
Wang, Frank Z. (2014) DIANA: Data Interface All-iN-A-place for Big Data.
 In: IEEE Big Data Science and Engineering, 24-26 September 2014, Tsinghua.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/42265/ The University of Kent's Academic Repository KAR

The version of record is available from
http://www.swinflow.org/confs/bdse2014/index.htm

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/42265/
http://www.swinflow.org/confs/bdse2014/index.htm
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Data Interface All-iN-A-place (DIANA) for Big Data

Frank Zhigang
Wang

Theo Dimitrakos Na Helian Sining Wu Yuhui Deng Ling Li Rodric
Yates

School of Computing
University of Kent

UK
Contact author:

frankwang@ieee.org

British
Telecommunication

UK

SCS
University of
Hertfordshire

UK

Xyratex
Havant

UK

University of
Jinan
China

School of
Computing

University of
Kent
UK

Hursley Lab.
IBM
UK

Abstract: “Variety” in Big Data means we have a wide range of
data types and sources: e.g. file systems and database systems
co-exist for decades as two popular data-accessing interfaces.
This work is to unify these two interfaces by presenting a Data
Interface All-iN-A-place (DIANA). The first challenge lies in
distinguishing structured and un-structured data and diverting
them to different underlying platforms. It is demonstrated that
a speedup of 5000 in indexing has been achieved at the expense
of a slowdown of 100 in extracting attributes. A DIANA-based
cloud storage system is constructed for versatile, long distance
and large volume big data accessing operations to address
“Volume” and “Velocity” in Big Data. It encapsulates a
dynamic multi-stream/multi-path engine at the socket level,
which conforms to Portable Operating System Interface
(POSIX).

Keywords: big data; variety; volume; velocity; file systems;
database systems; service-oriented architecture

I. INTRODUCTION
4Vs (volume, velocity, variety and value are four defining

properties or dimensions of big data, out of which variety
refers to the number of types of data [1]. Based on the above
4Vs model, the challenges of big data management come
from all four properties, rather than just the volume and
velocity.

File systems and database systems are two main stream
platforms in terms of interfacing applications and storage
devices. Computers can store information on several different
storage media, such as magnetic disks, magnetic tapes, and
optical disks. File systems and databases provide a uniform
logical view of information storage to abstract from the
physical properties of its storage devices.

A file system replies on POSIX (IEEE Std 1003.1-2001)
VFS (virtual file system or virtual filesystem switch) to
support applications [2]. The purpose of a VFS is to allow
client applications to access different types of concrete file
systems in a uniform way. A VFS can, for example, be used
to access local and network storage devices transparently
without the client application noticing the difference. It can
be used to bridge the differences in Windows, Mac OS and
Unix filesystems, so that applications can access files on local

file systems of those types without having to know what type
of file system they're accessing. One of the first virtual file
system mechanisms in Unix-like systems was introduced by
Sun Microsystems in SunOS 2.0 in 1985.

SQL (Structured Query Language) is a standard
interactive and programming language for querying and
modifying data and managing databases [3]. SQL was
adopted as a standard by ANSI in 1986 and ISO in 1987 [4].
The SQL standard has gone through a number of revisions:
SQL: 1999 (SQL3) added support for procedural and control-
of-flow statements and ISO/IEC 9075-14:2006 defines ways
in which SQL can be used in conjunction with XML [4].

Why are these two platforms formed historically? What
is the difference between a filesystem and a database?

File-based systems were an early attempt to computerize
the manual filing system that we are all familiar with. From
the end-user’s point of view, file systems proved to be a great

improvement over manual systems. Simply speaking, a file is
a stream of bytes, which are typically un-structured. An
example of a file could be a Text File (a collection of
alphanumeric characters that, when put together, form a
readable document) or a Bitmap Image File (a collection of
bytes that software would then interpret as pixels of an
image).

There are a number of problems with file systems [4]:
� Separation, isolation and duplication of data. Owing to
the decentralized approach, a file system encourages the
uncontrolled separation, isolation and duplication of data.
� Data dependence or Incompatible file formats. The
structure of files is embedded in the application programs.
� Fixed queries/proliferation of application programs. File
systems are very dependent upon the application developer,
who has to write any queries or reports that are required.
� No provision for security or integrity;
� Recovery, in the event of a hardware or software failure,
was limited or non-existent.

All the above limitations of file systems can be attributed
to two factors: (1) the definition of the data is embedded in
the application programs, rather than being stored separately
and independently; (2) there is no control over the access and
manipulation of data beyond that imposed by the application
programs.

2014 IEEE 13th International Conference on Trust, Security and Privacy in Computing and Communications

978-1-4799-6513-7/14 $31.00 © 2014 IEEE

DOI 10.1109/TrustCom.2014.86

665

To become more effective, a new approach of managing
data was required. What emerged were the database systems.
A database is both a program to store and organize data, and
make it searchable, and the data contained in it. A database
holds many tables and each table can hold many records as
well as fields. Each table in a database requires one field to
be designated as the Primary Key to uniquely identify a
record in a table.

Therefore, all databases are files, but not all files are
databases. A file or a database table is just a logical storage
unit. File systems are easy-to-use, un-structured, OS-resident
(easy-to-obtain) and easy-to-maintain. Databases tend to be
large but have strong data definition and manipulation
capabilities including query, search, sorting and calculation.
There two platforms co-exist for decades playing
complementary roles: for example file systems are well-used
to store un-structured text and image documents whereas
databases are designed to handle high transaction throughput
such as on-line transaction processing (OLTP) in order-entry,
stock control, accounting, banking, financing, etc.

Why not a pure database system? The answers are
probably as below:
� Scientific applications are usually based on a POSIX API.
Many tools are scripts or compiled programs that might be
difficult to modify to use a database.
� Users are accustomed to a POSIX API.
� Databases are good at storing structured data, but most
don’t store large unstructured data well.

Why filesystems alone aren’t a solution? Traditional B+-
tree and hashing are not suitable for multidimensional data as
they can handle only one dimensional data. Using multiple
B+-trees (one per dimension) or space linearization followed
by B+-tree indexing are not efficient solutions. We need
multidimensional index structures: those that can index data
based on multiple dimensions simultaneously, sometimes
beyond 10-15 dimensions in modern data-intensive
applications like multimedia retrieval (e.g., 64-d color
histograms), data mining/OLAP (e.g., 52-d bank data in
clustering) and time series/scientific/medical applications
(e.g., 20-d Space Shuttle data, 64-d Electrocardiogram data)
[5].

II. THE DIANA VISION AND UNIQUENESS
2.1 The DIANA vision

As shown in Fig.1, DIANA encapsulates POSIX, SQL
and an extensible interface reserved for metadata. In DIANA,
file and database operations are unified into a uniform
interface. That is to say, DIANA provides uniform access to
unstructured data stored in files and tabular data stored in
databases.

Fig.1 DIANA encapsulates POSIX VFS and SQL standard interfaces
as well as an extensible interface reserved for metadata operations.
DIANA provides uniform access to pluggable filesystems and
databases.

DINAE has a tighter coupling between files and database
tables, than provided by a separate file system and a
database. It supports the frequent interactions and great
synchronicity between data and metadata. For example,
while creating a file, an entry for the new file will be made
in the tabular directory. The directory entry records the name
of the file and the location in the file system, and possibly
other provenance metadata. In many domains provenance
increases an object’s value [6].

Metadata such as provenance is typically stored in
standalone database systems, maintained in parallel with the
data to which it refers to. Separating provenance from its data
introduces problems such as: ensuring consistency between
the provenance and the data, enforcing provenance
maintenance, and preserving provenance during backup,
restoration, copies, etc [6]. Provenance should ideally be
maintained by a unified platform such as DIANA, since
provenance is merely meta-data and DIANA is equipped with
powerful manipulation capability to query, index and manage
meta-data.

DIANA provides the following features:
� DIANA generates system-level metadata automatically.

Application-level solutions have to involve users to
manually collect metadata. In other words, it delays
provenance collection, performing it at user-level by
writing it to an external database.

� DIANA provides tight coupling between data and
metadata on the system level. Application-level solutions
have to involve users to synchronize data and metadata.

� While writing a file, given the name of the file, DIANA
searches the tabular directory via its SQL interface to
conveniently and quickly find the location of the file. A
pointer is provided to the location in memory where the
content to be written is kept. To read from a file, again,
the directory is searched via SQL for the associated
directory entry.

2.2 Related works and our innovation

666

OGSA-DAI (Data Access and Integration) is perhaps one
of the most useful and successful Globus components [7].
Developed in the UK, it provides uniform Web Services
interfaces to diverse data resources. These interfaces allow
clients not only to "access" data, but also to query, update,
transform, and deliver it. In other words, they let you specify
some pretty fancy server-side operations [8]. Audit records
generated during job execution are stored in a database and
can subsequently be retrieved by (authorized) clients. OGSA-
DAI is used to create a virtual database from internal audit
and accounting databases. The value of the OGSA-DAI
abstractions and implementation has been positively
evaluated [9]. However DAI is just a universal interface for
heterogamous database products.

The PVFS (Parallel Virtual File System) serves as both a
platform for parallel I/O research as well as a production file
system for the cluster computing community. PVFS supports
the UNIX I/O interface and allows existing UNIX I/O
programs to use PVFS files without recompiling [10]. The
familiar UNIX file tools (ls, cp, rm, etc.) will all operate on
PVFS files and directories as well. This is accomplished via
a Linux kernel module which is provided as a separate
package [10]. In the Sloan Digital Sky Survey or SkyServer
project, Carnegie Mellon University and Los Alamos Lab,
together with an astronomy community, have added
multidimensional extensions on SQLite DB to PVFS [5].
Such a multidimensional filesystem is one which also indexes
and allows efficient access to files based on their meta-data
tags. Anyway, PVFS is an enhanced file system with a multi-
dimensional index extension.

Provenance-Aware Storage System (PASS) originated by
Hardvard University is a storage system that automatically
collects and maintains provenance or lineage, the complete
history or ancestry of an item [6]. PASS manages its
provenance database directly in the kernel and extends SQL
to support lineage and accuracy information when requested
by a user or application. PASS provides useful provenance-
aware functionality via the conventional filesystem interface.
In short, PASS is a storage system with the functionality not
available in today’s file systems or provenance management
systems.

To our best knowledge, Data Interface All-iN-A-place
(DIANA) is the first attempt to unify the two popular
interfaces: filesystems and databases. DIANA is expected to
provide the advantages of both worlds.

III. DIANA IMPLEMENTATION
To implement DIANA (Fig.1), an interface needs to be

designed first, which should include system calls in the form
of functions to universally store, index and query all types of
data objects, no matter if they are structured, semi-structured
or un-structured. A system call is the mechanism used by an
application program to request service from the operating
system.

On Unix-based and POSIX-based systems, popular
system calls are open, read, write, close, wait, exec, fork, exit,
and kill.

SQL allows a user to create the database and table
(relation) structures; perform basic data management tasks,
such as the insertion, modification, and deletion of data from
the tables; perform both simple and complex queries.

3.1 DIANA interface design
DIANA encapsulates POSIX VFS and SQL standard

interfaces as well as an extensible interface reserved for
metadata input/query. DIANA provides uniform access to
unstructured data stored in files and tabular data stored in
databases.

POSIX consists of both operating system interfaces and
shell/utilities. Six basic file operations are provided to create,
write, read, reposition, delete, and truncate files. We have
identified u_create (open), u_write, u_read and u_delete
functions (“u” stands for “universal”) in our prototype
implementation. As listed in the table, their corresponding
functions in SQL are: create table, load/insert/update, select
and drop table. Search against a certain criteria has not been
defined in POSIX but it could be implemented as a shell
command. The corresponding function in SQL is the select
function with a “where” clause.

The following operations in DIANA are highlighted:
u_create (dataset_name);
It creates an entry in the Global Multi-dimensional Index

Facility (GMDIF) under the current user’s account. First,
space in the file system or the database must be found for the
newly-created object. Second, an entry for the new object
must be made in the GMDIF directory. The directory entry
records the name of the object and the location in the file
system or database, and possibly other information.

u_write (dataset_name, location/object);
It writes an assigned data object (a text, an image, or

tabular data with an extension) from the path to a new
dataset_name. To write an object, we specify the name of the
object and the dataset_name to receive this object. Given
dataset_name, DIANA searches the GMDIF directory to find
the location of the dataset_name. A pointer is provided to the
location in memory where the content to be written is kept.
The corresponding metadata is also written to the GMDIF
index automatically and transparently.

u_read (location, dataset_name);
It reads an existing dataset_name (a text, an image, or

tabular data with an extension) to the location. Again, the
GMDIF directory is searched for the associated directory
entry.

u_search (dataset_name, ‘key1’ ‘key2’…);

It performs a multi-dimensional search, returning a
GMDIF location of one or more dataset_name that matches
the provided keys. The keys could be a number of keywords

667

of a text, the current date/time and GPS location information
of a photo, and any attribute values of a table, etc.

In principle, DIANA includes not only the above
commonly-used operations of VFS and SQL but also all the
pure VFS and SQL operations. In other words, it covers
nearly all the data operations. It is universal. DIANA is also
extensible in terms of reserving an interface for metadata-
related operations, such as definition, interaction and
synchronization.

3.2 A DIANA Prototype Implementation
Driven by the identified problems of “Variety”, “Volume”

and “Velocity” in Big Data, we implemented a prototype
DIANA (Fig.2) in Linux 2.4.20. The implementation is
approximately 5,000 lines of code. This prototype includes
the POSIX VFS standard and the SQL standard. The
challenge lies in distinguishing structured and un-structured
data. For example, text and image data may ideally be
processed and stored on files in a less-structured file system
environment but the transactions and metadata (including
provenance) should be separately operated on tuples within a
database framework due to its power in data manipulation.

As shown in Fig.2, DIANA uses a switch to divert un-
structured data to a file system and structured data to a
database system. This switch distinguishes the extension of
an input data object. For example, “.txt”, “.doc”, “jpg” and

“.bmp” are categorized as un-structured data whereas “.sql”,

“.mdb” are structured data. A conservative policy has been

adopted in DIANA, which means an un-recognized object
will be treated as an un-structured one. A semi-structured
object such as “.html” and “.xml” will also be viewed as an

un-structured one. There may be performance degradation
with this conservative policy. The overhead will be measured
and evaluated in Section 4.

A further advanced switch is being implemented, which
can scan the content of an unknown object to accurately
distinguish its structure. This is a challenging work taking
into consideration that there are enormous types of data
objects. Like the above work, a conservative policy is thought
to be still needed in case the distinguishing procedure fails.

As shown in Fig.2, Global Multi-Dimensional Index
Facility (GMDIF) implemented on MySQL helps an end user
find the files or databases he/she needs quickly. Traditional
filesystems allow one to access files along a single
dimension: that of the filename and path. However, filenames
are frequently irrelevant in practice, in which analysis needs
to be applied to all data with a certain set of attributes not a
certain name. The GMDIF is a multidimensional index that
universally locates a desired object across filesystems and
databases based on its multiple meta-data tags (attributes).

Fig.2 DIANA includes a switch to divert un-structured data to a file
system and structured data to a database system. Global
Multidimensional Index Facility (GMDIF) on MySQL help an end
user find the files or databases he/she needs quickly. A channel is
designed to penetrate the boundary between the user space and the
kernel for synchronization and consistency purposes via a pair of
inter-connected Kernel Demon and User Demon.

Fig.3 A pipe is used to connect the Kernel Demon and the User
Demon, one end of which is written by the Kernel Demon and
another end of which is read by the User Demon.

In hybrid filesystem/database DIANA, MySQL is not only
used to store structured data objects, but also to index and
query metadata referring to all saved objects. This is an
embedded solution with low total cost of ownership. All
‘normal’ metadata (POSIX attributes, file sizes, etc.) are
indexed. DIANA also allows application-specific metadata
(e.g., the current time/date and the GPS location of a photo)
to be added as extended attributes for any object indexed by
the GMDIF. Attributes are asynchronously written to
GMDIF. Queries are SQL style query strings. Expressiveness
limited only by application metadata tags. Clients collate and
report results.

The metadata interface is designed to enable that user to
input and query these metadata. The interface may also
automate the collection of provenance associated with data
and their operations, which can be used to further boost the
GMDIF.

The challenge also lies in establishing a channel penetrating
the boundary between the user space and the kernel for

668

synchronization and consistency purposes. As shown in
Fig.2, a kernel-memory module, the DIANA Kernel Demon,
acts as a VFS interface. The DIANA server nominates a user-
space daemon, the DIANA User Demon, to communicate
with the Kernel Demon. The VFS is implemented in the
kernel. This implementation conforms naturally to the
standard POSIX semantics and provides applications with
seamless access to DIANA. A request is linked into the VFS's
request queue by a kernel thread and is then swept up in a
perpetual loop supported by the above Kernel Demon and the
User Demon. A copy of the request is transferred to the user
space from within the kernel. It dives repeatedly into the
kernel to copy the data, then transmits it in standard SQL
code.

In DIANA, the above-mentioned pair of the Kernel
Demon and the User Demon is connected by three different
message/data passing mechanisms for different
considerations. The first mechanism is a pipe, as shown in
Fig.3, one end of which is written by the Kernel Demon and
another end of which is read by the User Demon. The second
mechanism is a message queue, in which each message
generated by the User Demon stays until the Kernel Demon
reads it. The third is a new mechanism, which we call “Data

Window” (Fig.4). The Data Window mechanism exceeds the
space limit (32 MB) of the well-used IPC shared memory (in
this means we focus our attention on the bulk data transfer).
Like the IPC shared memory, the implemented “Data

Window” mechanism also avoids copying data between the

user space and the kernel space. A tighter coupling between
files and database tables, than provided by a separate file
system and a database, is easily guaranteed in DIANA, which
supports the frequent interactions and great synchronicity
between data and metadata.

Fig.4 The invented ”Data Window” mechanism breaks the space

limit (32 MB) of the well-used IPC shared memory. A driver
maps a virtual address to the User Demon’s user space (page
table), which allows the User Demon and the Kernel Demon to
access some common data structures.

Fig.5 Graph of write time versus the number of texts.

IV. DIANA EVALUATION
The purpose of this evaluation was to examine the alpha
release of the DIANA code, and to test and compare its
performance with that of traditional standards. The local file
system was configured as EXT3. We have selected EXT3 as
the candidate for comparison for two reasons: 1. EXT is
mature and de facto in the Unix/Linux user community; 2.
EXT and DIANA-FS can run on precisely the same hardware
and OS. They can, in fact, coexist on the same machine and
be used simultaneously. Using EXT allowed us to conduct
controlled experiments in which the only significant variable
was the file system component. The performance differences
we observed were due to the design and implementation of
the file systems and were not artifacts of hardware, network,
or OS variation.

We evaluated our DIANA prototype on a 1 GHz Dell
machine with 1024MB of RAM, 80GB of a SATA disk drive,
running RedHat 7.3. To quantify the overhead of our system,
we took measurements on both a DIANA and a non-DIANA
system. We obtain results marked “DIANA” by running our

DIANA interface on EXT3FS and MySQL. We obtain non-
DIANA results, marked “EXT3”, running on Linux 2.4.20

kernel and EXT3FS.
We will measure the overhead of typical data-accessing

operations (u_write, u_read, u_search, etc.). Ten trials are
used to generate each data point. In nearly all cases, the
standard deviations were less than 5%. Measurements are
carried out in a cold cache environment unless stated. To
ensure a cold cache, we reformatted the file system on which
the experiments took place between test runs. For each file
read/write mechanism, we transferred a set of objects
numbering from 1 to 4096.
4.1 Text operations
When a new object is written not only the data need to be
stored but also the metadata information is stored in the
database. The overhead time to extract the top five most
frequent keywords from a text document (.txt) of 611,235
Bytes and add them to the database is included in the u_write
operation of that document. We have measured the overhead
imposed by the DIANA interface. Graph of write time versus
the number of texts is shown in Table 1 and Fig.5. Although
a slowdown (the reciprocal of speedup) of 1.4 – 17.7 is

669

shown, note that EXT3 does not extract any keywords during
a write operation.

Table.1 Write time of in seconds versus the number of texts.

No. of
Texts

DIANA write
with an
extraction of top
5 keywords to
DB

EXT3 write
without any
extraction

Slowdo
wn

1 text 0.172 0.121 1.4
64 texts 6.491 0.366 17.7

256 texts 26.754 2.778 9.6
1024 texts 104.622 30.117 3.5
4096 texts 434.31 159.154 2.7

A comparative behaviour of multi-dimensional indexing in
a filesystem needs to be measured. Unfortunately, today’s file

systems do not support multi-dimensional indexing. When a
file is created, an entry in the directory tree is added. The
directory entry records the name of the file and other
information. We changed the file name format as a
concatenation of the selected attributes, as illustrated in Fig.6.
The advantage of changing the filename format is that we don
not need to modify the directory tree structure in a filesystem.
The query time of a multi-dimensional “find” by scanning all

the extended filenames in EXT3 is included in Table 2. It
takes 242 seconds to generate those 4096 texts’ extended

filenames in EXT3. The multi-dimensional query time by
scanning all saved texts in EXT3 is also included. A speedup
of 4800 has been achieved. The overhead of extracting
attributes to GMDIF while writing has been paid off.

Fig.6 A multi-dimensional search in a traditional filesystem can be
performed by changing the filename format as a concatenation of the
selected attributes.

Fig.7 Graph of write time versus the number of images.

Table.2 Search time (s) of 4096 text entries against No. of attributes. The
speedup is the time of EXT search (scanning texts) over that of SQL search.

No. of
attributes 1 2 3 4 5

EXT search
by scanning
all the
saved texts

202.
4 202.5 202.5 202.6 202.6

EXT search
by scanning
all the
extended
filenames

0.08
3 0.084 0.084 0.084 0.084

SQL search
in GMDIF

0.04
2 0.043 0.041 0.045 0.044

Speedup 4819 4707 4937 4498 4600

4.2 Image operations
The overhead time to extract six selected tags (attributes)
from the header of a JPG image of 105,542 Bytes and add
them to the database is included in the u_write operation of
that image. Graph of write time versus the number of images
is shown in Table 3 and Fig.7. Although a slowdown of 5-76
is shown, note that EXT3 does not extract any attribute during
a write operation.

Table.3 Write time of in seconds versus the number of images.

No. of
Images

DIANA write
with an
extraction of 6
attributes to DB

EXT3
write
without
any
extraction slowdown

1 image 0.286 0.054 5.3
64 images 10.99 0.202 54.4

256 images 43.598 0.573 76.1
1024
images 176.566 4.817 36.7
4096
images 720.202 29.433 24.5

In the above JPG image files, Exchangeable Image File
Format (EXIF) is used to include metadata. EXIF is a
specification for the image file format used by digital
cameras. The specification uses the existing JPEG, TIFF Rev.
6.0, and RIFF WAV file formats, with the addition of specific
metadata tags. An EXIF file header consists of a collection of
tagged attribute/value pairs, some of which are provenance.
The metadata tags defined in the EXIF standard cover a broad
spectrum [11]:
• Date and time information. Digital cameras will record the
current date and time and save this in the metadata.
• Camera settings. This includes static information such as
the camera model and make, and information that varies with
each image such as orientation, aperture, shutter speed, focal
length, metering mode, and ISO speed information.
• A thumbnail for previewing the picture on the camera's
LCD screen, in file managers, or in photo manipulation
software.
• Descriptions and copyright information.

The EXIF format has standard tags for location
information. Currently, only very few cameras, such as the
Ricoh 500SE, have a built-in GPS receiver and store the

670

location information in the EXIF header when the picture is
taken. But GPS data can be added to any digital photograph
on a computer, either by correlating the time stamps of the
photographs with a GPS record from a hand-held GPS
receiver or manually using a map or mapping software. The
process of adding geographic information to a photograph is
known as geocoding [11].

Whenever such an image file is transformed, additional
metadata is added to this header. This approach addresses the
challenge of making the metadata and data inseparable, but it
introduces other disadvantages. It is expensive to search the
attribute space to find objects meeting some criteria. In
DIANA, extracting attributes of an image to the Global
Multidimensional Index Facility (GMDIF) is expected to find
the images quickly.

Similar to Section 4.1, the query time of a multi-
dimensional “find” by scanning all the extended filenames in
EXT3 is included in Table 4. It takes 638 seconds to generate
those 4096 images’ extended filenames in EXT3. The multi-
dimensional query time by scanning the headers of all saved
images in EXT3 is also included. A speedup of 5200 has been
achieved. Again, the overhead of extracting attributes to
GMDIF while writing has been paid off.

Table.4 Search time (s) of 4096 image entries against No. of attributes. The
speedup is the time of EXT search (scanning headers) over that of SQL
search.

No. of
attributes 1 2 3 4 5
EXT
search by
scanning
the
headers
of all
saved
images

621.
2 621.3 621.3 621.3 621.4

EXT
search by
scanning
all the
extended
filenames

0.39
5 0.395 0.396 0.396 0.396

SQL
search in
GMDIF

0.11
8 0.119 0.12 0.122 0.121

Speedup 5265 5221 5177 5093 5135

4.3 Exhaustive Search
We have measured the performance improvement compared
with traditional approaches (B+-tree and hashing in
filesystems). A Linux-2.4.20 source code tree is used as a
searching target. After compiled, this source code tree has
21,777 file entries in total. A shell command “find” is first

used search the tree for “Makefile” meeting a criteria of

obj_size < 4096 bytes. This tree is then inserted into a
MySQL table with 21,777 records (one-inode-per-record). A
DIANA search operation is performed to search the tabular

tree (the creation time of this tabular tree is 589.625 seconds)
for the same object with the same criteria. Query time is
shown in Table 5. A speedup of 410 has been achieved. The
overhead of extracting attributes to DB while writing has
been paid off.

Table.5 Comparison of query time between DIANA search and the shell
command “find” against the Linux-2.4.20 source code tree with 21,777 file
entries.

DIANA search Shell find speedup
0.067s 27.534s 410

We have also measured the dependency of operation
overhead in a typical multi-attribute search on the number of
attributes. It is observed that the performance of DIANA
search behaves much more rapidly than the POSIX interface.
Traditional B+-tree and hashing are not suitable for
multidimensional data as they can handle only one
dimensional data. A DB-based multidimensional index
structures can index data based on multiple dimensions
simultaneously. We have also increased the number of
criteria in the search operation but no additional overhead is
observed. This is because either the single-dimensional or
multi-dimensional search is performed against a single index
table. A simple sequential scan through the entire tabular
index to answer the query is even faster than using a
multidimensional B+-tree structure.

4.4 Tailoring Operations
The DIANA includes mechanisms for tailoring the input and
output streams (typically images, audio or other multimedia
objects). This is performed by associating a 'BLOB (binary
large object)' datatype with the input and storing a collection
of binary data as a single entity in the database. These
conversion operations occur on the fly and are conveniently
transparent to the user.

As mentioned in Section III, a conservative policy has been
adopted in DIANA, which means an un-recognized object
will be treated as an un-structured one. On the other hand, the
performance may degrade if while writing or reading an un-
structured object in a structured environment (a database) by
mistake.

We deliberately inserted a JPG image (800x600 pixels,
105,542 Bytes) into a MySQL table in BLOB. A file is a
stream of bytes. Every 32 KBytes of that image file are
inserted into a record of the created database table used to
receive that image. The comparison of writing time between
DIANA and EXT3 is summarized in Table 6. DIANA is a
universal interface that can process and store any type of data.
Thanks to the above-mentioned conservative policy of
treating an un-recognized object as an un-structured one, this
universality may not result in degradation in performance.

Table.6 Comparison of writing/reading time of an image between DIANA
and EXT3.

Operation DIANA EXT3 DIANA/EXT
write 0.271s 0.147s 1.84

671

read 0.031s 0.033s 0.94

4.5 Summary
DIANA provides functionality, unavailable in either a pure
filesystem or a pure database, with moderate overhead. A
speedup of 5000 in indexing has been achieved at the expense
of a slowdown of 100 in metadata extracting. We and our
users are satisfied with the performance.

V. CASE STUDY: DIANA/CLOUDJET
We have constructed a DIANA/CloudJet system, in which a
new data communication protocol (CloudJet) is designed for
long distance and large volume big data accessing operations
to alleviate the large latencies encountered in sharing big data
resources in the clouds [12]. CloudJet encapsulates a
dynamic multi-stream/multi-path engine at the socket level,
which conforms to Portable Operating System Interface
(POSIX) and thereby can accelerate any POSIX-compatible
applications across IP based networks. A mixture of texts,
photos and tables can be stored and indexed universally and
efficiently via a graphic interface.

In our practice, service is interpreted as an environment
in which an end user is immersed. In other words, service
comprises all components except for the end user
himself/herself within the framework. As a result, DIANA is
featured with not only encapsulation of all resources but also
transparent and automatic interactions between data and
metadata.

We began the DIANA implementation with the simplest
and lowest-level schema that could meet our query needs. In
parallel with development of the prototype, we are also
extending DIANA into the OS kernel to provide “micro-
services” to application programs. Such micro-services can
be used by an application program to request a universal DS5
storage space from the OS.

According to our investigations [13][14][15], a large
number of applications, either legacy or newly-emerged,
demand for file support as well as database support
interactively. For example, in a provenance-aware system,
the raw data may be processed and stored on files in a less-
structured file system environment but, ideally, the
provenance (metadata) should be separately operated on
tuples within a database framework due to its power in data
manipulation [6].

VI. CONCLUSIONS AND DISCUSSIONS
Just as the shipping container revolutionized the flow of
goods [16], the Data Interface All-iN-A-place (DIANA)
revolutionizes the flow of information for big data
applications. As generic as a container can hold just about
anything, from coffee beans to cellphone components,
DIANA attempts to unify the two most popular data-
accessing interfaces: filesystems and databases. By sharply
cutting costs and enhancing reliability, container-based
shipping enormously increased the volume of international
trade and made complex supply chains possible. In a similar

way, DIANA is expected to be service-oriented and make
complex data accesses simple for big data management.

The overhead of extracting metadata from a data object
and the performance improvement in typical multi-
dimensional searches have been measured. It is shown that a
speedup of 5000 in indexing has been achieved at the expense
of a slowdown of 100 in extracting attributes, so the new
features incur no perceptible cost. Typical big data
applications such as very large database (VLDB), data
mining, media streaming and office applications can be
accelerated up to tenfold in real-world DIANA/CloudJet tests.

VII. Acknowledgments
This work is sponsored by the UK government and European
Commission (EC) through an EPSRC/DTI grant (£ 1 million) “Grid-
oriented Storage (GOS)”, an EPSRC grant (£470k) "Accelerating

NFS/CIFS", an EC grant (€1 million) “QuickLinux” and an EC
grant (€400k) “EuroAsiaGrid”.

References
[1] L. Douglas, "The Importance of 'Big Data': A Definition".
Gartner. Retrieved 21 June 2012.
[2] A. Silberschatz, et al, Operating System Concepts, John Wiley
& Sons, 2007
[3] SQL, en.wikipedia.org/wiki/SQL, 2008
[4] Connolly, T., “Database Systems: A Practical Approach to

Design, Implementation and Management”, Addison Wesley

Longman, 2007
[5] Milo Polte, Finding the Needles in the Haystack:
Multidimensional Extensions to a Distributed Filesystem, 2007
[6] K. Reddy, et al, Provenance-Aware Storage Systems, USENIX
Annual Conference, 2006.
[7] Ian Foster, Data Access and Integration, 2006
[8] A. Sanchez. MAPFS-DAI, Future Generation Computer
Systems 23 (2007) pp.138-145.
[9] M. Oever. The Use of OGSA-DAI with IBM DB2 Content
Manager for Multiplatforms in the eDiaMoND Project. The Future
of Grid Data Environments Workshop, GGF10, March 2004.
[10] Parallel Virtual File System, pvfs.org/, 2008
[11] EXIF, www.exif.org/, 2008
[12] Frank Wang, et al, CloudJet4BigData: Streamlining Big Data
via an accelerated socket interface, IEEE Big Data, USA, June 2014
[13] In-Kernel Berkeley DB Databases, www.am-utils.org/project-
kbdb.html, 2008
[14] Frank Wang, et al, Grid-oriented Storage: A Single-Image,
Cross-Domain, High-Bandwidth Architecture, IEEE Transaction on
Computers, ISSN: 0018-9340, pp.474-487, Vol.56, No.4, 2007.
 [15] Yuhui Deng and Frank Wang, A Heterogeneous Storage Grid
Enabled by Grid Service, ACM Operating System Review, ACM
SIGOPS, No.1, Vol.41, 2007.
[16] The Container That Changed the World, VIRGINIA
POSTRER, March 23, 2006

672

