
On Airy Solutions of the Second Painlevé Equation

By Peter A. Clarkson

In this paper we discuss Airy solutions of the second Painlevé equation
and two related equations, the Painlevé XXXIV equation and the Jimbo-
Miwa-Okamoto σ form of second Painlevé equation, are discussed. It
is shown that solutions which depend only on the Airy function Ai(z)
have a completely difference structure to those which involve a linear
combination of the Airy functions Ai(z) and Bi(z).

Dedicated to Mark Ablowitz on his 70th birthday

1. Introduction

The six Painlevé equations (PI–PVI) were first discovered by Painlevé,
Gambier and their colleagues in an investigation of which second order
ordinary differential equations of the form

d2q

dz2
= F

(
dq

dz
, q, z

)
, (1.1)

where F is rational in dq/dz and q and analytic in z, have the property
that their solutions have no movable branch points. They showed that
there were fifty canonical equations of the form (1.1) with this property,
now known as the Painlevé property. Further Painlevé, Gambier and
their colleagues showed that of these fifty equations, forty-four can be
reduced to linear equations, solved in terms of elliptic functions, or are
reducible to one of six new nonlinear ordinary differential equations that
define new transcendental functions, see Ince [1]. The Painlevé equations
can be thought of as nonlinear analogues of the classical special functions
[2, 3, 4, 5, 6], and arise in a wide variety of applications, for example
random matrices, cf. [7, 8].
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In this paper we are concerned with special solutions of the second
Painlevé equation (PII)

d2q

dz2
= 2q3 + zq + α, (1.2)

with α an arbitrary constant, and two related equations. These are thee
Painlevé XXXIV equation (P34)

d2p

dz2
=

1

2p

(
dp

dz

)2
+ 2p2 − zp−

(α+ 1
2)2

2p
, (1.3)

is equivalent to equation XXXIV of Chapter 14 in [1], which is solvable
in terms of PII (1.2), see §2.1, and the Jimbo-Miwa-Okamoto σ form of
PII (SII) (

d2σ

dz2

)2
+ 4

(
dσ

dz

)3
+ 2

dσ

dz

(
z
dσ

dz
− σ

)
= 1

4(α+ 1
2)2, (1.4)

which is satisfied by the Hamiltonian associated with PII (1.2), see §2.1.
Equation (1.4) is equation SD-I.d in the classification of second-order,
second-degree equations which have the Painlevé property by Cosgrove
and Scoufis [9], an equation first derived by Chazy [10]. Frequently in
applications it is the associated second-order, second-degree equation such
as (1.4) which arises rather than the Painlevé equation.

It is well-known that PII has special solutions depending on one pa-
rameter that are expressed in terms of the Airy functions Ai(z) and Bi(z).
In this paper we study the Airy solutions for PII (1.2), P34 (1.3) and SII

(1.4), see §3. In particular it is shown that the solutions which depend only
on Ai(z) have a completely different asymptotic behaviour as z → −∞
in comparison to those which involve a linear combination of Ai(z) and
Bi(z). Further it is shown that there are families of Airy solutions of P34

(1.3) and SII (1.4) which have no poles on the real axis.

2. Some properties of the second Painlevé equation

2.1. Hamiltonian structure

Each of the Painlevé equations PI–PVI can be written as a Hamiltonian
system

dq

dz
=
∂HJ

∂p
,

dp

dz
= −∂HJ

∂q
, (2.1)

for a suitable Hamiltonian function HJ(q, p, z) [11, 12, 13, 14]. The func-
tion σ(z) ≡ HJ(q, p, z) satisfies a second-order, second-degree ordinary
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differential equation, whose solution is expressible in terms of the solu-
tion of the associated Painlevé equation [11, 12, 13, 14].

The Hamiltonian associated with PII (1.2) is

HII(q, p, z;α) = 1
2p

2 − (q2 + 1
2z)p− (α+ 1

2)q (2.2)

and so

dq

dz
= p− q2 − 1

2z,
dp

dz
= 2qp+ α+ 1

2 (2.3)

(Jimbo and Miwa [11], Okamoto [14]). Eliminating p in (2.3) then q
satisfies PII (1.2) whilst eliminating q yields (1.3). Further if q satisfies
PII (1.2) then p = q′+q2+ 1

2z satisfies (1.3). Conversely if p satisfies (1.3)

then q = (p′ − α − 1
2)/(2p) satisfies PII (1.2). Thus there is a one-to-one

correspondence between solutions of PII (1.2) and those of P34 (1.3).
An important property of the Hamiltonian (2.2), which is very useful

in applications, is that it satisfies a second-order, second-degree ordinary
differential equation, as discussed in the following theorem.

Theorem 2.1. Consider the function σ(z;α) = HII(q, p, z;α) defined
by (2.2), where q and p satisfy the system (2.3), then then σσ(z;α) sat-
isfies (1.4). Conversely if σ(z;α) is a solution of (1.4), then

q(z;α) =
4σ′′(z;α) + 2α+ 1

8σ′(z;α)
, p(z;α) = −2σ′(z;α), (2.4)

with ′ ≡ d/dz, are solutions of (1.2) and (1.3), respectively.

Proof: See Jimbo and Miwa [11] and Okamoto [12, 13, 14]. �

2.2. Bäcklund transformations

The Painlevé equations PII–PVI possess Bäcklund transformations which
relate one solution to another solution either of the same equation, with
different values of the parameters, or another equation (see [2, 4, 15]
and the references therein). An important application of the Bäcklund
transformations is that they generate hierarchies of classical solutions of
the Painlevé equations, which are discussed in §3.

The Bäcklund transformations for PII (1.2) are given in the following
theorem.

Theorem 2.2. Let q ≡ q(z;α) is a solution of PII (1.2), then the
transformations

S : q(z;−α) = − q, (2.5)

T± : q(z;α± 1) = − q − 2α± 1

2q2 ± 2q′ + z
, (2.6)
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give solutions of PII, provided that α 6= ∓1
2 in (2.6).

Proof: See Gambier [16]. �

The solutions qα = q(z;α), qα±1 = q(z;α±1) also satisfy the nonlinear
recurrence relation

2α+ 1

qα+1 + qα
+

2α− 1

qα + qα−1
+ 4q2α + 2z = 0, (2.7)

a difference equation which is known as an alternative form of discrete PI

(alt-dPI) [17]. The difference equation (2.7) is obtained by eliminating q′

between the transformations T± given by (2.6). Note that for PII (1.2),
the independent variable z varies and the parameter α is fixed, whilst for
the discrete equation (2.7), z is a fixed parameter and α varies.

3. Special function solutions

The Painlevé equations PII–PVI possess hierarchies of solutions express-
ible in terms of classical special functions, for special values of the param-
eters through an associated Riccati equation,

dq

dz
= f2(z)q

2 + f1(z)q + f0(z), (3.1)

where f2(z), f1(z) and f0(z) are rational functions. Hierarchies of solu-
tions, which are often referred to as “one-parameter solutions” (since they
have one arbitrary constant), are generated from “seed solutions” derived
from the Riccati equation using the Bäcklund transformations given in
§2.2. Furthermore, as for the rational solutions, these special function
solutions are often expressed in the form of determinants.

Solutions of PII–PVI are expressed in terms of special functions as fol-
lows (see [2, 4, 18], and the references therein): for PII in terms of Airy
functions Ai(z), Bi(z); for PIII in terms of Bessel functions Jν(z), Yν(z);
for PIV in terms of parabolic cylinder functions functions Dν(z); for PV

in terms of confluent hypergeometric functions 1F1(a; c; z), equivalently
Kummer functions M(a, b, z), U(a, b, z) or Whittaker functions Mκ,µ(z),
qκ,µ(z); and for PVI in terms of hypergeometric functions 2F1(a, b; c; z).
Some classical orthogonal polynomials arise as particular cases of these
special function solutions and thus yield rational solutions of the associ-
ated Painlevé equations: for PIII and PV in terms of associated Laguerre

polynomials L
(m)
k (z); for PIV in terms of Hermite polynomials Hn(z); and

for PVI in terms of Jacobi polynomials P
(α,β)
n (z).
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3.1. Second Painlevé equation

We note that PII (1.2) can be written as

ε
d

dz

(
ε
dq

dz
− q2 − 1

2z

)
+ 2q

(
ε
dq

dz
− q2 − 1

2z

)
= α− 1

2ε,

with ε2 = 1. Hence if α = 1
2ε, then special solutions of PII can be obtained

in terms of solutions of the Riccati equation

ε
dq

dz
= q2 + 1

2z. (3.2)

Any solution of this equation is also a solution of PII (1.2), provided that
α = 1

2ε. Linearising the Riccati equation (3.2) by setting q = −εϕ′/ϕ
yields

d2ϕ

dz2
+ 1

2zϕ = 0, (3.3)

which is equivalent to the Airy equation and has general solution

ϕ(z;ϑ) = cos(ϑ) Ai(t) + sin(ϑ) Bi(t), t = −2−1/3 z, (3.4)

with Ai(t) and Bi(t) the Airy functions and ϑ an arbitrary constant. The
Airy solutions of PII are classified in the following theorem due to Gambier
[16].

Theorem 3.1. The second Painlevé equation (1.2) has a one-
parameter family of solutions expressible in terms of Airy functions given
by (3.4) if and only if α = n− 1

2 , with n ∈ Z.

The simplest Airy solutions of PII (1.2), which arise when α = ±1
2 , are

q(z) = ∓ d

dz
lnϕ(z;ϑ), (3.5)

with ϕ(z;ϑ) given by (3.4). Then using the Bäcklund transformations
(2.6), a hierarchy of Airy solutions for α = n+ 1

2 , n ∈ Z, can be generated.
The Airy solutions can also be expressed in terms of determinants, as
described in the following theorem.

Theorem 3.2. Let τn(z;ϑ) be the n× n determinant

τn(z;ϑ) =

[
dj+k

dzj+k
ϕ(z;ϑ)

]n−1
j,k=0

, n ≥ 1, (3.6)

with ϕ(z;ϑ) given by (3.4) and τ0(z;ϑ) = 1, then

qn(z;ϑ) =
d

dz
ln
τn−1(z;ϑ)

τn(z;ϑ)
, n ≥ 1, (3.7)
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n = 1 n = 2 n = 3

n = 4 n = 5 n = 6

Figure 3.1. Plots of qn(z;ϑ) (3.7) for ϑ = 0 [purple], ϑ = 1
6π [blue],

ϑ = 1
3π [red], ϑ = 1

2π [green]; the dashed line is the parabola 2q2 + z = 0.

n qn(z;ϑ)

1 Φ

2 −Φ− 1

2Φ2 + z

3
1

2Φ2 + z
− 2zΦ2 − Φ + z2

4Φ3 + 2zΦ + 1

4
2zΦ2 − Φ + z2

4Φ3 + 2zΦ + 1
− 48Φ3 − 8z2Φ2 + 28zΦ− 4z3 + 9

z(8zΦ4 − 16Φ3 + 8z2Φ2 − 8zΦ + 2z3 − 3)
− 3

z

Table 3.1

The Airy solutions qn(z;ϑ) of PII (1.2), see (3.7), where
Φ = −ϕ′(z;ϑ)/ϕ(z;ϑ), with ϕ(z;ϑ) given by (3.4).
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satisfies PII (1.2) with α = n− 1
2 .

Proof: See Flaschka and Newell [19], Okamoto [14]; also [20]. �

We remark that the determinant

∆n(t) = det

[
dj+k

dtj+k
Ai(t)

]n−1
j,k=0

,

which is equivalent to τn(z; 0) given by (3.6), arises in random matrix
theory, in connection with the Gaussian Unitary Ensemble (GUE) in the
soft-edge scaling limit, see e.g. [20, p. 393].

If we set Φ(z;ϑ) ≡ −ϕ′(z;ϑ)/ϕ(z;ϑ), with ϕ(z) given by (3.4), then
the first few solutions in the Airy function solution hierarchy for PII (1.2)
are given in Table 3.1. We note that Φ(z;ϑ) satisfies the Riccati equation
(3.2) with ε = 1.

Plots of the solutions qn(z;ϑ) (3.7) for various ϑ are given in Figure
3.1. These plots show that the asymptotic behaviour as z → −∞ of the
solutions is completely different in the case when ϑ = 0 compared to the
case when ϑ 6= 0, see Theorem 3.3. Fornberg and Weideman [21, Figure
3 on p. 991] plot the locations of the poles for the solution q(z; 5

2) of PII

(1.2) for various choices of ϑ, which show that the pole structure of the
solutions is significantly different in the case when ϑ = 0 compared to the
case when ϑ 6= 0.

When ϑ = 0 the solution qn(z; 0) involves only on the Airy function
Ai(t), with t = −2−1/3z, whereas the solution qn(z;ϑ), with ϑ 6= 0, in-
volves the Airy function Bi(t). The known asymptotics of Ai(t) and Bi(t)
as t→∞ are

Ai(t) = 1
2π
−1/2 t−1/4 exp

(
− 2

3 t
3/2
){

1 +O
(
t−3/2

)}
, (3.8a)

Bi(t) = π−1/2 t−1/4 exp
(
2
3 t

3/2
){

1 +O
(
t−3/2

)}
, (3.8b)

cf. [22, §9.7(ii)]. Consequently the asymptotic behaviour of qn(z;ϑ) as
z → −∞ critically depends on whether it involves Bi(t).

The asymptotic behaviour of the Airy solutions qn(z;ϑ) as z → −∞
is given in the following theorem.

Theorem 3.3. Let qn(z;ϑ) be defined by (3.7), then as z → −∞,

qn(z;ϑ) =


−(−z)1/2√

2
+

2n− 1

4z
+

12n2 − 12n+ 5

16
√

2 (−z)5/2
+O

(
z−4
)
, if ϑ = 0,

(−z)1/2√
2

+
2n− 1

4z
− 12n2 − 12n+ 5

16
√

2 (−z)5/2
+O

(
z−4
)
, if ϑ 6= 0.

Proof: These are proved using the asymptotics (3.8) of Ai(t) and Bi(t)
as t→∞; for details, see Clarkson, Loureiro, and Van Assche [23]. �
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n = 1 n = 3 n = 5

n = 2 n = 4 n = 6

Figure 3.2. Plots of pn(z;ϑ)/n, with pn(z;ϑ) given by (3.9), for ϑ = 0
[purple], ϑ = 1

6π [blue], ϑ = 1
3π [red], ϑ = 1

2π [green].

We remark that Its, Kuijlaars, and Östensson [24] noted that p1(z; 0)
is special among all solutions p1(z;ϑ) in its behavior as z → −∞.

The plots in Figure 3.1 suggest the following conjecture (see also [23]).

Conjecture 3.1: If qn(z; 0) is defined by (3.7), then for z < 0 and
n ≥ 1, qn(z; 0) is a monotonically decreasing function and

qn+1(z; 0) < qn(z; 0).

3.2. Painlevé XXXIV equation and Jimbo-Miwa-Okamoto σ equation

Due to the one-to-one correspondence between solutions of PII (1.2) and
those of P34 (1.3) and SII (1.4), as discussed in §2.1, we have the following
result.

Theorem 3.4. Equations (1.3) and (1.4) possess one-parameter fam-
ily of solutions expressible in terms of Airy functions given by (3.4) if and
only if α = n− 1

2 , with n ∈ Z.

As for the Airy solutions of PII (1.2), the Airy solutions of P34 (1.3)
and SII (1.4) can be expressed in terms of the determinant (3.6).
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n pn(z;ϑ)

1 2Φ2 + z

2
4Φ

2Φ2 + z
+

2

(2Φ2 + z)2

3 z − 8Φ2 − 2z2Φ + 6z

4Φ3 + 2zΦ + 1
+

2(2z2 + 1)Φ2 − 2z2Φ + 2z(z3 − 1)

(4Φ3 + 2zΦ + 1)2

Table 3.2

The Airy solutions pn(z;ϑ) of P34 (1.3) given by (3.9).

n = 1 n = 2 n = 3

n = 4 n = 6 n = 8

Figure 3.3. Plots of σn(z;ϑ)/n, with σn(z;ϑ) given by (3.10), for ϑ = 0
[purple], ϑ = 1

6π [blue], ϑ = 1
3π [red], ϑ = 1

2π [green]; the dashed line is
the parabola 2σ2 + z = 0.
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n ϑn(z;ϑ)

1 − Φ

2
1

2Φ2 + z

3
2zΦ2 − Φ + z2

4Φ3 + 2zΦ + 1

4
48Φ3 − 8z2Φ2 + 28zΦ− 4z3 + 9

z(8zΦ4 − 16Φ3 + 8z2Φ2 − 8zΦ + 2z3 − 3)
+

3

z

Table 3.3

The Airy solutions ϑn(z;ϑ) (3.10).

Theorem 3.5. Let τn(z;ϑ) be the determinant (3.6) for n ≥ 1, with
ϕ(z;ϑ) given by (3.4) and τ0(z;ϑ) = 1, then

pn(z;ϑ) = −2
d2

dz2
ln τn(z;ϑ), (3.9)

σn(z;ϑ) =
d

dz
ln τn(z;ϑ), (3.10)

satisfy P34 (1.3) and SII (1.4) with α = n− 1
2 , respectively.

Comparing (3.7) and (3.10), we see that

qn(z;ϑ) = σn−1(z;ϑ)− σn(z;ϑ). (3.11)

The first few Airy solutions of P34 (1.3) and SII (1.4) are given in
Tables 3.2 and 3.3, respectively. Plots of these solutions are given in
Figures 3.2 and 3.3, respectively. As was the case for PII, these plots
show that the asymptotic behaviour as z → −∞ of the Airy solutions is
completely different when ϑ = 0 compared to the case when ϑ 6= 0. We
see that the solutions p2n(z; 0) and σ2n(z; 0), for n ∈ Z, are special in that
they have no poles on the real axis, see also Figures 3.4 and 3.5. Further
these solutions have oscillatory behaviour with algebraic decay as z →∞
as given in Theorem 3.7, see also Figures 3.6 and 3.7.

The asymptotic behaviour of the Airy solutions pn(z;ϑ) and σn(z;ϑ)
as z → −∞ is given in the following theorem.
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n = 2 [purple], n = 4 [green] n = 6 [blue], n = 8 [red]

Figure 3.4. Plots of pn(z; 0) (3.9), for n = 2, 4, 6, 8.

n = 2 [purple], n = 4 [green] n = 6 [blue], n = 8 [red]

Figure 3.5. Plots of σn(z; 0) (3.10), for n = 2, 4, 6, 8.

n = 4 n = 6 n = 8

Figure 3.6. Plots of pn(z; 0) (3.9) [blue] and the leading term in the
asymptotic expansion (3.14) [red] for n = 4, 6, 8.
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n = 4 n = 6 n = 8

Figure 3.7. Plots of σn(z; 0) (3.10) [blue] and the leading term in the
asymptotic expansion (3.15) [red] for n = 4, 6, 8; the dashed line is
n2/(8z).

Theorem 3.6. Let pn(z;ϑ) be defined by (3.9) and σn(z;ϑ) by (3.10),
then as z → −∞,

pn(z;ϑ) =


n√

2 (−z)1/2
− n2

2z2
+

5n(4n2 + 1)

16
√

2 (−z)7/2
+O

(
z−5
)
, if ϑ = 0,

− n√
2 (−z)1/2

− n2

2z2
− 5n(4n2 + 1)

16
√

2 (−z)7/2
+O

(
z−5
)
, if ϑ 6= 0,

(3.12)

σn(z;ϑ) =


n(−z)1/2√

2
− n2

4z
− n(4n2 + 1)

16
√

2 (−z)5/2
+O

(
z−4
)
, if ϑ = 0,

−n(−z)1/2√
2

− n2

4z
+

n(4n2 + 1)

16
√

2 (−z)5/2
+O

(
z−4
)
, if ϑ 6= 0.

(3.13)

Proof: The expansions (3.12) and (3.13) are easily derived using the
expansion for qn(z;ϑ) given in Theorem 3.3 since if q is solution of PII

(1.2), then

p =
dq

dz
+ q2 + 1

2z,

is a solution of P34 (1.3), and

σ = 1
2p

2 − (q2 + 1
2z)p− (α+ 1

2)q

= 1
2

(
dq

dz

)2
− 1

2q
4 − 1

2zq
2 − (α+ 1

2)q − 1
8z

2,

is a solution of SII (1.4). �
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The asymptotic behaviour of the solutions pn(z;ϑ) and σn(z;ϑ) as
z →∞, for n ∈ 2Z, is given in the following theorem.

Theorem 3.7. Let pn(z;ϑ) be defined by (3.9) and σn(z;ϑ) by (3.10)
and n ∈ 2Z, then as z →∞,

pn(z; 0) = 1
2n
√

2 z−1/2 cos
(
4
3

√
2 z3/2 − 1

2nπ
)

+ o
(
z−1/2

)
, (3.14)

σn(z; 0) =
n

8z

{
n− 2 sin

(
4
3

√
2 z3/2 − 1

2nπ
)}

+ o
(
z−1
)
. (3.15)

Proof: Using the known asymptotic expansion of the Airy function as
t→ −∞, i.e.

Ai(t) = π−1/2(−t)−1/4 sin
{
2
3(−t)3/2 + 1

4π
}

+ o
(
(−t)−1/4

)
[22, §9.7(ii)] it is straightforward to verify the asymptotic expansions
(3.14) and (3.15) for small values of n. �

Plots of pn(z; 0) (3.9) and the leading term in the asymptotic expansion
(3.14) for n = 4, 6, 8 are given in Figure 3.6. Analogous plots of σn(z; 0)
(3.10) and the leading term in the asymptotic expansion (3.15) for n =
4, 6, 8 are given in Figure 3.7.

Remark 3.1. Its, Kuijlaars, and Östensson [24] discussed solution of
the equation

uβ
d2uβ

dt2
= 1

2

(
duβ
dt

)2
+ 4u3β + 2tu2β − 2β2, (3.16)

where β is a constant, which is equivalent to P34 (1.3) through the trans-
formation p(z) = 21/2uβ(t), with t = −2−1/3z, and β = 1

2α + 1
4 in their

study of the double scaling limit of unitary random matrix ensembles of
the form Z−1n,N |detM |2β exp{−N TrV (M)}dM , with β > −1

2 and V real
analytic. In particular,

u1(t) = − d2

dt2
W
(

Ai(t),Ai′(t)
)
, (3.17)

withW(ϕ1, ϕ2) the Wronskian, which is equivalent to the solution p2(z; 0)
of P34 (1.3), and noted that on the positive real axis, u1(t) has an infinite
number of zeros, which are the zeros of the Airy function Ai(t), and an
infinite number of additional zeros that interlace with the zeros of Ai(t),
see Figure 3.8.

Remark 3.2. Its, Kuijlaars, and Östensson [25, Theorem 1.2] prove
that there are solutions uβ(t) of (3.16) such that as t→∞

uβ(t) = βt−1/2 +O
(
t−2
)
, as t→∞. (3.18)

uβ(t) = β(−t)−1/2 cos
{

4
3(−t)3/2 − βπ

}
+O

(
t−2
)
, as t→ −∞. (3.19)
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Figure 3.8. The solution u1(t) (3.17) of equation (3.16) [purple] and the
Airy function Ai(t) [dashed line].

Letting β = 1 in (3.18) and (3.19) shows that they are in agreement
with (3.12) and (3.14), for n = 2. Further Its, Kuijlaars, and Östensson
conclude that solutions of (3.16) with asymptotic behaviour (3.18) are
tronquée solutions, i.e. have no poles in a sector of the complex plane.

The plots in Figures 3.2 and 3.3 suggest the following conjecture, which
is analogous to Conjecture 3.1.

Conjecture 3.2: If pn(z; 0) is defined by (3.9) and σn(z; 0) by (3.10),
then for z < 0 and n ≥ 1, pn(z; 0) is a monotonically decreasing func-
tion and σn(z; 0) is a monotonically increasing function as z decreases.
Further, for z < 0

pn+1(z; 0) < pn(z; 0), σn(z; 0) < σn+1(z; 0).

4. Conclusion

In this paper we have studied the Airy solutions of PII (1.2), P34 (1.3), and
SII (1.2). These show that when the solutions depend only on the Airy
function Ai(t), with t = −2−1/3z, have a completely different asymptotic
behaviour as z → −∞ compared to solutions which involve the Airy
function Bi(t). The special solutions qn(z; 0) and pn(z; 0) of PII and P34

arise in recent study by Clarkson, Loureiro, and Van Assche [23] of the
discrete system

an + an+1 = b2n − t, (4.1a)

an(bn + bn−1) = n, (4.1b)

which is equivalent to alt-dPI (2.7). The system (4.1) arises in the study
of orthogonal polynomials with respect to an exponential cubic weight,
see [26, 27, 28].
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