -366(5 -325 00826) 0058(11) -064(6) -323
1050 05749 0071(21) -350(5) -322 0104(7) 0069(13) -0826) -3.18
1075 0540(12) 0080(27) -33L7) -320 0112(10) 0075(19) -086(8) -3.20

Table 3.2 Vapour-liquid coexigence propeties of krypton fran molecular smulation
using the twebody Barker et d. potentid [Bar74).

* * * *

T re R = moory R/ Ev m

0700 0.800(4) -0002(33) -505(3) -358 0007(2)  0005(1) -007(3) -355
0750 07743) 0001(21) -4843) -355 0010(1)  0007(1) -0092) -353
0825 07355) 0020(19 -4534) -339 00242  0017(2) -021(2) -331
0850 0718(4) 0013(12) -441(3) -335 0026(2) 00192 -022(3) -334
0875 0700(5) 0020(15 -4284) -333 0031(4)  00234) -027(4) -332
0900 0687(5) 0034(12) -418(3) -328 0041(4)  0030(4) -036(4) -324
0925 0666(7) 0036(16) -4044) -326 0048(7)  0034(10) -041(7) -323
0950 0647(3) 0044(13) -391(2) -323 00593  0041(5) -048(3) -3.18
0975 06249 0048(18) -3766) -319 0067(5  0047(7) -054(4) -318
1000 0609(6) 0065(14) -366(3) -316 0087(4)  005%7) -068(5) -312
1025 0573(17) 0073(26) -3449) -316 0008(12) 006520) -0.758) -3.13
1050 0548(18) 008431 -3289) -312 0131(18) 0080(33) -098(14) -3.09
1065 0530(23) 0094(46) -318(12) -311 0141(16) 008233 -105(11) -3.08
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Table 3.3 Vapour-liquid coexigence propaties of xenon from molecular Smulation
using the twebody Barker et d. potentid [Bar74].

* * * * *

r T. P E ml*_ r\*, R/ Ev ny

*

0700 0801(5  -0010(36) -507(3) -372  0006(1) 00041 0062 -363
0750 0777(4)  -0005(21) -488(3) -343 00112 0008(1) -010(2) -3.49
0825 07334) 000515 -4542) -332 00223) 00163 -0204) -335
0850 07156)  0021(20) -441(4) -342 0027(3) 00203) -024(3 -332
0875 0701(3)  0027(20) -431(2) -337 00323 00234) -0283) -330
0900 06824)  0026(19) -417(3) -334 0037(3) 0027(4) -0323) -329
0925 0664(8) 0031(16) -405(5) -328 0047(6) 0034(7) -03%4) -324
0950 0644(9)  0038(22) -391(6) -325 00553) 0040(4) -046(3) -322
0975 06239  0045(21) -377(6) -320 0068(6) 0048(10) -055(7) -3.18
1000 06059  0063(23) -3656) -318 00826  0056(10) -0654) -3.15
1025 0583(11) 0072(19) -351(7) -315 00999  0066(15) -077(6) -3.12
1050 0549(14) 0083(27) -330(8) -315  0123(10) 0077(19) -094(8) -3.10
1075 0501(88) 0.103(183) -30248) -310  0160(17) 0088(34) -118(12) -3.07
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Table 3.4 Vapour-iquid coexistence properties of argon from molecular simulation using the two-body BFW potential [Bar71a] + three-body
(DDD +DDQ + DQQ + DDD4) intermolecul ar potentials.

4
0.750 0.825 0.850 0875 0.900 0925 0.950 0975 1.00
r 0.742(5) 0.685(8) 0.671(10) 0.658(10) 0.639(11) 0.613(11) 0.600(10) 0.564(11) 0513(30)
_UH:Q 0.044(89) 0.017(39) 0.020(50) 0.028(41) 0.033(52) 0.035(41) 0.049(36) 0.045(39) 0.052(100)
P Loy -0.914(77) -0.854(21) -0.825(30) -0.809(21) -0.783(30) -0.743(20) -0.718(17) -0.673(19) -0.591(51)
P'L ooo 0.375(8) 0.271(9) 0.250(10) 0.235(8) 0.218(9) 0.190(9) 0.175(7) 0.149(7) 0.117(15)
P'Lbpo 0.125(3) 0.090(3) 0.083(3) 0.078(3) 0072(3) 0.062(3) 0.057(2) 0.049(3) 0.038(5)
P'Loo 0.0254(7) 0.0186(7) 0.0170(7) 0.0159(6) 00147(6) 0.0127(7) 0.0117(6) 0.0099(6) 0.0076(11)
P Lo 0.0023(1) 0.0017(2) 0.0015(1) 0.0014(2) 0.0013(1) 0.0011(1) 0.0010(1) 0.0009(1) 0.0007(1)
P'L boos 0.124(3) -0074(2) -0.068(2) -0.063(2) -0.058(1) -0.052(2) -0.046(1) -0.040(2) -0.033(3)
E Ltotcort. 453(3) -4.13(6) -4.01(7) -3.97(5) -3.89(7) -3.68(6) -357(6) -3.39(6) -3.09(16)
E Ly 47303 -4.33(6) -4.16(6) -4.06(7) -3.99(6) -3.83(7) -371(6) -3.49(6) -3.19(16)
E Loop 0.169(3) 0132(3) 0.125(3) 0.119%3) 0.113(3) 0.103(3) 0.097(2) 0.088(3) 0.076(6)
E LopQ 0.046(1) 0.036(1) 0.034(1) 0.032(1) 0.031(1) 0.028(1) 0.026(1) 0.023(1) 0.020(2)
E'Lboo 0.0079(2) 0.0063(2) 0.0059(2) 0.0056(1) 0.0053(1) 0.0048(2) 0.0045(1) 0.0040(2) 0.0034(3)
E'Looo 0.00061(2) 0.00049(1) 0.00046(1) 0.00043(1) 0.00041(1) 0.00037(1) 0.00035(1) 0.00031(1) 0.00026(2)
E'. boos -0.0419(10) -0.0268(4) -0.0256(4) -0.0240(5) -0.0227(4) -0.0212(5) -0.0192(4) -0.0178(5) -0.0161(7)
m, 347 -348 -353 -3.40 -3.35 -3.36 -329 -3.26 -3.28
r'y 0.0095(17) 0.0174(15) 0.0218(18) 0.0295(37) 0.0350(48) 0.0401(38) 0.0536(56) 0.0605(52) 0.0655(32)
P v 0.0067(16) 0.0128(17) 0.0162(21) 0.0216(46) 0.0259(64) 0.0301(51) 0.0383(83) 0.0440(83) 0.0490(56)
P vatoy -0.0005(4) -0.0016(4) -0.0024(5) -0.0043(13) -0.0057(20) -0.0071(15) -0.0126(28) -0.0155(31) -0.0172(23)
Pvoop10°  0.0005(22) 0.0212(156) 0.0432(198) 0.0846(533) 0.1350(726) 0.1911(609) 0.442(116) 0.567(145) 0.700(138)
Pvopol0?  0.001(4) 0.070(65) 0.128(66) 0.249(172) 0.406(217) 0.572(189) 1.313(341) 1.67(418) 2.067(429)
P'vbool0®  0.001(6) 0.148(167) 0.239(142) 0.468(364) 0.775(418) 1.092(374) 2.486(636) 3.135(773) 3.896(864)
Pvold®  0.001(4) 0.135(170) 0.198(132) 0.390(336) 0.659(362) 0.931(327) 2.106(532) 2.648(646) 3.307(779)
P'vooos10%  -0.0016(25) -0.048(28) -0.111(55) -0.234(135) -0.385(220) -0.530(168) -1.249(330) -1.628(408) -2.015(371)
E'Vitoor. 007(2) -0.15(3) -02003) -0.26(5) -0.30(5) -0.34(3) -0.45(4) -0.49(5) -052(3)
E vy 007(2) -0.15(3) -02003) -0.26(5) -0.30(5) -0.34(3) -0.46(4) -0.49(5) -052(3)
E'voopl0®  002(7) 0.39(28) 0.64(29) 0.87(45) 1.21(49) 155(37) 2.65(46) 2.98(55) 3.47(60)
Evoool0®  0.003(10) 0.11(9) 0.16(8) 021(12) 030(12) 0.33(9) 0.65(11) 0.72(13) 0.84(16)
Evboold?  0.002(12) 0.19(20) 0.25(15) 033(Q) 048(21) 0.62(16) 1.04(17) 1.14(20) 1.34(27)
Evoold®  0.001(7) 0.15(18) 0.18(12) 0.24(18) 0.35(16) 0.46(13) 0.76(13) 0.84(15) 0.98(22)
Evoooel0®  -0.004(6) -0.066(36) -0.124(59) -0.182(83) -0.259(111) -0.322(75) -0563(102) -0.642(115) -0.750(119)

my -357 -351 -346 -3.36 -3.34 -334 -325 -3.25 -3.26
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Table 3.5 Vapour-liquid coexistence properties of krypton from molecular simulation using the two-body Barker et al. [Bar74]

+ three-body (DDD + DDQ + DQQ + DDD4) intermolecular potentials.

*

a
0.750 0.825 0.850 0.875 0.900 0925 0950 0975

r 0.712(6) 0671(9) 0.642(9) 0.631(8) 0616(7) 0.585(14) 0.528(23) 0509(23)
Plu 0.051(75) 0.026(45) 0.028(35) 0.036(39) 0.040(26) 0.048(48) 0.045(77) 0.066(71)
P ooy -0.899(46) -0.848(23) -0.807(15) -0.784(21) -0.758(12) -0.703(20) -0.616(40) -0573(34)
P oop 0.390(25) 0.306(12) 0.273(9) 0.255(11) 0.233(7) 0.202(13) 0.157(13) 0.138(12)
P Looo 0.127(9) 0.098(4) 0.083(3) 0.082(4) 0.074(2) 0.064(4) 0.049(4) 0.043(4)
PLbgo 0.0253(18) 0.01949) 0.0172(7) 0.0160(8) 0.0146(5) 0.0125(9) 0.0095(9) 0.0084(8)
P oo 0.0022(2) 0.0017(1) 0.0015(1) 0.0014(1) 0.00125(5) 0.0011(1) 0.0008(1) 0.0007(1)
P boos -0.135(11) -0105(3) -0.096(2) -0.087(4) -0079(2) -0.071(3) -0.056(3) -.049(4)

E L tot cor. -4.28(3) -3.98(6) -3.83(5) 372(5) -359(4) -343(8) -3.13(10) -300(11)
E L 2body -4.49(4) -4.08(7) -3.97(5) -3.88(6) -3.75(4) -355(8) -3.23(10) -310(11)
E Looo 0.183(11) 0.152(4) 0.141(3) 0.134(4) 0.126(2) 0.115(5) 0.098(4) 0.090(5)
ELobo 0.049(3) 0.040(2) 0.037(1) 0.035(1) 0.033(1) 0.030(1) 0.025(1) 0.023(1)
E b 0.0082(6) 0.0067(2) 0.0062(2) 0.0058(2) 0.0055(1) 0.0049(2) 0.0041(2) 0.0038(2)
ELooo 0.00061(4) 0.00050(2) 0.00046(1) 0.00043(2) 0.00041(1) 0.00036(2) 0.00030(2) 0.00028(2)
E L oo -0.047(4) -003%(1) -0.0372(5) -0.035(1) -0.082(1) -0.030(1) -0.027(1) -0.024(1)
mL -362 -337 -338 324 -315 -3.24 320 -317

r'y 0.0105(12) 0.0203(15) 0.0246(20) 0.0348(37) 0.0429(17) 0.0477(31) 0.0578(33) 0.0737(61)
Py 0.0074(12) 0.0148(18) 0.0183(25) 0.0253(50) 0.0316(25) 0.0350(45) 0.0409(46) 0.0507(104)
P v 2body -0.0005(3) -0.0020(6) -00027(8) -0.0054(17) -0.0073(9) -0.0095(16) -0.0146(14) -0.0224(42)
Pvoon10®  0.006(6) 0.0374(148) 00653(232)  0.171(77) 0.269(44) 0.338(67) 0.652(117) 1.20(29)
Pvopgl0?  0.018(24) 0.111(42) 0.185(75) 0.497(228) 0.795(142) 0.971(183) 1.86(36) 3.44(85)
Pvbpel0®  0.029(53) 0.205(81) 0.327(153) 0.908(423) 147(29) 1.74(32) 3.33(69) 6.22(1.58)
Pvoel0®  0.024(50) 0.168(71) 0.257(131) 0.738(345) 1.21(26) 1.40(25) 2.67(58) 505(1.31)
Pvoops10*  -0.036(24) -0.127(34) -0.225(58) -0.601(255) -0.978(156) -1.27(26) -2.38(40) -4.40(1.08)
EV totoor. -0.09(2) -0.18(3) -021(2) -0.294) -0.36(2) -0.38(3) 047(3) -0.58(6)
E v 2000y -0.09(2) -0.18(3) -021(2) -0.30(4) -0.36(2) -0.39(3) 047(3) -0.58(6)
Evoop10®  0.18(17) 05922 0.86(24) 156(55) 2.08(30) 2.31(3R) 3.64(46) 5.27(90)
Evopol0® 00405 0.14(5) 0.20(6) 0.37(14) 0.50(8) 054(7) 0.85(12) 1.24(22)
Evbool0*  0.05(10) 0.23(9) 0.30(11) 0.58(23) 0.79(14) 0.82(11) 1.28(20) 1.89(35)
Evoool0® 0048 0.16(7) 0.20(8) 0.41(16) 0.56(11) 057(8) 0.89(15) 1.33(26)
Evoom10°  -0.082(50) -0.149(38) -0.222(48) -0411(138) -0.567(77) -0.649(94) -0.996(113) -1.45(25)
My -352 -340 -3.37 325 -3.20 321 -319 -313
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Table 3.6 Vapour-liquid coexistence properties of xenon from molecular simulation using the two-body Barker et al. [Bar74]
+ three-body (DDD + DDQ + DQQ + DDD4) intermolecular potentials.

3

4
0.750 0.825 0.850 0.875 0.900 0925 0.950 0975

r 0.706(6) 0.671(9) 0.634(12) 0.617(15) 0599(11) 0.578(13) 0517(23) 0.511(26)
Plu 0.009(38) 0.024(53) 0.010(46) 0.030(64) 0.031(44) 0.059(61) 0.039(79) 0.060(89)
PL 2body -0.947(26) -0.875(29) -0.828(20) -0.779(31) -0.751(21) -0.696(34) -0.611(39) -0596(42)
P ooo 0.444(9) 0.364(15) 0.314(14) 0.288(18) 0.260(13) 0.235(14) 0.178(16) 0.169(20)
P Loog 0.140(3) 0.114(5) 0.098(5) 0.090(6) 0.081(4) 0.073(5) 0.054(5) 0.052(6)
PLox 0.0268(6) 0.0216(10) 0.0184(9) 0.0168(12) 0.0150(8) 0.0136(9) 0.0100(10) 0.0095(13)
PL o 0.0022(1) 0.0018(1) 0.0015(1) 0.0014(1) 0.0012(1) 0.0011(1) 0.0008(1) 0.0008(1)
P boos -0.191(5) -0157(5) -0.139(4) -0.128(5) -0.114(5) -0.102(5) -0082(5) -0.074(6)
E L ttoort 4.21(4) -3.96(6) -3.78(6) -3.63(8) -352(6) -340(8) -307(10) -3.02(13)
E L2y 4.48(4) -4.10(7) -393(7) -3.80(9) -3.64(7) -353(8) -317(11) -3.13(14)

E ooo 0.209(3) 0.181(5) 0.165(5) 0.155(6) 0.145(5) 0.135(5) 0.114(5) 0.109(7)
ELobg 0.054(1) 0.047(1) 0.042(1) 0.0402) 0.037(1) 0.034(1) 0.028(2) 0.027(2)
EL oo 0.0087(2) 0.0075(3) 0.0067(2) 0.0063(3) 0.0058(2) 0.0054(2) 0.0044(3) 0.0043(4)
ELox 0.00062(1) 0.00053(2) 0.00047(2) 0.00044(2) 0.00041(2) 0.00038(2) 0.00031(2) 0.00030(3)
E L ooos -0.067(1) -0.059(1) -0.055(1) -0.052(1) -0.048(2) -0.044(2) -0039(1) -0.036(1)
mL 341 -328 -333 -330 322 320 -318 -315

r'y 0.0109(17) 0.0227(27) 0.0245(27) 0.0313(36) 0.0414(45) 0.0513(67) 0.0566(46) 0.0746(33)
Pva 0.0075(16) 0.0163(31) 0.0180(31) 0.0229(43) 0.0301(57) 0.0366(97) 0.0419(66) 0.0514(54)
P v 2bocy -0.0006(3) -0.0025(8) -0.0030(8) -0.0046(11) -0.0075(15) -0.0113(34) -0.0125(21) -0.0227(20)
Pyvoop10®  0.0050(75) 0.0686(472) 00838(364)  0.148(62) 0.311(116) 0542(177) 0.717(105) 1.546(217)
Pvoool0®  0.009(24) 0.198(151) 0.233(111) 0.411(175) 0.883(345) 1.518(472) 2.031(296) 4.365(650)
Pvbel0®  0.002(50) 0.357(299) 0.400(216) 0.706(307) 1.559(640) 2.642(798) 3573(524) 7.67(121)
Pvowl0®  0.006(41) 0.282(251) 0.302(184) 0.534(241) 1.213(519) 2.039(613) 2.789(412) 5.969(982)
Pvoopsa10?  00317(242)  -0.299(163) -0.367(136) -0.637(291) -1.416(559) 2475(791) -3.293(514) -7.17(102)
EV wtoort, 0112 -0.21(3) -021(3) -0.27(4) -0.34(5) -042(6) -045(3) -059(3)

E v 2body 011(2) -0.21(4) -021(3) -0.27(4) -0.35(5) -042(6) -0.45(3) -0.60(3)
Evoop10®  0.15(25) 0.94(57) 1.08(45) 1.50(49) 2.39(66) 3.38(73) 412(34) 6.67(69)
Evopel0®  0.02(7) 0.22(15) 0.25(11) 0.34(12) 056(17) 0.78(16) 0.95(8) 1.54(17)
Evbolo”?  001(13) 0.34(25) 0.36(19) 049(17) 0.83(27) 1.15(23) 142(13) 2.29(27)
Evol0® 0029 0.23(18) 0.24(14) 032(12) 0.56(19) 0.77(16) 0.96(9) 1.55(19)
Evooos10®  0.078(65) -0.307(144) -0.356(120) -0479(168) -0.815(237) -1.158(234) -1.415(127) -2.316(241)

my -350 -334 -338 -3.32 -3.23 -319 -3.20 -3.13
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The coexigence properties obtaned from agon usng the BFW potentid are
summarised in Tade 3.1 and the BFW + three-body caculations are reported in Table
34. In Fgure 3.1, expaimentd daa for the vapour-liquid phase envelope of argon ae
compared with smulation results obtained in this work and data reported by Anta et d.
[Ant97] for the Aziz-Saman [Azi86] and Aziz-Samen + Axilrod-Tdler intermolecular
potentidds. The comparison with experiment in Figure 3.1 indicates that both the BFW
and Aziz-Saman potentids do not predict the liquid phase coexiding dendty of argon
adequately. There is generdly far agreement for the vapour-branch of the coexistence
curve. This contrasts with caculations using the LennardJones potentid, which
normaly yidds good agreement with experiment for liquid dendties The good
agreement often reported [Sad96b] with the Lennard-Jones potentid is fortuitous and
probably arises for the “effective’ many-body nature of the potentid. It is apparent from
Figure 3.1 tha genuine twobody potentids cannot predict the liquid phese densties of
argon adequady. The results obtained from the BFW and Aziz-Saman potentids are
amogt identicd.

Anta e d. [Ant97] reported that the addition of the Axilrod-Tdler term to the Aziz-
Saman potentid [Azi86, Az93] rexulted in a condderable improvement in the
agreement between theory and experiment as illudrated in Figure 3.1. In Figure 3.1 we
adso show tha the addition of the threebody term to the BFW potentid results in good
overdl agreement of theory with experimentad data The absolute average deviaions
(AAD) [Sad95] for the vgpour and liquid dendties are 36.4% and 2.3%, respectively.
The lower the vaue of the AAD, the closer the smulation values are with the
experimenta data The experimental liquid branch of the coexisting phase curves is well
reproduced by our results. The agreement with the vapour branch is not equaly good. It

should be noticed from the smulation data, that the threebody contribution to the tota
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potential energy is less than 0.7% in the vgpour Sde (in the liquid Sde it is greser than
3%). This means that the indusion of three body potentids does not significantly affect
the properties of the vapour. That is why we have smilar results in the vapour sde for
the smulations with only the twoebody potentid and the smulaions with two-body +
three-body potentids. The work of Anta e d. [Ant97, see Figure 3.1] for the Aziz +
AT potentids shows tha the cadculated vepour branch is shifted closer towards the
experimental curve. However, the AAD is about 10%. Therefore, even if ther results
ae more accurate, it seems that the incluson of the three-body potentids is not
aufficient to reproduce the experimentd data. We believe that this is due to a lack of
accuracy of the two-body potentid for vepour dengties. Interegtingly, in their work on
agon, Leonhard and Deiters [Leo00] observed behaviour smilar to our findings usng
the Hloucha & initio potentid [Dei99] + AT potentid. Using ther own ab initio
potentid + AT they found a behaviour smilar to Antaet d.

The contributions to both pressure and configurationa energy of the various
multipole terms to the three-body interactions of argon are identified in Table 3.4. The
contribution of three-body interactions to the vapour phase is negligible whereas they
meke an important contribution to the liquid phase The vaious three-body
contributions to the configurationd energy of the liquid phese of argon are compared
grgphicdly in Figure 32. Although Anta e d. [Ant97] reported vaues of densty,
temperature, pressure and configuraiond energies, they did not report the contribution
of three-body interactions to ether the pressure or energy. It is evident from both the
daa in Table 34 and the comparison in Fgure 3.2 that the triple-dipole term makes the
dominant contribution to three-body interactions. The other thirdorder multipole

interactions  (Uppo +U Uyo) Contribute approximately 32% of the triple-dipde

DQQ +

term. However, the effect of this contribution is offsst largdy by an approximately
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equad contribuion (26% of the triple-dipole term) from fourthrorder triple-dipole
interactions of oppodte dgn. A dmilar  behaviour is seen by the three-body
contributions of the pressure. Consequently, the Axilrod-teller term done is an excdlent
goproximation of three-body disperson interaction. This concluson is condgent with
earlier work [Dor71] on the relaive magnitude of three-body interactions It is adso
conagent with other work [Ba72b] on the rdative contributions of three-body
interactions to the third virid coefficient.

To the best of our knowledge, previous work on the effect of threebody interactions
on the phase behaviour of fluids has been confined exclusvely to argon. In Tables 3.2,
33, 35 and 3.6 we report caculaions for the vgpour-liquid coexigence of krypton and
xenon. The coexistence properties cdculated from twobody potentids are summarised
in Tables 32 (krypton) and 3.3 (xenon) whereas cdculaions incuding twobody and
threebody terms are found in Tables 35 (krypton) and 3.6 (xenon). The krypton and
xenon aoms ae condderably larger than argon and it can be anticipated that ther
increesed polarizability may result in an increese in the rdaive importance of three-
body interactions The comparison of experiment with theory for the vapour-liqud
coexigence of krypton and xenon is illugrated in Fgures 3.3 and 34, respectively. For
both krypton and xenon, the twobody potentids fal to represent the liquid phese
densties adequately whereas there is generdly far agreement for the vapour phase.
However, it is evident that the addition of three-body interactions results in very good
agreement of theory with experiment for sub-critica liquid-phase dendties. For krypton,
the AAD for the vgpour and liquid dendties ae 34.5% and 1.9% respectively. For
xenon, the average absolute deviations for the vapour and liquid dendties are 35.8% and

1.4%, respectively. It should be stressed thet in dl cases the agreement between theory
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and experiment represent genuine predictions and no atempt has been made to optimise
the agreement by dtering the intermolecular potentia parameters.

The rdative contribution of the various multipole terms (Tables 35 and 3.6) to the
three-body interactions of krypton and xenon is sSmilar to that observed for argon.
Interestingly, for xenon, the magnitude of the contribution from the fourth order triple-
dipoe tem (DDD4) is actudly dightly grester then the dipole-dpde-quadrupole
(DDQ), dpde-quadrupde-quadrupole (DQQ) and tiple-quadrupodle (QQQ) terms
combined. Therefore, for krypton and xenon, the Axilrod-Teler term aone is a good
representation of three-body interactions because the contribution of other multipole
termsis offset by the contribution from the fourth-order triple dipole term.

In Figure 35 we report the logarithm of the totd pressure (twobody + three-body)
vearsus the inverse of the temperature, for argon, krypton and xenon. The experimenta
data [Va75] ae dso shown. We plot only the vgpour pressure because the liquid
pressure is characterized by large errors. The smulated pressure is shifted down in
comparison with the experimenta data. This is amply due to the dengty shift observed

in the vegpour branch. In fact, for the vapour the man contribution to pressure comes

from the ided pat, P »T  r (see Eqg. (2.65)), S0 an inaccuracy in the density causes

an inaccuracy in the pressure.
A dgnificant eror relative to the totd pressure in the liquid sSde occurs because the
kingtic part and potentia part of the pressure are very smilar but with opposite sgn. For

example if we condder in Table 3.4 the vaue of the temperature T = 09 and the

*

rdlative liquid densty r = 0639, the kingtic pressure is R;, =T " r~ » 0.575. The

potentid part is:
P pot = PL2vaay * Plooo T Rlopo + Ploog T R ggo + PLoops »-0:54.
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The total pressure is P, » 0.035 which is just 15% of the two different contributions

Thus a smdl fluctuation in the vaues of both kinetic and potentid parts can cause a
sgnificant fluctuation in the totd pressure.

This work has not consdered the posshility of interactions from  three-body
repulson. Sadus and Prausnitz [Sad96b] used a three-body repulsve potentid [Shebt]
in conjunction with LennardJones and AT potentids. They found that three-body
repuison may offst the contribution of Axilrod-Teler interactions by as much as 45%.
However, this condusion is based largdy on approximate models [She66] of three-body
repulson that are tied cdosdy the LennardJones potentid. It has been suggested [Rit90]
that three-body repulson may improve the prediction of the thermodynamic properties
of xenon. Recently, Bukowsky and Szadewicz [BukOl1] reported cdculaions for argon
usng an ab initio potentid, which indudes three-body repulson potentids [Lot97h).
They found that the triple-dipole potentid adone is an excdlent gpproximation of the
totd three-body energy because the other contributions cance. Also our good results
obtained for argon, krypton and xenon without incuding threebody short-range terms
may indicate that those potentids do not contribute significantly to the vapour-liquid
coexistence. Bukowsky and Szaewicz dtribute the cause of the smal discrepancies to
the neglected quantum effects. Barker et a. [Bar71a] showed that these quantum effects
are repulsve and amount to 15-17% of the three-body contributions. They inferred that
thar induson might bring the cadculated coexigence curve even coser to the

experimentd data.



86

Chapter 3
1.10
5| . =
05— H - T, 5
H .o .. H
10— H 7 \—'A-.—|+ H
“? R
0.95 — |&ls “le H
be o
% 090 — i °...H HH
05 — ki B H
¥ [
0.80 — 2 i
20 * X
0.75 °..H fh
0.70 )
[ [ [ [ [ [
08 09

0.0 0.1 0.2 0.3 0.4

Figure 31 Comparison of expeiment (e, [Va75]) with cdculation usng the BFW

potentid [Bar71a] (OJ), the Aziz-Slaman potentid (<, [Ant97]), the Azz-Slaman +
Axilrod-Teller (+, [Ant97]) and the BFW + three-body ©DD + DDQ + DQQ + QQQ

+ DDD4) potentids (—+) for the vapour-liquid coexistence of argon.



Investigation of ThreeBody Interactions on the Phase behavior of Noble Gases 87

0.20
DDD
0.15 —
= 3
,.|-"+
E
0.10 — L+
- - ’+-_
E* +
0.05 — P
@0 T
U SRR
@ -9
® -9 DQQg
0.00 — %:::::::::-%:::ZZI@ZQIIZI%ZZ%ZQ:Q::::::::::x
QQQ
XKerommmmms P REREES X5 oo
XX XX
RN D_DD4
"X
-0.05 | I I |
0.50 0.55 0.60 0.65 0.70 0.75
r*

Figure 32. Comparison of the contribution of the various three-body terms to the
configurationa energy of the liquid phase of argon.
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Figure 3.3 Comparison of experiment (e, [Va75]) with cdculaion usng the two-body
potentiadl of Barker et a. [Bar74] (J) and the Barker et d. [Bar74] + three-body (DDD

+ DDQ + DQQ + QQQ + DDD4) potentids (+) for the vapour-liquid coexistence of

Krypton.
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Figure 34 Comparison of experiment (e, [Va75]) with cdculation usng the two-body
potentia of Barker et d. [Ba74] (IJ) and the Barker et d. [Ba74] + three-body (DDD
+ DDQ + DQQ + QQQ + DDD4) potentids (+) for the vapour-liquid coexistence of

xenon.
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Argon-krypton mixture

The reaults of Gibbs ensemble smulations for the vapour-liqud properties of argon
+ krypton are reported in Tables 3.7 and 3.8. In Tables 3.7 and 3.8, x denotes the mole
fraction of the liquid {) and vapour (V) phases. The motivation for studying the argon +
krypton mixture is tha it provides a rare example of a binay mixture for which
quantitatively accurate intermolecular potentids are avalable. Therefore, comparison of
the results of twobody only smulations with twobody + threebody smulaions dlows
us to make obsarvations concerning the role of three-body interactions. Caculations

were performed for both two-body and twebody + three-body terms. The temperature
of T'= 1148 (16315 K) was sdected because the vapour-liquid enveope a this

temperature is representative of the vapour-liquid phase of the argon + krypton system.
Since for pure fluids we found that the twobody + AT potentias represent the dominant
terms, we did not include the other multipole three-body terms (see Chapter 2).

A compaison of theory with experiment for the pressure-compostion behaviour of
argon + krypton is illudrated in Figure 3.6. In generd, there is good agreement between
theory and experiment [Sch75] for the ovedl phase enveope The liquid-phase
properties are predicted accuratdly whereas there ae noticesble deviations from
experiment for the vgpour-phase branch of the coexigtence curve. These obsarvations
ae conggent with the cdculations reported for pure component phase equilibria in
section 3.1 Interegtingly, the results for two-body orly and twobody + three-body
cdculdions ae dmod identicd. At a given pressure, three-body interactions do not
gopexr to have a ggnificant role in determining the coexisence compodtion. This is
despite the fact that the data in Table 3.8 indicates that three-body interactions typicaly

contribute approximetely 5% of the overdl configurationa energy.
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The pressuredendty behaviour of the agon + krypton mixture is illustrated in
Figure 3.7. The coexisence dendty of the vapour-branch is unaffected by three-body
interactions. In contrast, Figure 3.7 indicaes tha threebody interactions can
ggnificantly affect the coexiding liquid-phase densty. Experimenta dendty data is not
avalable for comparison with the cdculations In section 3.1 we hae reported a smilar
dengty-shift for the vapour-liquid equilibria of pure noble geses reaulting in good
agreement with experimenta data The reduction in the liquid-phase dendty can be
atributed to an increese in volume caused by an additiond repulsve influence of the

three-body term.

Table 37 Moecular smulaion results for the vapour-liquid equilibria of agon +
kryptona T~ = 1.148 using the two-body potentia.

* Kr Kr * * * * * * * * * *
P X|_ X PLtot R/tot r|_ rV ELZb Ev2b m_Kr M,k ”LAr M, o

00350 0.831(5) 0544(25) 0019(40) 0.031(6) 0.618(6) 0.032(3) -6.00(6) -039(4) -512 508 510 -512
00445 0760(11) 0.409(18) 0.066(44) 0.03%(7) 0.6196) 0.042(4) -580(9) -041(5) -504 523 -4.66 -4.62
00495 0.680(9) 0.329(38) 0.067(43) 0.048(17) 0.613(8) 00559) -550(8) -051(10) -534 533 448 -4.25
00543 0.665(8) 0.323(24) 0.062(40) 0.052(11) 0.620(8) 0.060(7) -552(10) -057(7) -525 528 -4.25 -4.18
00642 0547(7) 0257(30) 0.064(49) 0.058(15) 0.600(8) 0.067(8) -5.01(7) -063(12) -562 551 4.02 -399
00737 0475(6) 0216(18) 0.091(47) 0.067(19) 0.605(9) 0.093(10) -4.85(9) -0.82(9) -548 560 -3.88 -3.75
00787 0432(5) 0.177(18) 0.092(55) 0.070(20) 0.596(14) 0.095(10) -4.66(12) -0.80(10) -5.73 5.80 -3.69 -3.66
00837 0.385(4) 0.175(14) 0.106(52) 0.074(39) 0.592(10) 0.103(19) -451(8) -086(17) -5.73 -5.80 -3.66 -3.63
00933 0319(5) 0.148(12) 0.069(48) 0.082(29) 0.577(6) 0.121(13) -4.23(3) -100(13) -596 -5.99 -358 -352
00986 0266(5) 0.133(13) 0.070(55) 0.088(40) 0.573(14) 0.168(16) -4.08(11) -1.36(15) -620 6.14 -3.44 -340
01041 0225(6) 0.115(11) 0.113(30) 0.097(36) 0573(8) 0.165(16) -3.98(6) -1.31(14) -636 -6.30 -3.40 -3.36
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Table 3.8 Molecular simulation results for the vapour-liquid equilibria of argon + krypton at T = 1.148 using the two-body +
three-body intermolecular potential.

¥

—U

0035 00445 00495 00543 0.0642 00737 00787 0.0837 00933 0.0986 0.1041
X (ko) 0847(5)  0738(5) 0683(15) 0624(3)  0556(11) 0474(6)  044509) 03895  03124)  0264(2)  0.221(6)
X k) 0579(20) 0429(19) 0380(23) 0332(14) 0292(25) 0234(19) 0208(10) 018416) 01549  0133(6) 011912
Pl 0029(85) 003%55) 0048(7) 0071(62) 0083(75) 0086(79) 005981) 0073(76) 0069(50) 0081(86)  0.096(78)
Py 0033(7)  0036(7) 0044(11) 0047(18) 0063(24) 0066(19) 0063(19) 006%19) 0079(22) 0080(14)  0.090(19)
= 0973(47) -0918(44) -0886(51) -0828(30) -0812(50) -0764(54) -0.737(40) -0713(34) -0661(21) -0563(45) -0574(40)
Py 00086(22) -0.0085(26) -0.0131(37) -0.0144(68) -0.0267(80) -0.0353(82) -00245(71) -00367(74) -0.0446(91) -0.0479(58) -0.0668(66)
Pl 0340(22) 0304(7) 0282(11) 0261(17) 0246(12) 0214(11) 0186(17) 0177(18) 0145(12) 0111(13) 0.115(13)
Py 0.00024(11) 0.00020(8) 0.00040(15) 0.0003%(29) 0.00126(59) 0.00147(49) 0.00108(43) 0.00164(48) 000261(83) 0.00279(42) 0.00428(97)
L 0577(13) 0569(4) 0568(9)  0556(13) 0566(11) 0554(12) 0532(20) 0530(21) 0510(15)  0464(24)  0483(23)
rv 0036(4)  0038(4) 0049(6) 005310) 0077(13) 0087(9  0075(10) 00909  0105(11) 01097  0.133(10)
Ew 565(14) -527(4)  -512(11) -48511)  -474(11) -444(11)  42117) -40715  -376(11)  -337(15  -3.39(15)
Evab 0448  -040(4) -049(7)  -049(13) -071(13)  -0.75(9) 0658  -076(7)  -088(10)  -0895)  -1.04(8)
Ew 0196(8)  0178(3) 0.165@)  0156(7)  0144(5  0129(4)  0116(7)  011147)  00M(E) 00795  0079(5)
Eva 00021(8) 00017(4) 00026(8) 00021(11) 00051(17) 00054(14) 00046(11) 00058(11) 0.0080(19) 000839 0.0105(17)
M L(kn) 4.9 -5.16 -5.02 -531 -537 -5.49 562 5.7 -59 -598 -6.24
M (k) 4.9 -5.23 -521 -5.32 532 -5.49 566 -576 -59 -6.06 -6.19
M Lean 511 -4.63 -433 -4.23 -39 -375 382 -367 -357 -352 -341
M (A 515 -4.72 -4.44 -4.29 -3%8 -3.79 383 -368 -357 -351 -341




Chapter 3

94

0.12
H ...ﬁ
0.10 — B . i
A . #
2 I
0.08 — |'E|'|ﬁ‘l N [m
[ * i
P* [ ] [ ]
e I e
0.06 — . .
Haf . 4B
] i -
EES I A=
0.04 — .
et i
0.02 | | | |
0.0 0.2 0.4 0.6 0.8
X(Kr)

1.0

Figure 3.6 Comparison of experimenta vapour-liquid equilibria & T * = 1.148 (163.15
K) (-, [Sch75]) with cdculaions usng only twobody ([1) and twobody + three -body
(D) intermolecular potentias of argon + krypton.
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Figure 3.7 Comparison of the effect of two-body only (J) and twebody + three-body
(D) interactions on the vapour and liquid coexisence dendties and pressures of argon +

krypton.
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3.2 A simple relationship between two-body and three-body potentias

The introduction of the threebody potentid increeses the computing time of a
norma twobody potentid smulation by a factor of ten. This is the man resson to
adopt an effective potentid that accounts for the threebody effects without incurring
expendve routine caculations. Severd effective potentids have been proposed [Cop68,
Mur7l, Miy94, €94, van99]. Smit & d. [Smi92] pointed out that a convenient way to
account for three- and higher-body interactions condsts in usng par potentids that
depend on the dengty. In ther work they report the equaion of date of a fluid with a
paticular class of dendty-dependent potentid in terms of the equaion of dae and
energy of areferencefluid.

Andyzing the data from NVT Gibbs ensemble smulaions shown in previous
sections, we noticed that twe and three-body potentid energies are linked by a smple
relationship. We dso peformed standard NVT Monte Carlo [Sad99] smulations for 500
aoms of agon, krypton and xenon, to check if this rdationship holds for different
systems. The smulations were performed in cubic boxes, and the conventiond periodic
boundary conditions were gpplied [Sad99]. For par interactions, long-range corrections
were used to recover the full contribution to the intermolecular potentia (see Appendix
1), whereas threebody interactions were assumed to be zero a separdtions greater than
a quarter of the box length (see Appendix 2). A totd of 40000 cycles were used with
averages being accumulated after 20000 cycles. The twobody energy E.) was obtained
by averaging the contribution of the par potentid over dl didinct pairs of aoms
whereas the three-body energy €3) is the average of the Axilrod-Tdler potentid for dl

digtinct triplets of atoms.
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The ratio of threebody (E3 to two-body (E;) energies obtained from NVT Gibbs
ensamble smulaions is shown in Figure 3.8 as a function of reduced number densty,
r”. Also results from NVT Monte Carlo Smulations, reported in Table 3.9, are shown in
Figure 38 to supplement Gibbs ensemble data The temperatures used covered the

temperature range for vapour-liquid coexigtence of a pure fluid.

Table 39 NVT Monte Calo smulaion results for argon, krypton and xenon a
different dengties and temperatures.

r T EAT EZJ I:)AT I:)2b
A 0350 130 0031(1) -197(2) 0033(1) -0.24(5)
0400 120 0044(2) 2352 00532 -033(7)
Kr 0450 125 00682 -2634) 00912  -0.36(9)
0475 100 0074(1) -282(1) 0106(2) -059%5)
Xe 0375 120 00582 -217(2) 0065(2)  -0.29(5)

0425 100 0075(2) -254(2) 0095(3)  -0.49(4)

It is apparent that the ratio is a linear function of dendty which is conggtent with
theoreticd condderations [S€94, Mur7l]. Furthemore, within  the datidicd
uncertainties of the smuldion, the results for argon, krypton and xenon appear to obey
the same rdationship. A leasst-squares fit of the smulaion daa for argon, krypton and
xenon yidds the following empiricd rdationship between twobody and three-body
energies.

2rE,
Zes®

E, =- (33

As E, is genedly negaive, E, is podtive which is condstent with smulaion data
The above equaion is a remarkably smple result that fits dl the smulation data with an

average absolute deviation of 2.0 %. The only congtants in Eq. (3.3) are the triple-dipdle
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coefficient n, and the par potentid parameters e and s. The rdationship is independent

of temperature for the range of dengties a which the fluid isnormdly aliquid.

The benefit of Eg. (3.3) is tha an accurate edimate of the three-body energy
contribution for fluid dendties can be obtaned from twebody cdculaions done To
test the accuracy of this rdationship, we performed Gibbs ensemble smulations for the
phase equlibria of argon with the energies cdculated from the BFW potentid plus the
contribution from Eq. (3.3). The Gibbs ensamble cdculations were peformed by first
determining the contribution of twobody interactions. The two-body contribution was
used in Eqg. (3.3) to determine the contribution of three-body interactions. The combined
two-body and threebody energes were then used to determine the acceptance of the
Monte Carlo move. The reaults of these cdculations are compared in Figure 3.9 with
both experimentd data [Va75] and the full twebody + three-body cdculaion reported
in sction 31 [Ma99]. The comparison indicates that the results obtained usng Eq.
(3.3) are nearly identicd to the full two-body + three-body caculations.

It should be noted thet, drictly spesking, the vdidity of the rdationship is tied to the
pair and threebody potentids used in the smulaions, and only three different atomic
gpecies were consgdered. However, if these potentids genuindy reflect the contribution
of twobody and threebody interactions, the result could be vdid generdly. We
emphadse tha the rdationship should not be used for effective potentids such as the
Lennard-Jones potentid. The accuracy of the dngle relationship for argon, krypton and

xenon may aso indicate that the result is vaid for other atoms.
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Figure 3.8 The ratio of threebody and two-body energies obtaned from molecular
smulatiion at different reduced dengties Results are shown for argon (D), krypton (+)

and xenon (C). The line through the points was obtained from Eq. (3.3).
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potentid (D) and the BFW + three-body contribution from Eq. (3.3) potentid (O).
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Chapter 4

Shear Rate Dependence of Pressure, Energy and Viscosity in

Planar Couette Flow

In this chapter, NEMD smuldions of the shear viscodty of argon and xenon are

presented. In the smulations with argon, the atoms interact via the Barker-Fsher-Watts
(BFW) [Ba7la) and Axilrod-Teler (AT) [Axi43] intermolecular potentids (see
Chapter 2). In the amulaions with xenon, the atoms interact via the potentid devised
by Baker e d. [Ba74] and AxilrodTeler (AT) [Axi43] potentids (see Chapter 2). An
adequate system sSze of 500 atoms was used, resulting in grester Satisticad accuracy
than reported elsewhere [Lee93, Leed4]. We show that the pressure is clearly not a
liner function of g2, but can be described by an andytic g2 dependence. This
rlaionship is independent of the three-body potentid interaction and is only a
consequence of twobody interactions. Our results dso demondrate that the shear
viscosty is not necessxily a linear function of g¥2. The dtatistical accuracy of the
viscosty data is however not sufficient to unambiguoudy determine an  accurae
dependence on the drain rate. In section 4.1 we give the deals of the smulaions
performed and report the results in section 4.2. In section 4.3 we andyze for the non-

equilibrium case the ratio between the threebody energy and twebody energy as done

in section 3.2.
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4.1 Simulation details

NEMD Algorithm
The NEMD smulations were performed by applying the standard SLLOD equations
of motion for planar Couette flow (see Chapter 2). The SLLOD equations for a one-

component  aomic fluid flowing with sreaming vedocity vx in the x-direction and

congtant dtrain rate ¢ = %—\;‘ were gpplied (see Eq. 2.72 and Eq. 2.77). The equations of

motion were integrated by a 4" order Gear predictor-corrector scheme (see Chapter 2),

with a reduced integration time step (t =tve/ms 2) of 000L A non-ecuilibrium
gmulaion trgectory is typicdly run for 250000 time Steps. To egulibrate the system,
each trgectory is firsg run without a shearing fiedd. After the shearing fidd is switched
on, the firg 50000 time geps of each trgectory are ignored, and the fluid is dlowed to
rdax to a non-equilibrium gdeedy-dtate. In the smulations with argon aoms averages
were taken over 5 independent trgectories, each darting a a new configuration. Thus,
evay pressure, energy and viscodty data point represents a totd run length  of
5x200000=1C° time seps. In the smulaions with xeron, averages are taken over 2

independent trgectories, resulting in the same Satigticd accuracy.

Intermolecular potentials

The totd intermolecular potentid adopted condsts in contributions from two-body
interactions (uxp) and three-body dispersion interactions (Usp). As previoudy mentioned,
for argon we used BFW + AT potentiads and for xenon Barker et d. [Ba74] + AT
potentids. The twobody potentids were truncated a hdf the box length and

aopropriate long-range correction terms were evaduaed to recover the contribution to
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the pressure and energy for the full intermolecular potentiad (see Appendix 1). The
three-body potentias were truncated a a quarter of the box length (see Appendix 2) and
the long-range correction terms for energy and pressure were evauated as.

Long- —Nr2 PSen
ELONG-range — N ag( ) (F1M130 T3 )Ugp (T, Trs, Fa) 0,0 (41

r,<r, <t

T
r.>r
573

where g© (1), 113, I3 isthe 3¢ order redid distribution function written as

9(3) (f2iN3,T23) =9 @ (r2)g @ (rl3)g(2) () 4.2)
using the superposition gpproximation [Bar71a] and setting g ‘@ (r,3) to unity.

Thelong-range correction for the three-body pressure was caculated as.

Long- range
3E;,

Pslgong -range _— v

(4.3)

where we used the fact that the AxilordTeler potentid is a homogeneous function
[Bar7la, see dso Appendix 2].

Before agpplying the SLLOD dgorithm using these intermolecular potentids, we
repested gmulations on a LewmadJones (LJ) flud a the LJ triple point

(T" =0.722,r * =0.8442, where the superscript * stands for reduced units), reported by

Evans et d. [Evad9]. Our smulations were in excelent agreement with these results,

and are displayed in Figures 4.1, 4.2 and 4.3. The pressures and energies were found to

2, wheress the viscosity varied as g2, as previoudy observed.

vay linearly with g*
We further note that al subsequent smulations performed on the BFW + AT and
BWLSL + AT fluids are made with exactly the same computer program. The only
difference is the form of the intermolecular potentids, and hence forces, used in the
cdculaion of fluid propeties This limits any possble errors that could be introduced

by comparing results generated from different code.
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Figure 4.1 Comparison of Evans et d. [Eva89] pressure (O) with our own (X) for a
system of 2048 Lennard Jones atoms and a cut-off =3.5 (reduced units).
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Figure 4.3 Comparison of Evans et d. [Eva39] viscosty (O) with our own (X) for a
system of 2048 Lennard-Jones atoms and a cut-off =3.5 (reduced units).

4.2 Results

The results of the NEMD smulations for the pressure, energy and shear viscosity of

argon a different gtrain rates are reported in Table 4.1. Results for xenon are reported in

Teble 4.2. The norma convention was adopted for the reduced density (r " =rs?),
temperature(T” =kT/e), energy (E =E/e), pressure (P =Ps 3/e), visosty
(h" =hs ?(me) '?) and srain rae (§° =g[s (m/e)"?]). All smulaions for argon
were performed a the state point (r ,T") = (0592 [L034 gecm®], 095 [135 K]); for

xenon at the state point ¢, T") = (0.6 [2222 gem™], 09 [2529 K]). These points were
chosen because they ae representative of the liquid phase being approximatdy mid-

way between the triple point and the criticd point (for both argon and xenon). The
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number of aoms in our systems was N = 500, and the Sze of our Smulaion cdl, L, was
9453 (reduced units) for argon and 9410 (reduced units) for xenon. The three-body
terms were truncated at 0.25L, whereas the twobody terms were truncated at 0.9..
These cut-off digances further ensured that the tota non-eguilibium par digribution
function was congant (i.e, equa to unity) over the range of r where long-range

corrections are gpplied.

Table 4.1 Pressure, energy and shear viscosity at different strain rates for argon.

2-body potential without 3-body potentiad  2-body potential with 3-body potential

* * * * * * *

g P Econf . h P Econf . h

0.0 -0.103(2) -3.682(2) 0.017(2) -3557(1)

0.078 0.105(1) -3.683(1) 0.72(2) 0.019(2) -3555(1) 0.72(3)
0.1755 -0.108(1) -3679(2) 0.754(5) 0.020(2) -3554(1) 0.742(6)
024 0.102(2) -3.683(2) 0.747(6) 0.022(1) -3552(1) 0.732(6)
0.312 -0.103(2) -3677(2) 0.753(2) 0.024(2) -3.551(2) 0.733(5)
04 -0.099(1) -3.673(2) 0.747(1) 0.031(2) -3.550(2) 0.725(1)
0.5 -0.092(4) -3.667(3) 0.746(6) 0.034(3) -3541(1) 0.725(6)
0.702 0.079(2) -3.656(1) 0.727(2) 0.054(1) -3529(1) 0.719(2)
0.9555 -0.050(1) -3631(2) 0.715(2) 0.084(2) -3511(1) 0.703(2)
1.248 0.002(1) -3595(2) 0.699(2) 0.135(1) -3.480(1) 0.689(1)
1.57% 0.076(1) -3558(1) 0.677(2) 0.214(1) -3.443(1) 0.668(1)
195 0.179(2) -3.506(1) 0.653(2) 0.312(2) -3.396(1) 0.644(1)

Table 4.2 Pressure, energy and shear viscosity at different strain rates for xenon.

2-body potential without 3-body potential 2-body potential with 3-body potential

* * * * * * *

g P Econf . h P Econf . h

00 -0161(1)  -3.696(1) 0.012(4) -3512(2)

02 -0156(6) -3672(4)  0.77(1) 00150(1)  -3509(1)  0.76(1)
04 -0152(5) -3688(2  0772(3 00243(9)  -35022(4)  0.765(2)
06 -01382)  -3683(5)  0.758(4) 00387(2)  -34933(1)  0.749(1)
08 -01187(8) -3660(1)  0.753(4) 0.065(1) -34795(6)  0.739(1)
1 -0088(6) -36354(7) 0.7438(7) 0.092(2) -34628(8)  0.7263(8)
12 -00527(1) -3611(2) 07332 0.132(3) 34433  0.716(2)
14 -000739) -35875(5) 0.717(1) 0.184(4) -34211(1)  0.706(1)
16 0046(3)  -35577(4)  0.7021(3) 0.237(1) -33%5(1)  0.6892(7)

18  01073(6) -35304(6) 0.6882(9) 0298(1)  -336893) 0.6789(8)
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The uncertainties in the time averages for the energy, pressure and viscosty, reported
in Tables 4.1 and 4.2, represent the standard errors of the averages over 5 independent
non-equilibrium  trgectories for agon axd over 2 indegpendent  non-equilibrium
trgectories for xenon. The data include cdculaions with the two-body potentid done
and a combined twobody + AT potentiad. We confirmed that the two ad three-body
energies and pressures a equilibrium were correct by comparing them with independent
caculations of these quantities obtained by Monte Carlo smulations [All87].

These reallts, and vaious atempts to fit the smulation data, are illudrated in
Fgures 4.4 - 4.10. In Tables 4.3 and 4.4 the coefficients of the fits are presented, as well
as their respective erors. Additiondly, the coefficients of both fitted equations and the
absolute average deviations (AAD) [Sad95] are given. The AAD is a measure of the
overdl accurecy of the agreement between the fits and the dmulaion data and is

defined as

6 simul. _ it
AAD(%)=100" a }|f I (sngnZI f f (gi)| (4.4
As| o MG) |

where s is the number of data points, f ™' (g;) is the Smulation vaue of the quantity

considered (pressure, energy or viscosity) as a fundtion of g; and f (g ) is the vaue

teken from thefitting curve.
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Table 4.3 Coefficients of the fits and relative errors for argon.

*

*

a b AAD %
P=a+ bg*  00032(6) 0.1039(5) 26.72
P=a+ bg? 0.0164(6) 0.0781(4) 3.97
E=a+bg ¥ -35607(4) 0.0592(3) 0.08
E=a+bg?  -35554(4) 0.0430(2) 0.09
h=a+bg? 08002 -0.105(2) 1.60
h =a+ bg 0.752(2) -0.0535(8) 0.74
h=a+bg¥ 07360(8)  -0.0339(5) 0.45
h=a+tbg?  07279(7)  -00229(3) 0.69

Table 4.4 Coefficients of the fits and relative errors for xenon.

*

a b’ AAD %
P= a+bg¥®  00027(2) 01054(3) 1604
P= a+ bg? 0.0108(2) 0.0868(3) 349
E= a+bg*?  -35224(1) 0.0616(1) 008
E= a+ bg? -3.5004(1) 0.0447(1) 004
h=a+bg" 084902 -0.125(2) 086
h=a+bg 078632  -0.0598(8) 0.33
h=a+bg¥ 076548  -0.0367(5 031
h=a+ bg? 0.7549(7)  -0.0247(3) 057

Mode-coupling theory [Kaw73] predicts that the pressure of a fluid under shear hes a

linear dependence with g'2. To test this prediction, we plot the totad pressure of the

fluid agang ¢*? in Figure 44(a) for argon and in Figure 45(@) for xenon. If the

pressure were a linear function of g2 one would expect random datistica fluctuations

in the data points about the linear fit. However, a careful andyss of the data suggedts a

systematic deviation from the expected g*/? linear behaviour.
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In Fgure 44(b) for argon and in Fgure 45b) for xenon the tota pressure is

presented as a function of 2. We find that the pressure is more closdy represented by

an andlytic ¢ ? dependence.
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Figue 44a Totd pressure of agon as function of ¢*?2 usng 2body + 3-body
potentias.
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Figure 4.4b Totd pressure of argon as function of ¢ using 2body + 3-body potentias
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Figure 45a Totd pressure of xenon as function of g*2 usng 2body + 3-body
potentids.
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Figure 4.5b Tota pressure of xenon as function of g # using 2body + 3-body potentias.
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For argon a equilibrium, a pressure of approximady 1 MPa is predicted compared
with an experimenta vaue of 4 MPa [Va75]. The man contribution to the overdl
pressure comes from the kinetic component and twobody interactions which are of
gmilar magnitude but of opposte sgn. This means tha smdl ddidicd fluctuations in
the two-body contribution can greetly affect both the magnitude and dgn of the totd
pressure. Unfortunately, a samilar comparison for the xenon pressure at equilibrium is
not possible because to the best of our knowledge, experimenta data for the State point

we used are not available.

To determine whether the ¢? dependence is due to the addition of three-body
interactions, we plot the twobody and full two plus three-body contributions to the
total pressure separady in Figures 4.6a and 4.6b (for argon and xenon respectively).
The results for the twobody pressures are obtained from smulaions involving only the
two-body BFW potentid interactions, without the threebody terms. It is evident that the
g2 dependence is caused by two-body interactions. The threebody contributions serve
only to shift the pressures higher by gpproximatdy 0.1 for argon and 0.18 for xenon.
Although it could be reasonably expected that the three-body contribution to the totd

pressure might depend on drain rate, our Smulation results suggest that any dependence

isvery week for the Srain rates covered.
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Figure 4.6a Totd pressure of argon usng only twobody potentid (O); tota pressure
using 2-body + 3-body potertids (@).
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Figure 4.6b Totd pressure of xenon using only twobody potentid (O); tota pressure

using 2-body + 3-body potertids (@).
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The configurational energy per patide is presented as a function of g2 and g2 in

Figures 4.7 (ab) for argon and Figures 4.8 (ab) for xenon. The E vs. g2 plot does

2

show a wesk systematic departure from linearity. For argon the fits in %2 and g2 are

smilar in accuracy, but for xenon the fit in g2 is much better. The coefficients of the

fits, dong with the absolute average devidion are presented in Table 4.3 for argon and

in Table 4.4 for xenon.

-3.36

-3.40 —

-3.44 |

E*

-3.48 —

-3.52 —

()"
Figure 4.7a The 2body + 3-body potentid energy of argon as function of g=/2.
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Figure 4.7b The 2body + 3-body potentid energy of argon as function of 2.

'2
(gf

-336
E
-3.40 —
E*
-3.44 —
-3.48 —
-

X

352 —
I I I I
0.0 05 10 20 25

15
@)

Figure 4.8a The 2body + 3-body potential energy of xenon as function of /2.
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Figure 4.80 The 2body + 3-body potential energy of xenon as function of g 2.

The shear viscosty of the fluid, caculated as h :T’ is plotted againg ¢

in FHgure 49 for agon and in FHgure 410 for xenon. The viscodty is not a smple
function of §¥?, which is condstent with the concluson reached by Travis e d

[Tra98]. The gatigicd erors in our viscosty cdculdions are not sufficiently smdl to

unambiguoudy determine the functiond form of the viscosty profile Any fit of h vs.
g" is reasonable, where 1/2 £ n£ 2. For argon however, when the data is extrapolated
to zero dran-ae, the vaues of the eguilibrium viscosty predicted by the g, g*2 and
g2 fits [(757 £1)” 107,(741+1) 107,(733+1)" 10'Nsmi, respectivdy] are in good
agreement with the experimental vaue of 7402 ~ 10’ Nsm? [Var75]. The g¥? fit

actualy gives the worst agreement [ (805 + 3)” 107 Nsmi9] with the experiment.
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Figure 4.9 Viscosty of argon as function of the drain raie. The lines illugrate different
fits with drain rate dependence to the power of (@ 1/2, (b) 1, (¢) 32 and (d) 2. The
parameters of thesefitsarein Table 4.3.
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Figure 410 Viscodty of xenon as function of the drain rate. The lines illudrate
different fits with strain rate dependence to the power of (a) 1/2, (b) 1, (c) 3/2 and (d) 2.
The parameters o these fitsarein Table 4.4.
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Our results differ to those of Lee and Cummings [Lee93, Leed4], who observed the

standard §*? dependence of the pressure with drain rate. Lee and Cummings used a

sysdem sze of 108 agon aoms for both the BFW and BFW + AT cadculations.
Quantitative error estimates were not reported with their data Normdly, large errors in
pressure can be expected for smulaions involving such a smdl number of aoms
which can hinder the correct identification of the strain-rate dependency of pressure. We
repeated their smulations for 108 argon atoms at the same date point with only the two-
body BFW potentia, and present the results for the pressure and energy dependence on
dran rae in Fgures 411 and Figure 412, respectivdy. Our smulaions were
performed by time averaging over a tota of 2x10° time-steps, and our dtatistics are thus
more reliable. We do not indude long-range corrections to this set of data, which would
only add a congant term to shift the pressure and energy profiles. It does not change the
shape, which is what we are interesed in. Once again our results confirm the ¢?2
dependence of both pressure and energy.

We make the observetion that a sysem size of 108 particles is actudly too smdl to
account fully for dl the possble three-body interactions, and for this reason we
performed the 108 aom smulations only with the twebody BFW potentid. The cut-off
vaue for the threebody potentid should not exceed one quater of the length of the
smulation cdl, for geometricd condraints imposed by the three-body interactions (see
Appendix 2). In thar system, Lee and Cummings used a cdl length, L, of 5.67 (reduced
units). Their cut off radius was 0.5L = 2.835 (reduced unitg, which is too large for their
gndl system sze It is primaily for such reasons tha we choose to study a larger

systemn size of 500 atoms.
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Figure4.11a Total pressure of argon asfunction of g*/? for 108-atom system.

0.25

0.20 —

0.15 —

P*

0.10 —

0.05 —

0.0 | | | |
0.0 05 10 15 20 25

@)
Figure4.11b Totdl pressure of argon asfunction of g2 for 108-atom system.
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Figure 4.12a Potentia energy of argon as function of g/ for 108-atom system.
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Figure 4.12b Potentia energy of argon as function of g 2 for 108-atom system.
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The pressure tensor of the fluid was cdculaed by the standard Irving-Kirkwood

expression [Irv0], modified to indude 3body contributions (see Appendix 2):

P p %‘18".':%

8‘ _
<P>=\% a #+a a N +a a a [rIJF(”)k +r|k|:(|1f(k)3J +r, F(J3|3| (45)

i=1 i=1 > i=L  j> k>j
where p; is the peculiar momentum of atom . Fifbis the two-body force between aom |

3b
and j, and tems involving F(ab K -1;;';“‘ ae the corresponding three-body

ab

contributions to the total force. The definition of the pressure we used is one third of the

of the trace of the pressure tensor (see also Chapter 2):
1 1
P= §Tr<P) =§<PXX +B, +P,) (4.6)

To check that there was no error in the evduatiion of Eqg. (4.5), we cdculaed the
configurationd pat of the pressure by another independent method, namey by
integrating over the total nonequilibrium par didribution function. This method will

dlow us to caculate the twoebody potentid contribution to the pressure. The three-body

potential  contribution to the pressure was checked by the rdationship P =3E/V
([Bar7la], see dso Appendix 2). Since we keep the temperature and density condant,
the kinetic contribution to the pressure is congtant and given smply by PK™ =r T (see
Eq. (2.65)).

During the smulation we cdculaed the par radid didribution function, g(r), via Eq.
(293). Therefore, we were able to cdculate the twobody potentid pressure in two
ways directly usng Egs (4.5) and (4.6) (2body potentiad part) and indirectly using g(r)
with Eq. (2.101).

Following the same procedure, we caculated the twobody potentid energy directly

using the expression:
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1/6" o
Eenlaayr @
=1 j>i

and indirectly usng Eg. (2102. Furthermore, we cdculated the quantity n(r) usng Eq.
(296) during the same smulation to caculae the shear viscosty indirectly via Eq.
(2.103).

In Table 4.5 we show the two-body components of the pressure, energy and viscosity
(for argon) cdculated by Egs (2.101), (2.102) and (2.103) dongsde of the direct vaues
for different strain rates ¢. For every vdue of ¢, the quantities were calculated over a
sngle trgectory of 50000 time-steps. Very good agreement (up to the fourth decimd
place) is found between the direct caculations and those involving g(r,g) axd n(r,g).
This agreement suggests that the observed dependencies of the pressure, energy and
viscodty with drain rate are not a result of an error in the direct calculdions of these

properties.

Table 4.5 Two-body contributions of the pressure, energy and viscosity of argon.

g P2b0dy P2body EZbody EZbody h 2body h 2body
(dmulation) (g(r.,g)) (smulation) (g(r,g)) (smulation) (n(r,g))

0.0 -0.7136 0.7136 -3.6384 -36332 - -

0.702 -0.6720 0.6720 -3.6118 -36118 0.6017 0.6016
0.9555 -0.6382 -0.6383 -3.5941 -35%41 0.58%9 0.58%9
1.248 -0.5869 0.5870 -3.5547 -3.5547 05837 0.5837
1549 -0.5018 0.5019 -3.5165 -35165 05671 05671
1.95 -0.4045 -0.4046 -3.4738 -34738 0.5436 0.5436

In Figure 4.13 we display g(r,g) and n(r,g) for the fluid $earing with a drain rate
of g° = 19. Additiondly, we indude g(r,g) & equilibium (§" =0) for comparison

purposes. The difference between g(r,g) for g° =0and g = 1.95 reflects the change
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in the fluid dructure with imposed drain rate, which is to be expected. It is wel known
that g(r,g) (Eq. (294)) is no longer spherically symmetric a large values of g [Evad(],

but becomes distorted a an angle of 45 degrees to the fluid velocity streamlines.

3
— g(r*) equilibrium
2 —
1 — b P
0 — l| "1.1 _‘;" ‘H-'-"lq'-".-M"."'"""m-ﬁﬂll-'-l-‘ﬂ--l-'d—-u
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Figure 413 g(r,g) ad n(r,g) for the argon fluid shearing a the highest strain rate
used (g =1.95). g(r,g) a equilibrium (g~ =0) is aso reported.

There is an additiond check we can peform to ensure that the SLLOD agorithm
was correctly implemented, and that the pressure tensor was correctly cdculated. For

thermodtatted planar Couette flow, the rate of energy disspation may be expressed as
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. 9 p.p
H(t =-VP,g-aQ] —p'mp' (48)

where H(t) is the time derivative of the total internal energy. For the agorithm to be

working correctly, and for the shear stress to be correctly cdculated, the right-hand-side
(RHS) of Eq. (4.8) must equd the left-hand-side (LHS) for al t This was indeed found

to bethe casein dl our smuldions, as seen in Figure 4.14.

8000
&
4000 —
4
o +
Dissipation
rate

-4000 | | | |
0.0 04 0.8 1.2 1.6 2.0
time*

Figure 4.14 Comparison of RHS of Eq. (4.8) (+), and LHS (0). Note that a t'=0 the
drain rate isimposed, and the fluid takes time to relax to a non-equilibrium Steady Sete.
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Figure 4.14 digplays the results for a Smulation where the shear dress is applied at
=0, from an equilibium state The high pesk close to t'=0 reveds tha an initid
amount of energy, provided by the shearing, goes to change the internd Sructure of the
fluid, from an equilibrium date to a norrequilibrium one. Referring to Fgure 4.13, this
amount of energy is utilized to digort the equilibrium g(r). After this initid trangtion,
the system reaches a steady State.

Additiondly, we checked that the hydrodtatic pressure caculation was correct by
cdculating the disspation for a fluid undergoing planar dongation. The disspation is
rdaed to differences in the diagond dements of the pressure tensor, and the disspation
rateisgivenas

H(t) =-Ve[p, - P, |- ag b 4.9)
7 m
Here e is the dongation dran rate, and the fluid expands in the x-direction, whilst
gmultaneoudy contracting in the y-direction. Deals of the dmulation dgorithm for
planar eongation can be found dsewhere [Tod97, Tod99]. Our smulations confirmed
the equivaence of the RHS and LHS of Eq. (4.9).

Previous work [Ryc88] that had attempted to show the andytic dependence of the
viscosty on g was criticized for the relatively high rates of srain used [Tra98]. Large
dran raes can induce unwanted dring phases, i.e, highly ordered <olid-like
configurations. These dring phases aise for high Reynolds number flows [Erp84],
where the assumption of a linear streaming vedocity profile is questiondble. The linear
profile is imposed upon the flow via the SLLOD equations of motion. For a fredy
shearing system with Lees-Edwards periodic boundary conditions, high Reynolds
number flows should exhibit an S-shgped kink in the streaming veocity profile If the

assumed (linear) and actud dreaming veocities ae not the same, the thermodat
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interprets this deviation as heet, and applies an additiond force to the equations of
motion for the momenta (see Eqg. (2.79)). It is this additiond force appearing in the term
involving a tha sarves to dabilize the linear velocity profile and enhance the ordering
of the fluid by reducing the rate of entropy production. Once the fluid's ordering is
enhanced, its viscodty and pressure are reduced dramaticdly from ther true vaues,
which can lead to incorrect dependenciesong .

In Figure 4.15 we project a 3-dimensond snapshat of the argon fluid onto a 2-

dimensond surface in the x-y plane. The fluid was sheared a the highest vaue of ¢

which we smulated, g~ = 1.95.
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Figure 415 Twodimensond projection onto the xy plane of a threedimensond
snapshot of the argon fluid, shearing at the highest strainrate used (g~ = 1.95).
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There is no obvious enhancement in the gructure of the fluid. For our sysem, srings

were only noticesble a very high vaues of ¢, typicdly g° > 5. This is in contragt to

work by Evans e d. [Eva92], who found evidence of drings for vaues of ¢~ aslow as

~ 2. However, ther dmulaiions were peformed on a Weeks-Chandler-Anderson
(WCA) fluid [Weerl]. Our smulaions have been performed on BFW fluids, both with
and without the additiond three-body term, where the range over which fluid atoms

interact is dgnificantly greater than for WCA fluids. In Figure 4.16 we show a full 3-
dimensond sngpshot of the fluid sheared & ¢~ = 11, where now the appearance of

grings is very pronounced. If strings were formed in our Smulaions the anticipated
dde-effect should be to dramaticdly reduce the vaues of the viscosty and hydrodatic

pressure a higher strain rates. Our data clearly does not support this.

Figure 4.16 Full three-dimendonal sngpshot of the argon fluid, shearing a high vaue of
g =11.
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Findly, we checked the dependence of the pressure, energy and viscosty profiles on

the sze of the cut-off potentid radius used. While the results presented here for argon

were performed with a twobody cut-off radius of r2 . =0.5L=4.726 (reduced

units), we aso performed smulations & a smaller cutoff of r2 =228 (reduced

units) for an argon sysem of 500 aoms. The shapes of these profiles remaned

unchanged.

4.3 Relationship between two-body and three-body potentialsfrom NEMD

simulation

It is of interest to determine the effect of different rain rates on the vdidity of the
relaionship (Eq. (3.3)). The vdidity of such a smple rdationship foo NEMD was
uncertain because of the added influence of factors such as vaiation in the drain rate.

Consequently, we andyzed the raio between the two (E,) and the three (E;) body

potentid energies obtained with planar Couette flow smulations for different Sate
points and drain rates.

The ratio of threebody to twobody energies for argon a different dendgties and
temperatures is shown in Figure 4.17 as a function of drain rate. The temperatures and
densties represent different Sate points on the liquid-phase branch of the vapour-liquid
coexisence curve of pure argon. Irrespective of the date point, it is gpparent that the
ratio of the energies is lagdy independent of the drain rae. The dependence of the
energy raio on dengty is illudraied in Figure 4.18. The vdues predicted by Eq. (3.3)
ae dso illugrated for comparison. This smple reaionship fits the NEMD smulation

data with an average absolute deviation of 2.3%. This is dose to the same qudity of
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agreement (2%) that was obtained for the Monte Carlo study of equilibrium properties
reported in section 3.2,

As sen in the previous sections, the trangport properties of fluids, such as shear
viscodty, are an aspect of fluid behaviour that could potentidly benefit from the use of
accurate pair-potentids and three-body interactions.  In common with other gpplications
of molecular smulation, the transport properties of fluids have largdy been investigated
usng effective potentids Therefore, other investigations are necessary to determine if
Eq. (33) may be used in NEMD smulations to incorporae the effect of three-body

interactions without the computationa cost of afull three-body cdculaion.
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Figure 417 The ratio of three-body and twobody energies of argon obtained from
NEMD at different State points and different strain retes.
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Figure 4.18. The ratio of three-body and two body energies for argon obtained from
NEMD a different strain rates (g° = 0 (0), 0.702 (D), 1428 (1)) as a function of
dengty. The line through the points was obtained from Eq. (3.3).
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Chapter 5

Conclusions and Recommendations

The results we present in this work and in the literature [Mar99, Mar00, MarOla,
Ma0lb, MaOlc, Mar0ld] demondrate that three-body interections play an important
role in the ovedl interatomic interactions of noble gases. This is demondrated by the
good agreement between our sSmulation results and the experimentd data for both
equilibium and non-equilibrium sysems. It is our opinion that the induson of the
threebody forces in molecular sSmulations atempting to reproduce accuratdy
experimentd data is worthwhile and necessary. This practice would be beneficid since
it would provide new indght into the three-body effects. In fact, it may be inferred that
in other aomic and molecular systems three-body forces have an equivdent importance.
It is dedrable to invedtigate this more extensvely. Sudying three-body potentids in
complex systems requires a dgnificant effort in terms of experimenta  development,
theoreticd approaches and computational cats [Elr94]. Neverthdess, we grongly
believe that it is an important area worthy of continued investigation.

The use of effective par potetids is obvioudy judified if applied dther to
corroborate a theory or to compare two sSmilar molecular smulation techniques. For
example the attempt, in ealier work, to vaidae the predictions of mode coupling
theory [Kaw73] usng the LennardJones potentid or even more smpligic potentids

was reasonable. In fact, mode coupling theory predicts the generd behaviour of the
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viscosty and pressure vs the drain rate, and is consequently not redricted to redligtic
potentids. On the other hand, the reproduction of experimenta data with high accuracy
and for a wide range of date points may be a prohibitive task with effective pair
potentids. However, the intent to predict the experimentd results with sufficient
accuracy using effective pair potentids without incurring excessve computationa costs
is undergandable and gpparently feasble. There are indications that three-body effects
in different properties may be accounted via mean fiedd models [Ege88]. This gpproach
conggs in conddering the many-body forces experienced by the molecules as a uniform
background. The tota intermolecular interactions are then conddered par-additive
gnce they ae given by a redidic par potentid corrected with this background
contribution. Mean fidd potentids ae usudly temperature independent and dengty
dependent. Their predictions ae more accurate for bulk propertties. Edtimates on
microscopic properties show some deficiencies[EgeBq].

The rdaionship in Eq. (3.3) represents a dendty dependent pair potentid, and it may
be envisaged as an effective potentid. It has the feature to have been derived from full
two-body + three-body caculations. The correction term gppearing in Eq. (3.3) may be
conddered as a background contribution due to three-body effects. The relaionship was
not the result of a mean fidd derivation, but it may represent evidence that a mean fidd
mode can be applied for the systems studied.

It is noteworthy to point out tha the rdationship in Egq. (3.3) is not supposed to
provide high accuracy and, drictly spesking, it should be used in the range of dendties
and temperatures in which it was derived. To the best of our knowledge, this is the first
time that such a reationship has been derived usng smulaion daa from full two-body
+ three-body potentid smulations. We believe that this procedure can be used to derive

similar effective potentids for other systems.
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In this work we did not gpply threebody short-range potentids. Our results seem to
demondrate tha, a leest for the sysems and the dtate points studied, these potentids
should not give a dgnificant contribution. Naturdly, ours is jut an a posteriori
inference. But, very recent findings from Bukowsky and Szaewicz [BukOl1] concerning
the cancdlatiions between three-body shortrange potentids adso srongly indicate that
the triple-dipole potentid is an excdlent gpproximation of the tota threebody energy.
Further theoreticd investigationsin this direction are necessary.

A further deficiency in the literature is the invedtigation of the third order digtribution
function, g(ry, r2, r3). From a molecular smulation viewpoint the cdculaion of g(ry, ro,
r3) is feasble, even if it is condderably more time consuming than thet of the par
digribution function. The knowledge of o(ri, r2, r3) enables one to choose more
correctly the threebody cut-off and to test accurady the superposition agpproximetion
[Ba71lg] used for long range corrections. A more precise cdculation of the liquid state
pressure may be a beneficid consequence of such an invetigation. As pointed out in
Chapter 3, the totd pressure is the sum of the kingtic and potentia contributions. These
ae of the same magnitude and opposte sgn. The contribution from the three-body
longrange corrections may be crucid in order to maich the experimentd data for the
liquid gate.

In the pas, some smulations with threebody potentids used 108-aiom systems
[Mur7l, Ba7la Lee¥d]. The sze of such sysems may not be compatible with an
accurate determination of the threebody effects. In our work we used a 500-aom
sysem, which was demondrated to provide a good accuracy. However, investigations
on possble scae effects may be beneficia. This is true dso for meen fidd theory. In
fact, there is the suspicdon tha many-body potentids show meen fidd behaviour

because of the short cut-off applied in the smulations[Eges8].
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The reaults for vapour-liquid coexiging pheses encourage peforming  further
computer Smuldions with redidic potentids This may improve the prediction of
quantities like criticd temperature and dendty, in paticular of subsances for which
these properties are difficult to obtain from experiment. It dso very interesting to pursue
the suggestion of Frenkd and Smit [Fre96] to use direct molecular dynamics techniques
to investigate coexiding phases, dnce nowadays the increasing computer speed and use
of paralle computers can alow such atempts.

We have demondrated that use of accurate two- and three-body potentids for
shearing liquid argon and xenon displays dgnificat departure from the expected dran
rate dependencies of the pressure, energy and shear viscodty. For the firgt time, the
pressure is convincingly obsaved to vay linealy with an agpparent andytic g2
dependence, in contrast to the predicted g*? dependence of mode-coupling theory.
This dependence results primarily from the twobody potentid. The 3-body term only

sarves to rase the magnitude of the tota pressure. Recent work using a Lennard-Jones

potentid found a Smilar deviaion from mode-coupling theay [Mat00, Gel0l]. In
paticular, they found deviations from mode coupling theory predictions avay from the
triple point. Further work is required to understand this behaviour. The shear viscosty
is aso seen not to be a smple function of §¥2, and our data are in general agreement
with recent work of other authors [Tra98]. Our best extrapolation of the zero-shear
viscodty for argon gives excelent agreement (within 1%) with the known experimenta
data From the best of our knowledge, this the first time that such accuracy has been
achieved with NEMD smulations. Once again, this encourages performing smulations

with accurate potentias for trangport properties.
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Appendix 1

Long-Range Correctionsfor BFW Potential

In this gopendix we give the andytic derivaion of the long-range corrections for the
BFW potentid [Bar71l, see dso Chapter 2], more precisdy for the twobody pressure
and energy assuming the pair didribution g(r) function equas unity over the cut-off. In
the cases of the krypton and xenon potentids [Bar74, see dso Chapter 2], the procedure
issmilar.

The twobody energy in tems of g(r) may be expressed as [All87, see dso Eq.
(2.102)]:

¥

E? = 2pNr C);(r)qurzdr . (A1.2)
0

With a amulaion cutoff ro and assuming g(r) can be approximated by unity after the
cut-off (see for example Fgure 4.13), the long-range corrections for the energy can be

written as;

¥

EZ = 20Nr (\)2br2dr . (AL2)

e

Subdtituting the BWF potentid in Eq. (A1.2) gives.



Long-Range Corrections for BFW Potentia 138

¥i éé
2 = 2pNr rﬁq e€Q Ax-D'epla(t- x)]- a 2‘£f+6t,\/x2dx (AL
re e i=0

"m

where sz and ry, is the vdue where the potentid is a minimum. To solve the

Im

integra in Eq. (A1.3) we have to solve each term. Consder the following terms:

.S u
(‘)2a A(x- D) expla (1- X)]dx= :::
= i
¥ ¥ :
N2 _ N\ o _ ) .
O A)exp[a (1 x)]dx+0 A(x-1 exp[a (a x)]dx+ :::
¥ ¥ 1|
A, (x- 1% expla (1- x)]dx + (x- D3 expla (1- x)ldx +y

p A, [ ] () *A, | ] /
n - i
¥ ¥ i
O A x- 1 expla @ dx+ A D% e - lax =i
re e .I.
" " ;
Lo+l + 1+ lg+1,+]s i

i (AL4)
.I.
b

where:
¥
lo = Ay (‘)2 expla (1- x)]dx (AL5)
¥
= A (\)x3 - x%) expla(1- x)]dx (A1.6)

il kel
3 |0



Appendix 1 139

¥

I, = A, @(4 - 2 +x%) expla(@- x)]dx (AL7)
¥

I, = A C\YB - 3x*+3x% - x?) expla(d- X)]dx (A1.8)
¥

I, = A, (’ye - A5+ 6xt - 4x3+x2) expla(l- X)]dx (AL9)

¥
ls = A (TY7 - 5x° +10x° - 10x* +5x° - x?) expla(1- X)]dx (A110)
r

C

"m

Now congder the following integrals:

<0>= (\)xp[a (1- X)]dx =- aiexp[a (1- x)]+const. (A1.11)

<1>= éexp[a - X)]dx :ai{- xexpla (1- X)J+ <03} + const (AL12)
<2>= 62 expla (1- )]dx= al{ x?expla (1- ¥)]+2<1>}+const.  (AL13)
<3>= (‘)3 expla (1- )|dx = ai{ Cexpla(l- ¥]+3<2>}+const  (A114)

<4>= 64 expla (1- x)]dx = gl{ x* expla (L- X)]+4<3 >} +const. (AL1.15)
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<5>= (\)5 expla (1- X)Jdx = i{- x* expla (1- ¥)]+5<4 >} +const. (A1.16)
a
<6>= c\)ﬁ expla (1- x)|dx = l{ x® expla (1- )] +6<5 >} + const. (A117)
a
<7>= ¢y el (- Wlix= L ¥ expla - )] +7 <65} +const. (A118)
a
Using these expressons and the following rdaions:
é o))
Rzl . Q:lexp@gi- LS, (AL19)
M a @ fm 28]
we can solve the fallowing integras as
¥
<0>'= (\)xp[a 1- W]dx=Q (A120)
rC
rm
¥ N , N .
. & A : )
<1>'= c‘jexp[a @- Jdx=- 21 r—cexp@gi- e O <osh=ofk- 10 (ar2n)
af 8 a b

¢

"m
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¥

1 2 N
' o €@ r.al
<2>'= c\)2®<p[a(1 x)]dx—— l! a—:r_C: @(pe:agl— r—Ci|;+2<1>13;:
aT rmg e rmm b
o (AL22)
rm
Q@2-£R+£9
& a a’g
: ‘ ‘ g
[ 0 e & a
<3>—é3exp[a(1 x)]dx—-i! aerc: e}':lél- o H+3<2>y =
aT rmg e rmm b
e (A1.23)
rm
Qa‘?:e3-§R2+iR 69
e a a? a3g
¥ 1 4 RN 1’1
0 éea r. &
<4>'= O exp[a(l x)]dx—— é? ae:_C: ap@gl- rr—°:i|;+4<3>y=
. i m & e m 2 b
= (AL1249)
Qg‘?:g4-iR3+£R2-ﬁR L+ 240
& a a? as a‘eg
11 aerco5 € r §
<5>—O @(p[a(l x)]dx-——| exp @gl— —Sj+5<4> y=
aT er) e ng b
L (A1.25)
ngfQS-iR‘l D3 6000, 120 -%9
a a? a3 a* a‘g
¥ R 6 ) .
6 e oV
<6>'= 66 expla (1- x)]dx = - EP ?—Cg expgag[ r—‘3:'u+6<5>§=
a5 &mo €€ 'md b
Te (A126)
rm
Qe O os Dge. s IO 70, 7200
& a a? a3 at a’ atg
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¥

. 7 i .
0 e a& au
<7>'= c\)7 expla (1- x)]dx:—£¥— ?—C: expéa §1- —Cju+7<6 y
aT rmz é I m b
r'—c (AL127)
ng?_.g_ lR5+£R5- 21OR4+840R3+2520 R2+5040R +50409
a a? a’d at a® at a’ g
Using theseintegrals, Eq. (A1.4) can be solved:
o= A <23
-:-I1=A1(<3>'- <2>)
T| :A2(<4>'-2<3>‘+<2>') (AL29)
: I3 = Ay(<5>-3<4>+3<3>- <2>) '
I, =A,(<6>-4<5>+6<4>-4<3>+<2>")
s = A(<7>-5<6>+10<5>-10<4>+5<3>- <2>)
Consider now the rest of thetermsin Eq. (A1.3):
¥ & C ¥ ¥ ¥
\ 2j+62_\ce 2 \Cs 2 \Clo 24y —
—=——x“dx=- Q—X dx- Q—X dx - Q—X dx =
m d +XZJ+6 +X6 +X8 +X10 (A]_29)
I 1% e e Ie '
I'm Mm I'm Mm
{Je +Jg + Jio}
where
i ..30_]
‘. ' R %L" i
N X I 1 &x>q i 1 p 1 Mg )
J. = dx=C.i arctgc——3 v=C.i =- arct
6 6 + x5 6:3\/d_ gng—gr_c?/ 6:3\/d_2 3\/d_ gg '\/(T :|y
iy 1 r T H
. b @

(A1.30)
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r
for Js and Jio an gpproximation has to be used. Snce d = 001 and x=—>09

Im

(practically aways), we caninfer that X8 >>d and x*° >>d soit is possible to write

i u
¥ 2 ¥ 1 11 ¥ u Il 1 I
\ ) I I
Jg =C dx»C dx=Cgi- = v =Cgi = Y AL13L
8 8Q+—X8 X» SOE X 81 5X45<r_ci‘/) 8':'5a‘ ('55%/ ( )
Te TIe | Mm i c : i
M M 0 o b
| u
¥ 2 ¥ 11 ¥ | 1 1 .I.
Y | | |
Jip=C dx dx=Cypj- =— = v . (Al32
10 10Q—10 >>C100<§ 101 7 rcil) 10:7aerc ('57%/ (: )
o e | fm —
m m ':‘ grm 7] i:)
Using the integrals caculated, we can findly write:
. , S0 3 i
EIrc _Zer rmea Ii - a J2j+60
€ i=0 j=0 a
For the pressure we have the expression (see Eq. (2.101)):
¥ ¥
2 2b 2 2b o}
peb = 0T AU sy o 200 o NaBIU (%, (AL3)
3 dr 3 dx &
e e
rm
Congdering the formula for integration by part:
b b
\ ' N\,
O(X)g (dx= T (g - O (x)g(x)dx (AL34)
a a

we can write:
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2b
hY 3aﬁu 3y 2,20
= —dx = x% (x)| O (x)dx =
r
rI'T] rm
i ]
3 I ol; & |
0 i re u C, i
- g C:elra A _C_l— exp@(l _l;(l a ]+62]+6y
rmﬂ | i-0 Mm Mm u i=0 C |
T T
T dvge A
¢ g U
- 3e I - a J2]+6l]
@i=0 j=0 G

thus,

(AL.35)

(AL.36)
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Appendix 2

Three-Body Potential Molecular Simulation mplementation

In this gopendix we report an easy and correct way to implement the 3-body potentid
(namdly, the AxillordTeler potentid [Axi43]) in a molecular dynamics and Monte
Carlo computer smulaion program.

In the firg section we show how to verify Newton's third law of dynamics with the
3body potentid, snce in this way we are adle to find ussful expressons. In the second
section we point out the problem aisng using the minimum image convention with the
3body potentid, suggesting adso the correct method to avoid migtekes. In the third
section we write the expressons for the forces and the pressure, and in the last section
we implement these expressions in an dgorithm optimized for vector computers and

designed to be fagt enough to make the smulations feesble,

A2.1 Newton’s third law of dynamics for 3-body potential

Congdering three aoms i, | and k the 3body AxilrodTdler potentid is (see Chapter
2):

_ v (1+3cosq; cosq; cosq, )

U., =
a (rijrikrjk)3

(A2.1)
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where v, is a nonadditive coefficient and where the angles and intermolecular
separations

r2 =(xi - xj)2 +(yi -y, )2 +(zi - zj)2 (A2.2)
refer to atriangular configuration of atoms (see Figure 2.1). Using the cosine law:

2_,2 ) riJ'z"'rizk-szk
rP=rng+rg - 2n, I, cosa ® o =———— (A2.3)
2rikrjk

the potentid in eq (A2.1)can be written as.

; 2,202 2 2022002 c2)p

_& 3(' fij * ik +rjk)(rij - rik+rjk)(rij *hi - rjk)l,J
ule =Ve=33 + 5.5.5 u (A2.4)

éru rlkrjk 8r|] rlkrjk H

Expressing the potentia as afunction of the relative coordinates:
(s X0 Vi) TUDG = XG5 XX = Xis Vi = i) = U0k X X Vi ieev) (A2.5)

the derivatives in the coordinates are easily obtained by:

R0 T _ €T M, i ﬂuuku e'ﬂuuk +ﬂuuk = F +

R (A26
007 T TR By T TRl 8T T (A29)

Here F®X is the total 3body force (due to atoms j and k) on atom i inthe x direction,

i(jk)
F,(sf’)ﬁ is the contribution from aom j only. There are smilar expressons for the other
coordinates.
F3X o Tuipe €T Ty T[Xjk ﬂuuku € fluy ﬂuuku u
1 gy __g‘ﬂx ™ Tx X ™ ‘Hx L
T - L IR T ik l;l g % I Q y (A2.7)

3b; 3b;x _ 3b; 3b;
Fio * Fiaoi = Ficok * Fioo

]
(K)i b
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canxo Wi _ Sy T | Ty Tu U € Ty Tuy U U

k(ii) € u=-e U=
ﬂxk éﬂxk ﬂxik ﬂxk ﬂxjk 9] A ﬂXik ﬂxjk g y . (A2.8)

3b; 3b;x _ 2; 3b; |

Fei + Py == Fidi - Fiaon b

Using the previous reationships, it is possble to show that the totd forces on the aoms

i and j are equd and opposite to the totd force on the aom k.

3b; x 3b;x — = 3b;x 3b;x 3b; x 3b;x — = 3b;x 3b0;x — _ E=3b;x
Fitio + Fig = Rtk + Fiadi * Figk * Fiooi = Figgs + Fieo =Ry - (A29)

We point out thet to obtain the previous result we have only used the fact that the 3-

body potentid is afunction of the relaive distances between the three atoms.

A2.2 Three-body potential and minimum image convention

Given a triplet of aoms applying the minimum image convention requires some

cae In gened the minimum image convention does not keep the ‘shgpe of the

triangle. Let usandyzetheijk triplet in thefollowing picture

Box length

i W
: R
! 3
! =

kK i >

L L X

: ®

When we apply the minimum imege convention on the length ij, we have to consder

the imagine of j (j’), because (xi- X) is longer than haf the box length; so we consider

theside ij’ .
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Box length

yibua| xog

j X

®

P

In the case of the side ik, we do not have to consider the images because - Xy is not

longer then hdf the box length. So the triangle now should be ij’k, but when we

consider the atoms j and k, we have to cdculate the sde jk and not kj'. So we have a

“triangle’ with the shape:

Using a cut-off for the 3body potentid for which a triangle is accepted if each dde
is less than a quarter of the box length, avoids these undesrable Stuations. Even if this
condition is very drict, we have tested that for smulations a liquid densties with 500
agon aoms, the reative cut-off guarantees a good accuracy for the Axillord Teler
potentia ((Mar99], see dso Chapter 3). It is worthwhile to point out that the condition
for the cut-off works dso with Lees-Edwards diding brick boundary conditions

([Eva9Q], see dso Chapter 2).
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In his work [Att92] Attard recognized this problem, but suggested a different
olution. He implemented a different minimum image agorithm to be gpplied only for
triplets of atoms and he adopted a cut-off for the three-body potentid smdler than half
the box length, as is the case for the twobody potentid. Even if this mathematicaly
solves the problem, we can not atribute to it a cear physica meaning. In the case
depicted in the fird figure, dl the par interactions between the three a@oms are
caculated, snce dl the three Sdes are less than hdf of the box length, according to the
traditionad minimum image convention. On the other hand, when Attard’s dgorithm is
goplied to cdculate the three-body interactions, the same triplet of aoms is reected,
snce jk is greder than haf the box length. Furthermore, it is not dlear if Attard's
agorithm can be generdized for L ees-Edwards diding brick boundary conditions.

Sometimes, a mideading condition for the threebody potentid cut-off is adopted
[Cor0Q]. The three-body force on aom i is conddered different from zero if and only if
both atoms j and k lie within the at-off distance to aom i. No additiond reguirement is
made on the distance between atoms | and k. This leads to non-symmetric situations. Let
us condder the case where the distances between i and j and i and k are less than the
cut-off, and the distance between j and k is greater than the cut-off. The three-body
force on aom i is not zero. For atoms j and k the three-body force is zero. This dearly

violates Newton's third law of dynamics as expressed in Eq. (A2.9), since the totd

three-body force on the triplet of alomsis not zero.

A2.3 Forces and pressure for 3-body potential

In generd, the ab (a,b = x)y,2) component of the configurationa pressure tensor is

usually defined by [Ala87];
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PpV = é aF° =- é a; 11;;?

(A2.10)

Congdering for amplicity the xx component, it is possible to write:
o .. 9 o .
a %Fi =a a % Fj (A211)
i i j>i
where:

Xij =% - X IU
«_ 'ﬂu_IJ y (A212)

! 11ij Ip
The left-hand-9de of Eq. (A2.11) is not suitable to be used with the minimum image
convention, since in generd it changes the vaue of X;; we are forced to work with the
second term of the reldion (A211) [AllI87], i.e with expressons which contan r;

rather than r;. In particular we aso have to do this with the 3-body potentid.

A smilar relation holds for the 3-body case:

(o) ) O O O )

p3by = a x 30 = a a Xi Fi?[jjl’:)( . (A213)
i i jrti kb
We can aso write:

(o] . 10 O O ) . )

3b;x _ 3b;x F;x P;x
a x; F —ga a ka_ (xi Fii % Fiii +Xka(ij)) (A2.14)

i i jLi 1j

gncetheindicesi,j,k are equivaent.

Furthermore,
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o U
X. F.Sb;x - 3b; >|§ + 3|l();>§ +I
a " a q a_{ it ot
3b;x 3b; x 3b; x 3b;x I
X, [Fm)k * Fiwi ]* Xk[Fk(l + Fk(m]} b
Here we write F:*Tk’)‘ = F f‘f’)ﬁ Flf‘f)j‘, and smilaly for the other triplet terms.
Subgtituting Egs. (A2.7) and (A2.8) in Eq. (A2.15) gives
o u
3b;x _— 3b; 3b; T
a xF =3 { Rk Fl(kx]J"ll,
. i Jll kl ; ?/ (A2.16)
3b; 3b; 3b; 3b; .
[ Fichk * FJ(k)Xu]’“ Xk[ Figg; - FJ(k)Xul} b

O O O O
axF=sa a a b xRt b xR b - xJr ] ez

| i jti klj
or:
2 Q 3b; x 3b;x 3b; x u
a xR 3a a a (XIJFI(J)k +XlkFl(k)J *X; FJ(k)|):.:.
| e y (A2.18)
O O O :
b b s
dadad P+ s + P ) i
i >t k>j b
flu
Since F5 =- T K (and similaly for dl the other terms), we achieve the god of
X;

expressng the pressure as a function of par distances. Now we need to find an

ﬂ |]k

expression for . The potentid is

Xij
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2,2,02Y2_ 2.2\ ,2.,.,.2_,2)
1 3(‘ fij + ik +rijrij - fik +rjk)(rij * ik - rjk)u_
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i jk 8rijTie ik s]
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2 ar6.5 2.3.5 2.5.3 y - :

8y 8l 8 il ik |

ol

-3 435'3 435 -3 653'3 653 3 46339':

8rij ik jk 8rij ik jk 8rij ikl jk 8rij ikl jk 8rij Ml ik B b

Smilar expressions exig for dl other deivatives of the triplet potentid. This expresson

is‘easy’ toimplement in aprogram, aswe report in the following section.

A2.4 Algorithm

In what follows we report an dgorithm to implement the 3-body potentid for a
system of n aoms. We optimize the dgorithm in order to teke advantage of the
vectorisation, hence this dgorithm is not suitable for aparald computer.

As a fird sep we have to cdculate the distances between dl the par of aoms, and
goply the minimum image convention (note that this loop in not time consuming in

comparison with the 3-body agorithm):
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loopi- 1,N-1
loop j - i+1,N

/I coordAtomX(i), coordAtomY(i) and coordAtomZ(i) are the coordinates of atom i.
/I distanceAtomsX, distanceAtomsY and distanceAtomsZ are the distances between two
Il @omsinthe X, y, z directions repectively.

distanceAtomsX = coordAtomX(i) - coordAtomX(j)
distanceAtomsY = coordAtomY(i) - coordAtomY(j)
distanceAtomsZ -~ coordAtomZ(i) - coordAtomZ(j)

/I Minimum image convention [All87]. boxLength isthe box length. The
/I efficiency of different dgorithms for the implementation of the minimum imege
/I convention is studied in the work of Hloucha and Deiters [HI097].

distanceAtomsX - distanceAtomsX- boxLength* NINT(distanceAtomsX / boxLength)
distanceAtomsY - distanceAtomsY - boxLength * NINT(distanceAtomsY / boxLength)

distanceAtomsZ - distanceAtomsZ - boxLength * NINT(distanceAtomsZ / boxLength)

Il distanceAtomsl(i,j),distanceAtoms2(i,)),...distanceAtoms6(i ) are arrays where the

/I distances between atoms (and their respective powers) are stored. These arrays
/I should be symmetrised, (d(i,j)=d(j,i)), but in what followsiit is not necessary.

distanceAtoms2(i,j) - distanceAtomsxX**2 + distanceAtomsY**2 +
distanceAtomsZ* * 2

distanceAtomsl(i,j) - SQRT(distanceAtoms2(i ,j))

distanceAtoms3(i,j) - distanceAtoms2(i,j)* distanceAtomsl(i,j)

distanceAtomsA4(i,j) - distanceAtoms2(i,j)* distanceAtoms2(i,j)

distanceAtoms5(i,j) = distanceAtoms2(i,j)* distanceAtoms3(i,j)

distanceAtoms6(i,j) - distanceAtoms2(i,j)* distanceAtomsA(i )

Ix(i,),y(i,j) and z(ij) are arrays to store the rdlive disancesin the x, y, z directions.

X(i,j)— distanceAtomsX
y(i,j)—~ distanceAtomsY
Z(i,j)—~ distanceAtomsZ

end j loop
end i loop
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As usud, a double loop can be used a this stage to caculate the 2body potentia and

forces
loopi- 1,N-1
loop j = i+1,N

/I Cdculation of two-body potentia and forces

end j loop

end i loop

This loop is not time consuming in comparison with the 3-body agorithm; note that
we do not use a neighbor ligt, snce it could be complicated to implement with a 3body
potentid and because it would probably compromise the vectorisation.
Before the dgorithm for the 3-body terms is implemented, some variables have to be
initiglized:
// total 3BodyEner gy isthetota 3-body energy. total 3BodyForceX(i),
// total 3BodyForceY(i), total 3BodyForceZ(l) are the totd forces on the atom i inthe x,
/'y, z directions. pressureTensor 3body(1),....pressureTensor 3body(6) arethe xx, xy, xz,
I1yy, yz, zz lements of the 3-body pressure tensor. The hydrostatic pressure is 1/3 of the

/[ pressure tensor’ s trace.

total 3BodyEnergy - 0.0
loopi-= 1,N
total3BodyForceX(i) = 0.0

total3BodyForceY(i) - 0.0
total3BodyForceZ(i) = 0.0

end i loop

loop i- 1,6
pressureTensor3body(i) = 0.0

end i loop



Appendix 2 155

Now we have to agpply the cut-off condition to know which triplets of atoms

(triangles) can be counted. To do that we use the usud triple-loop:

/Il dla(lc), d2a(lc),...d6a(lc) are arraysto store the first Sde (and powers) of the

Il lc-th accepted triangle. d1b(Ic), d2b(Ic),...déb(Ic) are arrays to store the second
/I Sde (and powers) of the lc-th accepted triangle. d1c(lc), d2¢(Ic),...déc(Ic) are

Il arraysto ore the third side (and powers) of the | c-th accepted triangle. dXa(lc),

/I dYa(lc), dZa(lc) are arays to store the relaives coordinates of the first side of

/I the lc-th acoepted triangle.

Ic- 0.0
loop i= 1,N-2
loop j— i+1,N-1
|00p k= j+1,N

if (distanceAtomsl(i,j) < boxLength/4 .and.
distanceAtomsl(i,k) < boxLength/4 .and.
distanceAtomsl(j,k) < boxLength/4)

/I This is the cut-off condition: a triangle is accepted if each of its Sdes is less than
Il aquarter of the box length.

lc- Ic+1

dla(lc) - distanceAtomsi(i,j)
d2a(lc) - distanceAtoms2(i,j)
d3a(lc) -~ distanceAtoms3(i,j)
d4a(lc) ~ distanceAtomsA(i ,j)
d5a(lc) - distanceAtoms5(i,j)
déa(lc) - distanceAtoms6(i,j)

dXa(lc) -~ x(i,j)
dYa(lc) = y(i,j)
dza(lc) - z(ij)

dib(Ic) - distanceAtomsi(i,k)
d2b(Ic) - distanceAtoms2(i,k)
d3b(lc) -~ distanceAtoms3(i,k)
d4b(Ic) - distanceAtomsA(i,k)
dsb(Ic) = distanceAtoms5(i,k)
déb(lc) - distanceAtoms6(i,k)

dXb(lc) ~ x(i k)
dYb(Ic) - y(i k)
dzb(lc) - z(i k)
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dic(lc) - distanceAtomsl(j,k)
d2c(Ic) = distancetoms2(j,k)

d3c(Ic) = distanceAtoms3(j,k)
d4c(Ic) - distanceAtoms4(j,k)
dsc(lc) - distanceAtoms5(j,k)
déc(lc) - distanceAtoms6(j,k)

dXc(lc) - x(j,K)
dYe(lc) - y(j,k)
dze(Ic) - z(j k)

I11(Ic), 12(Ic), 13(Ic) are integer arraysto sore the indices of the 3 atomsin the
Il'lc-th triangle; these arrays will be used to calculate the forces.

1231¢) - i
12(1¢) - |
13(¢) - k

end if

end k loop
end j loop
endi loop

The next loop will be a ‘long loop over the number of dl accepted triangles to
cdculate energy, forces and pressure. This loop speeds up the program, since it can be

vectorised more intensdly than anormd triple loop.

loop 1= 1,lc

/l dVdRa, dVdRb, dvdRcare 14 0 U0 T edtively (see section A2.3).

ry T " T Fix T
/I nonAdditiveCoef is the non-additive coefficient n.

dvdRa - (3.*nonAdditiveCoef/(8.* dla(l)))* (
-8./(dda(l)* d3b(1)* d3c(l))-1./(d5b(1)* d5c(1))
+5.*d1b(l)/(d6a(l)* d5c(l))+5.* d1c(l)/(d6a(l)* dsb(l))
-1./(d2a(l)* d3b(l)* d5c(1))-1./(d2a(l)* d5b(1)* d3c(1))
-3./(dda(l)* d1b(l)*dsc(l))-3./(dda(l)* d5b(l)* d1c(l))
-5./(d6a(l)* d1b(l)*d3c(l))-5./(d6a(l)* d3b(l)* d1c(l))
+6./(dda(l)*d3b(1)*d3c(l)) )
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dVdRb - (3.*nonAdditiveCoef/(8.* d1b(1)))*
-8./(ddb(1)* d3a(l)* d3c(l))-1./(d5a(l)* d5c(1))
+5.*d1a(i)/(deb(l)* dsc(l))+5.* d1c(l)/(deb(l)* d5a(l))
~1./(d2b(1)* d3a(l)* d5c(1))-1./(d2b(1)* d5a(l* d3c(1))
-3./(d4b(1)* d1a(l)* d5c(1))-3./(d4b(1)* dsa(l* dic(l))
-5./(d6b(1)* d1a(l)* d3c(1))-5./(d6b(1)* d3a(l)* dic(l))
+6./(d4b(1)* d3a(l)* d3c(l)) )

dVdRc = (3.*nonAdditiveCoef/(8.* d1c(l)))* (
-8./(d4c(1)*d3b(1)* d3a(l))-1./(dsSb(l)* d5a(l))
+5.*d1b(l)/(d6c(l)*d5a(l))+5.*d1a(l)/(d6c(l)* d5b(l))
-1./(d2c(1)*d3b(I)* d5a(l))-1./(d2c(l)* d5b(l)* d3a(l))
-3./(d4c(1)*d1b(l)* d5a(l))-3./(d4c(l)* dsb(l)* d1a(l))
-5./(d6éc(1)*d1b(l)*d3a(l))-5./(d6c(l)* d3b(l)* d1a(l))
+6./(d4c(l)*d3b(l)*d3a(l)) )

/I Thisisthe cdculation of the forces:

/' total 3BodyForceX(l1(1)) isthe force on the atomi in the X direction.
// total 3BodyForceX(12(1)) isthe force on the aom j in the X direction.
/1 total 3BodyForceX(13(1)) isthe force on the aomk inthe X direction.

total 3BodyForceX(11(1)) - total3BodyForceX(l11(l))-dXa(l)* dvVdRa-dXb(l)* dVdRb
total 3BodyForceY(11(l)) - total3BodyForceY(l11(1))-dYa(l)* dvdRa-dYb(l)* dvdRb
total 3BodyForceZ(11(1)) - total3BodyForceZ(11(1))-dZa(l)* dvVdRa-dzb(l)* dVdRb

total 3BodyForceX(12(1)) - total3BodyForceX(12(1))-dXa()* (-dvVdRa)-dXc(l)* dvVdRc
total 3BodyForceY(12(l)) - total3BodyForceY(l12(1))-dYa(l)* ((dvVdRa)-dYc(l)* dvVdRc
total 3BodyForceZ(12(1)) - total3BodyForceZ(12(1))-dZa(l)* (-dVdRa)-dZc(l)* dVdRc

total 3BodyForceX(13(1)) - total 3BodyForceX(13(1))-dXb(l)* (-dVdRb)-dXc(l)* (-dvdRc)
total 3BodyForceY(13(l)) - total3BodyForceY(13(l))-dYb(I)* ((dVdRb)-dYc(l)* (-dVdRc)
total 3BodyForceZ(I13(1)) - total 3BodyForceZ(13(1))-dzb(1)* (-dVdRb)-dZc(l)* (-dVdRc)

/' Note, it isaccumulating al the contributions of the same atom from all triangles
/ where the atom is present).

/I Cdculaion of the eements of the 3-body pressure tensor.

pressureTensor 3body(1) = pressureTensor3body (1)

-dXa(l)*dXa(l)* dvdRa -dXb(I)* dXb(I)* dvVdRb -dXc(l)* dXc(l)* dVdRc
pressureTensor 3body(2) — pressureTensor 3body(2)

-dXa(l)*dYa(l)* dvdRa -dXb(1)*dYb(I)* dvdRb -dXc(l)*dYc(l)* dVdRc
pressureTensor 3body(3) — pressureTensor 3body(3)

-dXa(l)*dza(l)* dvdRa -dXb(l)* dzb(l)* dVdRb -dXc(l)* dZc(l)* dVdRc
pressureTensor 3body(4) = pressureTensor 3body(4)

-dYa(l)*dYa(l)*dVdRa -dYb(I)* dYb(l)*dVdRb -dYc(l)*dYc(l)* dVdRc
pressureTensor3body(5) — pressureTensor 3body(5)

-dYa(l)*dza(l)* dvVdRa -dYb(l)*dzb(l)* dvdRb -dYc(l)* dZc(l)* dVdRc
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pressureTensor 3body(6) — pressureTensor 3body(6)
-dza(l)*dza(l)* dvdRa -dzb(l)* dzb(l)* dvdRb -dZc(l)* dZc(l)* dVdRc
/I Cdculation of the 3body energy.
total 3BodyEnergy - total 3BodyEner gy+ nonAdditiveCoef* (1.0/(d3c()* d3b(l)*d3a(l))

+(3.0* (d2c(1)+ d2b(1) -d2a(l))* (d2c(1)-d2b(l)+ d2a(l))
* (-d2c(1)+d2b(1)+d2a(1))/(8.* d5c(l)* d5b(l)* d5a(l)) ))

end | loop

To check the vdidity of the previous cdculations it is worthwhile to verify the
relationship:

3b
3s/tot _ %(Pxib +P® pzszb) (A2.21)

which holds snce the Axilrod-Tdler potentid is a homogenous function of degree -9in
the variables ry,ry andr; [Ba7l]. We did this test to check our program, and Eq.
(A2.21) turned out to be verified.

Using a NEC SX-4 supercomputer we found that this dgorithm used for molecular
dynamics smulations with 500 particles makes the progran 10 times fager than a

program using normd triple-loops.
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