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Abstract

In this paper we consider polynomials pωn(x) orthogonal with re-
spect to the oscillatory weight w(x) = eiωx on [−1, 1], where ω > 0 is a
real parameter. A first analysis of pωn(x) for large values of ω was car-
ried out in [5], in connection with complex Gaussian quadrature rules
with uniform good properties in ω. In this contribution we study the
existence, asymptotic behavior and asymptotic distribution of the roots
of pωn(x) in the complex plane as n→∞. The parameter ω can be fixed
or grow with n at most linearly. The tools used are logarithmic po-
tential theory and the S-property, together with the Riemann–Hilbert
formulation and the Deift–Zhou steepest descent method.

1 Introduction

We are concerned with a family of polynomials orthogonal on the interval
[−1, 1] with respect to an oscillatory weight function. More precisely, we
consider the weight function

w(x) = eiωx, (1.1)

on [−1, 1], where ω > 0 is a real parameter, and we define formal orthogonal
polynomials, depending on two parameters ω and n, in the following sense:∫ 1

−1
pωn(x)xkw(x)dx = 0, k = 0, 1, . . . , n− 1. (1.2)
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The purpose of this paper is to investigate the large n asymptotic be-
havior of pωn(x), covering two different regimes: the case where ω is fixed
and the case where ω = ωn is allowed to grow coupled with n and at a linear
rate at most.

Polynomials orthogonal with respect to complex weight functions have
been considered in the literature in connection with rational approximation
of analytic functions, see for example the work of Aptekarev [3]. In that
reference, the author considers more general complex weight functions, holo-
morphic in a neighborhood of the curve where the orthogonality is defined.
The weight (1.1) is a particular case of that analysis, although its simplicity
allows for more explicit results. We should mention that polynomials with
respect to a complex exponential weight have also been considered recently
in the work of Suetin [28]. In this reference the author studies (using differ-
ent techniques) the case ω = 1 in our notation, modified with a Chebyshev
factor (1− x2)−1/2.

The analysis of this family of orthogonal polynomials was motivated in
[5] by the problem of constructing complex quadrature rules of Gaussian
type for oscillatory integrals of the type

I[f ] =

∫ 1

−1
f(x)eiωxdx, (1.3)

which is a numerical challenge when the frequency ω is large. For this and
more general Fourier–type integrals, several possibilities have been contem-
plated in the literature: one option is an application of a Filon–type rule,
as exposed for example in [17], which is based on interpolation of f(x) and
its derivatives (or approximations) at the endpoints. Another possibility is
the application of the classical method of steepest descent, see for instance
[4, 16], which leads to complex quadrature rules which are optimal for large
ω, and whose convergence properties can be improved used interpolation at
carefully selected points, see [14]. In this case, this approach would lead to
deformation of the path of integration into the upper complex plane and
application of Gauss–Laguerre quadrature to the resulting contour integrals
after a suitable parametrization. Another possibility is the so–called expo-
nentially fitted rules, see [21], which are restricted to be real and not directly
connected to orthogonal polynomials.

The main purpose of analyzing the family of orthogonal polynomials
pωn(x) in (1.2) is that a complex quadrature rule based on them would have
good asymptotic properties both for large ω, resembling the performance of
the steepest descent method in that respect, and also for small ω, meaning
that it reduces to the classical Gauss–Legendre rule when ω → 0.

In [5] the authors consider several properties of pωn(x), in particular the
large ω asymptotic behavior. The fact that the weight function w(x) is
not positive poses a problem of existence of pωn(x) from the outset, since
the standard Gram–Schmidt procedure to generate the family of orthogonal
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polynomials may fail for some values of n and/or ω. In fact, one of the
conclusions in [5] is that given n ≥ 1, there exists a countable set of values
of ω for which the polynomial of odd degree pω2n+1(x) is not defined. This
corresponds to zeros of the bilinear form

(f, g) =

∫ 1

−1
f(x)g(x)w(x)dx (1.4)

applied to the polynomial pω2n(x). For instance, in the case of pω1 (x), that
sequence is given by ω = kπ, with k ∈ Z. In contrast, the polynomials
of even degree pω2n(x) are conjectured to exist for all n, and under this
assumption, their roots tend to the roots of the product of two rotated and
scaled Laguerre polynomials as ω →∞.

In order to state asymptotic results for large n, we write

λn =
ωn
n
, (1.5)

and we rewrite the weight as varying with n:

wn(x) = e−nVn(x), Vn(x) = −iλnx. (1.6)

We assume that λn has the following asymptotic behavior as n→∞:

λn = λ+ εn, (1.7)

where λ ≥ 0, and εn = O(n−α), with α > 0, as n→∞. We also define

V (x) := lim
n→∞

Vn(x) = −iλx. (1.8)

We highlight two important situations:

• When ω is fixed, then we have λ = 0 and εn = ω is independent of n.

• When ω = λn, with λ > 0, then λn = λ and εn ≡ 0.

The asymptotic behavior of the roots of pωn(x) as n→∞ will be obtained
using logarithmic potential theory and the notion of S-curve in a polynomial
external field, that goes back to the works of H. Stahl [26], see also the recent
work of Rakhmanov [24]. These ideas have been used recently in connection
with non–Hermitian orthogonality in the complex plane, see for instance
[19] for a general formulation of the theory with more general exponential
weight functions, see [2, 9, 15] for an analysis in the case when V (x) is a
cubic polynomial, or the recent contribution [6] in connection with Laguerre
polynomials with arbitrary complex parameters.

The results on the large n asymptotic behavior of pωn(x) will be obtained
using the Riemann–Hilbert formulation and the nonlinear steepest descent
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Figure 1: Zeros of p10
20(z) (left) and p20

40(z) (right). Here λn = λ = 1/2.

method. This approach also gives asymptotic information about the coeffi-
cients a2

n = a2
n,ω and bn = bn,ω of the three term recurrence relation

xpωn(x) = pωn+1(x) + bnp
ω
n(x) + a2

np
ω
n−1(x), (1.9)

which holds provided that pωn(x) and pωn±1(x) are well defined. Here we have
omitted the possible dependence of ω on n, of course in this situation the
parameter ωn would be shifted as well. We also remark that in [5, Theorem
3.3], the deformation equations for these coefficients in terms of ω are given.

Figures 1, 2 and 3 show the zeros of the polynomials pωn(z) in the complex
plane, computed with Maple using extended precision of 50 digits, and
taking n = 20, n = 40 and then λn = λ = 1/2 in Figure 1, λn = λ = 1
in Figure 2 and λn = λ = 3/2 in Figure 3. These numerical experiments
indicate that one should expect a transition in the behavior of the zeros of
pωn(x), from being supported on a single curve joining z = −1 and z = 1 to
distributing along two disjoint arcs in the complex plane, as the coupling
parameter λ goes through a critical value, say λ0, that seems to be located
between 1 and 3/2. In the next section we make this statement precise.

2 Statement of main results

Consider λ as defined in (1.7), and the function

h(λ) = 2 log

(
2 +
√
λ2 + 4

λ

)
−
√
λ2 + 4, (2.1)

and let λ0 be the (unique) positive solution to the equation h(λ) = 0, i.e.

2 log

(
2 +

√
λ2

0 + 4

λ0

)
−
√
λ2

0 + 4 = 0. (2.2)
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Figure 2: Zeros of p20
20(z) (left) and p40

40(z) (right). Here λn = λ = 1.

Figure 3: Zeros of p30
20(z) (left) and p60

40(z) (right). Here λn = λ = 3/2.
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The fact that λ0 is unique is a consequence of h(λ) being a map from
[0,∞) onto R and a decreasing function of λ. The value of λ0 can be
computed numerically, and we have λ0 = 1.325486839 . . .

In our results, we will work with the following function:

ϕ(z) = z + (z2 − 1)2, (2.3)

which is analytic in C \ [−1, 1] and maps C \ [−1, 1] onto the exterior of the
unit circle.

We can prove the following result:

Theorem 2.1. Let V (z) = −iλz with 0 ≤ λ < λ0, then

1. there exists a smooth curve γλ joining z = 1 and z = −1 that is a part
of the level set given by

Reφ(z) = 0, (2.4)

where
φ(z) = 2 logϕ(z) + iλ(z2 − 1)1/2 (2.5)

and the cut of the square root is taken on γλ,

2. the measure

dµλ(z) = ψλ(z)dz = − 1

2πi

2 + iλz

(z2 − 1)1/2
dz, (2.6)

with a branch cut taken on γλ, is the equilibrium measure on γλ in the
external field Re V (z),

3. the curve γλ joining z = −1 and z = 1 has the S-property in the
external field Re V (z),

4. if we consider the normalized zero counting measure of pωn(z), then

µn =
1

n

∑
pωn(ζ)=0

δ(ζ)
∗−→ µλ, (2.7)

as n→∞, in the sense of weak convergence of measures.

In particular, if λ = 0, we get

Re
[
log(z + (z2 − 1)1/2)

]
= 0, (2.8)

and the curve γ0 coincides with the interval [−1, 1]. Note that the theorem is
consistent with what can be observed in the numerical experiments before.

Regarding the asymptotic behavior of the orthogonal polynomials pωn(z),
we have the following result:
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Theorem 2.2. Let 0 ≤ λ < λ0 with 0 ≤ λ < λ0, then the following holds
true:

1. For large enough n the orthogonal polynomial pωn(z) defined by (1.2)
exists uniquely, and its zeros accumulate on γλ, as n→∞.

2. For z ∈ C\γλ, the monic orthogonal polynomial pωn(z) has the following
asymptotic behavior:

pωn(z) =
ϕ(z)n+1/2

2n+1/2(z2 − 1)1/4
exp

(
− inλn

2ϕ(z)

)(
1 +O

(
1

n

))
, n→∞.

(2.9)

3. Fix a neighborhood U of γλ in the complex plane, and two discs

D(±1, δ) = {z ∈ C : |z ∓ 1| < δ}, (2.10)

with δ > 0. For z ∈ U \ (D(1, δ) ∪D(−1, δ)), we have as n→∞,

pωn(z) =
21/2−ne

n
2
Vn(z)

(1− z2)1/4
×[

cos

((
n+

1

2

)
arccos z +

nλn
2

(z2 − 1)1/2 − π

4

)
+O(1/n)

]
.

(2.11)

4. For z ∈ γλ ∩D(1, δ) we have

pωn(z) = 2−n(2nπ)1/2f(z)1/4 e
nVn(z)

2

×
[
cos ξ(z)J0

(
− inφ(z)

2

)
+ sin ξ(z)J ′0

(
− inφ(z)

2

)
+O(1/n)

]
,

(2.12)
as n→∞, in terms of standard Bessel functions, with f(z) = φ(z)2/16
and φ(z) given by (2.5). Here

ξ(z) = −n
2

(λ− λn)(z2 − 1)1/2 +
1

2
arccos z.

Remark 2.3. The asymptotic results are consistent with Theorem 1.4 in
[18], taking α = β = 0 and h(z) = wn(z), and can be seen as a complex gen-
eralization of the Jacobi–type weight function considered in that reference.
Note that the definition of the phase function ψ(z) in [18, formula (1.34)],
see also [20, formula (3.9)] can be adapted to this case. Namely, we have

ψ(z) =
(1− z2)1/2

4πi

∮
γ

logwn(t)

(t2 − 1)1/2

dt

t− z =
nλn

2
(z2 − 1)1/2, (2.13)

using residue calculation, which fits well with the estimates in Section 3 of
the previous theorem. Here γ is a smooth curve that encircles [−1, 1] once
in the positive direction.
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Remark 2.4. The previous result is also consistent with the strong asymp-
totics given in Theorem 2 in [3], with notation Q(z) = − iλnz

2 and h̃n(z) ≡ 1.

Regarding the recurrence coefficients in (1.9) and the norm of the orthog-
onal polynomials, we can deduce the following result from the Riemann–
Hilbert formulation and the steepest descent analysis:

Theorem 2.5. Let 0 ≤ λ < λ0 with 0 ≤ λ < λ0, then the coefficients a2
n

and bn in the three term recurrence relation

xpωn(x) = pωn+1(x) + bnp
ω
n(x) + a2

np
ω
n−1(x), (2.14)

exist for large enough n, and they satisfy

a2
n =

1

4
+

4− λ2

4(4 + λ2)2

1

n2
+O

(
1

n3

)
,

bn = − 2iλ

(4 + λ2)2

1

n2
+O

(
1

n3

)
.

(2.15)

Remark 2.6. Higher order coefficients in the previous asymptotic expansion
can in principle be computed by iterating the last step in the steepest descent
analysis, see [18, Section 8] and also Section 5 below.

Following this approach, it is also possible to obtain asymptotic estimates
for related quantities, such as leading coefficients of the orthogonal polyno-
mials or Hankel determinants, but we omit these results for brevity.

3 Proof of Theorem 2.1

The proof of Theorem 2.1 will make use of the following tools: first we recall
some standard ideas from logarithmic potential theory in the complex plane
and the S-property, which is a key tool in the analysis of non–Hermitian
orthogonality in the complex plane. In order to construct such a curve with
the S-property, which will attract the zeros of pωn(z) as n → ∞, we need
to study the local and global trajectories of a certain quadratic differential
−Qλ(z)dz2, that turns out to be explicit in this case.

3.1 Potential theory and the S-property

From the work of Gonchar and Rakhmanov, [13, 24], it is known that a
key element in the analysis of the large n behavior of zeros of orthogonal
polynomials is the equilibrium measure in an external field, which in this
case is given by ReV (z), with V (z) = −iλz.

We take the set T of smooth curves joining z = −1 with z = 1, with
orientation from −1 to 1. For any γ ∈ T we consider the space of probability
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measures on γ, denoted here M1(γ), and we pose the following equilibrium
problem:

inf{I(µ) : µ ∈M1(γ)}, (3.1)

where

I(µ) =

∫
γ
Uµ(z)dµ(z) + Re

∫
γ
V (z)dz (3.2)

is the energy functional and

Uµ(z) =

∫
γ

log
1

|z − y|dµ(y) (3.3)

is the logarithmic potential of the measure µ. This problem has a unique
solution for each γ ∈ T , following the standard theory, see for instance [25].
Furthermore, the equilibrium measure µ is characterized by the so–called
variational conditions. Define

g(z) =

∫
γ

log(z − s)dµ(s), (3.4)

which is analytic in C \ γ. Note that Re g(z) = −Uµ(z). Then there exists
a constant ` such that

Re (−g+(z)− g−(z) + V (z)) = `, z ∈ suppµ,

Re (−g+(z)− g−(z) + V (z)) ≥ `, z ∈ γ. (3.5)

When working with non–Hermitian orthogonality in the complex plane,
we have an additional freedom to choose γ without changing the orthogo-
nality condition (1.2). In order to find the precise curve that describes the
asymptotic behavior of the zeros of pωn(x) as n→∞, we need an extra con-
dition, which is called the S-property in the literature. We refer the reader
to [26, 24, 19] for more details.

Definition 3.1. We say that a contour γ has the S-property in the external
field Re V (x) if the following two conditions are satisfied:

1. there exists a set E of zero capacity such that for any ζ ∈ γ \E, there
exists a neighborhood D = D(ζ) such that the set D ∩ supp µ is an
analytic arc,

2. for any point on this analytic arc, the logarithmic potential of µ satis-
fies

∂

∂n+

(
Uµ +

1

2
Re V

)
=

∂

∂n−

(
Uµ +

1

2
Re V

)
, (3.6)

where ∂
∂n±

indicates normal derivatives in opposite directions, and µ
is the equilibrium measure for γ in the external field Re V .
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If one is able to find such a contour with the S-property in the external
field ReV (z), then it follows from the work of Gonchar and Rakhmanov,
cf. [24, Theorem 1.3], that the zero counting measure on the zeros of pωn(x)
satisfies

µn =
1

n

∑
pωn(ζ)=0

δ(ζ)
∗−→ µ, (3.7)

where µ is the equilibrium measure of γ in the external field Re V . Here
∗−→ indicates convergence in the weak topology, in the sense that∫

γ
f(x)dµn(x)→

∫
γ
f(x)dµ(x), n→∞, (3.8)

for any continuous function f .
In the sequel we will denote the curve with the S-property as γλ, de-

pending on the parameter λ, and µλ will be the equilibrium measure on
γλ.

An alternative characterization of the curve γλ with the S-property is
a consequence of the Cauchy–Riemann equations, and has a form similar
to the variational equations (3.5), but involving the imaginary part of the
external field:

Im

(
−g+(z)− g−(z) +

1

2
V (z)

)
= ˜̀, z ∈ suppµ, (3.9)

where the constant ˜̀ might be different in each component of suppµ, if this
consists of several pieces. Hence, combining (3.9) and (3.5), if γλ has the
S-property in the external field ReV (z), we have

−g+(z)− g−(z) + V (z) = `+ i˜̀, z ∈ suppµλ. (3.10)

Furthermore, it is known, see for example [24], that the support of the
equilibrium measure µλ is a union of analytic arcs that are trajectories of
the quadratic differential −Qλ(z)dz2, which are given by the condition

−Qλ(z)dz2 > 0. (3.11)

This function Qλ(z) is defined as

Qλ(z) =

(∫
dµλ(x)

x− z +
V ′(z)

2

)2

. (3.12)

This equation is a key element in order to obtain properties of the equi-
librium measure and its Cauchy transform, see for example [22, 19], but in
order to obtain some explicit formula for the quadratic differential, one nor-
mally has to make some assumptions on µλ, to be proved later. Assume for
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the moment that µλ is supported on a single arc γλ that connects z = −1
and z = 1 in the complex plane, then the function

wλ(z) =

∫
γλ

dµλ(x)

z − x (3.13)

is analytic in C \ γλ, and it satisfies

wλ(z) =
1

z
+O

(
1

z2

)
, z →∞,

wλ+(z) + wλ−(z) = V ′(z) = −iλ, z ∈ γλ,
(3.14)

where w±(z) denote the boundary values from the left (right) of the curve
γλ. The second equation is a direct consequence of the formula (3.10), since
wλ(z) = g′(z).

Consequently, we look for wλ(z) in the form

wλ(z) = − iλ

2
+

p1(z)

(z2 − 1)1/2
, (3.15)

where p1(z) = a0 + a1z is a polynomial of degree 1, because of the first
condition in (3.14), and the square root is taken with a cut on γλ. From the
first equation in (3.14), we obtain a0 = 1 and a1 = iλ/2, so

wλ(z) = − iλ

2
+

2 + iλz

2(z2 − 1)1/2
. (3.16)

Then, for z ∈ γλ, we have

wλ±(z) = − iλ

2
∓ i

2 + iλz

2
√

1− z2
, (3.17)

where the branch of the square root that is real and positive on γλ. The
density of the equilibrium measure can be recovered as

dµλ(z) = ψλ(z)dz = − 1

2πi
(wλ+(z)− wλ−(z)) dz =

1

2π

2 + iλz√
1− z2

dz, (3.18)

using the Sokhotski–Plemelj formula, see for instance [12, §1.4.2]. The den-
sity can be extended to the complex plane with a cut on γλ:

dµλ(z) = ψλ(z)dz = − 1

2πi

2 + iλz

(z2 − 1)1/2
dz. (3.19)

Finally, the quadratic differential Qλ(z)dz2 has the form

Qλ(z)dz2 =
(2 + iλz)2

4(z2 − 1)
dz2. (3.20)

In general, this argument will break down if the support of µλ has several
components, in particular (3.15) will cease to be valid. For this reason, in
the next section we will analyze this quadratic differential in more detail,
with the goal of showing that there is indeed one trajectory of −Qλ(z)dz2

joining z = −1 and z = 1, for small values of λ. This will prove the previous
heuristic argument.
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3.2 Trajectories of the quadratic differential −Qλ(z)dz2

3.2.1 Local trajectories near critical points

From (3.20), it is clear that the finite critical points of the quadratic dif-
ferential −Qλ(z)dz2 are two poles located at z = ±1, a double zero at
z = z∗ = 2i/λ. At infinity, the quadratic differential has a pole of order 4,
since using the local parameter ξ = 1/w, we get

− 1

w4
Qλ

(
1

w

)
dw2 =

(
λ2

4w4
− iλ

w3
+
λ2 − 4

4w2
− iλ

w
+O(1)

)
dw2, w → 0.

(3.21)
Naturally, if λ = 0, the double zero disappears and the pole at infinity

becomes of order 2, with negative residual.
In a neighborhood of a critical point the condition −Qλ(z)dz2 > 0 is

known to be equivalent, see [22, Section 4], to Im ξλ(z) = const, in terms of
the local parameter ξλ, given by

ξλ = ξλ(z) =

∫ z√
−Qλ(s)ds. (3.22)

In our case, this local parameter can be computed explicitly:

ξλ(z) = i log(z + (z2 − 1)1/2)− λ(z2 − 1)1/2

2
, (3.23)

with a branch cut on (−∞,−1]∪ γλ and the principal value of the root and
the logarithm.

From (3.23), we have the following local behavior near z = 1:

ξλ(z)− ξλ(1) =

√
2

2π
(−λ+ 2i)(z − 1)1/2 +O((z − 1)3/2). (3.24)

If we write z = 1 + reiθ, the argument of the leading term is

arg(−λ+ 2i)(z − 1)1/2 =
θ

2
− arctan

2

λ
. (3.25)

If this is to be real and positive, we get

θ ≈ 2 arctan
2

λ
, (3.26)

taking principal values of the argument. If λ → 0+ we get θ → π−, so
the trajectory follows the real axis from z = 1. The angle decreases as we
increase the value of λ, so the trajectory enters the upper half plane. By
symmetry, we have a similar behavior near z = −1.

If λ > 0, the quadratic differential has a double zero, located at

z∗ =
2i

λ
. (3.27)
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Locally, four trajectories emanate from z = z∗. Note that

ξλ(z)− ξλ(z∗) =
iλ2

4
√
λ2 + 4

(z − z∗)2 +O((z − z∗)3). (3.28)

So, if we write z = z∗ + reiθ and we take arguments in the previous
equality, we get

π

2
+ 2θ ≡ 0 (modπ), (3.29)

which gives the possible angles

θ = ±π
4
, θ = ±3π

4
. (3.30)

Regarding infinity, the pole of order 4 attracts the trajectories in two
directions with angle π.

3.2.2 Global trajectories

The main tool that we will use to analyze the global behavior of trajectories
of −Qλ(z)dz2 is the Teichmüller lemma, [27, Theorem 14.1]. First we define
the following:

Definition 3.2. A Qλ-polygon is a curve Γ composed of open straight arcs,
along which argQλ(z)dz2 = θ = const, with 0 ≤ θ ≤ 2π and their endpoints,
which can be critical points.

In particular, we can use horizontal (θ = 0) and vertical (θ = π) trajec-
tories of the quadratic differential as boundaries of a Qλ-polygon.

Let us denote the zeros and poles of Qλ(z) as zi, and assign a number
ni to each of them, so that ni is positive and equal to the order of the zero
if zi is a zero, and ni is negative and equal to the order of the pole if zi is
a pole. Then, we have the following result, see [27, Theorem 14.1] for the
proof:

Theorem 3.3. Let D be the interior of a simple closed Qλ-polygon Γ, with
sides Γj and interior angles θj at its vertices, 0 ≤ θ ≤ 2π, and suppose that
Qλ(z) is meromorphic in D (the only points which can be critical on the
boundary of the polygon are the vertices). Then∑

j

(
1− θj

nj + 2

2π

)
= 2 +

∑
i

ni, (3.31)

where the index i runs over all critical points inside the sector.

In the present situation, consider first the four trajectories emanating
from the double zero z∗ = 2i/λ, with starting angles equal to π/2, see
Figure 4.
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2i/λ π/2

Σ1

Σ2Σ3

Σ4

Figure 4: Local trajectories emanating from z = 2i/λ.

Assume first that the four trajectories from z = z∗ diverge to infinity,
and consider one of the sectors delimited by two adjacent trajectories, say
Ω. The internal angle at the double zero z = z∗ is π/2, so we have

1 +
θ

π
= 2 +

∑
i

ni, (3.32)

where θ is the angle at infinity. If both poles z = ±1 are in Ω, then the right
hand side of the equation is 0, which does not give a valid value for θ. If
there are no poles in Ω then the right hand side is 2, which is possible, but
clearly cannot happen in the four sectors, since the poles must be in one of
them.

Therefore, we can have two situations:

1. The trajectories define four infinite sectors, two of which are free of
poles, one contains z = −1 and another one contains z = 1, symmetric
with respect to the imaginary axis.

2. The trajectories define two infinite sectors and a finite one. If we have
a closed trajectory from z = z∗, then we get

0 = 2 +
∑
i

ni, (3.33)

so both poles z = ±1 must be inside the loop. So in this case, the
finite trajectory encircles the two poles and the other two regions are
infinite.

An intermediate situation can take place: two trajectories go to infinity
and the other two connect z = z∗ with z = 1 and with z = −1. This should

14



take place when Im ξ(1) = Im ξ(z∗), and since Im ξ(1) = 0, we get a value
of λ, say λ0, that must satisfy the equation

2 log

(
2 +

√
λ2

0 + 4

λ0

)
−
√
λ2

0 + 4 = 0. (3.34)

Thus, this formula defines the value λ0 that separates the two different
cases in the behavior of the zeros of pωn(x). Namely, as a consequence of the
previous analysis, we have the following result:

Lemma 3.4. Let λ0 be defined as the unique positive solution of (3.34).
Then

• If 0 ≤ λ < λ0, then there exists a trajectory of the quadratic differential
−Qλ(z)dz2 that joins the points z = 1 and z = −1.

• If λ > λ0, then the trajectories of the quadratic differential −Qλ(z)dz2

emanating from z = 1 and z = −1 diverge to infinity in opposite
directions.

Proof. In the case λ = 0 it is clear that Im ξ0(z) = Im ξ0(1) = 0 is equivalent
to Re(log(z+(z2−1)1/2)) = 0. Since the function ϕ(z) = z+(z2−1)1/2 maps
the interval [−1, 1] onto the unit circle, so logϕ(z) is purely imaginary for
z ∈ [−1, 1]. This comes as no surprise, because the case λ = 0 corresponds
to the classical Legendre polynomials.

If λ > 0, let us consider the function Im(ξ(z)) when z = x ≥ 0 is on the
positive real axis. From (3.23), we get that if x ≥ 1, then

Im(ξ(x)) = log(x+
√
x2 − 1), (3.35)

which takes the value 0 at x = 1 and is increasing with x. If 0 ≤ x ≤ 1, then
ϕ(x) = x +

√
x2 − 1 maps the interval [0, 1] onto the arc of the unit circle

ei θ, with 0 ≤ θ ≤ π/2, so i log(x+
√
x2 − 1) ∈ R, and therefore

Im(ξ(x)) = −λ
√

1− x2

2
, 0 ≤ x ≤ 1, (3.36)

which takes the value −λ/2 < 0 at x = 0 and increases to 0 when x = 1. As
a consequence, this imaginary part is a continuous and increasing function
of x on the positive real axis.

Now consider Im (ξ(z∗)), which is equal to

Im ξ

(
2 i

λ

)
= log

(√
λ2 + 4 + 2

λ

)
−
√
λ2 + 4

2
. (3.37)

This function maps [0,∞) onto R, with value 0 at λ0, and it is a de-
creasing function of λ.

15



Therefore, because of continuity and monotonicity, if we fix a value of
λ, there exists a (unique) real and positive value x such that Im(ξ(x)) =
Im(ξ(z∗)). If λ > λ0, then 0 < x < 1, and if 0 < λ < λ0, then x > 1.

If 0 < λ < λ0 then the trajectory Σ1 crosses the real axis at a point x > 1,
and we have a closed trajectory starting and ending at z∗ and encircling the
two poles z = ±1. In this case, there is a trajectory emanating from z = 1,
and since trajectories cannot intersect, it must end at the other pole z = −1.
This proves that if 0 < λ < λ0, there is a curve joining the two critical points
z = ±1.

If λ > λ0, the trajectory γ1 from z∗ crosses the real axis at a point x < 1,
and we must be in the first case before. We apply the Teichmüller lemma
to the sectors bounded by Σ2 and Σ3 and by Σ4 and Σ1. In both cases, we
get that the angle at infinity is equal to π, so the two trajectories diverge
to infinity in opposite directions. In the two remaining sectors, the angle
at infinity is 0, so the trajectory emanating from z = ±1 must diverge to
infinity within these sectors.

This proves the first part of Theorem 2.1, since a trajectory of the
quadratic differential satisfies−Qλ(z)dz2 > 0, which is equivalent to Im ξ(z) =
const, the constant being equal to Im ξ(1) = 0 in this case. Bearing in mind
(3.23), we get the desired result.

Next, because of the explicit construction of dµλ before, see (3.19) and
the discussion leading to this formula, it follows that (3.10) are satisfied,
so γλ has the S-property in the external field ReV (z). Finally, the weak
convergence of the zero counting measure for pωn(z) is a direct consequence
of the work of Gonchar and Rakhmanov, and this completes the proof of
Theorem 2.1.

Figure 5 illustrates the trajectories of the quadratic differential−Qλ(z)dz2

for different values of λ < λ0.

4 Proof of Theorem 2.2

In order to give the asymptotic behavior of the orthogonal polynomials
pωn(z), we will use the Riemann–Hilbert approach, together with the Deift–
Zhou nonlinear steepest descent method. We take the weight function
wn(x) = e−nVn(x), with Vn(x) = −iλnx and 0 ≤ λ < λ0, where λ is de-
fined in (1.7) and λ0 in (2.2).

4.1 Riemann–Hilbert (RH) problem

We seek Y (z) = Yn,ω(z) ∈ C2×2 such that

1. Y (z) is analytic (entrywise) in C \ γλ.
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Figure 5: Trajectories corresponding to the critical points z = ±1 (in black)
and to the point z = z∗ (in red) for λ = 0.5 (left), λ = 0.8 (center) and
λ = 1.2 (right). The black trajectory on the top of the figure (right) is
omitted in the other two plots for clarity, as it does not play any significant
role in the analysis.

2. On γλ, we have the jump

Y+(x) = Y−(x)

(
1 wn(x)
0 1

)
. (4.1)

3. As z →∞:

Y (z) =

(
I +O

(
1

z

))(
zn 0
0 z−n

)
. (4.2)

4. As z → ±1 we have

Y (z) = O
(

1 log |z ∓ 1|
1 log |z ∓ 1|

)
. (4.3)

It is known that if this RH problem has a solution, it is unique, see for
instance [10, §3.2 and §7.1]. Moreover, in this case the solution is given by

Y (z) =

(
pωn(z) (Cpωnwn)(z)

−2πiκ2
n−1p

ω
n−1(z) −2πiκ2

n−1(Cpωn−1wn)(z)

)
(4.4)

where

(Cf)(z) =
1

2πi

∫
γλ

f(s)

s− zds (4.5)

is the Cauchy transform of the function f(z), and κn−1 is the leading coef-
ficient of the orthonormal polynomial, i.e. πωn−1(x) = κn−1p

ω
n−1(x).
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The RH formulation of the orthogonal polynomials is due to Fokas, Its
and Kitaev, [11], see also the monograph of Deift, [10, §3.2]. The conditions
at z = ±1 follow from a general result on the logarithmic behavior of the
Cauchy transform, see [12, §1.8.1].

The existence of pωn(z) and pωn−1(z) would be guaranteed for all n if the
weight function was positive, via the standard Gram–Schmidt orthogonal-
ization procedure applied to the basis of monomials. In this case the weight
function is not positive, so the existence of pωn(z) is not clear a priori, however
the Deift–Zhou steepest descent analysis will provide a proof of existence for
large enough n. This analysis consists of the following sequence of (explicit
and invertible) transformations:

Y (z) 7→ T (z) 7→ S(z) 7→ R(z). (4.6)

A global estimate of R(z) for large n will give the asymptotic behavior
of Y (z), and in particular of pωn(z) and pωn−1(z), and this will imply the
existence of these polynomials, at least for large n.

4.1.1 First transformation

In order to normalize the RH problem at infinity, we need the g-function cor-
responding to the potential V (z). This function is analytic in C\((−∞,−1]∪
γλ), and on this contour it has the following jumps:

g+(x)− g−(x) =

2πi

∫ 1

x
ψλ(s)ds, x ∈ γλ

2πi, x ∈ (−∞,−1],

(4.7)

where integration is taken along γλ, and ψλ(s) is given by (3.18). We con-
sider the function

φ(z) = 2g(z)− V (z)− l, (4.8)

which is analytic in C \ ((−∞,−1] ∪ γλ) and satisfies

φ+(x) = −φ−(x) = g+(x)− g−(x), x ∈ (−∞,−1] ∪ γλ. (4.9)

Using the analytic extension of ψ(z), it is possible to write

φ(z) = 2πi

∫ 1

z
ψ(s)ds, (4.10)

for z ∈ C \ ((−∞,−1] ∪ γ). Integration is taken along the a smooth curve
joining the points z and 1 in the complex plane, without crossing the cut
γλ.

Direct evaluation of the integral gives φ(z) as in (2.5):

φ(z) = 2 logϕ(z) + iλ(z2 − 1)1/2, (4.11)
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again with the cut of the square root taken on γλ, and ϕ(z) given by (2.3).
Furthermore, we know from the integral representation that g(z) =

log z + . . . as z →∞, and

g(z) =
1

2
(φ(z) + V (z) + l) = log 2 + log z +

l

2
+O(1/z), (4.12)

using the explicit formulas for φ(z) and V (z), so l = −2 log 2. The function
g(z) can be given explicitly as well:

g(z) = logϕ(z) +
iλ

2
(z2 − 1)1/2 − iλz

2
− log 2, (4.13)

and it is analytic in C \ (−∞,−1] ∪ γλ).
The first transformation reads

T (z) = e−
nl
2
σ3Y (z)e−n[g(z)−

l
2 ]σ3 = 2nσ3Y (z)e−n[g(z)−

l
2 ]σ3 , (4.14)

where we have use the standard notation for the Pauli matrix σ3 =

(
1 0
0 −1

)
.

Note that when λ = 0, we get

g(z)− l

2
= g(z) + log 2 = logϕ(z), (4.15)

so
e−n[g(z)−

l
2 ] = ϕ(z)−n, (4.16)

which coincides with the definition in [18].
Then the matrix T (z) satisfies the following RH problem:

1. T (z) is analytic (entrywise) in C \ γλ
2. On γλ, we have the jump

T+(z) = T−(z)

(
e−nφ+(z) Wn(z)

0 enφ+(z)

)
, z ∈ γλ. (4.17)

3. As z →∞:

T (z) = I +O
(

1

z

)
(4.18)

4. As z → ±1, T (z) has the same behavior as Y (z).

Here we have used the variational equations (3.10), and we define

Wn(z) = en(V (z)−Vn(z)) = e−niz(λ−λn). (4.19)
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4.1.2 Second transformation

We note the following factorization of the jump matrix on γλ:(
e−nφ+(z) Wn(z)

0 enφ+(z)

)
=

(
1 0

enφ+(z)

Wn(z) 1

)(
0 Wn(z)

− 1
Wn(z) 0

)(
1 0

e−nφ+(z)

Wn(z) 1

)
(4.20)

In the next transformation we open a lens around γλ, see Figure 6, and
we consider the following matrix function:

S(z) =



T (z), z outside the lens

T (z)

(
1 0

− e−nφ(z)

Wn(z) 1

)
, z in the upper part of the lens

T (z)

(
1 0

e−nφ(z)

Wn(z) 1

)
, z in the lower part of the lens.

(4.21)

−1 1

γλ

Γ1

Γ2

Figure 6: Lens–shaped contour ΣS around the curve γλ.

The matrix S(z) satisfies the following RH problem:

1. S(z) is analytic (entrywise) in C \ ΣS , where ΣS = Γ1 ∪ γλ ∪ Γ2, see
Figure 6

2. On ΣS \ {−1, 1} we have the following jumps:

S+(z) = S−(z)



(
1 0

e−nφ(z)

Wn(z) 1

)
, z ∈ Γ1 ∪ Γ2,(

0 Wn(z)

− 1
Wn(z) 0

)
, z ∈ γλ.

(4.22)

3. As z →∞:

S(z) = I +O
(

1

z

)
. (4.23)
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4. As z → 1 we have

S(z) =


O
(

1 log |z − 1|
1 log |z − 1|

)
, z outside the lens

O
(

log |z − 1| log |z − 1|
log |z − 1| log |z − 1|

)
, z inside the lens

(4.24)

5. As z → −1 we have the same behavior as before, replacing |z−1| with
|z + 1|.

Since the function φ(z) is purely imaginary on γλ and Imφ(z) is decreas-
ing along γλ, the Cauchy–Riemann equations imply that Reφ(z) increases
locally in the complex plane as we move up from the curve γλ. Observe that

e−nφ(z)

Wn(z)
= e−n(φ(z)−iz(λ−λn)),

and if we write z = x+ iy, we have

Re(φ(z)− iz(λ− λn)) = Reφ(z) + y(λ− λn).

Since y is independent of n and |λ − λn| is arbitrary small for large n
because of (1.7), it follows that the lens can be opened in such a way that
this real part is positive, and therefore the off–diagonal element in the jump
matrix for S(z) on Γ1 decays to 0 exponentially fast as n → ∞. A similar
reasoning applies on Γ2.

4.1.3 Model RH problem

Ignoring all jumps that are exponentially close to the identity as n → ∞,
we seek a matrix N(z) that satisfies the following RH problem:

1. N(z) is analytic in C \ γλ.

2. On γλ, we have the following jump:

N+(x) = N−(x)

(
0 Wn(z)

− 1
Wn(z) 0

)
, (4.25)

3. As z →∞:

N(z) = I +O
(

1

z

)
. (4.26)

It is known that the solution of this RH problem is constructed with the
Szegő function coresponding to the weight Wn(z):

D(z) = exp

(
(z2 − 1)1/2

2π

∫
γλ

logWn(s)√
1− s2

ds

z − s

)
, (4.27)
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which is analytic in C \ γλ and verifies D+(z)D−(z) = Wn(z) on γλ. Using
residue calculation, in this case we can write explicitly

D(z) = exp

(
− in(λ− λn)

2

(
z − (z2 − 1)1/2

))
, (4.28)

taking the cut of the square root on γλ. If we further define

D∞ := lim
z→∞

D(z) = 1, (4.29)

then the matrix

N(z) = Dσ3
∞M(z)D(z)−σ3 = M(z)D(z)−σ3 (4.30)

solves the RH problem stated before. The matrix M(z) solves the model
RH problem given by

1. M(z) is analytic in C \ γλ.

2. On γλ, we have the following jump:

M+(z) = M−(z)

(
0 1
−1 0

)
, (4.31)

3. As z →∞:

M(z) = I +O
(

1

z

)
. (4.32)

It can be given explicitly as follows:

M(z) =
1√

2(z2 − 1)1/4

(
ϕ(z)1/2 iϕ(z)−1/2

−iϕ(z)−1/2 ϕ(z)−1/2

)
, (4.33)

in terms of the function ϕ(z) = z + (z2 − 1)1/2, taken analytic in C \ γλ .

4.1.4 Local parametrices

We consider a disc D(1, δ) around z = 1, with radius δ > 0 fixed. We seek
a matrix P that satisfies the following RH problem:

1. P (z) is analytic in D(1, δ) \ ΣS .

2. On D(1, δ) ∩ ΣS , we have the following jumps:

P+(x) = P−(x)



(
1 0

e−nφ(z)

Wn(z) 1

)
, z ∈ D(1, δ) ∩ (Γ1 ∪ Γ2),(

0 Wn(z)

− 1
Wn(z) 0

)
, z ∈ D(1, δ) ∩ γλ.

(4.34)
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3. Uniformly for z ∈ ∂D(1, δ), we have the matching

P (z) = N(z)

(
I +O

(
1

n

))
, n→∞. (4.35)

4. As z → 1 we have

P (z) =


O
(

1 log |z − 1|
1 log |z − 1|

)
, z outside the lens

O
(

log |z − 1| log |z − 1|
log |z − 1| log |z − 1|

)
, z inside the lens

(4.36)

We construct the local parametrix in the following way: define

P (z) = En(z)Q(z)Wn(z)−σ3/2e−
n
2
φ(z)σ3 , (4.37)

where En(z) is an analytic factor, to be determined later to get the matching
condition with N(z) on the boundary of the disk. Then Q(z) satisfies the
following RH problem:

1. Q(z) is analytic in D(1, δ) \ ΣS .

2. On D(1, δ) ∩ ΣS , we have the following jumps:

Q+(z) = Q−(z)



(
1 0

1 1

)
, z ∈ D(1, δ) ∩ (Γ1 ∪ Γ2),(

0 1

−1 0

)
, z ∈ D(1, δ) ∩ γλ.

(4.38)

3. As z → 1 we have

Q(z) =


O
(

1 log |z − 1|
1 log |z − 1|

)
, z outside the lens

O
(

log |z − 1| log |z − 1|
log |z − 1| log |z − 1|

)
, z inside the lens

(4.39)

Now the matrix Q(z) is constructed using Bessel functions, following the
ideas in [18, Section 6].

Q(z) = Ψ(n2f(z)), (4.40)

where ζ = f(z) is a conformal mapping from a neighborhood of z = 1 onto
a neighborhood of the origin, and Ψ(ζ) solves the following auxiliary RH
problem: in the ζ plane, consider the contour ΣΨ as illustrated in Figure 7,
then
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Figure 7: Contour ΣΨ in the ζ plane

1. Ψ(ζ) is analytic in C \ ΣΨ.

2. On ΣΨ, we have the following jumps:

Ψ+(ζ) = Ψ−(ζ)



(
1 0

1 1

)
, ζ ∈ γ1 ∪ γ3,(

0 1

−1 0

)
, ζ ∈ γ2.

(4.41)

3. As ζ → 0 we have the following behavior:

Ψ(ζ) =


O
(

1 log |ζ|
1 log |ζ|

)
, | arg ζ| < 2π

3

O
(

log |ζ| log |ζ|
log |ζ| log |ζ|

)
, elsewhere

(4.42)

The solution of this RH problem is given in terms of modified and ordi-
nary Bessel functions, see [18, Section 6]:

Ψ(ζ) =

(
1
2H

(2)
0 (2(−ζ)1/2) −1

2H
(1)
0 (2(−ζ)1/2)

−πζ1/2(H
(2)
0 )′(2(−ζ)1/2) πζ1/2(H

(1)
0 )′(2(−ζ)1/2)

)
(4.43)

if −π < arg ζ < −2π
3 ,

Ψ(ζ) =

(
I0(2ζ1/2) i

πK0(2ζ1/2)

2πiζ1/2I ′0(2ζ1/2) −2ζ1/2K ′0(2ζ1/2)

)
(4.44)

if | arg ζ| < 2π
3 and

Ψ(ζ) =

(
1
2H

(1)
0 (2(−ζ)1/2) 1

2H
(2)
0 (2(−ζ)1/2)

πζ1/2(H
(1)
0 )′(2(−ζ)1/2) πζ1/2(H

(2)
0 )′(2(−ζ)1/2)

)
(4.45)
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if 2π
3 < arg ζ < π. Consider the asymptotic behavior of this Ψ(ζ) function.

If | arg ζ| < 2π/3, we have

Ψ(ζ) =
1√
2

(2πζ1/2)−σ3/2
(

1 i
i 1

)(
I +O(ζ−1/2)

)
e2ζ1/2σ3 , ζ →∞,

(4.46)
and the same result can be checked in the other two sectors, using known
connection formulas for Bessel functions. The behavior at the origin also
follows from standard expansions of Hankel and Bessel functions.

The square root takes the principal value, with a cut on the negative
real axis.

First, we want to match the last factors in Q(z) and Ψ(z), so we set

ζ = n2f(z) =
n2

16
φ(z)2. (4.47)

Hence, f(z) = φ(z)2/16, and since

φ(z) =
√

2

(
1 +

iλ

2

)
(z − 1)1/2 +O((z − 1)3/2), z → 1, (4.48)

we obtain

f(z) =
(2 + iλ)2

8
(z − 1) +O((z − 1)2), z → 1, (4.49)

so f(z) is indeed a conformal mapping locally. Moreover,

Ψ(n2f(z)) =
1√
2

(2πn)−σ3/2f(z)−σ3/4
(

1 i
i 1

)(
I +O(n−1)

)
e2nf(z)1/2σ3 ,

(4.50)
so we define

En(z) = N(z)Wn(z)σ3/2
1√
2

(
1 −i
−i 1

)
f(z)σ3/4(2πn)σ3/2, (4.51)

and thus the matching of P (z) and N(z) required in (4.35) is achieved on
the boundary of D(1, δ).

In a neighborhood of z = −1, say D(−1, δ), we have a similar construc-
tion: the local parametrix P̃ (z) is given by

P̃ (z) = Ẽn(z)Q̃(z)Wn(z)−σ3/2e−
n
2
φ̃(z)σ3 , (4.52)

where

φ̃(z) = 2πi

∫ −1

z
ψ(s)ds = φ(z)− 2πi (4.53)

and
Q̃(z) = Ψ̃(n2f̃(z)) = σ3Ψ(n2f̃(z))σ3, (4.54)

25



b

−1

b

1

+

−

+

−

+ − +−

Figure 8: Final contour ΣR in the steepest descent analysis

with f̃(z) = φ̃(z)2/16 a conformal mapping from a neighborhood of z = −1
onto a neighborhood of ζ = 0. The analytic factor in this case is

Ẽn(z) = N(z)Wn(z)σ3/2
1√
2

(
1 i
i 1

)
f̃(z)σ3/4(2πn)σ3/2. (4.55)

4.1.5 Final transformation

Using the global and local parametrices, we define

R(z) = S(z)


N−1(z), z ∈ C \ (D(1, δ) ∪D(−1, δ) ∪ ΣS),

P−1(z), z ∈ D(1, δ) \ ΣS ,

P̃−1(z), z ∈ D(−1, δ) \ ΣS ,

(4.56)

Following an argument similar to the one in [18, §7], it can be shown
that this matrix R(z) is analytic off the contour ΣR shown in Figure 8.
Furthermore, as n→∞ the jumps are

R+(z) = R−(z)

{
I +O(e−2cn), z ∈ ΣR \ (∂D(1, δ) ∪ ∂D(−1, δ)),

I +O(n−1), z ∈ ∂D(1, δ) ∪ ∂D(−1, δ).

(4.57)
From this result and the fact that R(z)→ I as z →∞, it can be proved

that
R(z) = I +O(n−1), n→∞, (4.58)

uniformly for z ∈ C \ ΣR, see for example [7, Section 11]. Reversing the
transformations, we can obtain the asymptotic behavior of Y (z) as n→∞,
and in particular of the (1, 1) entry, that contains the polynomial pωn(z).
Actually, the matrix R(z) admits a full asymptotic expansion in inverse
powers of n:

R(z) ∼ I +

∞∑
k=1

R(k)(z)

nk
, n→∞, (4.59)
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where the functions R(k)(z) are analytic in z ∈ C \ (∂D(1, δ) ∪ ∂D(−1, δ)).
Furthermore, it is true that

R(k)(z) = O
(

1

z

)
, z →∞, (4.60)

and, as in [18, Lemma 8.3], the expansion (4.59) is uniformly valid for large
values of z as well. This double asymptotic property, for large n and large
z, will be used later to obtain the asymptotic expansion of the recurrence
coefficients.

The outer asymptotics for pωn(z), for z in compact subsets of C \ γλ
(outside of the lens and away from the endpoints), can be worked out from

pωn(z) =
(
1 0

)
Y (z)

(
1
0

)
= eng(z) (R11(z)N11(z) +R12(z)N21(z)) .

(4.61)
We apply the first transformation (4.14), together with the fact that in

the outer region T (z) = S(z) = R(z)N(z) = R(z)M(z)D(z)−σ3 , so

pωn(z) =
eng(z)

D(z)

(
1 0

)
R(z)M(z)

(
1
0

)
=

eng(z)

D(z)
(R11(z)M11(z) +R12(z)M21(z))

(4.62)

Now we use the fact that R11(z) = 1 + O(1/n) and R12(z) = O(1/n),
and the explicit form of M11(z), see (4.33). Finally, note that

eng(z)

D(z)
=

(
ϕ(z)

2

)n
exp

(
− inλn

2
(z − (z2 − 1)1/2)

)
=

(
ϕ(z)

2

)n
exp

(
− inλn

2ϕ(z)

)
,

in terms of the function ϕ(z) = z + (z2 − 1)1/2, and using the explicit
formula for g(z), see (4.13) and D(z), see (4.28). Thus we get the asymptotic
expansion (2.9).

If z is in the upper (lower) part of the lens, we get

pωn(z) =
(
1 0

)
Y (z)

(
1
0

)
=
(

e
nl
2 0

)
S(z)

(
1 0

± e−nφ(z)

Wn(z) 1

)(
en(g(z)−

l
2)

0

)

=
(

e
n`
2 0

)
R(z)N(z)

 en(g(z)−
l
2)

± e
n(g(z)−φ(z)− `

2)
Wn(z)


(4.63)

Since

g(z)− l

2
=
V (z)

2
− φ(z)

2
,
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we obtain

pωn(z) = e
n
2

(V (z)+l)
(
1 0

)
R(z)M(z)D(z)−σ3

(
e
n
2
φ(z)

± e−
n
2 φ(z)

Wn(z)

)

=
e
n
2

(V (z)+`)

Wn(z)1/2

(
M11(z)

Wn(z)1/2

D(z)
e
nφ(z)

2 ±M12(z)
D(z)

Wn(z)1/2
e−

nφ(z)
2 +O(1/n)

)
,

bearing in mind again that R11(z) = 1 + O(1/n) and R12(z) = O(1/n).
Observe that if we take boundary values on γλ, we can use the fact that
φ+(z) = −φ−(z), and also N11+(z) = −N12−(z) and N12+(z) = N11−(z),
which come from the model Riemann–Hilbert problem. As a result, both
boundary values coincide on the curve γλ.

The reason to write the formula in that symmetric form is because

Wn(z)1/2

D(z)
= e−

in
2

(λ−λn)(z2−1)1/2 , (4.64)

using (4.19) and (4.28). Now we combine this with the explicit form of φ(z),
see (4.11), and with the formulas for M11(z) and M12(z). Note also that
on γλ we can write ϕ+(z) = ei arccos z, using the standard definition of the
arccosine function, with a cut on (−∞,−1]∪ [1,∞), see [1, §4.23.22]. Thus,
substituing the value of l and simplifying, we obtain the asymptotic result
(2.11) on a neighborhood of the curve γλ.

For z ∈ D(1, δ) and in the upper part of the lens, we use the relation
between T (z) and S(z) in (4.21), the connection between S(z) and R(z) in
(4.56), and the the expression for P (z) in (4.37) to write

pωn(z) = e
nl
2
(
1 0

)
R(z)P (z)

 en(g(z)−
l
2)

e
n(g(z)− l

2−φ(z))
Wn(z)


=

e
n
2

(V (z)+l)

Wn(z)1/2

(
1 0

)(
I +O

(
1

n

))
En(z)Ψ(n2f(z))

(
1
1

)
= e

n
2

(Vn(z)+l)
(
1 0

)(
I +O

(
1

n

))
En(z)Ψ(n2f(z))

(
1
1

)
.

(4.65)

Now we observe that

En(z) =
1√
2
N(z)Wn(z)σ3/2

(
1 −i
−i 1

)
f(z)σ3/4(2πn)σ3/2

=
1√
2
M(z)D(z)−σ3Wn(z)σ3/2

(
1 −i
−i 1

)
f(z)σ3/4(2πn)σ3/2

=
1

(z2 − 1)1/4

(
cos ξ+(z) sin ξ+(z)
−i cos ξ−(z) −i sin ξ−(z)

)
f(z)σ3/4(2πn)σ3/2,

(4.66)
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using the expression for M(z) in terms pf ϕ(z), see (4.33), and also (4.64).
Here

ξ±(z) = −n
2

(λ− λn)(z2 − 1)1/2 ± 1

2
arccos z,

using (4.64) and the fact that ϕ(z) = ei arccos z.
Also, bearing in mind that f(z) = φ2(z)/16, we have

Ψ(n2f(z))

(
1
1

)
=

(
J0

(
2n(−f(z))1/2

)
πnf(z)1/2(J0)′

(
2n(−f(z))1/2

)) ,
using the standard connection between Hankel and Bessel functions, see for
instance [1, 10.4.3]. As a consequence,

f(z)σ3/4(2πn)σ3/2Ψ(n2f(z))

(
1
1

)
= f(z)1/4(2πn)1/2

(
J0

(
2n(−f(z))1/2

)
(J0)′

(
2n(−f(z))1/2

)) ,
and putting all together we get

pωn(z) = e
n
2

(Vn(z)+l) f(z)1/4(2πn)1/2

(z2 − 1)1/4

(
1 0

)(
I +O

(
1

n

))
×
(

cos ξ+(z) sin ξ+(z)
−i cos ξ−(z) −i sin ξ−(z)

)(
J0

(
2n(−f(z))1/2

)
(J0)′

(
2n(−f(z))1/2

))
Finally, the argument of the Bessel function is equal to − in

2 φ(z), using
the relation between f(z) and φ(z). The sign of the square root is determined
by the fact that in that sector of the lens we have 2π

3 < arg φ(z) < π.
Substituting l = −2 log 2, we obtain the asymptotic expansion (2.12). A
similar computation can be carried out in the disc around z = −1, but we
omit it for brevity.

It is clear that using the properties of R(z), in particular its asymptotic
expansion for large n, it is possible to compute higher order terms in the
asymptotic expansion for the orthogonal polynomials if one can obtain the
terms R(k)(z) in (4.59). Thus, substitution of a more refined asymptotic
estimate for R(z) in the previous formulas will lead to more accurate esti-
mates. We omit this in the present paper for brevity, but we will present a
possible approach in the next section, taken from [18] and that is exploited
in [8].

5 Proof of Theorem 2.5

The recurrence coefficients of the three term recursion can be written in
terms of the matrices in the Riemann–Hilbert analysis:

a2
n = [Y1]12[Y1]21,

bn =
[Y2]12

[Y1]12
− [Y1]22,

(5.1)
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where

Y (z)z−nσ3 = I +
Y1

z
+
Y2

z2
+ . . . . (5.2)

Hence, the solvability of the Riemann–Hilbert problem for large n proves
the existence of the recurrence coefficients for large n. In order to obtain
the asymptotic estimates, we want to write the coefficients in terms of R(z),
so we denote

T (z) = I +
T1

z
+
T2

z2
+ . . . , z →∞. (5.3)

We use the fact that

g(z) = log z − c1

z
− c2

z2
+O(z−3), z →∞, (5.4)

where the constants c1 and c2 are given by

c1 =

∫
γλ

sdµλ(s), c2 =

∫
γλ

s2 dµλ(s). (5.5)

These constants can be computed explicitly in this case, using residues,
but this is not really needed. Consequently,

e−ng(z) = z−n
(

1 +
nc1

z
+

2n2c2
1 + nc2

2z2
+O(z−3)

)
, z →∞, (5.6)

Next, because of the relation between Y (z) and T (z), see (4.14), and
expanding for large z, we have

T (z) = e
−nl
2
σ3

(
I +

Y1

z
+
Y2

z2
+ . . .

)
×(

I +
nc1σ3

z
+

(2nc2
1 + c2)nσ3

2z2
+ . . .

)
e
nl
2
σ3 ,

(5.7)

so
T1 = e

−nl
2
σ3Y1e

nl
2
σ3 + c1nσ3,

T2 = e
−nl
2
σ3Y2e

nl
2
σ3 + c1ne−

nl
2
σ3Y1e

nl
2
σ3 +

(2nc2
1 + c2)nσ3

2

(5.8)

It follows that

[T1]12 = e−nl[Y1]12, [T1]21 = enl[Y1]21, [Y1]22 = [T1]22 − c1n, (5.9)

and also
[T2]12 = e−nl (−c1n[Y1]12 + [Y2]12) . (5.10)

As a consequence, we have in terms of T (z):

a2
n = [T1]12[T1]21,

bn =
[T2]12

[T1]12
− [T1]22,

(5.11)
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Next, away from the curve γλ, we have T (z) = S(z) = R(z)N(z), and
we define

N(z) = I +
N1

z
+
N2

z2
+ . . . , R(z) = I +

R1

z
+
R2

z2
+ . . . , (5.12)

as z →∞. Then,
T1 = R1 +N1,

T2 = N2 +R1N1 +R2.
(5.13)

From (4.30), we have

N(z) = I − 1

2z
σ2 +

1

8z2
I + . . . , σ2 =

(
0 −i
i 0

)
, (5.14)

so

T1 = R1 −
1

2
σ2,

T2 =
1

8
I − 1

2
R1σ2 +R2,

(5.15)

and then

a2
n =

(
[R1]12 +

i

2

)(
[R1]21 −

i

2

)
,

bn =
i[R1]11 + 2[R2]12

i + 2[R1]12
− [R1]22.

(5.16)

In order to compute the terms R1 and R2, we need to obtain additional
terms in the large n asymptotics of R(z) first, that is, the coefficients R(k)(z)
in (4.59). Following [18, §8], we write the jump matrix for R(z) on ΣR as a
perturbation of the identity, so

R+(z) = R−(z) (I + ∆(z)) , z ∈ ΣR, (5.17)

where ∆(z) admits an expansion in inverse powers of n:

∆(z) ∼
∑
k=1

∆k(z)

nk
, n→∞. (5.18)

Since the jump is exponentially close to the identity on ΣR \ (∂D(1, δ)∪
∂D(−1, δ)), the coefficients ∆k(z) are identically 0 there. For z ∈ ∂D(1, δ)∪
∂D(−1, δ), they can be computed from the asymptotic expansion of the
Bessel functions in the local parametrices. The outcome is the following:

∆k(z) =
(−1)k−1

4k−1(k − 1)!φ(z)k

k−1∏
j=1

(2j − 1)2×

N(z)

(
(−1)k

k

(
k
2 − 1

4

)
−
(
k − 1

2

)
i

(−1)k
(
k − 1

2

)
i 1

k

(
k
2 − 1

4

)
)
N−1(z), z ∈ ∂D(1, δ)

(5.19)
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and

∆k(z) =
(−1)k−1

4k−1(k − 1)!φ̃(z)k

k−1∏
j=1

(2j − 1)2×

N(z)

(
(−1)k

k

(
k
2 − 1

4

) (
k − 1

2

)
i

(−1)k+1
(
k − 1

2

)
i 1

k

(
k
2 − 1

4

)
)
N−1(z), z ∈ ∂D(−1, δ),

(5.20)
for k ≥ 1, cf. [18, formulas (8.5) and (8.6)].

Additionally, as proved in [18, Lemma 8.2], these functions ∆k have ana-
lytic continuations to bigger discs around z = ±1 as meromorphic functions
with poles at z = ±1 of order at most [(k + 1)/2].

The importance of the functions ∆k(z) is that they appear in an additive
Riemann–Hilbert problem for Rk(z) on the boundary of the discs. Namely,
we have

R
(k)
+ (z) = R

(k)
− (z) +

k∑
j=1

R
(k−j)
− (z)∆j(z), z ∈ ∂D(1, δ) ∪ ∂D(−1, δ),

(5.21)
where + indicates the boundary value from the exterior and − from the
interior, recall Figure 8.

For k = 1, (5.21) gives

R
(1)
+ (z) = R

(1)
− (z) + ∆1(z), z ∈ ∂D(1, δ) ∪ ∂D(−1, δ). (5.22)

Furthermore, we can write

∆1(z) =
A(1)

z − 1
+O(1), z → 1,

∆1(z) =
B(1)

z + 1
+O(1), z → −1,

(5.23)

where A(1) are B(1) are constant matrices. From (5.19) and (5.20), and the
behavior of N(z), φ(z) and φ̃(z), we get

A(1) = − 1

8(2 + iλ)

(
−1 i
i 1

)
, B(1) = − 1

8(2− iλ)

(
1 i
i −1

)
. (5.24)

The Riemann–Hilbert problem for R(1)(z) can be solved as follows:

R(1)(z) =


A(1)

z − 1
+
B(1)

z + 1
, z ∈ C \ (D(1, δ) ∪D(−1, δ)),

A(1)

z − 1
+
B(1)

z + 1
−∆1(z), z ∈ D(1, δ) ∪D(−1, δ).

(5.25)
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Hence, we have

R(1)(z) = − 1

8(2 + iλ)

(
−1 i
i 1

)
1

z − 1
− 1

8(2− iλ)

(
1 i
i −1

)
1

z + 1
, (5.26)

for z ∈ C \ (∂D(1, δ) ∪ ∂D(−1, δ)). Expanding for large z, we obtain

R(1)(z) = − i

4(4 + λ2)

(
λ 2
2 −λ

)
1

z
+

1

4(4 + λ2)

(
2 −λ
−λ −2

)
1

z2
+O

(
1

z3

)
.

(5.27)
For k = 2, equation (5.21) reads

R
(2)
+ (z) = R

(2)
− (z) +R

(1)
− (z)∆1(z) + ∆2(z), z ∈ ∂D(1, δ) ∪ ∂D(−1, δ).

(5.28)
Now we have

R
(1)
− (z)∆1(z) + ∆2(z) =

A(2)

z − 1
+O(1), z → 1,

R
(1)
− (z)∆1(z) + ∆2(z) =

B(2)

z + 1
+O(1), z → −1,

(5.29)

where A(2) are B(2) are constant matrices. From (5.19) and (5.20), and the
behavior of N(z), φ(z) and φ̃(z), we get after collecting all relevant terms,

A(2) =
1

64(λ− 2i)2(λ+ 2i)

(
λ− 2i 4i(2λ+ 5)

−4i(2λ+ 5) λ− 2i

)
,

B(2) =
1

64(λ+ 2i)2(λ− 2i)

(
λ+ 2i −4i(2λ− 5)

4i(2λ− 5) λ+ 2i

)
.

(5.30)

The Riemann–Hilbert problem for R(2)(z) can be solved as follows:

R(2)(z) =


A(2)

z − 1
+
B(2)

z + 1
, z ∈ C \ (D(1, δ) ∪D(−1, δ)),

A(2)

z − 1
+
B(2)

z + 1
−R(1)(z)∆1(z)−∆2(z), z ∈ D(1, δ) ∪D(−1, δ).

(5.31)
Reexpanding at infinity, we get

R(2)(z) =
1

4(4 + λ2)2

(
0 −i(λ2 − 5)

i(λ2 − 5) 0

)
1

z

− 1

32(4 + λ2)2

(
λ2 + 4 36λ
−36λ λ2 + 4

)
1

z2
+O

(
1

z3

)
.

(5.32)

If we now pick the contributions from R(1)(z) and R(2)(z) in terms of n,
we obtain

a2
n =

1

4
+

4− λ2

4(4 + λ2)2n2
+O

(
1

n3

)
,

bn = − 2iλ

(4 + λ2)2n2
+O

(
1

n3

)
.

(5.33)
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This proves the leading terms in Theorem 2.5, and higher order coef-
ficients can be computed if the functions R(k)(z) are available for k ≥ 3.
This can be accomplished in general following the idea just presented and
using (5.21), see also [18], although the computation becomes increasingly
complicated. A general algorithm to carry out this kind of computations for
Jacobi–type weights will be available in [8].

Acknowledgements

The author gratefully acknowledges financial support from projects FWO
G.0617.10 and FWO G.0641.11, funded by FWO (Fonds Wetenschappelijk
Onderzoek, Research Fund Flanders, Belgium), and projects MTM2012–
34787 and MTM2012-36732–C03–01, from the Spanish Ministry of Economy
and Competitivity. The author also thanks Daan Huybrechs and Pablo
Román for many stimulating and useful discussions on the topic and scope
of this paper.

References

[1] NIST Digital Library of Mathematical Functions.
http://dlmf.nist.gov/, Release 1.0.6 of 2013-05-06. Online companion
to [23].
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