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Abstract

Data refinement in a state-based language such as Z is defined using a relational model in terms of the
behaviour of abstract programs. Downward and upward simulation conditions form a sound and jointly
complete methodology to verify relational data refinements. On the other hand, refinement in a process
algebra takes a number of different forms depending on the exact notion of observation chosen, which can
include the events a system is prepared to accept or refuse.

In this paper we continue our program of deriving relational simulation conditions for process algebraic
refinement by defining further embeddings into our relational model: traces, completed traces, failure traces
and extension.
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1 Introduction

Motivated by both theoretical comparisons of refinement and integrations of speci-
fication languages there has been significant interest in relating differing models of
relational data refinement with those arising in a concurrent context.

In a process algebra such as CSP [18,24] a system is defined in terms of actions
(or events) which represent the interactions between a system and its environment.
The exact way in which the environment is allowed to interact with the system
varies between different semantics. Typical semantics are set-based, associating one
or more sets with each process, for example traces, refusals, divergences. Refinement
is then defined in terms of set inclusions and equalities between the corresponding
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sets for different processes. As defined, the obvious and cumbersome method of
verifying that refinement holds is by evaluating such set inclusions, between large
and potentially infinite sets. A survey of many prominent refinement relations is
given in [27].

State-based systems provide an alternate view, whereby specifications are con-
sidered to define abstract data types (ADTs), consisting of an initialisation, a col-
lection of operations and a finalisation. A program over an ADT is a sequential
composition of these elements. Refinement is defined to be the subset relation over
program behaviours, where what is deemed visible (i.e., the domain of the initiali-
sation and the range of the finalisation) is the input/output relation. Thus an ADT
C refines an ADT A if for every program and sequence of inputs, the outputs that
C produces are outputs that A could also have produced. This definition of refine-
ment quantifies over program behaviour and simulations have become the accepted
approach to make verification of refinements tractable [13]. For a complete method,
often two kinds of simulations are defined: downward and upward simulations.

Research on combining relational and concurrent refinement concentrated ini-
tially on providing joint semantics, and on identifying correspondences between
variations of the relational models and concurrency semantics. In the latter cate-
gory, see e.g. work by Bolton and Davies [7,8] and Reeves and Streader [23]. Our
work on relational concurrent refinement started [5,14] from the powerful idea that
the relational finalisations can encode the observations embedded in concurrency
semantics. The relational simulation rules can then be used to extract simulations
for concurrency. These provide a “canned induction” method of verifying concur-
rent refinement, by checking a fixed number of conditions for each possible action,
rather than checking inclusion between potentially large sets. We derived simulation
rules for failures-divergences refinement [14,5], including also outputs and internal
operations [4], and for readiness refinement [14]. These were mostly based on the
total relations model (as described below).

This paper continues the programme, by considering more concurrent refinement
relations, many of them based on the partial relations model. The structure of this
paper is simple. In Section 2 we provide the basic definitions and background. In
Section 3 we provide the simulation rules for a number of process algebraic preorders,
and we conclude in Section 4.

2 Background

This background section presents the standard refinement theory [15] for abstract
data types in a relational setting. The relational model of data refinement where
all operations are total, as described in the 1986 paper by He, Hoare and Sanders
[17], traditionally received the most attention. The standard refinement theory
of Z [28,15], for example, is based on this version of the theory. However, later
publications by He and Hoare, in particular [16], dropped the restriction to total
relations, and proved soundness and joint completeness of the same set of simulation
rules in the more general case. De Roever and Engelhardt [13] also present the
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partial relations theory, without putting much emphasis on this aspect.

2.1 A partial relational model

As usual [15], a program (defined here as a sequence of operations) is given as a
relation over a global state G, implemented using a local state State. The initiali-
sation of the program takes a global state to a local state, on which the operations
act, a finalisation translates back from local to global.

In order to distinguish between relational formulations (which use Z as a meta-
language) and expressions in terms of Z schemas etc., we introduce the convention
that expressions and identifiers in the world of relational data types are typeset in
a sans serif font.

Definition 1 (Data type)

A data type is a quadruple (State, Init, {Op; }ier, Fin). The operations {Op,}, indexed
by i € I, are (total or partial) relations on the set State; Init is a total relation from
G to State; Fin is a total relation from State to G. O

Insisting that Init and Fin be total merely records the facts that we can always
start a program sequence (the extension to partial initialisations is trivial and un-
interesting) and that we can always make an observation.

Definition 2 (Complete program)

A complete program over a data type D = (State, Init, {Op, }ic1, Fin) is an expression
of the form Init g P g Fin, where P, a relation over State, is a program over {Op,}icr.
Programs are finite sequences of operations. For a sequence p over I, and data type
D, pp denotes the complete program over D characterised by p. For example, if
p = (pP1,...,Pn) then pp = InitgOpp, §...§ Opp, § Fin. O

As usual we assume that the data types are conformal, i.e., they use the same
index set for the operations.

Definition 3 (Data refinement for partial relations)
For partial data types A and C, C refines A, denoted A C g4t C (dropping the sub-
script if the context is clear), iff for each finite sequence p over I, pc C pa. O

Downward and upward simulations [13] form a sound and jointly complete [17,13]
proof method for verifying refinements. In a simulation a step-by-step comparison
is made of each operation in the data types, and to do so the concrete and abstract
states are related by a retrieve relation.

Definition 4 (Downward simulation)

Assume data types A = (AState, Alnit, {AOp;}icr, AFin) and C = (CState, Clnit,
{COp, }ier, CFin). A downward simulation is a relation R from AState to CState
satisfying

Clnit C AlnitgR
R g CFin C AFin
Vi:IeRgCOp, CAOp; 3R
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If such a simulation exists, we also say that C is a downward simulation of A and
stmilarly for corresponding operations of A and C. a

Any relational data types A and C in this paper are assumed to be defined as in the
above definition (occasionally with extra conditions imposed).

Definition 5 (Upward simulation)
For data types A and C, an upward simulation is a relation T from CState to AState
such that

Clnitg T C Alnit
CFin C T g AFin
VZ 1 e COngTngAOpZ

If such a simulation exists, we also say that C is an upward simulation of A and
similarly for corresponding operations of A and C. a

2.2  Totalisations

In terms of the observations it makes, the partial relational model described above
has limitations. The fact that a trace p is “impossible” is represented by its in-
terpretation pp being the empty set. This may be interpreted as this trace (or
a prefix of it) leading to a guaranteed deadlock. However, the relations contain
non-determinism, and depending how this is resolved during the computation, a
particular trace may or may not deadlock. In the partial relational model, it is
not immediately observable that deadlock is possible but not guaranteed — thus,
the non-determinism is interpreted angelically: negative results are ignored when
positive ones also exist. Richer observations can be obtained in one of two ways.
In most of this paper we will do so by staying within the partial relations model,
by observing more at finalisation. This gives extra information not just for a trace,
but through universal quantification over all traces, also for all its prefixes. This
will, e.g., turn out to be enough to characterise possible deadlock when refusals are
observed, see Section 3.3. Another way of observing possible as opposed to certain
error is through modelling it explicitly by totalising the relations first. Elsewhere, a
so-called non-blocking totalisation is used; here we only use the blocking totalisation
defined below. The blocking totalisation still encodes the intuition, also present in
the partial relations model, that an operation cannot be applied outside its domain
(the “guard”), by mapping such applications to an explicit error value L. The non-
blocking view, in contrast, maps such applications to all possible values (including
an “error” one), modelling the interpretation that outside the domain (the precon-
dition) “anything” can happen, including unspecified error. For the trace-based
semantics considered in this paper, the non-blocking view is less interesting, as in
that model all traces are possible. The totalisations turn a partial relation on a set
S into a total relation on a set S|, which is S extended with a distinguished value
L not in S.
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Definition 6 (Blocking totalisation)
For a partial relation Op on State, its blocking totalisation is a total relation on
State , defined by

—~b
Op ==OpU{x:State; |x ¢ domOp e (x, 1)}

O

Characterisations of downward and upward simulations on these totalised rela-
tions can be simplified to remove any reference to L. This results in the standard
definitions of downward and upward simulations for partial relations [15].

Definition 7 (Downward simulation for totalised relations)
Given data types A and C where the operations may be partial. A downward simu-
lation is a relation R from AState to CState satisfying, in the blocking model

Clnit C AlnitgR

R ¢ CFin C AFin

Vi : I e ran(dom AOp; << R) C dom COp;

Vi:IeRgCOp; C AOp; 3R -
Definition 8 (Upward simulation for totalised relations)
For data types A and C where the operations may be partial, an upward simulation
is a relation T from CState to AState satisfying, in the blocking model

Clnitg T C Alnit
CFin C T g AFin
Vi: I e domCOp; C dom(T & dom AOp;)
Vi:1eCOp;gT CTgAOp;
O
The conditions imposed on all operations in Definitions 7 and 8 are called “appli-
cability” and “correctness” in both cases.
Note, however, that the upward and downward simulations given above are not
jointly complete for blocking refinement [3], which means that completeness needs
to be proved separately.

2.3 Refinement in Z

The definition of refinement in a specification language such as 7 is usually based
on the totalised framework just given, sticking with the blocking variant. Specif-
ically, a Z specification can be thought of as a data type, defined as a tuple
(State, Init,{Op;}icr). The operations Op; are defined in terms of (the variables
of) State (its before-state) and State’ (its after-state). The initialisation is also
expressed in terms of an after-state State’. In addition to this, operations can
also consume inputs and produce outputs. Finalisation normally does not appear
explicitly in the simulation rules as presented in Z for reasons we shall see later.

If specifications have inputs and outputs, these are included in both the global
and local state of the relational embedding of a Z specification. See [15] for the

5



DERRICK AND BOITEN

full details on this — in this paper we only consider datatypes without inputs and
outputs. In concurrent refinement relations, inputs add little complication; outputs
particularly complicate refusals as described in [4].

In a context where there is no input or output, the global state contains no
information and is a one point domain, i.e., G == {x}, and the local state is State ==
State. In such a context the other components of the embedding are as follows:

Init == {Init e x — OState’}

Op == {Op e fState — OState’}
Fin == {(0State, %)}

R == {R e § AState — 0 CState}

Given these embeddings, we can translate the relational refinement conditions of
downward simulations into refinement conditions for Z ADTs, where we note that
the finalisation conditions are always satisfied in this Z interpretation.

Definition 9 (Standard downward simulation in Z)

Given Z data types A = (AState, AInit,{AOp;}icr) and C = (CState, Clnit,
{COp;}icr). The relation R on AState \ CState is a downward simulation from A
to C' in the blocking model if

Y CState’ o ClInit = 3 AState’ o AInit A R’
and for all i : I:

V AState; CState @ R = (pre AOp; < pre COp;)

vV AState; CState; CState’ @ R A COp; = 3 AState’ @ R’ N AOp; -
Any Z data types A and C in this paper are assumed to be defined as in the above
definition.

The translation of the upward simulation conditions is similar, however this time
the finalisation produces a condition that the simulation is total on the concrete
state.

Definition 10 (Standard upward simulation in Z)
For Z data types A and C, the relation T on AState A CState is an upward simu-
lation from A to C in the blocking model if

YV CState « A AState T
YV AState’; CState’ @ Clnit N T' = Alnit

and for all i : I:

V CState @ 3 AState @ T N\ (pre AOp; = pre COp;)
V AState’; CState; CState’ @ (COp; A T') = 3 AState @ T N AOp;
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Fig. 1. The linear time - branching time spectrum [27]

3 Process algebraic based refinement

Process algebras [18,22,2] provide a means to describe and verify concurrent systems
and processes, and provide operators such as synchronisation, communication, and
various flavours of composition. The semantics of a process algebra is often given
by means of a structural operational semantics (SOS) which associates a labelled
transition system (LTS) to each term. Equivalence, and preorders, can be defined
over the semantics where two terms are identified whenever no observer can notice
any difference between their external behaviours. Thus equivalences and preorders
can be defined in terms of a function O that represents the set of observations
one could make while interacting with a process. For every such O we can define
pCo qiff O(q) C O(p) and p =¢ ¢ iff O(p) = O(q). Varying how the environment
interacts with a process leads to differing observations and these can be thought of
as differing testing scenarios, and thus different preorders (i.e., refinement relations).

These are detailed in the literature, and an overview and comprehensive treat-
ment is provided by van Glabbeek in [26,27]. As in [14] we do not consider internal
or silent events here, and the relationship between differing equivalences and re-
finement relations is hence often given by the linear-time, branching-time spectrum
given in Figure 1.

The testing scenarios described in [27] are found by modelling a process as a black
box that contains an interface to the environment, via which tests are performed.
Varying the interface gives different testing scenarios, a full characterisation is given
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in [25], for example, the interface might contain a display in which the name of the
action is shown that is currently carried out by the process, buttons might also be
present (one for each action) so that the observer may determine which actions are
free and which are blocked, or lamps which illuminate if the process is ready to
engage in that action.

We assume the usual notation for labelled transition systems (LTSs):

Definition 11 (Labelled Transition Systems (LTSs))

A labelled transition system is a tuple (States, Act, T, sy) where States is a non-
empty set of states, sy € States is an initial state, Act is a set of actions, and
T C States x Act x States s a transition relation. O

Every state in the LTS represents a process itself — namely the one that the original
one (the initial state sy) evolves to after following a specific path in the LTS. Specific
notation needed includes the usual notation for writing transitions as p — ¢ for
(p,a,q) € T and the extension of this to traces (written p N q) and the set of
initial actions of a process which is defined as:

next(p) = {a € Act | Jgep -5 gl

In the remainder of this section we detail differing preorders and show how
they are embedded into our relational model. For each we give its definition, its
characterisation as a testing scenario as described by van Glabbeek, its embedding
into a relational model, and thereby the definition of simulation rules to characterise
the preorder.

3.1 Trace preorder

3.1.1 Definition and testing scenario
Definition 12 o € Act* is a trace of a process p if 3q « p — ¢. T(p) denotes
the set of traces of p. The trace preorder is defined by p Ty q iff T(q) C 7T (p). O

Testing scenario: Observations consist of a sequence of actions performed by the
process in succession, that is, the interface is just a display which shows the name
of the action that is currently carried out by the process, and the name remains
visible in the display if deadlock occurs (unless deadlock occurs initially).

3.1.2  Relational embedding

As observed previously [14] the partial relations model records exactly trace infor-
mation for the embedding with trivial finalisation described in Section 2.3. Possible
traces lead to the single global value; impossible traces have no relational image.

Definition 13 (Trace embedding)
A Z data type (State, Init,{Op;}icr) has the following trace embedding into the
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relational model.

6= {+}

State == State

Init == {Init e x — @State’}

Op == {Op e OState — OState’}
Fin == {(6State, *)}

O

Observe also that the finalisation is a total function, thus conditions involving inclu-
sions between finalisations will simplify to equalities. To prove the correspondence
between trace preorder and data refinement we need to provide a definition of the
traces of an abstract data type.

Definition 14 The traces of a Z data type (State, Init,{Op;}icr) are all sequences
(i1,...,1,) such that

3 State’ o Init § Op;, §...5 Op;,

We denote the traces of an ADT A by T(A). O

Theorem 3.1 With the trace embedding, data refinement corresponds to trace pre-
order. That is, when Z data types A and C are embedded as A and C3,

A L data C Zﬁ T( C) - T(A)

Proof From the definition of traces for Z data types and the embedding given
it is obvious that for any sequence p, (x,%) € pa iff p € T(A). Also, for any p,
pa = {(x,%)} or ppo = &. Thus, data refinement (pa C pc for all p) corresponds to
trace refinement. a

From this result it can be seen that observations in the testing scenario, here a
display with an action name displayed, are distributed in the relational notion of
refinement. That is, although finalisations are often taken to be the ‘observations’,
in fact, some of the observations are implicit in the program p and the relational
inclusion pc C pa (since finalisations only contain the information as to whether
the trace was defined or not).

We can now extract the simulation rules that correspond to this notion of re-
finement. These are of course the rules for standard Z refinement but omitting
applicability of operations, as used also e.g. in Event-B [1].

3 This condition is left implicit in the rest of this paper.
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3.1.8 Simulations
The conditions for a downward simulation in the partial relational model are (c.f.
Definition 4):

Clnit C AlnitgR
R CFin C AFin
Vi: Il eRgCOp; € AOp; gR

The first and last of these are just the standard initialisation and correctness condi-
tions, respectively. The finalisation condition in fact places no further requirements
with the trace embedding. The same is true for upwards simulations. We thus have
the following conditions for the trace embedding.

Definition 15 (Trace simulations in Z)
Given Z data types A and C, the relation R on AState A CState is a trace downward
simulation from A to C if

YV CState’ @ ClInit = 3 AState’ @ Alnit A R’
Vi c I oV AState; CState; CState’ @ R A COp; = 3 AState’ @ R’ N AOp;

The total relation T on AState N CState is a trace upward simulation from A
to C if

YV AState’; CState’ @ Clnit N T' = Alnit
Vi: 1 eV AState’; CState; CState’ o
(COp; NT") = (3 AState @ T N AOp;)

3.2 Completed trace preorder

3.2.1 Definition and testing scenario
Definition 16 o € Act* is a completed trace of a process p if 3q @ p — ¢ and

next(q) = &. CT (p) denotes the set of completed traces of p. The completed trace
preorder, Ty, is defined by p Ty q iff T(q) € T (p) and CT (q) € CT (p). D

Testing scenario: Observations consist of a sequence of actions performed by the
process in succession, that is, the interface is just a display which shows the name
of the action that is currently carried out by the process, where the display becomes
empty if deadlock occurs.

3.2.2  Relational embedding
Definition 17 (Completed trace embedding)
The Z data type (State, Init,{Op;}icr) has the following completed trace embedding

10
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into the relational model.

G=={x}

State == State

Init == {Init e x — @State’}

Op == {Op e OState — 0OState’}

Fin == {State o §State — *} U {State | (Vi: I e—preOp;) e OState — +/}

d

Here the global state has been augmented with an additional element +/, which
denotes that the given trace is complete (i.e., no operation is applicable).

Definition 18 The completed traces of a Z data type (State, Init,{ Op;}icr) are all
sequences (i, ..., i) such that

3 State’ @ Init § Op;, §...5 Op;, ANVi: I e —(pre Op;)

We denote the complete traces of an ADT A by CT (A). O

Theorem 3.2 With the completed trace embedding, data refinement corresponds to
completed trace preorder. That is,

AT Ciff CT(C)C CT(A) and T(C) C T(A)

Proof 1. Suppose that C7(C) C CT(A) and 7(C) C T(A). Toshow AC C
we need pc C pa for all programs p. Given p, if p is not a trace of C then pc = &,
and thus the inclusion is trivial. Otherwise, either (%, /) and (x,*) are both in pc
or just (x,%) is in pc.

If (*,+/) is in pc then p is a completed trace in C, and thus also in A. Hence
(*,+/) is in pa, and so is (x,*). If just (x,*) is in pc then p is a trace which is not
a completed trace in C. Since 7(C) C 7 (A), p is also a trace in A. Hence (x, %) is
in pa.

2. Suppose A C C.

Given p € CT(C). Thus (*,+/) € pc C pa, and hence p € CT(A). For a similar
reason we also get trace inclusion. a

We can now extract the simulation rules that correspond to this notion of re-
finement.

3.2.83 Simulations

Given the completed trace embedding in the relational model, only the finalisation
is altered from the embedding given in Section 3.1. Thus we just have to consider
the effect of the finalisation requirement:

Downward simulations: R g CFin C AFin is equivalent to

V AState; CState @« RAYi:1 e —pre COp; = Vi: I e -pre AOp;

11
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Upward simulations: CFin C T g AFin is equivalent to
V CState @ Vi : I @ ~pre COp; = d AStatc @« T AV i : 1 e ~pre AOp;

We thus have the following conditions for the trace embedding.

Definition 19 (Completed trace simulations in Z)
Given Z data types A and C. The relation R on AState A CState is a completed
trace downward simulation from A to C if

V CState’ o Clnit = 3 AState’ @ Alnit A R’
Vi c I oV AState; CState; CState’ @ R N COp; = 3 AState’ @ R’ N AOp;
vV AState; CState @ RAYi:1 e —pre COp; = Vi: I e -preAOp;

The total relation T on AState A CState is a completed trace upward simulation
from A to C if

vV AState’; CState’ @ CInit N T' = Alnit
Vi e I oV AState’; CState; CState’ o
(COp; N T") = (3 AState @ T N AOp;)
YV CStatc e Vi : I @ ~pre COp; = I AState ¢ T AV i : 1 @ = pre AOp;

3.8  Failure preorder

3.8.1 Definition and testing scenario

The failures semantics records both the traces that a process can do, and also sets
of actions which it can refuse, that is, actions which are not enabled. These are
recorded as failures of a process.

Definition 20 (0, X) € Act* xP(Act) is a failure of a process p if there is a process
q such that p -2 q, and next(q) N X = @. F(p) denotes the set of failures of p.
The failures preorder, Ty, is defined by p T q iff F(q) € F(p). O

Testing scenario: The machine for testing failures has, in addition to the interface
of the completed trace machine, a switch for each action in Act. One can then
observe which actions are blocked. If the process reaches a state where all actions
are blocked, then this can be observed by an empty display. Observations are thus
the failures of a process.

3.3.2  Relational embedding

This was covered in detail in [5,14,4], although we used an embedding into the
totalised relational model there. Lemma 3 in [4] suggested this was not necessary:
| appears as a possible outcome iff somewhere along the trace the next action of the
trace could be refused. Thus, below we give a simpler embedding into the partial
relations model.

12
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Definition 21 (Failures embedding)
A Z data type (State, Init,{Op;}icr) in the refusals interpretation is embedded in
the relational model as follows.

G=—=PI

State == State

Init == {Init; E :PI ¢ E — 0State’}

Op == {Op e OState — OState’}

Fin == {State; E:P[ | (Vi€ E o ~pre Op;) ® OState — E'}

d

In the relational embedding failures are pairs (¢r, X), where tr is a trace, and
there exists states (State, State’) € tr (with State being initial) such that Vi : X e
State’ ¢ dom Op,.

Theorem 3.3 With the failures embedding, data refinement corresponds to the fail-
ures preorder. That is,

AC Ciff F(C) C F(A)
The proof of this is an adaptation of that given in [14]. O

3.8.3  Simulations
Given the failures embedding the changes to the simulation conditions are as follows
(these are derived in [14] - remember we have no input/output at this stage):

Downward simulations: R g CFin C AFin is equivalent to
V AState; CState @ R A pre AOp; = pre COp;
Upward simulations: CFin C T g AFin is equivalent to

V CState @ 3 AState @ Vi : [ @ T A (pre AOp; = pre COp;)

3.4 Fuailure trace preorder

3.4.1 Definition and testing scenario
The failure trace semantics considers refusal sets not only at the end of a trace, but
also between each action in a trace.

Definition 22 0 € (Act U PAct)* is a failure trace of a process p if o =
Xia Xoay ... XpanXynt1 where ajay. .. a, s a trace of p and each (a; ... a;, Xit1)
is a failure of p. FT (p) denotes the set of failure traces of p. The failures traces
preorder, Ty, is defined by p Cpr q iff FT(q) € FT(p). O

Testing scenario: The display in the machine for testing failures traces is the
same as that for failures. However, it does not halt if the process cannot proceed,
rather it idles until the observer allows one of the actions the process is ready to
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perform. The observations are traces with idle periods in between, and for each idle
period the set of actions that are not blocked by the observer.

It has been argued [19,20] that this is a better notion for testing than simply
observing failures of a process, and is appropriate when one can detect that a process
refuses an action, and if this is the case, one has the ability to try another action.

3.4.2  Relational embedding

Definition 23 (Failure trace embedding)

A 7 data type (State, Init,{ Op; }ic1) in the failure trace interpretation is embedded
in the relational model as follows.

G ==seqPPI
State == seqP I x State
Init == {Init; fs :seqPI o fs — ({),0State’)}
Op=={Op; fs:seqPI; E:PI | (Vi: E e—-preOp;) e
(fs,0State) — (fs ™ (E),0State’)}
Fin == {State; fs :seqPI ‘ (Vi: E e —pre Op;) e (fs,0State) — fs}

d

In the relational embedding failures traces are the obvious generalisation of
failures.

Theorem 3.4 With the failure traces embedding, data refinement corresponds to
the failure traces preorder. That is,

AC Ciff FT(C) C FT(A)

3.4.8  Simulations
In the failure trace embedding, both the correctness and finalisation conditions are
potentially amended due to the record of failures at each operation step.

Downward simulations: Here, in fact, the finalisation condition is subsumed by

the correctness, and R §COp,; C AOp; 3R expands to the following

V AState; CState; CState’ e VE
R A COp; A\ Feond(E,0CState’) =
3 AState’ @ R' N AOp; A\ Fcond(E, 0 AState’)
where Feond(E,s) ==V i: E « =3 Op; e s = OState.
Upward simulations: Similarly, COp, 3T C T 3§ AOp, expands to
V AState’; CState; CState’ e VE o

(COp; N T' \ Feond(E,0CState’)) =
3 AState @ T N AOp; N Fcond(E,0AState’)

14
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3.5  Ready preorder

3.5.1 Definition and testing scenario

An alternative to the various failures semantics and preorders are semantics based
upon acceptance sets, that is, semantics recording the actions a process is willing
to engage in, rather than its refusal sets.

Definition 24 (0, X) € Act* x P(Act) is a ready pair of a process p if there is a
process q such that p —= q, and next(q) = X. R(p) denotes the set of ready pairs
of p. The readiness preorder, C,, is defined by p C, q iff R(¢) C R(p). O

Testing scenario: In the readiness semantics observations consist of a trace of a
process or a trace together with the set of actions which the observation could have
been extended with (if the observer had wished). The machine corresponding to
this has a light for each action, which illuminate if the process is ready to engage
with that action.

3.5.2  Relational embedding

The relational embedding is mostly as in the failures embedding, using the same
global state and initialisation. However, rather than finalising to any set of events
that may be refused, we now finalise to the set of events that must be accepted.

Definition 25 (Readiness embedding)
A Z data type (State, Init,{Op;}icr) in the readiness interpretation is embedded in
the relational model as follows.

G==PI

State == State

Init == {Init; E :PI e E — 0State’}

Op == {Op e §State — OState’}

Fin == {State o OState — {i € I e pre Op;}}

O

Theorem 3.5 With the readiness embedding, data refinement corresponds to the
readiness preorder. That is,

AC Ciff R(C) CR(A)
Proof See [14]. O

3.5.8  Simulations
Given the readiness embedding the changes to the simulation conditions are as
follows (these are derived in [14]):

Downward simulations: R g CFin C AFin is equivalent to

V AState; CState; i : I ¢ R = pre COp; < pre AOp;

15
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Upward simulations: CFin C T g AFin is equivalent to

V CState @ 3 AState e Vi : [ @ T N\ (pre COp; < pre AOp;)

3.6 Ready trace preorder

The ready trace semantics is similar to the failure trace semantics, except acceptance
sets replace failures in the traces observed. The relational embedding is the same as
that for the failure trace, except with the substitution of an appropriate acceptance
set. Similar derivation can be made for the simulation rules.

3.7 Extension and conformance

3.7.1 Definition and testing scenario

Although not considered in [27], a number of alternative preorders for process al-
gebras have been suggested motivated by testing and the need for test generation.
Specifically, in the context of testing from LOTOS specifications [6] these have
included extension and conformance [10]. To define these formally we need the
following notation which defines refusals sets after a particular trace.

Definition 26 (Refusals after a trace)
Let p be an LTS, o a trace of p, and X C Act. Then p after o ref X iff

Jgep " q and X Nnext(q) = @

O

Testing scenario: Three definitions of refinement can be given on the basis of
the idea behind Definition 26. These were motivated in [10,11] by considering that
there might be a number of different notions of implementation:

» implementation as a real/physical system
e implementation as a (deterministic) reduction of a given specification
* implementation as a (conforming) extension of a given specification

e implementation as a refinement of a given specification

These are formalised [9] by, respectively, conformance, reduction, extension and
testing equivalence. Reduction (also called the testing preorder [12]) in our context
(of no divergence) is identical to the failures preorder. Testing equivalence is the
equivalence induced by that preorder.

Conformance has the following characteristics: if p E.,,¢ ¢ then g deadlocks less
often than p when in any environment whose traces are limited to those of ¢. Thus
conformance restricts the quantification (of traces one must check refusals about)
to be over the abstract specification (and this restriction gives rise to efficient test
generation algorithms).

The extension preorder can be defined as conformance together with the addi-
tional property that traces can be extended. Thus, if p C.;; ¢ then ¢ has at least

16
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the same traces as p, but in an environment whose traces are limited to those of p,
it deadlocks less often. The equivalence induced by extension is the same as that
by reduction (that is, testing equivalence). Leduc [21] documents the relationship
between these relations in some detail. They can be defined as follows.

Definition 27 (Reduction, conformance, and extension)
Let p, q be LTSs. Then

D Creqd q iff Vo : Act™; X C Act o q after o ref X implies p after o ref X

D Ceonf q iff Vo :T(p); X C Act e g after o ref X implies p after o ref X

p Eezt q Zﬁ
T(p) €7 (q) and
Vo:T(p); X C Act e q after o ref X implies p after o ref X

3.7.2  Relational embedding

The relational embedding we use to model extension is, in fact, a totalisation over
the space of partial relations, and is the standard non-blocking model (e.g., as dis-
cussed in [15]), that is, we use the same construction to record the effect of extension
in a blocking model as we did to record failures in a non-blocking model.

Definition 28 (Extension embedding)
A 7 data type (State, Init, { Op;}icr) in the extension interpretation is embedded in
the relational model as follows.

G=—=PIu{l}

State == State U { L}

Init == {Init; E:PI e E — 0State’}

Op == OpB U {x,y : State | x ¢ dom OpB e (x,y)}

where OpB == {Op e 0State — 0State'}

Fin == {State; E :PI | (Vi: E e —pre Op;) e OState — E} U {(L, 1)} o
Theorem 3.6 With the extension embedding, data refinement corresponds to the
extension preorder. That is,

AC Ciff
T(A)CT(C) and
VoeT(A)NT(C); X C Act o C after o ref X implies A after o ref X

Proof 1. Suppose that 7(A) € 7(C)and Vo € T(A)NT(C); X C Act o
C after o ref X implies A after o ref X.
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Given (g, F) € pc then tr € T(C'). Either tr € T(A) in which case refusal inclu-
sion gives us (g, F) € pp or tr € T(A) in which case the non-blocking totalisation

giVGS (97E>7 (ng—) € Pa.

2. Suppose A C C. Then trace inclusion can be proved by induction over the
length of the trace, and refusals subsetting follows as a consequence of using the
non-blocking totalisation. a

Whilst we have found an embedding such that data refinement induces extension,
this is not possible for conformance. This is because conformance is not a preorder
(see any of the references given above), but data refinement is a preorder. Thus no
combinations of embeddings as a data refinement theory will produce an embedding
equivalent to it. Intuitively this is because the quantification over programs, and
the subsetting of program behaviour contains at its very heart an embedding of
trace inclusion. However, conformance makes no requirement about trace inclusion,
from either the concrete to the abstract or vice versa, and is just concerned with
refusals, and hence cannot be modeled this way.

3.7.3  Simulations

The use of the non-blocking totalisation for modelling extension means we can
extract simulation conditions by reference to above results. They are thus the
following.

Definition 29 (Extension downward simulation in Z)
Given Z data types A and C. The relation R on AState A CState is a extension
downward simulation from A to C if

V CState’ o Clnit = 3 AState’ @ Alnit N R’
Vi: I eV AState; CState e pre AOp; A R = pre COp;
Vi : I oY AState; CState; CState’ @ pre AOp; N R A COp; = 3 AState’ @ R' N AOp;

O

Definition 30 (Extension upward simulation in Z)
Given Z data types A C. The total relation T on AState A\ CState is an extension
upward simulation from A to C if

V AState’; CState’ o Clnit N T' = Alnit
V CState @ 3 AState ¢ Vi : I @ T A (pre AOp; = pre COp;)
Vi: 1 eV AState’; CState; CState’ o
(COp; N'T") = (3 AState @ T N (pre AOp; = AOp;))

O

Note the symmetry: failure-divergence for the non-blocking model is extension for
the blocking model.

18
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4 Conclusions

In this paper we have derived simulations for relational embeddings of a number of
refinement preorders found in process algebras.

Although downward and upward simulations (Definitions 4 and 5) are complete,
their totalised versions are not. However, complete simulations can be given for
each semantics, e.g. the failures semantics simulations are known to be complete. A
separate completeness proof for simulations is needed in each embedding, this waits
for an extended version of this paper.
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