University of

"1l Kent Academic Repository

Chivers, Daniel and Rodgers, Peter (2015) Improving Search-Based Schematic
Layout by Parameter Manipulation. International Journal of Software Engineering
and Knowledge Engineering, 25 (6). pp. 961-991. ISSN 0218-1940.

Downloaded from
https://kar.kent.ac.uk/51550/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1142/S0218194015500138

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).



https://kar.kent.ac.uk/51550/
https://doi.org/10.1142/S0218194015500138
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

February 19, 2014 14:7 WSPC/INSTRUCTION FILE Paper

International Journal of Software Engineering and Knowledge Engineering
© World Scientific Publishing Company

Improving Search-Based Schematic Layout by Parameter Manipulation

Daniel Chivers

School of Computing, University of Kent
Canterbury, Kent CT2 7NF, UK
dc355Q@kent.ac.uk

Peter Rodgers

School of Computing, University of Kent
Canterbury, Kent CT2 7TNF, UK
P.J.Rodgers.ac.uk

This paper reports on a method to improve the automated layout of schematic diagrams
by widening the search space examined by the system. In search-based layout methods
there are typically a number of parameters that control the search algorithm which do
not affect the fitness function, but nevertheless have an impact on the final layout. We
explore how varying three parameters (grid spacing, the starting distance of allowed
node movement and the number of iterations) affects the resultant diagram in a hill-
climbing layout system. Using an iterative process, we produce diagram layouts that are
significantly better than those produced by ad-hoc parameter settings.

1. Introduction

Search-based methods for graph drawing have been successfully used for a number
of years [18]. Despite taking a relatively long time to produce layouts, they have a
number of advantages, including that of targeting a fitness function that explicitly
includes layout metrics, so allowing a direct measure of the quality of a graph.
Schematic layout, often called the metro map layout problem, is a variant on
the graph drawing problem [21] where a number of aesthetics are present, such as
a requirement that edges are restricted to a limited number of angles - typically
octilinearity. Search is a common method for attempting to solve the schematic
layout problem, perhaps because force directed techniques struggle to meet the
aesthetic requirements (Section , and therefore this problem seems suitable for
further investigation in improving the effectiveness of search in graph layout. Cur-
rent search-based methods for schematic layout include hill-climbing (Section ,
mixed-integer programming (Section and ant-colony systems (Section [2.4]).
Other work in automated layout of schematics include spider diagrams [14] and
schematisation of road networks [1]|6]. Studies of the effectiveness of schematics,
their criteria and how they influence users have also been performed [11][17].
Parameter optimization in search has been widely studied [2] and relates to the
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problem of meta-optimization [16] - the use of one optimization method to tune
another; for example to find optimal parameter settings of a genetic algorithm.
Search-based methods for the general graph drawing problem include simulated an-
nealing [9] and genetic algorithms [4]; however, these methods make a wide search of
the problem space, which requires many recalculations of fitness, so are not consid-
ered feasible with the computationally heavy fitness function required in schematic
layout. It is one of the goals of the research described in this paper to see if a wider
search can be conducted, whilst keeping runtime within computationally sensible
bounds. This implies that both performance improvements to the fitness calculation
are needed, and that a narrower search algorithm than the more general methods
is required. Due to the large potential for performance improvement and ease of
addition of new criteria, we have chosen to use hill-climbing for our automated
schematic layout method.

Any search-based algorithm relies on the setting of a number of parameters.
In the case of hill climbing, the parameters we considered in this paper were: grid
spacing; the starting distance of node movement; and the number of iterations that
the algorithm lasted for. As these parameters are typically set in an ad-hoc manner,
we aimed to discover if current hill-climbing schematic layout had a tendency to
reach local optima, indicating that current search-based methods are prone to sub-
optimal results, and if we could avoid some of these local optima by varying the
initial parameter settings, so finding a better layout for the diagram.

We examined four well known metro maps and our results indicate that the
variation in final layout as the parameters change has underlying trends, but the
result is unpredictable for specific parameter sets. In addition, the difference in final
layout can be large, often between sets of parameters that have values that are close
together. We interpret this as indicating that the system reaches a relatively poor
local optima frequently and that there is no general characterization of parameter
sets for any of the maps. As a result, in general, increasing the search space by
attempting multiple layouts with different parameters results in a better schematic
than can be reached by a search using a single parameter set.

This paper extends the work described in [8]. In this paper we add an overview
of current layout techniques for schematic diagrams (Section . We describe the
optimization method in Section [3 this differs from the previous method by allowing
the last iteration of the search method to be run multiple times to help prevent cases
of sub-optimal layout. Section [] provides results and an evaluation of both phases
of our testing, with a combined discussion in Section [5} Finally, Section [f] gives our
conclusions and outlines possible future work.

2. Related Work in Schematic Layout Methods

This section provides an overview of current techniques used to automate the layout
process of schematics. Schematic layout is a subset of the graph layout problem, and
typically uses similar methods with additional criteria to force the layout process
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Table 1: Maps used

Map Junctions Stations Edges
Washington 9 7 53
Vienna 10 80 63
Mexico City 24 123 120
Sydney 24 151 103

Table 2: Parameters and values used

Parameters Values
Grid Spacing 8, 10, 12, 14
Start Distance 13, 14, 15, 16, 17
Iterations 8, 12, 16, 20

to incorporate schematic characteristics. The list of methods examined here covers
a number of alternate and promising approaches. These approaches use an initial
geographic node embedding and each attempts to reposition nodes to fit a series of
criteria.

Regarding terminology, this paper uses the term junction to mean a stop on a
schematic network where lines meet. A station is stop where only one line is present.
A node is either a junction or a station, and an edge connects two nodes. A line
is a sequence of connected edges. In this paper, we show the edges of a line in the
same color.

2.1. Force-Based

Hong et al. present an attempt at producing an automatically laid out metro map
style schematic using a force-based layout algorithm [12]. They examine research
carried out on existing hand-drawn metro maps [10], and devise the following criteria
for good metro map layout: 1) Each line drawn as straight as possible 2) No edge
crossings 3) No overlapping of labels 4) Lines mostly drawn horizontally or vertically,
with some at 45° 5) Each line drawn with a unique color. Of which, criteria 1 and
2 have been shown to be effective for aiding graph readability [5]. The authors
present five variations of the automation process, but each is based on GEM |[3]
- a modified force-directed layout algorithm which preserves edge crossings and
includes a magnetic spring algorithm [20] to align edges to 45° angles. Along with
this GEM algorithm, all but the initial method also use a preprocessing step which
simplifies the graph. This preprocessing step removes all two-degree vertices in the
graph thereby reducing the number of calculations required in the optimisation
stage as well as significantly reducing the time taken to optimize. Hong et al. also
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Fig. 1: Optimized Sydney metro produced using a force-based method by Hong et
al.

implement an algorithm for the automated placement of labels; the label of each
node has a possible eight positions that it can occupy, and a conflict map is created
to identify node positions that cause occlusion. Each label is then positioned to
reduce or eliminate the total number of label occlusions. Although their produced
schematic shows labels that are angled at multiples of 45°, the paper does not go
into more detail about possible label orientations.

The optimisation technique described has impressive optimisation times of a
matter of seconds for fairly complex maps. However, this fast performance pro-
duces less aesthetically pleasing results than other schematic optimisation methods.
Figure [I] shows an optimisation of the Sydney metro, and highlights some of the
drawbacks of this method including: 1) Although the authors define a criteria to
constrain lines to octilinear angles, this is not fully enforced and there are many
lines that do not conform to this criterion 2) The distance between stations is not
kept consistent across the diagram, with both extremely long and short edges 3) The
figure appears unbalanced, with both very sparse areas and areas where stations
appear to be overlapping.
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Fig. 2: Optimized Sydney metro produced using a multicriteria hill-climbing method
by Stott et al.

2.2. Multicriteria Hill-climbing

Stott et al. present a multicriteria optimisation approach to schematic layout .
As in [12], a number of criteria have been devised to measure the aesthetic quali-
ties of the layout. The authors have developed metrics for numerically quantifying
these criteria that can be weighted and summed to find a fitness value for a given
map layout. A hill-climbing optimizer is then used to reduce this fitness value and
find improved layouts. This optimizer is explained in more detail in Section [3] as
our chosen method is based upon this algorithm. In an attempt to help avoid local
optima, clustering techniques are used to move groups of stations as well as indi-
vidual stations. Along with station positioning, label positioning is also automated
in a similar method to that by Hong et al. There are additional criteria for label
positioning such as position priority and position consistency with nearby labels,
although label rotation is not permitted.

This layout method uses more criteria and rules than the previously described
force-based approach, and the result (Figure [2)) is an output that looks far more
like a hand-drawn metro map at the expense of optimisation time (although no
optimisation times are given, the authors do mention that the optimizer is slow).
However, the final quality of the produced map is the most important aspect for this
situation rather than optimisation speed. Although the resulting layout is a vast
improvement on the previous force-based method, there are still many sections that
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are undesirable. For example, 1) Many lines have unnecessary bends, such as the
multi-lined section near the right of the schematic 2) Many lines do not apply the
octilinear criteria without any obvious reason, such as the single green horizontal
line near the bottom of the schematic 3) The layout has struggled with the Sydney
city centre section of the map (far right), which is very difficult to interpret. These
issues are indicative of situations of local optima, where the optimizer is unable to
move past a worse layout in oder to achieve a superior one. A great advantage of this
optimisation is that it is very easily extensible, new criteria can be added without the
need for changes in the optimisation process and this allows for relatively simple
testing of new criteria. Criteria can also easily be toggled on or off to allow fast
evaluation of their effectiveness.

2.3. Mixed-Integer Linear Programming

Nollenburg and Wolff present another variant of optimisation technique for the opti-
mization of metro maps using mixed-integer linear programming [15]. This method
is different to the other optimisation methods described here because it defines its
constraints as one of two types, hard and soft. Hard constraints must be met, whilst
soft constraints are maximized. The main advantage of this method is that its opti-
misation technique guarantees that all hard constraints are met, whilst avoiding the
problem of local minima which can be seen in the alternate methods explained here.
The MIP optimisation technique used is a derivative of linear programming which
is a method of determining the best outcome in a mathematical model based on a
set of linear constraints (the hard constraints in this case) and a linear objective
function. The linear constraints are plotted onto a graph to produce a feasible area,
in which the linear objective function can be optimized.

Figure [3| shows the Sydney metro map layout produced by this method. The
result is of a very high quality, and fully adheres to hard constraints such as octilin-
earity. The only obvious bad section of this schematic is the top yellow line, which
unnecessarily performs a 90° bend. Although this method arguably produces the
most aesthetically pleasing schematics, the optimisation quality is produced at the
expense of run-time. Run time for the Sydney schematic shown here is quoted as
22 minutes. The implementation of this technique is also more complicated than
a hill-climbing multicriteria approach, resulting in less potential performance im-
provement and less extensibility for additional criteria. A further disadvantage of
this method is that if hard constraints are unable to be met, the optimisation will
fail.

An alternate, faster, implementation of this technique is by Wang et al. [22].
However this is achieved with a smaller criteria set and so does not produce the
same quality output.
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Fig. 3: Optimized Sydney metro produced using a mixed-integer linear programming
method by Nollenburg and Wolff

2.4. Ant Colony System

Ware and Richards present an ant colony system algorithm for automatically
schematising network data sets [23]. Their ant colony system takes a similar ap-
proach to a multicriteria hill-climber, using a series of criteria in order to quan-
tify map quality, combined with qualities from simulated annealing methods. Non-
determinism is introduced into the node-positioning stage by moving the nodes in a
random order; as opposed to in the same sequential order each iteration. Each non-
deterministic iteration is run multiple times, each known as an ant, and at the end
of each iteration the best resulting layout applies pheromones to its node positions
in a global grid so as to affect all ants in future iterations. The pheromone increases
the likelihood of ants moving nodes near to it, and it gets stronger over time in
node positions that produce a good layout (as multiple ants will lay pheromones in
the same position, creating a cumulative high pheromone value). As the pheromone
gets stronger in node positions that produce a good layout, the algorithm eventually
converges to a single solution.

Layouts produced by this method (Figure [4]- Sydney) are cleaner than a stan-
dard hill-climbing approach, with the entire schematic fully enforcing octilinearity,
and in most cases a consistent length between adjacent stations; this is partly due
to the fact it can avoid some local optima by ants having a possibility to move to
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Fig. 4: Optimized Sydney metro produced using an ant colony system algorithm by
Ware and Richards

a worse layout. There are still sections of this layout that show signs of remaining
local optima, including the top right line which comes off at an angle not expected
from the incoming two lines. It should be pointed out, however, that the Sydney
schematic used in this paper has been simplified more than that found in the al-
ternate methods; many sections where there was a “triangle” of nodes have been
condensed into a single junction, and the complicated city centre section of the
schematic has been reduced into a set of simpler connections. They also compare
their map to an implemented version of a simulated annealing schematic layout
technique [13], and conclude that “in each case the ACS algorithm outperformed
that of a previous SA algorithm in terms of cost (quality) and time”. The running
time is quoted as 150 seconds for the Sydney map shown, which is still in the realm
of the search-based methods.

2.5. Summary of Related Work

This section has provided an overview of some notable methods in automated
schematic layout. Many of these methods are search-based methods, and due to
the infeasibility of performing a full search of the problem space, use a number
of heuristics to speed up the search. This inevitably results in the arise of local
optima situations, as can be seen in Figs. [T} 2] and [4} These situations of local op-
tima indicate that a better layout can be found, and that alternate techniques must
be tried to circumvent them. We are interested in how varying parameter sets of
search-based schematic optimizers can affect the resulting output, with the aim of
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producing an improved layout.

3. Overview of the Method

Inspired by the methods developed in [19] (Section [2.2)), our automated layout
algorithm uses a multicriteria hill-climbing search technique. This method operates
by attempting to lower a set of measurable criteria by performing modifications to
the schematic. There are two stages: firstly, the nodes are positioned; and secondly,
the labels are positioned. In this paper we targeted performance improvements on
the first, node positioning, as this is the major bottleneck.

There are three key parameters to the method. These are:

(1) Grid Spacing: A grid is placed over the canvas, and each schematic node
must be positioned on a grid point. This parameter defines the grid res-
olution in pixels. When altered, this parameter affects the start layout as
the nodes are initially snapped to the grid. It will also alter the number
of potential sites that they can be positioned in when they move, and the
distance by which they can move.

(2) Start Distance: This parameter defines the initial (and maximum) dis-
tance the nodes can be moved, in terms of grid positions. A method is
applied to reduce this distance over the duration of the optimization, as
explained below.

(3) Iterations: In each iteration, every node and cluster of nodes is examined
to see if its location can be improved. Once an iteration has completed,
the distance the nodes can move in the following iteration is re-evaluated.
The initial iteration always uses the start distance, and the last iteration
always uses a distance of one grid space. The distance is represented by
an integer, and decreases along a floored linear interpolation between the
initial and final iterations, so is not always reduced between iterations. The
final iteration, with a distance of one, is repeated until no better solution
can be found.

The method uses a series of criteria to calculate the aesthetic fitness. Each
criterion has its own metric that calculates a value representing how well the current
schematic adheres to it; and using this value we can calculate, weight, and sum
it with all other values to produce a total fitness for the current schematic. The
algorithm will attempt to reduce the total fitness value by moving around nodes,
or clusters of nodes, and recalculating the fitness to determine if the schematic has
been improved. The algorithm undergoes a number of iterations, and each node is
moved once per iteration. Node movements are performed sequentially in a fixed
order, to ensure determinism. A node can be either a junction (station with a degree
of greater than 2) or a line bend point. A total fitness value of zero would indicate
that all criteria have been perfectly met. The criteria include:

(1) Octilinearity. Lines should be at multiples of 45°.
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Table 3: Overall time improvements across all tested parameter sets (minutes)

Diagram Avg. Before Avg. After Speedup (times faster)

Washington 36.872 4.630 8.0
Vienna 51.929 10.581 4.9
Mexico 234.982 27.475 8.6
Sydney 518.813 61.340 8.5

Table 4: Layout time improvements by criteria (minutes)

Criteria Avg. Before Avg. After Speedup (times faster)
Octilinearity 1.251 0.040 31.3
Edge Length 6.534 0.041 159.4
Line Straightness 13.289 3.062 4.3
Edge Crossings 14.671 1.870 7.9
Occlusions 110.223 5.257 21.0

(2) Edge Length. Line sections between nodes should be a standard length.
(3) Line Straightness:

(a) Total. The entirety of the line should be as straight as possible.
(b) Through Nodes. Lines sections passing through junctions should be
kept as straight as possible.

(4) Edge Crossings. Lines should not cross other lines.
(5) Occlusion. Nodes should not occlude parts of any edges.

Nodes can be moved in eight directions up to the current iterations distance
value in grid spaces; North, North-Fast, Fast, South-East, South, South-West and
West.

3.1. Layout Example

Figure 5| provides a minimum working example to illustrate the effects of the layout
method. An unoptimised schematic (Figure is used as the starting point. As
explained in the previous section, the algorithm moves each node in turn (numbers
in the diagram indicate the order in which they are moved) attempting to lower the
fitness value, calculated by summing the values of a set of metrics which measure
the fitness of each criterion. Figure [6] shows an example of the node positions that
are evaluated during an iteration. This example illustrates only the positions of
node 2, during an iteration with a node movement distance of 4 units.

Figure shows the resulting output, and it is clear to see how the algorithm
has adjusted node positions to adhere to each criterion: 1) Each edge is now at a
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(a) Unoptimized Input (Fitness=7.63) (b) First iteration of node movements (Fit-
ness=4.22)

(c) Second iteration of node move- (d) Optimized output after cluster
ments (Fitness=2.65) movements (Fitness=0.74)

Fig. 5: Minimum working example of layout algorthm

multiple of 45°, satisfying octilinearity 2) Edge lengths have been equalised 3) Lines
have been straightened as much as possible (without introducing occlusion) both
in total, and as they pass through junctions 4) Line crossings have been avoided 5)
Occlusions have been avoided. These changes result in the fitness value dropping
from 7.63 to 0.74 as almost all criteria have now been fully applied. The resulting
fitness value is due to it not being possible to fully straighten both grey and red lines
without occlusion (which is weighted higher to enforce more strongly), requiring two
45° line bends.

Figures[5bland 5 have been included to show exactly how the schematic changes
during each iteration of the algorithm. During the first iteration to , many
nodes are moved into positions that satisfy octilinearity. This is due to octilinearity
being weighted strongly as it is regarded as one of the most important criterion
to schematic layout. It can be seen that there is one edge (from node 4 to 5) that
does not manage to achieve this, and this is because moving either of the two end
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Fig. 6: Part of Figureto show possible node movement positions (blue dots) for
node 2 during an iteration with a distance of 4.

nodes to make the section octilinear would result in a negative effect on the other
neighbouring nodes. Node 6 shows how the algorithm also moves nodes to attempt
to standardise the edge lengths. This first iteration results in a drop in the fitness
value from 7.63 to 4.22, as many octilinear issues are addressed. During the second
iteration (5b| to , given that most nodes now already lie in octilinear directions
from their neighbours, some over length edges are shortened (from node 1 to 2,
and from node 5 to 7). Node 6 has also been moved down, improving the total line
straightness of the grey line. These two changes further lower the fitness from 4.22
to 2.65. The transition between the last two schematics (5c| to is a result of
the clustering techniques used during the previous iteration (these are performed
after single node movements, see for more details on clustering methods used).
Nodes 1 and 2 are clustered by angle, and both moved upwards; nodes 5, 6 and
7 are clustered by length, and are also moved upwards to make the edge between
nodes 4 and 5 octilinear. These final clustering techniques further reduce the fitness
from 2.65 to 0.74.

3.2. Optimiser Performance

The initial implementation of the search method in was not optimized for per-
formance, making the type of experimentation here infeasible. As a consequence,
we spent some effort improving the performance of the method in order to make it
run faster. The main performance increase was gained by caching all individual cri-
teria fitness values for nodes and edges and re-using these as much as possible. We
detect graph items that have moved and only recalculate the fitness values that are
affected; these are then summed with the unaffected, previously calculated, values
to obtain the new total fitness value.

In some cases, in particular edge crossings and occlusion, detecting items that
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Table 5: Vienna results - Phase 1

Rank Start Distance Iterations Grid Spacing Fitness

1 15 20 10 0.972
2 17 20 10 0.981
3 16 16 10 0.986
4 16 20 10 0.986
5 17 16 10 0.986
6 15 16 10 1.037
7 14 20 10 1.135
8 17 12 10 1.180
9 16 12 10 1.195
10 13 16 10 1.317
40 16 12 8 2.174
80 17 8 14 4.233

have been affected by a node movement is not trivial as a change in the position of
a single edge can also affect the edges or nodes along its length. In order to avoid
having to re-check the moved edge with every other edge and junction, we place a
second grid over the entire schematic. At the start of layout, each edge is examined
and the edges that pass through grid cells are identified. This edge location grid is
updated each time an edge is moved. Using such a grid to monitor the location of
edges speeds up the testing for edge crossings and occlusions when checking for each,
as the method can identify a subset of all nodes and edges as potential occlusion or
crossing candidates by the grid squares in which changes have been made.

Table [1] lists the maps on which the testing has been performed, along with the
number of junctions, stations and edges. The maps were chosen as being representa-
tive of reasonably sized schematics that demonstrated different characteristics and
for which we could easily access the data. The table is listed by ascending order of the
total number of junctions and stations. Table [3] shows the overall time performance
increases gained by the algorithm improvements on each map. As seen in the table,
there is a large performance increase from the implemented changes, averaging a
7.5 times speed improvement across the four schematics. This improvement in run
time made the testing feasible by allowing us to carry out the required experiments
in a reasonable time frame. Table [] shows a breakdown of the time improvements
on a per-criterion basis. There was a substantial performance increase per criterion,
averaging 44.8 times faster. This is higher than the performance increase on the
overall running time due to the algorithm performing other tasks that have not
been optimized, such as label placement. The timings were performed on an ASUS
Eee Pad Transformer TF101 running the Android operating system, version 3.2.1.
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The device uses a 1GHz NVIDIA Tegra 2 with 1GB of RAM.

4. Evaluation

To test how changing the parameters impacts on the final diagram, we developed
a test rig that allows us to explore a variety of settings for the chosen parameters.
The testing rig outputs images of each schematic, and a file containing the fitness
value of each. From this data, we investigated how modifying the parameters relates
to the final fitness value. Of course, we can also pick the best layout (the one with
lowest fitness) from those generated to be our output schematic.

4.1. Phase 1

In this section we present the results from the testing of each of the four maps.
We have chosen Vienna as an example in which to go into more detail because it
provides good variation in layout between the different runs. Diagrams generated
from the other examples can been seen in the Appendix. Table [2] lists the values
used for each parameter. Running a map from Table [1| with all possible parameter
configurations from Table [2| results in a total of 80 layouts.

Table[5|shows an abridged table of the Vienna schematic results from the testing
rig along with the parameter settings for each. It shows the top ten best schematics
by fitness value, the median schematic and the single worst. An immediate trend
can be seen from this table with a grid spacing value of ten appearing in all the
best fitness values. For other maps, data given in the Appendix, only Sydney shows
a similar trend; the other two maps do show some grouping by grid spacing, but
in these cases it is less conclusive as the best grid also appears much lower down
the ranking. For the four maps, only two share the same grid spacing for the best
map, and there is no correlation between map size and grid spacing. As a result, it
appears that grid spacing is perhaps the most important parameter to explore.

From Table [5| we can also see that there is a continuing improvement in fitness
at the top of the list. This pattern, where the best fitness is found for only one set
of parameters is also shown in two other maps (see the Appendix). We believe this
is an indication that the system is not converging on the optimum solution, and so
an even wider examination of the search space may be required to achieve the best
final layout.

Figure [0] shows the original geographic layout of Vienna, used as the starting
point by the algorithm. Figures [I0} [[1] and [I2] show the best, median and worst
final schematics for Vienna respectively. We have included the median, as this is the
expected layout when parameters are arbitrarily chosen from the ranges used in this
paper. In this case, the fitness of the best diagram is 44.71% of the median. Various
cases of local optima are visible in Figure the median Vienna diagram. For
example, it has generally worse line straightness than the best diagram, Figure [10]
which can be seen in nearly all lines. Many more cases of local optima can be seen
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Fitness.

8 10 12 14 13 14 15 16 17 8 12 16 20
Grid Spacing Start Distance Iterations

Fig. 7: Cumulative mean fitness value for all maps. Note: The y-axis starts from 6.5
- Phase 1

Fitness.

0
8 10 12 14 8 10 12 14 8

Washington Vienna

Fig. 8: Mean fitness value against grid spacing - Phase 1

in the worst diagram, Figure [I2] which along with much poorer line straightness,
has multiple edges breaking the octilinearity criterion.

Besides Vienna, we have also included the geographic and best layout of Sydney
from the tests, shown in Figures [[3] and [I4] respectively. Figure [14], the best Sydney
map, shows how this method has been able to improve problems with the layout
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Fig. 10: Vienna - Phase 1 - Rank 1 (Fitness = 0.972)

method by Hong et al. (Figure . Octilinearity has been improved, edge lengths
are more similar in length across the schematic, and stations are more evenly dis-
tributed. An abridged table of results for Sydney can be found in the Appendix.
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Fig. 13: Sydney - Geographic Map

Geographic and best images of Mexico and Washington, along with results, can also
be found in the Appendix.

When the parameters are set in an ad-hoc fashion, and the wider search done
here is not performed (as in the case in most current layout methods), the expected
output layout is the median fitness value, and we can investigate how much our
best diagram improves on this. In the case of Washington the best is 95.68% of the
median, for Mexico the best is 86.79% of the median, and for Sydney the best is
91.28% of the median. As the percentage for Vienna was 44.71%, this implies that
in some cases, something close to the best diagram can be found with a wide range
of values, so allowing a more constrained (and faster) search to be applied. In other
cases, a more restricted search will produce a much worse diagram.

It has been mentioned that a small change in the algorithm parameters can
make a very large difference to the resultant layout. An example of this is the top
ranked Mexico layout which has a fitness of 2.667, with parameters: start distance
13, iterations 20, grid spacing 14. A change from 20 to 16 iterations (one step in
our testing) results in a drop to rank 50 and a fitness of 3.217.

Figure[7]shows the cumulative mean fitness for each parameter value. The graph
indicates that for number of iterations and starting distance, a larger parameter will
lead to a layout with a lower fitness; these trends also hold true on the map-specific
graphs for start distance and iterations, shown in the Appendix. Increasing both of
these parameters increases the search space, so indicating that an even wider search
will tend to produce a better diagram. Grid spacing, which, as discussed previously,
has the greatest effect upon the resulting layout’s fitness, tends to produce better
results when a smaller value is used.
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Fig. 14: Sydney - Phase 1 - Rank 1 (Fitness = 19.387)

However, Figure [§] which shows the mean fitness value of each layout produced
by varying the grid spacing, does not show this trend on a by-map basis. This
graph has been included because, unlike search distance and iterations, a clear
trend cannot be seen in the cumulative data. Although grid spacing has a large
effect on the fitness value of the produced layouts, there is no single optimum grid
spacing value for all layouts, and each schematic has a specific value at which the
best layouts are produced. Due to using a step size of two units for the tested grid
spacing values, we are unable to determine the exact best value for each map. The
best found value for Mexico and Sydney is also on the edge of the testing set, so we
are unable to determine their best parameter value. To further investigate this we
performed another series of tests, using a step of one unit and extending the range
of both Mexico and Sydney values to attempt to find their best grid spacing values.

4.2. Phase 2

The initial phase of testing indicates that grid spacing is an important parameter
with regards to the resulting fitness due to there not being a clear trend between it
and better final fitness. Each map appears to have a particular grid spacing value at
which the best fitness values are commonly found, and we therefore decided to run
a new set of experiments using additional grid spacing values. The currently tested
values have a step of two units, so it is possible that a better optimisation can be
found between the tested values. Table [] shows the new grid spacing values tested
during phase 2, the values for each map have been chosen to test grid spacing values
around the current best found schematic. For Mexico, where the best schematic
used a grid spacing value that was on the edge of the data set, we have tested an
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Table 6: Phase 2 grid spacing values

Map Grid Spacing
Washington 9,11
Vienna 9,11
Mexico City 13, 15, 16
Sydney 3,4,5,6,7,9

Table 7: Washington results - Phase 2

Rank Start Distance Iterations Grid Spacing Fitness

1 15 16 11 3.844
2 15 20 11 3.844
3 17 20 11 4.035
4 17 8 10 4.074
5 15 16 10 4.116
6 15 20 10 4.116
7 16 12 10 4.116
8 15 16 8 4.122
9 15 20 8 4.122
10 16 12 8 4.122
60 13 8 9 4.249
120 16 8 8 4.770

additional level. We have tested Sydney with six additional levels, this is because
the first three additional values we tested (6, 7, 9) continued to show a decreasing
fitness trend (ranks 2, 3, 4 with grid spacing 6). A grid spacing of 6 was again an
extreme of the tested values, so we performed another series of tests using yet lower
values of grid spacing: 3, 4 and 5.

Out of the four maps tested with additional grid spacing values, both Wash-
ington and Sydney managed to achieve a layout with a new best fitness level. The
best ranking optimisation using new values for the other two maps is as follows:
Vienna - 22 out of 120, Mexico - 79 out of 140. As a result we consider that Vienna
and Mexico reached their best layout (by this method) in phase 1, and no further
improvement was possible by manipulating the parameters considered in this paper.
Hence, in this section we concentrate on Washington and Sydney.

Table [7] shows an updated table of results for Washington, where a grid spac-
ing of 11 has produced the most optimum schematics; this is an additional 5.68%
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improvement of the best schematic over the median. Figure [L5| shows the new best
Washington schematic produced. When compared to the previous best, Figure [22]
a few enhancements can be seen that are resulting in a lower fitness value. For
example, the centre section of the schematic has been spaced out further to allow
extra room for stations; this change has allowed the removal of two line bend points,
and has helped with the even distribution of nodes across the schematic. There are
still a few situations of local optima present in this schematic, for example the blue
periphery line section near the bottom is longer than necessary - this is either an
indication of remaining local optima or a criteria conflict that cannot be resolved.
Although running these tests with additional grid spacing values has produced a
better layout, Figure [16| shows that on average a grid spacing of 10 is still best for
the Washington schematic. It can also be seen that as the grid spacing gets further
away from the optimum, the resulting fitness value increases.

Table [§ shows an updated table of results for Sydney, where a grid spacing of 4
has produced the most optimum schematic; this is an additional 2.28% improvement
of the best schematic over the median Figure [I7] shows the best ranked Sydney
schematic produced using the new grid spacing values. As with the new best Wash-
ington schematic it shows a number of improvements over the previous best (Figure
, for example more octilinear lines and more evenly distributed station spacing,
but still has some apparent issues of local optima. Figure [18 shows the average fit-
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Table 8: Sydney results - Phase 2

Rank Start Distance Iterations Grid Spacing Fitness

1 13 16 4 19.378
2 17 20 8 19.387
3 13 20 4 19.407
4 13 16 6 19.426
) 14 12 6 19.447
6 13 20 6 19.491
7 13 12 4 19.499
8 14 12 4 19.523
9 14 16 4 19.523
10 14 20 4 19.659
100 13 8 7 21.742
200 17 8 14 23.232

ness level for all tested values of grid spacing. It can be seen that for Sydney, there
is a trend of grid spacing values between 4 to 8 producing a better result; this is
in contrast to Vienna and Washington which prefer a spacing of 10, and Mexico at
14.
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Fig. 17: Sydney - Phase 2 - Rank 1 (Fitness = 19.378)

5. Discussion

The previous section provided our test results and a separate discussion for each
phase of testing. This section discusses an overview of the results obtained from
both phases.

Our tests have indicated that for all four maps there is a slight trend towards
better layouts being produced by a greater start distance and more iterations. This
behaviour is expected, as increasing these parameters allows the system to evaluate
more station positions, at the potential cost of increased run time. Unlike start
distance and iterations, grid spacing did not display any obvious trend for improving
fitness across all schematics; results indicate that each schematic has an optimum
grid spacing value at which a lower fitness is more commonly produced, as can be
seen in Figures [8] [I6] and [I8] A connection between optimal grid spacing and map
density could be proposed, as the order in which maps increase in density inversely
correlates to their best grid spacing value (ordered by perceived increasing density,
best spacing in brackets): Mexico (14) < Vienna/Washington (10) < Sydney (4/8).
This is intuitive, as a denser schematic would benefit from finer control of node
positioning. However, this relationship needs to be verified with a larger number of
schematics and a metric for quantifying density.

Table[9]shows the percentage improvement of the best schematic over the median
for each map, indicating that if the correct parameters are chosen, the produced
schematic will have on average a 22.25% lower fitness value than when using ad-hoc
parameter values. This value is potentially larger - as only Mexico and Washington
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Table 9: Percentage improvement of best schematic over median

Map Best Median % Improvement
Mexico 2.667 3.073 13.2%
Sydney 19.378  21.742 10.9%
Vienna 0.972 2.174 55.3%
Washington — 3.844 4.249 9.6%
Mean 22.25%

managed to repeatedly produce the lowest fitness value (indicating a possible best),
and that for at least Sydney and Vienna it is likely possible to generate a better
fitness.

Interestingly, although trends have been identified in all parameters (grid spacing
on a by-map basis), it can be seen in the results tables that the best layouts are
not when all the parameters are at their best settings as indicated by the individual
trends; there is still considerable variation.
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6. Conclusion

When implementing any multicriteria search method, many parameters are used to
configure the algorithm, for example those studied in this paper. We have performed
a test to examine how the modification of three such parameters affects the final
fitness result, and identified a number of trends. Increasing the start distance and
number of iterations improved the mean result across all maps each time it was
raised, and this is understandable as these directly increase the search space. A
trend for grid spacing does not appear across all maps, but is visible on a per-map
basis. This is an indication that grid spacing is related to the characteristics of a
schematic.

Besides identifying trends, our results show that optimizing the three parameters
leads to an overall mean improvement of 22.25% in the resulting fitness calculation
over using ad-hoc values. When algorithms such as schematic layout are designed
for the highest possible output quality without regard to time, any performance
improvement is desired; and our test provides evidence that optimizing parameter
values has a large effect on the performance of methods prone to local optima.

We have begun work on examining parameters for improving layout and char-
acterizing maps. Firstly, other parameters may be investigated, for example, the
number of bend points on diagrams and those that control clustering. Secondly,
and perhaps most importantly, we plan to develop more sophisticated character-
izations of schematics such as geographic density variance, and identifying radial
and orbital maps. We are most interested to see if we can find a characterization
of initial schematics that correlates to the identified patterns in grid spacing. If
such a connection exists it would then be possible to automatically set optimizer
parameters based on the schematic at the start of the layout, helping to produce a
more optimal result than would otherwise be achieved using default values, without
broadening the search space.
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Appendix

Table 10: Fitness statistics by map - Phase 1

Schematic Mean Median Mode SD IQR
Washington = 4.358 4.258 4.634 0.222 0.489

Vienna 2.327 2.197  2.221 1.043 0.601
Mexico 3.179 3.139  3.073 0.306 0.304
Sydney 21.924 21.926 23.232 1.681 2.675

Table 11: Statistics by Parameter Value - Phase 1

Parameters Mean Median Mode Standard Deviation IQR

Grid Spacing

8 7.354 4.116 19.730 7.223 5.471
10 7.421 3.879 4.144  8.004 6.143
12 8.361 3.624 2.221  9.090 6.461
14 8.653 4.434 4.634 8.353 5.907
Start Distance

13 0.043 4.178 19.663 8.264 5.318
14 7.992  4.205 19.660 8.268 5.466
15 7.928 4.133 19.730 8.215 5.468
16 7.911 4.133 19.730 8.193 5.486
17 7.861 4.105 2.221  8.200 5.339
Iterations

8 8.081 4.205 2.221 8.197 5.425
12 7.976 4.145 2.221 8.213 5.323
16 7.884 4.144 2.221 8.221 5.542

20 7.848 4.144 2.221  8.227 5.488
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Table 12: Mexico Results - Phase 1

Paper

Rank Start Distance Iterations Grid Spacing Fitness
1 13 20 14 2.667
2 14 16 14 2.667
3 14 20 14 2.667
4 15 16 14 2.667
5 15 20 14 2.667
6 16 16 12 2.802
7 16 20 12 2.802
8 17 16 12 2.802
9 17 20 12 2.845
10 13 20 10 2.847
40 17 12 12 3.073
80 13 8 8 4.111
Table 13: Sydney Results - Phase 1
Rank Start Distance Iterations Grid Spacing Fitness
1 17 20 8 19.387
2 14 8 8 19.660
3 14 12 8 19.660
4 14 16 8 19.660
5 14 20 8 19.660
6 13 8 8 19.663
7 13 12 8 19.663
8 13 16 8 19.663
9 13 20 8 19.663
10 17 8 8 19.719
40 14 12 10 21.237
80 14 12 12 24.332
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Table 14: Vienna Results - Phase 1

Rank Start Distance Iterations Grid Spacing Fitness

1 15 20 10 0.972
2 17 20 10 0.981
3 16 16 10 0.986
4 16 20 10 0.986
5 17 16 10 0.986
6 15 16 10 1.037
7 14 20 10 1.135
8 17 12 10 1.180
9 16 12 10 1.195
10 13 16 10 1.317
40 16 12 8 2.174
80 17 8 14 4.233

Table 15: Washington Results - Phase 1

Rank Start Distance Iterations Grid Spacing Fitness

1 17 8 10 4.074
2 15 16 10 4.116
3 15 20 10 4.116
4 16 12 10 4.116
5 15 16 8 4.122
6 15 20 8 4.122
7 16 12 8 4.122
8 17 8 8 4.135
9 13 16 10 4.144
10 13 20 10 4.144
40 16 8 12 4.258
80 16 8 8 4.777
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