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Whisper-to-speech conversion using
restricted Boltzmann machine arrays

Jing-jie Li, Ian V. McLoughlin, Li-Rong Dai and
Zhen-hua Ling

Whispers are a natural vocal communication mechanism, in which
vocal cords do not vibrate normally. Lack of glottal-induced pitch
leads to low energy, and an inherent noise-like spectral distribution
reduces intelligibility. Much research has been devoted to processing
of whispers, including conversion of whispers to speech.
Unfortunately, among several approaches, the best reconstructed
speech to date still contains obviously artificial muffles and suffers
from an unnatural prosody. To address these issues, the novel use of
multiple restricted Boltzmann machines (RBMs) is reported as a stat-
istical conversion model between whisper and speech spectral envel-
opes. Moreover, the accuracy of estimated pitch is improved using
machine learning techniques for pitch estimation within only voiced
(V) regions. Both objective and subjective evaluations show that this
new method improves the quality of whisper-reconstructed speech
compared with the state-of-the-art approaches.

Introduction: Speech is a flexible communication mechanism through
which people can converse using normal voice, can shout over long
distances or whisper (an unvoiced (UV) mode) for private consideration
communications. Whispers are often seen as a kind of degraded speech,
differing through lack of voiced (V) pitch (f0) and with reduced energy.
In fact, those who suffer from voice box diseases or have undergone a
laryngectomy, may only be able to produce whispers. Much research
effort has been spent on whisper-to-speech reconstruction [1], with
Gaussian mixture model (GMM)-based voice conversion (VC)
methods being state-of-the-art at present [2]. GMMs model the joint
probability density of spectral parameters extracted from parallel
whisper and normal speech, to subsequently transform whisper spectral
parameters into those resembling speech. A second GMM models the
joint probability between whisper spectrum and the f0 extracted from
parallel target speech. This then generates an f0 excitation from
whisper spectral parameters for reconstruction. Output speech is syn-
thesised from the transformed spectral parameters and estimated f0.
Beyond this, a further GMM is often used to reconstruct aperiodic com-
ponents for additional naturalness [2]. Despite good performance, GMM
SVC (statistical voice conversion) systems suffer from several issues: (i)
normally they can only model high-order low-dimensionality spectral
features such as mel-cepstra (i.e. spectral envelope acted on by a filter-
bank) [2]. However, the eventual inverse transformation from estimated
mel-cepstra back into spectral envelope ignores much detail. Usually,
the converted spectral parameters become over-smoothed since they
are mainly determined by the weighted sum of mean vectors of each
Gaussian mixture, causing a ‘muffled’ sound. This is mitigated partly
by utilising dynamic spectral features, with techniques such as
maximum output probability parameter generation (MOPPG) and
global variance; (ii) the important V/UV decisions are derived by thresh-
olding the f0, estimated from spectral parameters, whereas it may be
better to directly classify speech as V or UV; and (iii) with the exception
of [3], f0 is modelled jointly over both V and UV phonemes.

New approach: This Letter advances the state-of-the art in statistical
whisper-to-speech conversion in three areas: (i) restricted Boltzmann
machines (RBMs) [4] and deep learning techniques [5] are used for
reconstruction. We are prompted by their success in similar tasks such
as text-to-speech [6] and VC [7]; however, the main reason is that it
allows us to use higher-dimensional spectral envelope information for
reconstruction rather than mel-cepstra; (ii) decoupling the V/UV decision
from the f0 estimation GMM, instead evaluating support vector machine
(SVM) and dedicated GMM for this task; and (iii) this allows V and UV
phonemes to be modelled in different feature spaces, and the estimated f0
derived only from V phonemes [3].

In detail, spectral features are represented as envelopes (not high-
order mel-cepstra) extracted following [8] for whispers and parallel
speech, synchronised by dynamic time warping (DTW), shown in
Fig. 1. The joint spectral density space is modelled using multiple
RBMs (instead of a single GMM), which has been shown by other
authors to better match inter-speaker spectral correlation [7]. V/UV
decisions are made on input whispers using a SVM to divide spectral
features into V and UV. f0 estimation is then performed specifically

on V frames using GMM or support vector regression (SVR) evaluated
by comparing reconstructed speech that of the baseline GMMmethod of
[2].
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Fig. 1 Training and operating phases for spectral reconstruction

RBM-based spectral conversion: RBMs are bipartite undirected graph
models where visible units v = [v1, . . . , vV ]` are connected to
hidden units h = [h1, . . . , hH ]` by weight matrix WV×H. V and H
denote the number of visible and hidden layer units. Given input v to
the visible units, the energy function of a Gaussian RBM is defined as

E(v, h; u) = 1
2
(v− a)`(v− a)− b`h− v`Wh (1)

where θ = {W, a, b} are the model parameters, a = [ai, . . . , aV ]` and
b = [bi, . . . , bH ]` are the bias of visible and hidden units. The joint
probability distribution function (PDF) is then defined as

P(v) = 1
Z
∑

h

exp(−E(v, h; u)) (2)

where Z =
"
v

∑
h exp(−E(v, h; u)) dv is the partition function. The

RBM parameters θ = {W, a, b} are obtained via the contrastive diver-
gence (CD) algorithm with a maximum-likelihood criteria.

During conversion, the converted spectral feature vector y∗t is
obtained by maximising the conditional probability given input vector xt

y∗t = argmax
yt

P(yt|xt , u) (3)

Toda et al. [2] demonstrated that the conditional probability can be
approximated without obvious performance loss by

P(yt |xt , u) ≃ P(yt |xt , m∗, u) = N (yt ; mm∗ , t , Sm∗ , y) (4)

where m* is the optimum subspace that has biggest posterior probability
of the given input feature vector,N denotes Gaussian PDF, Sm∗ , y is the
diagonal covariance matrix of the target normal speech in the m*th spec-
tral feature subspace and mm∗ , t is the mode of the m*th RBM, which can
be obtained through solving the following optimisation:

mm∗ , t = argmax
yt

P(vt |m∗, u) (5)

vt = [xt, yt] are visible unit inputs to the m*th RBM. With no closed-form
solution, it can be solved by gradient descent, given learning rate α:

mnew
m∗ , t = mold

m∗ , t + a
∂ logP(vt)

∂yt
(6)

∂ logP(vt)
∂yt

= −(yt − a(y))+
∑H

j=1

s(bj + v`t )w
(y)
j (7)

and σ(x) = (1 + e−x)−1 is the logistic sigmoid function. According to the
characteristic Gaussian distribution, the conditional probability in (4) is
maximised when ym∗ , t = mm∗ , t . In (5) and (6), note that the converted
spectral feature is not dominated by the mean of m*th target spectral
feature subspace (as it would be in a GMM system). Moreover, this
allows us to implement RBM-based conversion by modifying a baseline
GMM [2]. Enhancements developed for GMM-based systems, such as
dynamic features and MOPPG, are still compatible with the proposed
architecture. The proposed system comprises spectral envelope
(Fig. 1) and f0 conversion modules. During training, a V/UV decision
model (e.g. GMM or SVM) is first trained using the mel-cepstra static
(s) and dynamic (Δ) features of whispers with V/UV data from
DTW-aligned normal speech (from extracted f0 tracks). Next, an f0 esti-
mation model is trained for the V subspace only using whisper spectral
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features and the extracted speech f0. Meanwhile, multiple RBMs are
trained using spectral envelope features from the V subspace regions
to model the joint spectral density between whispers and time-aligned
speech shown in (2). Reconstruction begins with a frame-wise V/UV
decision from input whispers. For V frames, f0 is estimated, and spectral
envelope features are obtained from the RBMs using (5) and the
MOPPG algorithm. UV output uses amplitude-normalised whispered
frames.

Evaluation: The proposed methods were evaluated as follows: 25-order
mel-cepstra and 257-order spectral envelopes were extracted from whis-
pers and corresponding speech [8]. DTW was computed between the
whisper and speech mel-cepstra (and used for mel-cepstra, spectral
envelopes, V/UV regions and f0 from the parallel training data).
Parallel whisper and speech recordings from a whispered TIMIT data-
base (wTIMIT) [9] (female speaker 002 and male speaker 003) were
divided into test data of 10 000 analysis frames, training data
(∼180 000 and frames). We first assess V/UV decision accuracy.
GMM and SVM methods were evaluated in terms of error rates for
different lengths of concatenated GMM input vectors, and for SVM in
Table 1. Principal component analysis was used to reduce the high-
dimensional features to a 50-dimension (50D) vector. Table 1 reveals
that the optimal context size is ±5 frames, and that the SVM error
rate slightly exceeds that of the optimal GMM choice. Overall, these
methods contribute a V/UV error rate of about 9% to the subsequent
spectral modelling of V frames, comparable with 9.76% in [3].

Table 1: V/UV error rates of GMMs for SVM and various GMMs

Static (%) ±1 (%) ±3 (%) ±5 (%) ±7 (%) SVM ± 5 (%)

V→U 7.3 5.1 5.28 5.09 5.55 4.39

U→V 6.58 4.95 4.41 3.77 3.54 5.08

Total 13.88 10.05 9.69 8.86 9.09 9.47
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Fig. 2 Whisper (top) and reconstructed (bottom) spectrograms

Table 2: f0 estimation for different regression models

Baseline GMM V-only GMM V-only SVR

RMSE (Hz) 29.95 12.97 13.80

Correl. coeff. 0.26 0.61 0.49

Table 3: MOS and subjective preference scores of GMM and RBM

Mean (95% confidence) Preference (remainder indicates none)

Female speech Male speech Female speech (%) Male speech (%)

GMM 2.25 (±0.18) 2.35 (±0.13) 2.5 2.7

RBM 2.91 (±0.16) 2.87 (±0.15) 73.8 54

Secondly, f0 estimation accuracy is compared for different regression
models. Table 2 gives the root mean squared error (RMSE) and corre-
lation coefficient. Evidently, a significant performance gain is achieved
by separately modelling the V and UV subspaces (i.e. estimate f0 from
V frames only), with SVR achieving similar performance. Finally, the

proposed multiple-RBM reconstruction system was evaluated against
the baseline [2] with 64 mixtures. The baseline GMM was then used
to divide the analysis frames into 64 spectral subspaces. One RBM,
with 1028 visible and 100 hidden units, was trained per subspace
using the CD algorithm [5]. Both static and dynamic spectral envelope
features were used, and MOPPG employed to generate final static fea-
tures for re-synthesis. f0 was estimated as described above for
GMM-classified V frames only. For subjective evaluation, eight stu-
dents with no known hearing impairments assessed whispers from
reconstructed baseline and proposed methods in a soundproofed room,
wearing headphones. Testing used a mean opinion score (MOS) proto-
col with 50 sentences per condition. A separate two-alternative prefer-
ence test was also conducted. The results, shown in Table 3, clearly
indicate that the RBM method achieves higher MOS and is the clearly
preferred method. The proposed RBM system achieves a log spectral
distortion (LSD) of 6.10 (±0.15), compared with 5.96 (±0.13) for the
64-mixture GMM baseline and 11.07 (±0.29) for the whispers. In
general, the nonlinearity of (6) coupled with the avoidance of a mel-
cepstral transformation loss improves the fidelity of modelled fine
detail. Fig. 2 shows an example spectrogram.

Conclusion: This Letter has proposed and evaluated three improve-
ments to state-of-the-art GMM-based whisper-to-speech reconstruction
systems: (i) decoupling the V/UV decision from f0 estimation, poten-
tially allowing better performance for both tasks; (ii) modelling f0 for
V subspaces only achieved a significant improvement over the usual
method of modelling f0 for combined V and UV subspaces; and
(iii) the first application of multiple RBMs for whisper-to-speech VC.
RBMs allowed higher-dimensional spectral envelope features to be
used: a 1028D GMM would be extremely difficult to train directly.
Results indicate a very strong preference for the RBM-reconstructed
speech, as well as improved MOS over the GMM system.
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