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Abstract

Multilocus haplotype analysis of candidate variants with genome wide association studies

(GWAS) data may provide evidence of association with disease, even when the individual loci

themselves do not. Unfortunately, when a large number of candidate variants are investigated,

identifying risk haplotypes can be very difficult. To meet the challenge, a number of approaches

have been put forward in recent years. However, most of them are not directly linked to the

disease-penetrances of haplotypes and thus may not be efficient. To fill this gap, we propose a

mixture model-based approach for detecting risk haplotypes. Under the mixture model, hap-

lotypes are clustered directly according to their estimated disease penetrances. A theoretical

justification of the above model is provided. Furthermore, we introduce a hypothesis test for

haplotype inheritance patterns which underpin this model. The performance of the proposed ap-

proach is evaluated by simulations and real data analysis. The simulation results show that the

proposed approach outperforms an existing multiple testing method in terms of average speci-

ficity and sensitivity. We apply the proposed approach to analyzing two datasets on coronary

artery disease and hypertension in the Wellcome Trust Case Control Consortium, identifying

many more disease associated haplotype blocks than does the existing method.

KEY WORDS: Genome wide association studies; haplotype mixture model; testing for inheritance

patterns; odds ratios.
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1 Introduction

The advanced genotyping technology and the availability of a large number of dense single nucleotide

polymorphisms (SNPs) across human genome have enabled the design of genome-wide association

studies (GWAS) for complex diseases. These studies have progressed from genotyping the SNPs

over thousands of case and control subjects [Hindorff et al., 2009], producing large, high-dimensional

genotype datasets. The rapid increase in the number of GWAS provides an unprecedented oppor-

tunity to examine the effects of rare SNPs on disease susceptibility by the integrative analysis of

these data under the assumption that both common and rare SNPs contribute to the underlying

genetic mechanisms of complex diseases [Li et al., 2010; Zhu et al., 2010]. It is generally believed

that jointly analyzing rare SNPs within a region of strong linkage disequilibrium can be more infor-

mative and effective than individual SNP analysis, as multiple SNPs influence the risk of complex

diseases in aggregate [Schaid et al., 2002; Tzeng et al., 2005; Morris, 2006; Li et al., 2011;Stranger

et al., 2011]. The multilocus haplotype, the ordered allele sequences on a chromosome, provides a

nature unit of analysis for capturing linear and non-linear correlations in SNPs [Zhang et al., 2003].

Unfortunately, the multi-SNP analysis discussed above can suffer from high-dimensional problems

that are associated with many predictors, some of which are highly correlated. A popular strategy,

suggested by the block-like structure of the human genome, is to divide each chromosome into

a list of genetically meaningful regions to reduce the dimensions of these genotype data. Direct,

laboratory-based haplotyping to infer the unknown phase are expensive ways to obtain haplotypes.

So, in a typical haplotype-based association analysis, people infer haplotypes together with their

population frequencies in cases and controls from observed genotypes by using the software such

as PHASE [Stephens et al., 2001; Scheet et al., 2006]. The empirical evidence suggests that the

majority of the polymorphism is concentrated on a relatively small number of haplotypes while the

rest is sparsely spread over a number of categories. These non-common haplotypes can be rare and

thus hard to assess their disease-susceptibility [Schaid et al., 2002;Tzeng et al., 2005].

Haplotype clustering offers a promising avenue for addressing the above issue. Over the past

decade, enormous progress has been made in this direction and various methods of clustering have

been developed on the basis of haplotype similarity and evolution characteristics [Molitor et al.,

2003; Tzeng et al., 2006; Browning and Browning, 2007; and references therein]. However, none

of them except Zhu et al. [2010] has explored advantage of the haplotype similarity in terms of

their contributions to disease risks. Zhu et al. [2010] implemented a method for clustering rare
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risk haplotypes by performing multiple mariginal Z-tests for the significant differences between

retrospective haplotype frequencies in cases and controls, on the basis that rare risk haplotypes can

be enriched in cases. The method of Zhu et al. [2010] may be too naive to be efficient. Therefore,

it is desirable to develop a model-guided approach for haplotype clustering. Here, we propose a

prospective model for haplotype counts in cases and controls, where given the marginal counts of

haplotypes, the disease status of each haplotype follows a binomial mixture distribution. The main

advantage of the proposed model over the other existing methods is that it allows the clustering

to be directly linked to the haplotype disease-penetrances. Our intuition is as follows. We arrange

the haplotype frequencies derived from a case-control study by a contingency table, where rows

stand for the disease status (case or control) and columns for haplotypes. Then, we can directly

assess whether two haplotypes belong to the same group by their column similarity in the table. To

do that, we fit each column by a binomial distribution with the disease-penetrance as the success

probability and group these columns by use of a binomial mixture. To account for the variation

of disease-penetrances of haplotypes within risk and non-risk groups, the disease-penetrances are

assumed to be random factors following certain prior distributions. Note that using the estimated

prospective haplotype frequencies derived from a retrospective study to estimate disease odds ratio

is known to be asymptotically consistent even though the disease-penetrance estimators may not

be [Prentice and Pyke, 1979].

We employ the expectation-maximization (EM) algorithm to calculate the maximum likelihood

estimator for the proposed mixture model. The EM algorithm can guarantee monotone convergence

to a local maximum. In this paper, taking advantage of the fact that the disease-penetrance can be

varying across different risk haplotypes, we propose a Bayesian regularization procedure to improve

the proposed mixture model and the corresponding EM algorithm by posterior sampling. We show

its superior performance over the existing EM algorithm by simulations. We also conduct a large

scale simulation studies on the proposed clustering method in both prospective and retrospective

design settings, showing that the proposed method can outperform the approach of Zhu et al. [2010]

in most cases. We apply both the proposed method and the method of Zhu et al. [2010] to the

Coronary Artery Disease (CAD) and Hypertension (HT) data in the Wellcome Trust Case Control

Consortium (WTCCC), identifying potential risk haplotypes for each pre-specified chromosomal

region.

The rest of the paper is organized as follows. The proposed methodology and some theory are

introduced in Section 2. The simulation studies and real data applications are presented in Sections
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3 and 4. Discussions and conclusion are made in Section 5. Some technical details can be found in

the Online Supplementary Material.

2 Methodology

Consider a case-control sample with N0 controls and N1 cases, typed at a list of pre-specified SNP

markers in a candidate region, yielding unphased genotype set G. Let Hj , 1 ≤ j ≤ J denote the

distinct haplotypes inferred from G with haplotype counts n0j , 1 ≤ j ≤ J in controls summing

to 2N0, and n1j , 1 ≤ j ≤ J in cases summing to 2N1 respectively. The respective frequencies of

the jth haplotype in controls and cases can be estimated by r0j = n0j/(2N0) and r1j = n1j/(2N1)

respectively. Similarly, letting nj = n0j + n1j , the prospective frequencies of the jth haplotype in

cases and controls can also be estimated by p0j = n0j/nj and p1j = n1j/nj respectively.

When a haplotype is unevenly distributed between cases and controls, its odds ratio (OR) will

be deviated from one and it is likely to be a risk haplotype. Therefore, multiple OR tests can be

used for detecting risk haplotypes. Here, we opt for multiple OR testing, because risk haplotypes

can directly be assessed by using their disease-penetrances via the OR values [Jewell, 2004]. The

main thrust of our proposal below is to perform a model-based clustering on haplotypes before

the OR testing. This can help reduce the number of haplotypes to be tested and thus reduce the

multiple OR testing error.

2.1 Two-stage standard mixture approach

Our standard two-stage approach is processed as follows.

Stage 1 (Model-based clustering): We hypothesize that haplotypes are either risk or non-risk,

where non-risk means neutral or protective to the disease. Under this assumption, given the

haplotypes Hj , 1 ≤ j ≤ J and their the marginal counts (n1, ..., nJ), the conditional distribution of

the counts n = {(n0j , n1j)
T : 1 ≤ j ≤ J} are modeled by the two-component binomial mixture,

f((n0j , n1j)
T |pr, pr̄, π) = πf((n0j , n1j)

T |pr) + (1− π)f((n0j , n1j)
T |pr̄),

where pr = P (affected|Hr) and pr̄ = P (affected|Hr̄) are the disease-penetrances of risk haplotype

Hr and non-risk haplotype Hr̄ respectively, and

f((n0j , n1j)
T |pr) =

(

n0j + n1j

n1j

)

p
n1j
r (1− pr)

n0j ,

f((n0j , n1j)
T |pr̄) =

(

n0j + n1j

n1j

)

p
n1j

r̄ (1− pr̄)
n0j .
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The unknown parameter θ = (pr, pr̄, π)
T can be estimated by maximizing the log-likelihood

l(θ|n) =
J
∑

j=1

log
(

πf((n0j , n1j)
T |pr) + (1− π)f((n0j , n1j)

T |pr̄)
)

.

Note that the direct calculation of the above maximum likelihood estimator (MLE) is difficult.

Instead, we calculate it indirectly by the EM algorithm [McLachlan and Basford, 1988]. For this

purpose, we introduce the following group membership indicators Ijr and Ijr̄,

Ijr =







1, Hj in the risk group

0, otherwise
, Ijr̄ = 1− Ijr

for 1 ≤ j ≤ J . Set I = {(Ijr, Ijr̄)
T : 1 ≤ j ≤ J}. Then, the so-called complete-data log-likelihood

can be written as

l(θ|n, I) =
J
∑

j=1

{

Ijr log(πf((n0j , n1j)
T |pr)) + Ijr̄ log((1− π)f((n0j , n1j)

T |pr̄))
}

.

Given the current value θ(t) = (p
(t)
r , p

(t)
r̄ , π(t))T and the data n, we first calculate the current

log-likelihood l(θ(t)|n). Then, in the E-step, we calculate the expectation of the complete-data

log-likelihood with respect to I,

Q(θ, θ(t)) = E[l(θ|n, I)|n, θ(t)]

=
J
∑

j=1

(τ
(t)
jr log(π) + τ

(t)
jr̄ log(1− π))

+
J
∑

j=1

(τ
(t)
jr log(f((n0j , n1j)

T |pr)) + τ
(t)
jr̄ log(f((n0j , n1j)

T |pr̄))),

where

τ
(t)
jr =

π(t)f((n0j , n1j)
T |p

(t)
r )

π(t)f((n0j , n1j)T |p
(t)
r ) + (1− π(t))f((n0j , n1j)T |p

(t)
r̄ )

,

τ
(t)
jr̄ =

π(t)f((n0j , n1j)
T |p

(t)
r̄ )

π(t)f((n0j , n1j)T |p
(t)
r ) + (1− π(t))f((n0j , n1j)T |p

(t)
r̄ )

.

In the M-step, we update θ(t) by solving the partial derivatives equations

∂Q

∂π
= 0,

∂Q

∂pr
= 0,

∂Q

∂pr̄
= 0.

We obtain

π(t+1) =

∑J
j=1 τ

(t)
jr

J
, p(t+1)

r =

∑J
j=1 τ

(t)
jr n1j

∑J
j=1 τ

(t)
jr (n1j + n0j)

, p
(t+1)
r̄ =

∑J
j=1 τ

(t)
jr̄ n1j

∑J
j=1 τ

(t)
jr̄ (n1j + n0j)

.
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We calculate the updated log-likelihood l(θ(t+1)|n) and its absolute distance to the previous l(θ(t)|n)

and err(t+1).

Start with the initial value θ(0), we alternatively run the E-step and the M-step for t = 0, 1, ...,

till err(t+1) is less than a pre-specified value d0 (we set d0 = 0.0001 in our codes). Suppose that the

algorithm stops at (t+1)th iteration. Note that τ
(t+1)
jr and τ

(t+1)
jr̄ are the posterior probabilities of

the j-th haplotype being in risk and non-risk haplotype clusters respectively. So, based on these

quantities, the estimated risk and non-risk haplotype clusters can be defined by

S(t+1)
r = {Hj : τ

(t+1)
jr > τ

(t+1)
jr̄ }, S

(t+1)
r̄ = {Hj : τ

(t+1)
jr ≤ τ

(t+1)
jr̄ }.

We consider the two methods to choose the initial values for the EM algorithm: random ini-

tialization and data initial partition. See the Online Supplemental Material (Appendix I) for the

details.

Stage 2 (Multiple OR testing): We are going to refine the above selected risk haplotype set on

the basis of their odds ratios. Let n0H and n1H be control- and case-counts of the haplotype H.

Let n0r̄ =
∑

H∗∈S
(t+1)
r̄

n0H∗
and n1r̄ =

∑

H∗∈S
(t+1)
r̄

n1H∗
. The corrected OR statistic is defined by

ORH =
(n1H + 0.5)(n0r̄ + 0.5)

(n0H + 0.5)(n1r̄ + 0.5)
,

where adding 0.5 to the counts before computing the odds ratio was suggested by Agresti [1999] for

continuity correction. Note that under the null hypothesis that the haplotype is evenly distributed

between cases and controls,

log(ORH) ∼ N(0, φ(n0H , n1H , n0r̄, n1r̄)
2),

where

φ(n0H , n1H , n0r̄, n1r̄) =

√

1

n0H + 0.5
+

1

n1H + 0.5
+

1

n0r̄ + 0.5
+

1

n1r̄ + 0.5
.

Then, the risk haplotype set S
(t+1)
r (which are significant in the OR test) is updated by

Ŝr =
{

H ∈ S(t+1)
r : ORH ≥ exp(c1φ(n0H , n1H , n0r̄, n1r̄))

}

where c1 is a pre-specified critical value for testing (invoking the Bonferroni adjustment, we set

c1 = 2.6 in the later simulations and c1 = 5.3 in the real data analysis). The non-risk haplotype

set is updated by

Ŝr̄ = Sr̄ ∪ (Sr − Ŝr).
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Given the clusters Ŝr and Ŝr̄, the estimators of π, pr, and pr̄ are updated by

π̂ =
|Ŝr|

|Ŝr|+ |Ŝr̄|
, p̂r =

∑

H∈Ŝr
n1H

∑

H∈Ŝr
(n1H + n0H)

, p̂r̄ =

∑

H∈Ŝr̄
n1H

∑

H∈Ŝr̄
(n1H + n0H)

.

The population frequencies of Ŝr and Ŝr̄ (i.e., P (H ∈ Ŝr) and P (H ∈ Ŝr̄) are estimated by their

retrospective frequencies in controls,

P̂ (Ŝr) =

∑

H∈Ŝr
n0H

∑

H∈Ŝr∪Ŝr̄
n0H

, P̂ (Ŝr̄) = 1− P̂ (Ŝr).

Note that according to the theory of Prentice and Pyke [1979], the OR based on p̂r and p̂r̄ above

is asymptotically insensitive to the case-control sample ratio although p̂r and p̂r̄ can be affected by

the ratio.

2.2 Two-stage hybrid mixture approach

In the previous mixture model, risk haplotypes are assumed to have the same disease-penetrance

and so are non-risk haplotypes. Such a homogenous assumption may not hold in reality. To allow

for the disease-penetrance variations within each group, we take pr and pr̄ as random factors by

imposing prior distributions on them. The resulting model is called a Bayesian regularized mixture

model. The details are as follows.

Bayesian regularization. We first randomly generate i0 (say i0 = 100) initial values at which

we calculate the log-likelihoods, and take the one, which attains the maximum and is denoted by

θ(0) = (p
(0)
r , p

(0)
r̄ , π(0))T , as the initial value for the posterior sampling. Motivated by the Gibbs

sampling, we employ the posterior of θ to improve each iteration of the EM. Here, we draw q
(t)
r and

q
(t)
r̄ from the posteriors of pr and pr̄ at the iteration t. Start with the initial θ(0) and set q

(0)
r = p

(0)
r

and q
(0)
r̄ = p

(0)
r̄ . At the iteration t+ 1, given θ(t) = (p

(t)
r , p

(t)
r̄ , π(t))T , we have the expected values of

Ijr and Ijr̄, say τ
(t)
jr and τ

(t)
jr̄ . Haplotype clusters can be defined by

S(t)
r = {Hj : τ

(t)
jr > τ

(t)
jr̄ }, S

(t)
r̄ = {Hj : τ

(t)
jr ≤ τ

(t)
jr̄ }.

Collapse haplotypes in Sr and calculate the counts of the collapsed Sr in controls and cases, s0r

and s1r. Similarly, collapse Sr̄ and calculate the counts of the collapsed Sr̄ in controls and cases,

s0r̄ and s1r̄. Based on these counts, the likelihood functions of pr and pr̄ can be written as

l(pr|(s0r, s1r)
T ) ∝ ps1rr (1− pr)

s0r , l(pr̄|(s0r̄, s1r̄)
T ) ∝ ps1r̄r̄ (1− pr̄)

s0r̄ .

Let pδ1r (1− pr)
δ0 and pδ0r̄ (1− pr̄)

δ1 denote the conjugate priors for pr and pr̄ respectively, with the

pre-specified pseudo-counts δ0 and δ1. We expect that a risk haplotype appears more frequently in
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cases than does any non risk haplotype. So, the pseudo-counts should satisfy the constrain δ1 > δ0.

They should also be small compared to the number of cases. In this paper, we set δ1 = 8 and δ0 = 2.

In our simulations, we found the results are not very sensitive to the choice of these constants.

After setting the above priors, we then derive the posteriors,

p(pr|(s0r, s1r)
T ) ∝ Beta(δ1 + s1r, δ0 + s0r), p(pr̄|(s0r̄, s1r̄)

T ) ∝ Beta(δ0 + s0r̄, δ1 + s1r̄)

We draw q
(t+1)
r from p(pr|(s0r, s1r)

T ) and q
(t+1)
r̄ from p(pr̄|(s0r̄, s1r̄)

T ). We update the estimates of

pr, pr̄ and π by posterior averaging,

p(t+1)
r =

1

t+ 2

t+1
∑

k=0

q(k)r , p
(t+1)
r̄ =

1

t+ 2

t+1
∑

k=0

q
(k)
r̄ , π(t+1) =

|S
(t)
r |

|S
(t)
r |+ |S

(t)
r̄ |

.

Finally, we repeat the above procedure until the absolute difference between the estimates of θ in

two consecutive iterations is less than a pre-specified value, say 0.0001.

In the Online Supplementary Material (Appendix II), we show the superiority of the Bayesian

regularized M-step over the standard M-step by simulations. In light of this, we replace the M-step

in the EM by the Bayesian regularized M-step to form a hybrid EM algorithm. In summary, we

opt for the following two-stage hybrid mixture approach for association analysis in the remaining

paper:

Stage 1 (Clustering): Use the hybrid EM algorithm to estimate the two-component binomial

mixture model.

Stage 2 (OR testing): Use the OR statistic to test for risk haplotypes further as before.

2.3 Model justification

To make the proposed model identifiable, we need to assume that the disease-penetrance ratio

pr/pr̄ > 1, that is, risk haplotypes are more enriched in cases than non-risk haplotypes. In this

section, under the commonly used inheritance models, we prove the above hypothesis holds when

the so-called relative risk measure is larger than one.

For this purpose, let Sr and Sr̄ denote the risk and non-risk haplotype sets in the population.

Suppose that the disease-penetrance of a genotype depends only on the number of risk haplotypes

contained in that genotype. Then, we have three types of penetrance:

f0 = P (affected|Hr̄Hr̄), f1 = P (affected|HrHr̄), f2 = P (affected|HrHr),

where Hr ∈ Sr and Hr̄ ∈ Sr̄. Denote the relative risk measures λ1 = f1/f0 and λ = f2/f0. In the

Online Supplementary Material (Appendix III), we show that the haplotype disease-penetrances,
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P (affected|Hr) and P (affected|Hr̄) are linear functions of the relative risk measures of genotypes

and the population haplotype frequencies, namely

P (affected, Hr) = f0 {λP (H ∈ Sr) + λ1P (H ∈ Sr̄)} ,

P (affected|Hr̄) = f0 {λ1P (H ∈ Sr) + P (H ∈ Sr̄)} ,

where P (Hr), P (H ∈ Sr) and P (H ∈ Sr̄) are the population frequencies of Hr, Sr and Sr̄.

The disease-penetrance ratio between risk and non-risk haplotypes,

P (affected|Hr)

P (affected|Hr̄)
=

λ1{λP (H ∈ Sr)/λ1 + P (H ∈ Sr̄)}

λ1P (H ∈ Sr) + P (H ∈ Sr̄)
.

We can further show that under the commonly used models of inheritance (multiplicative,

dominant, and recessive), the haplotype relatively risk (i.e., the the disease-penetrance ratio between

the risk and non-risk haplotypes) is larger than one if and only if the corresponding genotype relative

risk is larger than one.

The above results imply that when the genotype relative risk λ > 1, the individuals carrying

the risk haplotype Hr will have more chance of getting the disease than do non-risk haplotype

carriers; when λ < 1, the individuals carrying Hr have the less chance of getting the disease than

do non-risk haplotype carriers and thus Hr plays a disease-protective role.

2.4 Testing for haplotype inheritance modes

In the previous subsection, we develop a theory on the identification of the proposed model under

certain inheritance assumption on hyplotypes. However, the biological justification for the choice

of an inheritance model is seldom available and lack of a statistical justification for the specific

genetic model is customary practice. To address the issue, we introduce a statistical test as follows.

We begin with deriving non-parametric estimators of the genotype disease-penetrances. Suppose

that we have obtained Ŝr and Ŝr̄, the estimated risk and non-risk haplotype sets from our hybrid

mixture approach. Let G0 be the set containing the observed genotypes which consist of two

haplotypes in Ŝr̄, G1 the set containing the observed genotypes which consist of one haplotype in

Ŝr and one in Ŝr̄, and G2 containing the observed genotypes which consist of two haplotypes in

Ŝr. For k = 0, 1, 2, we then calculate the total haplotype frequencies of Gk in controls and cases,

denoted by (n02, n12), (n01, n11), (n00, n00) respectively. Then the disease-penetrances of genotypes

can be estimated non-parametrically by

f̂0 =
n10

n10 + n00
, f̂1 =

n11

n01 + n11
, f̂2 =

n12

n02 + n12
.
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Let A denote the set of the above three inheritance modes: the multiplicative, the dominant,

and the recessive. We assume that genotypes are linked their underlying haplotype pairs via the

Hardy-Weinberg equilibrium. To test for an inheritance mode, for a ∈ A and k = 0, 1, 2, we first

derive a parametric estimator of fk, say f̂
(a)
k by using the estimators p̂r, p̂r̄, P̂ (Ŝr) obtained in the

previous subsection. We then calculate the statistic

Da = |f̂0 − f̂
(a)
0 |+ |f̂1 − f̂

(a)
1 |+ |f̂2 − f̂

(a)
2 |.

We calculate the minimum DA = mina∈ADa and record â at which Da attains the minimum. We

expect that DA takes small values when one of modes in A is true. We can quantitatively justify

the significance by use of the following parametric bootstrap test: We re-sampling genotypes M

times on the basis of the estimated mode â with the estimated penetrances f̂
(â)
k , k = 0, 1, 2. We

set M = 100 in our simulation. Each bootstrap dataset contains the original genotypes (and their

haplotype pairs) but with new sets of case and control counts. We apply the two-stage hybrid

mixture approach to these datasets respectively, obtaining M bootstrap values DAm,m = 1, ...,M .

The empirical p-value
∑M

m=1 I(DA > DAm)/M can be used to judge the significance of the test.

To conclude this section, we now state the formulas for estimating the relative risk measures

under the three inheritance models. The proofs are straightforward and thus omitted. We use the

notations λ = f2/f0 and λ1 = f1/f0 introduced before.

• Multiplicative model, where λ = λ2
1. We have

λ̂ =

(

p̂r
p̂r̄

)2

, f̂0 =
p̂r̄

(
√

λ̂− 1)P̂ (Ŝr) + 1
, f̂2 = λ̂f̂0, f̂1 =

√

λ̂f̂0.

• Dominant model, where λ = λ1. We have

λ̂ =
P̂ (Ŝr̄)

p̂r̄/p̂r − P̂ (Ŝr)
, f̂0 =

p̂r̄

(λ̂− 1)P̂ (Ŝr) + 1
, f̂1 = f̂2 = λ̂f̂0.

• Recessive model, where λ1 = 1. We have

λ̂ = (p̂r/p̂r̄ − P̂ (Ŝr̄))/P (Ŝr), f̂1 = f̂0 = p̂r̄, f̂2 = λ̂f̂0.

3 Simulation studies

In this section, via simulations we will examine the performance of the proposed methods in terms

of the estimated L1 bias and the average of sensitivity and specificity under various scenarios. Let
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θ̂ be the estimator of θ, and Ŝr and Ŝr̄ the estimators of the true risk and non-risk haplotype sets

Sr and Sr̄ respectively. Then, by the L1 bias we mean the L1 distance between θ̂ and θ. The

sensitivity and specificity of Ŝr and Ŝr̄ are defined as sen = |Ŝr∩Sr|
|Sr |

and spe = |Ŝr̄∩Sr̄|
|Sr̄|

. We take the

average AVSS = (sen + spe)/2 to assess the performance of the haplotype classification above. As

pointed out before, in light of our simulation study reported in the Online Supplementary Material

(Appendix II), we adopted the two-stage hybrid mixture approach in the simulations and real data

analysis below.

3.1 Performance of the proposed hybrid mixture approach

Note that the proposed hybrid mixture method is based on the prospective likelihood model al-

though real data can be from retrospective studies. By the simulations below, we addressed whether

the proposed hybrid mixture approach could outperform the multiple-testing procedure of Zhu et

al. [2010] in both prospective (i.e., cohort) and retrospective (i.e., case-control) studies. See the

Online Supplementary Material (Appendix IV) for the details of the procedure of Zhu et al. [2010].

Setting 1 (cohort design): We generated 30 datasets, each with N1 case-genotypes and N0

control-genotypes. They were obtained by the following steps. In the first two steps, we adopted

the same approach for generating N0+N1 genotypes which contained mr risk haplotypes as we did

in the Online Supplementary Material (Appendix II). In the third step, we simulated the disease

status of each genotype by sampling from a Bernoulli distribution. The Bernoulli distribution

took f0, or λ1f0, or λf0 as a success probability according to whether the genotype contained

zero, one or two risk haplotypes. We considered the three inheritance models coded by IM: the

multiplicative (IM = 1), the dominant (IM = 2) and the recessive (IM = 3). Note that the values of

(N0, N1) may vary across different datasets. We considered the scenarios with various combinations

of (N0 + N1,mr, IM, f0, λ), where N0 + N1 = 3000, 5000, mr = 5, 10, 20, IM = 1, 2, 3, f0 = 0.1,

λ = 1, 1.4, 1.8, 2.2, 2.6, 3, 3.4, and 3.8 respectively.

For each scenario, we applied both the hybrid mixture method and the multiple testing method

to 30 datasets and calculated their AVSS values respectively. For each of the three inheritance

models, we plotted the means of these AVSS values over 30 datasets against λ. The results in

Figure 1 show that on the cohort data, the hybrid mixture method performed substantially better

than the multiple testing method in all the scenarios defined above.

[Put Figure 1 here.]

Setting 2 (case-control design): We generated 30 datasets, each of which were simulated
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by the following two steps. Step 1, to generate N1 case-genotypes, we first drew 2N1 haplotypes by

the software MS with mutation rate of 2, of which mr haplotypes were labeled as risk haplotypes.

We then randomly paired these haplotypes to form N1 case-genotypes. Let Gj , 1 ≤ j ≤ J be all the

different genotypes contained in the N1 cases and r1j , 1 ≤ j ≤ J be the retrospective frequencies.

These case-genotypes formed three groups according to the number of risk haplotypes which each

genotype contained: Each genotype in Groups 0, 1 and 2 contained two non-risk haplotypes,

only one risk-haplotype, and two risk haplotypes respectively. Step 2, we generated N0 control-

genotypes, which also had genotypes Gj , 1 ≤ j ≤ J but with population retrospective frequencies

q0j , 1 ≤ j ≤ J . We first let q0j , 1 ≤ j ≤ J depend on the pre-specified constant d by

q0j =



















r1j(1− d/r1g2), Gj belongs to Group 2

r1j(1− 0.5d/r1g1), Gj belongs to Group 1

r1j(1 + 1.5d/r1g0), Gj belongs to Group 0

where r1gk =
∑

Gj∈ Groupk
r1j for k = 0, 1, 2,, and d ≥ 0 is a parameter to reflect the effects

of risk haplotypes on genotype frequencies. We simulated N0 control-genotype counts from the

multinomial model MN(N0, (q01, ..., q0J)
T ) and calculated the corresponding retrospective frequen-

cies r0j , 1 ≤ j ≤ J . We considered the cases where mr = 5, 10, 20, and d = 0, 0.05, 0.1, 0.1,

0.15, 0.2, 0.25, 0.3, and 0.35 respectively.

For each dataset, the cumulative genotype frequencies of Groups 0, 1, and 2 in controls are

rg0 + 1.5d, rg1 − 0.5d, and rg2 − d respectively, whereas the corresponding frequencies in cases are

rg0 , rg1 and rg2 respectively. This implies that due to the impacts of risk haplotypes, the cumulative

frequencies of Groups 2 and 1 in cases have been increased compared to those in controls. The

odds ratios between Groups 2 and 0 and between Group 1 and Group 0, (1+ 1.5d/rg0)/(1− d/rg2)

and (1 + 1.5d/rg0)/(1 − 0.5d/rg1), are larger than one. Similarly, the odds ratio between the risk

haplotype group and the non-risk haplotype group can be expressed as (1+2.5d/(2rg0 + rg1))/(1−

2.5d/(rg1 + 2rg2)). All these ratios are increasing in d.

We applied the hybrid mixture method and the multiple testing method to these case-control

data. The mean curves of the AVSS values with one standard error up and down were plotted

against the d values in Figure 2. The results again demonstrate that the hybrid mixture method

can be more powerful than the multiple testing method in detecting risk haplotypes.

[Put Figure 2 here.]
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3.2 Performance of the proposed inheritance mode test

For each of the three inheritance models, we generated 30 datasets. Each dataset was simulated as

follows. Following the cohort design, we first simulated N0 +N1 genotypes, where the underlying

haplotypes contained mr = 10 risk-haplotypes and followed the Hardy-Weinberg equilibrium. We

then simulated their disease status by use of the inheritance models with f0 = 0.1 and λ =

1, 1.4, 1.8, 2.2, 2.6, 3, 3.4, and 3.8 respectively as we did in the previous subsection.

For each dataset, we calculatedDA and the optimal mode â. We generated 100 parametric boot-

strap samples of the genotype frequencies based on the mode â and calculated the corresponding

values of the inheritance testing statistic, D
(k)
A , k = 1, ..., 100. Based on these values, we obtained

the empirical p-value.

We calculated the success rates by counting how many times that â is the true mode over the

30 datasets for each λ. These success rates and the empirical p-values are displayed in Figure 3.

The results indicate that the success rates are increasing as λ is increasing. The box-whisker plots

in Figure 3 show that almost all the empirical p-values are above 0.20, suggesting that almost all

the tests are not significant. Therefore, the bootstrap test has a very high power in finding the true

inheritance modes in the data.

[Put Figure 3 here.]

4 Real data analysis

We applied the proposed hybrid mixture approach to the GWAS genotype datasets on coronary

artery disease (CAD) and hypertension (HT) obtained by Affymetrix 500K SNP chips in the

WTCCC study [WTCCC, 2007]. Each dataset contained 2000 unrelated cases as well as 3000

unrelated controls. The controls came from two sources: 1500 from the 1958 British Birth Cohort

(58C) and 1500 from the three National UK Blood Services (NBS). There were about 500600 SNPs

across the human genome. These data were downloaded from the WTCCC website. We first pre-

processed the data by excluding the SNPs which meet one of the following criteria: (1) the HWE

Fisher test p-value is less than 10−8 in controls; (2) the chi-square test p-value between 58C and

NBS is less than 10−8; (3) the minor allele frequency is less than 1%; (4) the calling score is less

than 95%. After the exclusion, around 4897746 SNPs remained for the analysis. We divided the

genome into regions (or blocks) of around 8 SNPs according to their positions on the chromosomes,

obtaining 61218 regions. Note that the long block will dilute the effects of risk SNPs whereas the
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short block will miss interactions between SNPs. The block length of 8 was chosen to achieve a

compromise between the above aspects. Also note that as we excluded the SNPs with bad callings,

the numbers of cases and controls are varying across the different regions.

For all regions, we first reconstructed the haplotype pairs of genotypes by use of the software

PHASE, to which we applied Stage 1 of the hybrid procedure. It led to 902909 haplotypes and

961942 haplotypes to be declared as risk haplotypes at Stage 1 for the CAD and the HT respectively.

We then calculated the OR tests on these haplotypes at Stage 2. At Stage 2, According to the Bon-

ferroni adjustment, the individual significance level was set at the levels of 0.05/902909 = 5.5×10−8

and 0.05/961942 = 5.2× 10−8 for the CAD and the HT respectively. These individual significance

levels were then used to determine the thresholding level c1 in the multiple OR thresholding, which

is c1 = 5.3.

After performing the proposed hybrid mixture procedure on the datasets, we obtained the

estimated risk and non-risk haplotype sets, Ŝr and Ŝr̄), for the CAD and the HT respectively.

Note that there were two sub-populations in controls. Any estimated risk haplotype which is

significant in differing two control sub-populations should be viewed as an artifact. By using this,

we made further quality control on the selected haplotypes by running the chi-square tests on the

association of two control sub-populations with each selected risk haplotype. We eliminated these

risk haplotypes whose p-values for the above chi-square tests were < 30%. Here, 30% was chosen

by the simulations in the Supplementary Web Material, aiming to filter out these artificial risk

haplotypes with parameter d ≥ 0.05. From the simulations, we can see that when d = 0.05, these

p-values would be less than or equal to 0.30 most times.

Finally, we calculated the ORs for all the estimated haplotypes and thresholded them by using

the bound

exp(c1
√

1/(n0H + 0.5) + 1/(n1H + 0.5) + 1/(n0r̄ + 0.5) + 1/(n1r̄ + 0.5))

with c1 = 5.3. This gave the final risk-haplotype set as displayed in Tables 1, 2, 3 and 4 be-

low. In the tables, each haplotype has been assigned to a physically closest gene on the basis of

the information provided the GWAS catalog and the genetic information from the British 1958

Birth cohort. See Welter et al. (2014) and the web page at http://www2.le.ac.uk/projects /birth-

cohort/1958bc. In the CAD case, we did rediscover the CAD risk gene CDKN2B and the risk

haplotype “GGTGCCAG” found by the previous study (WTCCC, 2007; Zhu et al., 2010). We also

tested the inheritance modes for these risk haplotypes. Taking the gene CDKN2B as an example,
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we obtained DA = 0.4087 with â = ”dominant mode” and the empirical p-value of 0.97, suggesting

that the hyplotype “GGTGCCAG” in the gene followed the dominant inheritance mode.

[Put Tables 1, 2, 3 and 4 here.]

5 Discussion and conclusion

The GWAS and sequencing studies have produced a huge amount of high-dimensional data. An-

alyzing these data offers many challenges to statistical inference. Several empirical studies have

demonstrated the superiority of SNP region-based association analysis over single-SNP strategy

[see Zakharov et al., 2013 and reference therein]. However, even restricted to a region, we may

still obtain many sparsely distributed haplotypes derived from phasing the genotypes. In this case,

the traditional generalized linear model-based approach [Schaid et al., 2002] may not be effective

in detecting rare disease-associated haplotypes. In the presence of sparsely distributed haplotypes,

haplotype clustering is very useful for performing statistical analysis on such kinds of data. Most

of the existing methods of haplotype clustering are heuristic and not disease-penetrance based. To

overcome this drawback, we have proposed a hybrid mixture model-based approach for grouping

and identifying risk haplotypes. The key ingredient of the approach is a prospective mixture model

with priors. The proposal includes two stages: in the stage 1, one groups haplotypes and therefore

reduce the haplotype sparsity, while in the second stage, one conducts a two-sample Z-test based

screening on the haplotypes derived from the previous stage. We have also provided a test for ge-

netic inheritance modes. We have hypothesized that haplotypes are either risk or non-risk, where

non-risk means neutral or protective to the disease. However, if we are also interested in identifying

protective haplotypes, we can easily extend the current framework to address the issue by use of a

three-component binomial mixture model.

We have examined the performance of the proposed procedure by a theoretical analysis, sim-

ulations and a real data analysis. We have showed that under the Hardy-Weinberg equilibrium,

the risk haplotype group is identifiable if genotype relative risk is not equal to one. Compared

to the standard multiple Z-testing method, the proposed procedure is more efficient in terms of

sensitivity and specificity. We applied our procedures to the WTCCC CAD and hypertension data,

rediscovering some existing risk gene and haplotypes and identifying many more risk haplotypes

than did the multiple Z-test based approach. This is not surprising as the simulations have already

demonstrated that the model-based clustering often performs better than does the multiple Z-test
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approach.

We note that the proposed mixture model can be combined with haplotype-based logistic re-

gression to account for covariates. However, further studies are beyond the scope of the paper.

Description of online supplementary materials

Online supplementary material contains further information about the initialization of the EM algo-

rithm, the performance of the proposed Bayesian regularization, the proof of the disease-penetrance

formulas, and the multiple Z-testing method.
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Figure 1: Performances of the proposed hybrid mixture method and the multiple testing method on the

cohort-design data with multiplicative or dominant or recessive inheritance models. In these plots, the red and

the blue solid curves, showing means of the AVSS values (i.e., the values of (specificity and sensitivity)/2))

over 30 datasets, were plotted against the values of λ for the hybrid mixture method and the multiple testing

method respectively. The two red dash curves are one standard deviation up and down from the red mean

curves. Similarly, the two blue dash curves are one standard deviation up and down for blue mean curves.

The plots in the columns from the left to the right are for the cases where there were 5, 10, and 20 risk

haplotypes in the underlying haplotypes. The top two rows, the middle two rows and the bottom two rows

are the results for (N0, N1) = (2000, 1000) and (3000, 2000) under the multiplicative, the dominant and the

recessive inheritance models respectively.
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Figure 2: Performances of the proposed hybrid mixture and the multiple testing method on the case-control

data. The plots in the columns from the left to the right are for the scenarios, where the underlying number

of risk haplotypes mr = 5, 10, and 20. The top row stands for the cases, where (N0, N1) = (2000, 1000),

while the bottom row stands for the cases, where (N0, N1) = (3000, 2000). In these plots, the red and the

blue solid curves show mean curves of the AVSS values over 30 datasets as functions of d = 0, 0.05, 0.1, 0.1,

0.15, 0.2, 0.25, 0.3, and 0.35 for the hybrid mixture method and the multiple testing method respectively. The

dash curves are one standard error up or down from the mean curves.
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Figure 3: Performances of the proposed test for inheritance patterns. The plots in the columns from the

left to the right are for the dominant, the multiplicative and the recessive models respectively. The top row

show the success rate of identifying the true inheritance mode against λ over 30 datasets, while the bottom

row show the box-whisker plots of the empirical p-values (based on 100 bootstrap samples) against λ for the

inheritance test statistic Dmin over 30 datasets.
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Table 1: The predicted risk haplotypes for CAD by use of the WTCCC data. In the table, the P-

values were derived from the chi-square test of the frequencies ofHi against the collapsed frequencies

of the estimated non-risk haplotypes.

Chr Region SNP range Haplotype P̂ (Hi|case) P̂ (Hi|control) OR P-Value Gene

1 202166400− 202187685 rs6692041− rs1041311 AAATGGGA 0.07815 0.05083 1.95856 2.8× 10−13 LOC284577

1 237650028− 237672617 rs6683639− rs10802930 TCAAATGC 0.05256 0.02763 2.57538 6.1× 10−13 RGS7

3 102073696− 102093722 rs973309− rs4928094 TAACCTTT 0.07591 0.06898 7.73184 5.6× 10−15 ABI3BP

3 142488272− 142537277 rs7643346− rs2871887 CGCCCATC 0.05008 0.03809 11.90617 2.0× 10−15 ACPL2

3 147806667− 147828893 rs17433833− rs17434589 CCGGGGGC 0.03363 0.01291 3.14753 3.2× 10−15 PLSCR5

4 132550− 344051 rs11735742− rs17719492 TGGCACTC 0.05993 0.04793 1.9902 7.6× 10−11 LOC654254

4 4464610− 4499426 rs16835627− rs4234727 TCGAGCAT 0.04072 0.0251 3.92994 1.1× 10−14 ZNF509

CTAAGCAT 0.09413 0.07343 3.10696 1.2× 10−13

4 180659963− 180699763 rs6811556− rs17090633 CCCCCACT 0.01782 0.00755 7.33583 5.5× 10−15 LOC391719

5 157267571− 157303032 rs10071157− rs17055168 GTGAGCAA 0.02135 0.00701 3.93074 4.0× 10−13 CLINT1

7 77725471− 77739291 rs10485891− rs7803705 AACATGCG 0.03652 0.04027 3.67364 6.8× 10−13 MAGI2

AACATGTA 0.01312 0.01117 4.76163 2.1× 10−11

AGTGCACA 0.01312 0.00846 6.27027 1.2× 10−14

7 130749877− 130784667 rs4728224− rs4728225 AGAACCGG 0.14061 0.13197 4.05796 1.0× 10−12 LOC647030

8 104190450− 104202402 rs2515173− rs3019159 GGCCATCT 0.14195 0.08768 2.20746 2.5× 10−27 BAALC

9 22088619− 22120515 rs2891168− rs10965245 GGTGCCAG 0.34939 0.29298 1.90115 2.7× 10−11 CDKN2B

9 77341767− 77366988 rs2889774− rs3780296 ATGAGAGT 0.01936 0.01072 5.31687 5.0× 10−18 GNA14

ATGAAGAC 0.03898 0.03923 2.93116 4.5× 10−13

ATGGAAAT 0.06672 0.042 4.68028 4.9× 10−30

GCGAAGAT 0.14207 0.14656 2.85712 4.9× 10−19

9 131714465− 131751663 rs3012758− rs11243551 CGAATTGC 0.06641 0.04652 2.41478 6.2× 10−13 RAPGEF1

CGAACTGC 0.02448 0.01227 3.36929 4.4× 10−12

10 64409674− 64442476 rs1509952− rs2842286 TTTCTTAC 0.02299 0.0073 9.37291 1.6× 10−16 NRBF2

10 112527724− 112597595 rs17763100− rs1341055 GCCTCCCG 0.07752 0.07383 1.85031 6.2× 10−11 RBM20

ACCTCCCG 0.24688 0.21703 2.00368 6.7× 10−23

10 129835144− 129894934 rs11016102− rs1335014 AAGAACTT 0.02987 0.01529 4.40461 6.2× 10−14 MKI67

11 36361306− 36410807 rs330255− rs331485 GCGATTAA 0.0309 0.00779 4.87953 1.5× 10−21 FLJ14213

11 133079508− 133113640 rs4937817− rs4937826 GTAGTGCC 0.04216 0.02425 2.69929 5.9× 10−17 LOC646522

CCGGCCCG 0.05747 0.04018 2.22186 1.4× 10−15

GTAGCCCG 0.04001 0.02779 2.23683 8.3× 10−12
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Table 2: The continuation of Table 1.
Chr Region SNP range Haplotype P̂ (Hi|case) P̂ (Hi|control) OR P-Value Gene

11 133914862− 133953680 rs12417998− rs10894845 GTTAGCCC 0.12907 0.13389 3.70503 1.4× 10−12 IQSEC3

GTTAATCC 0.09778 0.09576 3.92451 3.3× 10−13

GTCAGCTC 0.06932 0.07079 3.76457 7.6× 10−12

12 24250132− 24288211 rs3922562− rs17412555 CTGTGCCT 0.07253 0.06027 5.51363 6.0× 10−15 SOX5

TCGCGCCC 0.05454 0.03857 6.47638 9.9× 10−17

TCGCGTCC 0.02399 0.01788 6.14651 1.0× 10−12

12 51469295− 51501190 rs17738862− rs876407 CACCCTCG 0.14455 0.13704 2.25981 2.6× 10−13 KRT3

12 127083338− 127105747 rs7960047− rs9668398 GTGCGTCT 0.06573 0.06076 3.67491 2.7× 10−15 TMEM132C

15 37962389− 38014169 rs11633436− rs534757 TTACAACC 0.07798 0.03763 2.66998 3.9× 10−26 EIF2AK4

16 79852394− 79892297 rs6564863− rs11639552 TTCGTTAT 0.02663 0.01053 5.1576 7.7× 10−16 BCMO1

17 29052246− 29089136 rs2046899− rs17783280 AGTCAATC 0.11305 0.0966 2.10899 5.7× 10−14 LOC646202

17 52973696− 53057256 rs17834557− rs3744089 TGGTTAAC 0.05825 0.03915 2.15515 8.7× 10−14 MSI2

18 9649377− 9700554 rs1965881− rs1455587 TCACATGT 0.06243 0.04149 2.15776 6.3× 10−13 RAB31

18 60647495− 60688045 rs1595904− rs17678507 CAGTATAT 0.09403 0.0848 2.55691 1.2× 10−11 C18orf20

18 72313651− 72356779 rs17059443− rs8084536 GCGAGACC 0.08958 0.08373 2.43635 1.0× 10−11 FLJ44313

19 4625799− 4746342 rs11670570− rs1044409 AGCAACCG 0.05419 0.02332 3.3426 6.7× 10−25 DPP9

19 56075162− 56127664 rs187930− rs1654545 ACATGTGA 0.03532 0.02898 7.24575 3.3× 10−13 KLK2

19 58460745− 58519652 rs1978611− rs7408137 AGGTAGTG 0.05628 0.042 1.99812 4.0× 10−12 VN1R4

22 35324014− 35335429 rs7410412− rs12160203 TCCTAGGG 0.44488 0.50199 3.09116 1.6× 10−21 CACNG2

GCCTAGAG 0.03358 0.02891 4.05372 6.2× 10−17
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Table 3: The predicted risk haplotypes of hypertension by use of WTCCC data. In the table,

the P-values were derived from the chi-square test of the frequencies of Hi against the collapsed

frequencies of the estimated non-risk haplotypes.

Chr Region SNP range Haplotype P̂ (Hi|case) P̂ (Hi|control) OR P-Value Gene

1 1586208− 1753641 rs6603791− rs2272908 AACCCATC 0.03406 0.01973 2.45812 2.7× 10−12 SSU72

1 227569611− 227620956 rs7514972− rs9431663 CGTATAGG 0.03377 0.00926 7.08695 2.8× 10−32 TRIM67

1 227914995− 228040530 rs16854388− rs1655296 CAAGGTAG 0.04372 0.04622 2.90643 1.9× 10−13 TSNAX

1 236986859− 237020204 rs12137158− rs16840310 GCTGTGGG 0.02424 0.01534 2.95857 1.7× 10−11 GREM2

ATTTAGGG 0.08733 0.05437 3.00646 3.0× 10−26

GCTTTGAG 0.0756 0.06745 2.09936 1.1× 10−12

3 101569551− 101696774 rs277640− rs4928098 CCCAGGCG 0.02137 0.00908 6.27332 1.9× 10−13 TOMM70A

3 142488272− 142537277 rs7643346− rs2871887 AGCTCATC 0.17323 0.17868 2.2344 4.4× 10−11 ACPL2

3 142878508− 142912781 rs12485838− rs16851691 GCATAGAG 0.02089 0.00902 5.09818 1.3× 10−13 LOC646730

4 21080985− 21131665 rs1495517− rs358574 GTCGCACG 0.05716 0.04649 7.36766 4.2× 10−13 KCNIP4

GTTGCACG 0.06033 0.04669 7.74264 7.1× 10−14

4 23359572− 23389742 rs10008808− rs1976201 AGTTCTTA 0.03874 0.01347 3.68417 1.5× 10−20 PPARGC1A

5 10695437− 10746687 rs2062200− rs6891527 GTCACACG 0.16002 0.14866 6.18799 2.8× 10−23 LOC651746

5 32084851− 32103155 rs438834− rs10065850 TGCTCCCA 0.02254 0.01065 14.40157 1.6× 10−24 PDZD2

6 139560239− 139612833 rs7765885− rs9495394 GCGCAACG 0.0487 0.01774 4.54602 2.2× 10−35 HECA

ACGAAATG 0.01641 0.00709 3.82046 6.4× 10−12

GTACAATA 0.14141 0.13391 1.75292 4.9× 10−16

6 139693238− 139758634 rs11155050− rs9373237 TTGCGGCT 0.01924 0.00686 5.16669 1.1× 10−14 TXLNB

CTAAGATT 0.25795 0.24508 1.9524 6.6× 10−11

7 48232027− 48237897 rs17729647− rs2362301 AGACTGGT 0.07901 0.07156 3.41729 4.7× 10−15 ABCA13

AGATTGAC 0.03345 0.02897 3.57621 3.7× 10−12

AGATTGGC 0.35755 0.38319 2.88725 3.0× 10−14

7 77695246− 77717237 rs2215379− rs4515471 CTTAAAAA 0.03102 0.01998 4.32524 2.1× 10−21 MAGI2

TCTAAAAA 0.02943 0.01786 4.58962 5.0× 10−22

CTTGGAAA 0.02094 0.01061 5.49009 8.4× 10−21

CCTAGAAA 0.05541 0.05534 2.79199 2.4× 10−16

CCGAAAAA 0.13203 0.13667 2.6926 4.0× 10−21

9 77269212− 77301387 rs17063627− rs7032444 GCGGACAG 0.03393 0.01858 3.58867 1.6× 10−12 GNA14

10 119535731− 119568729 rs4752106− rs10787797 TATTCACA 0.09968 0.06304 2.91842 4.8× 10−19 RAB11FIP2
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Table 4: The continuation of Table 3.
Chr Region SNP range Haplotype P̂ (Hi|case) P̂ (Hi|control) OR P-Value Gene

11 125683058− 125763272 rs2096915− rs7118117 CACACGAG 0.07736 0.04727 2.42988 4.9× 10−12 ST3GAL4

12 27155055− 27179334 rs841636− rs841613 TAAAGGGT 0.05414 0.04075 2.81343 7.5× 10−15 LOC729222

12 112703139− 112738033 rs11066758− rs7137339 GGGGTCCC 0.06128 0.04048 2.52574 2.3× 10−18 RBM19

12 114038450− 114074493 rs1828384− rs35346 TGTACCTG 0.09952 0.10526 3.07564 1.5× 10−11 TBX3

TCCAATTG 0.04718 0.03821 4.01761 2.2× 10−13

13 23708179− 23726596 rs881428− rs2760374 AGAAGTTT 0.12142 0.07922 1.89748 5.7× 10−19 SPATA13

GAAAGCTT 0.2454 0.19993 1.51979 6.8× 10−15

13 70170848− 70209722 rs17087430− rs12876111 CGGGTTAT 0.13996 0.13226 3.39099 3.0× 10−14 ATXN8OS

CGGGTCCT 0.02217 0.01356 5.23473 1.9× 10−14

CGGGTCAT 0.13141 0.13526 3.11367 2.3× 10−12

CGGACTCT 0.04728 0.0398 3.8075 1.9× 10−13

14 21674996− 21704333 rs12050442− rs1894369 GGGGTTAC 0.03075 0.00968 6.13598 8.7× 10−19 TRA@

14 36411583− 36421982 rs10872897− rs2564848 ATCCACTT 0.02299 0.00637 4.45891 8.9× 10−16 SLC25A21

TACCTCCC 0.02712 0.01101 3.05584 1.8× 10−12

16 4881048− 4960784 rs760117− rs9937749 CTTCCCCA 0.0847 0.08126 4.18237 1.8× 10−12 SEC14L5

16 17231173− 17272606 rs754067− rs17277691 CGGACCCT 0.02658 0.02179 3.37015 1.1× 10−11 XYLT1

17 69565860− 69595387 rs7406930− rs8080915 CTGTACGC 0.0413 0.02484 2.54279 8.3× 10−14 RPL38

19 3315188− 3432578 rs758257− rs1860192 GTTTGATT 0.27769 0.23516 1.99935 3.4× 10−28 NFIC

19 8475735− 8540766 rs2967603− rs11259990 CCGCTCTT 0.06824 0.04351 3.23984 2.1× 10−17 ZNF414

19 17595848− 17649789 rs10419511− rs7252308 TTGGTGTG 0.07791 0.05267 2.40001 1.9× 10−23 UNC13A

TTGGTATG 0.04536 0.01971 3.72872 2.3× 10−28

19 38822176− 38857206 rs2059876− rs16968366 CAAATGCG 0.06455 0.05252 2.83486 6.2× 10−20 CHST8

20 10019135− 10038764 rs552048− rs670562 TATGAGGG 0.04043 0.02307 7.32891 4.5× 10−21 ANKRD5

TATAAGAA 0.03726 0.03549 4.39728 2.7× 10−12

TGTGAGGG 0.27299 0.294 3.88507 1.0× 10−13

TGTATGGG 0.19239 0.1808 4.4523 3.1× 10−16
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