
Journal of Global Optimization manuscript No.
(will be inserted by the editor)

Solving the Planar p-Median Problem by

Variable Neighborhood and Concentric

Searches

Zvi Drezner1, Jack Brimberg2, Nenad Mladenović3 and Said

Salhi4

1 Steven G. Mihaylo College of Business and Economics, California State University-
Fullerton, Fullerton, CA 92834.

2 Department of Mathematics and Computer Science,The Royal Military College
of Canada, Kingston, ON Canada.

3 Mathematical Institute, Serbian Academy of Sciences and Arts, Belgrade, Ser-
bia.

4 Centre for Logistics & Heuristic Optimization, Kent Business School, University
of Kent, Canterbury CT2 7PE, United Kingdom

Received: date / Revised version: date

Abstract Two new approaches for the solution of the p-median problem
in the plane are proposed. One is a Variable Neighborhood Search (VNS)
and the other one is a concentric search. Both approaches are enhanced by a
front-end procedure for finding good starting solutions and a decomposition
heuristic acting as a post optimization procedure. Computational results
confirm the effectiveness of the proposed algorithms.

Key Words: Location-allocation; Variable Neighborhood Search; Concentric
Tabu; Concentric Search; Planar p-median.

1 Introduction

The location allocation problem in the plane, sometimes called the contin-
uous p-median or the multi-source Weber problem is to find p locations
for facilities in the plane to provide service to a set of n demand points
each with an associated weight wi > 0. Each demand point gets its service
from the closest facility to it. The objective is to minimize the total sum of
weighted minimum distances to the facilities.

The single facility version is the oldest known location problem with
a history traced all the way back to Fermat in the 1600s (Drezner et al.
(2002); Wesolowsky (1993)). In modern times the problem was presented



2 Zvi Drezner, Jack Brimberg, Nenad Mladenović and Said Salhi

by Weber (1929) who suggested its application to the location of a service
facility, such as a distribution center, serving a set of demand points. The
weights represent the number of customers located at each demand point
and the objective is to minimize the total distance traveled by all customers.
When several facilities are to be built to serve a set of demand points, it is
assumed that every customer will seek the service from the closest facility
thus defining the multi-source Weber problem.

Let di(Xj) be the Euclidean distance between demand point i and
facility j located at Xj = (xj , yj). The vector of unknown locations is
X = {X1, . . . , Xp}, and thus, the objective function to be minimized is:

F (X) =

n∑

i=1

wi min
1≤j≤p

{di(Xj)} (1)

Krau (1997) developed an exact algorithm and optimally solved prob-
lems with n = 50 and 287 demand points and any number of facilities.
Drezner (1984) and Chen et al. (1998) developed optimal solution proce-
dures for the location of p = 2 facilities. Schöbel and Scholz (2010) optimally
solved problems with p = 2, 3 facilities. The continuous p-median problem
(1) is known to be NP-hard (Megiddo and Supowit (1984)), and as a result,
many heuristics have been developed to solve it. Classical heuristics include
the famous alternating procedure by Cooper (1963, 1964), also the projec-
tion method of Bongartz et al. (1994), and gradient-based methods such as
Murtagh and Niwattisyawong (1982) and Chen (1983).

Brimberg and Drezner (2013) proposed several heuristics for solving the
p-median problem. One of the approaches is IALT which is a modification of
Cooper’s alternate algorithm (Cooper (1963, 1964)). Brimberg et al. (2014)
developed the reformulation local search (RLS) which is a new local search
that iterates between the continuous problem and a discrete approximation.
This is achieved by artificially adding the new found Weber points as poten-
tial sites when solving the discrete version of the p-median problem. Drezner
et al. (2013) proposed a constructive algorithm START and a decomposition
approach. A procedure that combines the three approaches above is termed
“Decomposition using START and RLS” (DSR). The details of DSR are
given in Drezner et al. (2013). For recent reviews of solution approaches to
the continuous p-median problem the reader is referred to Brimberg et al.
(2000, 2008, 2014); Drezner et al. (2013).

1.1 Contributions of This Paper

In this paper we propose an improved version of VNS and introduce a “con-
centric search” for the solution of planar p-median problems. The concentric
search, which can be viewed as a variant of VNS, was not applied, to the
best of our knowledge, to any optimization problem other than the quadratic



Solving the Planar p-Median Problem 3

assignment problem (Drezner (2005)) for which it was designed. We antici-
pate that researchers will find the concentric search useful to solving other
optimization problems.

This paper also examines the effect on performance of the quality of
the starting solution. We also examine the usefulness of a powerful post-
optimization local search.

In summary, this paper develops a new concentric search which has many
features of the Variable Neighborhood Search (VNS). We then compare the
concentric search to a basic VNS in extensive computational experiments.
We also examine the effect on performance of using good starting solu-
tions and of including a powerful post-optimization scheme. The ideas are
readily extended to other continuous location problems. In Section 2 we
provide short outlines of existing algorithms used in this paper. In Section
3 the tested version of the VNS is described and in Section 4 the concentric
search is detailed. We then report computational experiments with these
two algorithms and draw some conclusions.

2 An Overview of Our Methodology

Our approach consists of three main steps applied in sequence.

Step 1: Generation of an initial solution using a suitable heuristic. The
heuristic used in this paper is START (Drezner et al. (2013)) which
is a constructive heuristic with a random component.

Step 2: Improving the starting solution. In this paper we designed (i) a
VNS based method, and (ii) a concentric search which is applied to the
planar p-median problem for the first time.

Step 3: Improving the solution further using a post-optimization procedure.
In this paper we employed the DSR heuristic (Drezner et al. (2013))
which is based on the Reformulation Local Search proposed in Brim-
berg et al. (2014), and the Delaunay triangulation proposed in Lee and
Schachter (1980).

Each of the heuristics incorportaes the local search IALT (Brimberg and
Drezner (2013)) which is an improvement on on the locate-allocate ALT
heuristic suggested by Cooper (1963, 1964).

In the following subsections we present the way we generate the initial
solution (Step 1), the local search used within Step 2, and our powerful post
optimizer. The two metaheuristics (VNS and Concentric) are described in
the next two sections.

2.1 Generation of Initial Solutions by START (Step 1)

The outline of START is as follows. For complete details the reader is re-
ferred to Drezner et al. (2013). The main idea is to form p initial clusters
of the demand points in a greedy constructive way.



4 Zvi Drezner, Jack Brimberg, Nenad Mladenović and Said Salhi

Each demand point initially belongs to its own subset defining n facili-
ties. Set vi = wi for i = 1, . . . , n. Calculate for all pairs i < j

∆ij =
vivj

vi + vj
dij(1 + u) (2)

where u is a random variable in [0, 1] that is used as a stochastic perturba-
tion.

Repeat the following until the number of subsets is reduced to p.

1. Find the pair i < j for which ∆ij is minimized.

2. Create a location for a new facility at
viXi+vjXj

vi+vj
with a weight vi + vj .

3. Remove current facilities i and j, and label the index of the new facility
and its weight with i. Calculate for all r 6= i: ∆ri for r < i and ∆ir for
r > i by (2). The number of facilities is reduced by one.

The START algorithm uses the binary heap data structure (Carlsson
(1984); Gabow et al. (1986)) for faster execution. Once the p clusters are
formed, each defines a facility and the solution is improved by the IALT
algorithm described next.

2.2 The Local Search IALT (A Subroutine in Steps 2 and 3)

The outline of IALT is as follows. For complete details the reader is referred
to Brimberg and Drezner (2013).

A parameter L is given. We selected L = min{n, 20}. Initial locations
for p facilities are generated. Two vectors are maintained throughout the
process. An assignment vector of length n indicating which facility is serving
demand point i, i = 1, . . . , n. An indicator vector of length p associated
with the facilities indicating whether the optimal location of the facility
was found (i.e, the subset of demand points associated with the facility did
not change since the location of the facility was found). An indicator of zero
means that the location of the facility may not be optimal and an indicator
of one means that it is optimal. The indicator vector is initially set to all
zeroes. The algorithm is outlined in Figure 1.

2.3 The Post-Optimization Procedure DSR (Step 3)

A solution consists of a set of p facilities. Sets of “adjacent” q = 3 or 4
facilities are generated. See Figure 2 for an example of p = 5 facilities.
The set of p facilities is triangulated by the Delaunay triangulation (Lee
and Schachter (1980)) obtaining a list of triangles (there are 4 triangles in
Figure 2). All pairs of triangles that have a common edge are found (there
are 4 such pairs in Figure 2). The union of such a pair of triangles is a
quadrangle. If the quadrangle is convex (two such pairs in Figure 2), the
two triangles formed by the other diagonal of the quadrangle are added to



Solving the Planar p-Median Problem 5

Fig. 1 The IALT Algorithm

1. Each demand point is assigned to the closest facility partitioning the set
of demand points to subsets each attracted to a facility.

2. A facility with an indicator of zero is randomly selected.
3. The Weiszfeld algorithm (Weiszfeld (1936)) as accelerated in Drezner

(1996) and in Brimberg and Drezner (2013) is used to find the optimal
location of the selected facility for the subset of demand points currently
attracted to that facility. The facility is relocated and the indicator for the
relocated facility is set to one.

4. The demand points are re-allocated to their closest facilities. For each
demand point that changed an assignment, the two facilities involved in
the change (including possibly the facility that just has been relocated)
get an indicator of zero. If a zero indicator exists, go to Step 2.

5. For each demand point i the difference between the shortest distance to a
facility and the second shortest distance to another facility δi is calculated.

6. The L smallest values of δi are selected for transfer starting at the smallest
δi and continuing in order. A transfer consists of transferring the assign-
ment of a demand point from its closest facility to its second closest and
finding the new locations for these two facilities based on the new subsets.
For each δi:
(a) If a transfer fails to improve the value of the objective function, the

transferred point is returned to its original subset.
(b) If a transfer leads to an improved value of the objective function, it

is performed. Reassign all demand points to their closest facility. All
facilities whose original subset is unchanged get an indicator of one
while those whose subsets have changed get an indicator of zero. Go
to Step 2.

7. If all L transfers fail to improve the value of the objective function the
algorithm terminates.

the list of triangles, and the quadrangle is added to the list of quadrangles.
If the quadrangle is not convex (two such pairs in Figure 2), it is a triangle
with a facility in its interior. This set of four facilities is also added to the
list of quadrangles. In Figure 2 we obtain 8 triangles and 4 quadrangles.
The post optimization procedure is described in Figure 3.

It is proven in Drezner et al. (2013) that the number of polygons in P
is bounded by 11p − 32 (8p − 23 triangles and 3p − 9 quadrangles). Note
that by definition p ≥ 3. Otherwise, there is no triangulation possible. For
p = 3 there is only one triangle and no quadrangles. The bound in this case
is tight. The number of polygons is usually much lower than this bound.

3 The Variable Neighborhood Search

The shaking mechanism in our proposed implementation of the VNS algo-
rithm is based on one of the heuristics given in Brimberg et al. (2000). It



6 Zvi Drezner, Jack Brimberg, Nenad Mladenović and Said Salhi

Fig. 2 Generating the Set of Polygons

s1

s2

s4

s

5

s3

�
�
�
�
��������@

@
@
@
























@
@
@
@

Fig. 3 The DSR Algorithm

1. Generates a list of polygons P .
2. Repeat the following for each of the polygons in P (in random order but

selecting triangles first and once all triangles have been examined, selecting
quadrangles):
(a) Find the union U of all demand points served by q = 3 or 4 facilities

defining the polygon.
(b) Find an initial solution for q facilities in U by START and apply the

Reformulation Local Search (RLS) (Brimberg et al. (2014); Drezner
et al. (2013)) getting a heuristic solution to the q-median problem for
U .

(c) If the value of the objective function of the new solution for the q

facilities is better than the value of the objective function of the original
configuration serving U , update the location of the q facilities, apply
IALT on the complete set of p facilities and go to Step 1.

(d) Otherwise, continue with the next polygon in the list.
3. If the process fails to improve the value of the objective function for all

polygons, the algorithm terminates.

was proposed by Brimberg and Mladenović (1995) based on the exchange
heuristic proposed by Love and Juel (1982). We improved the algorithm by
using more than one solution in the ‘shaking’ and the ‘move or not move’
steps. Also we incorporate a more powerful local search.

A starting solution is given and serves as the current solution. For a given
solution, the demand points are partitioned into p subsets each closest to
one of the facilities.

A perturbation is defined as selecting two demand points in different sub-
sets and exchanging between them.

The kth neighborhood of the current solution is the result of performing a
sequence of k perturbations. A demand point may be selected again in
subsequent perturbations.



Solving the Planar p-Median Problem 7

The neighborhoods are tested in order for 1 ≤ k ≤ kmax. For each neighbor-
hood, b members are randomly selected. The local search IALT described
earlier is applied on each neighborhood member. This process is repeated m
times. Once an improved solution is found, it replaces the current solution
and the whole process restarts. The count of the number of repetitions starts
from 0. The algorithm terminates when the current solution (the original
starting solution or a replaced one) is not improved in all m repetitions.
The VNS algorithm is described in Figure 4.

Fig. 4 The VNS Algorithm

1. Input an initial solution Xc.
2. Set k = 1 and j = 0.
3. Repeat the following up to b times:

(a) Select a solution X at random in the kth-neighborhood of Xc.
(b) Run IALT on X to obtain a local minimum XL.
(c) If XL is a better solution than Xc, set Xc = XL, and go to Step 2.

4. If none of the b solutions is better than Xc:
(a) Set k = k + 1.
(b) If k ≤ kmax, return to Step 3.
(c) Otherwise, set j = j + 1. If j ≤ m, set k = 1 and return to Step 3.
(d) Else stop (final solution is Xc).

The procedure requires three parameters: kmax, b, and m.

4 The Concentric Search

The concentric search, originally termed concentric tabu search by Drezner
(2002), was applied in Drezner (2003) and extended in Drezner (2005) for
the solution of the quadratic assignment problem (see for example, Drezner
et al. (2005)). To the best of our knowledge it was not applied to other
optimization problems. Concentric search has many features of the Variable
Neighborhood Search (VNS) (Hansen and Mladenović (1997); Mladenović
and Hansen (1997)) and can be viewed as a variant of VNS. In VNS shaking
of the center solution is defined by randomly selecting a perturbed solution
with increasing “distance” from the best known solution, while in concentric
search finding randomly a solution in neighborhood k + 1, is accomplished
by shaking once the best known solution in neighborhood k. Another way
to view the concentric search is to compare it to the dynamic programming
approach. The optimal solution is in the neighborhood of a certain radius.
Suppose we save for each radius k a list of all possible solutions for that
neighborhood. The process will then find the optimal solution if the list for
radius k+1 is generated by all possible perturbations of solutions in the list
of radius k and the process continues for all possible radii. In the concentric



8 Zvi Drezner, Jack Brimberg, Nenad Mladenović and Said Salhi

search we “assume” that a good solution will be generated by restricting
the process of generating the list of radius k + 1 by perturbations of only
the best found solution in the list of radius k.

We present this variant to the VNS community so it can be applied for
the solution of other optimization problems.

4.1 Introduction to the Concentric Search

The starting solution is termed the “center” solution and is the best found
solution. In a particular solution, each demand point is closest to a facility.
Therefore, each facility defines a subset of demand points closest to it. A
“radius” around the center solution is defined similarly to the sequence of
neighborhoods in VNS. The radius is the number of demand points not in
their center solution subset.

In the original concentric tabu search (Drezner (2002)) which was ap-
plied for the solution of the quadratic assignment problem, the once per-
turbed (basic) neighborhood consists of all pairwise exchanges between two
facilities. Therefore, solutions in the basic neighborhood of a solution of ra-
dius k can have a radius of k−2, k−1, k, k+1, k+2. Rather than selecting
a solution in a neighborhood of radius k randomly, the best solution with
radius k+1 is found in the basic neighborhood of the best solution of radius
k (or k − 1).

During the search of the neighborhood of radius k, solutions with a ra-
dius lower or equal to k are “tabu” meaning that they are ignored unless
they are better than the best found (center) solution. Observe that neigh-
borhoods for a large radius are in different regions of the solution space.
As in VNS, constructed solutions move “farther” and “farther” away from
the center solution. If a solution better than the current center solution is
found, it becomes the new center solution and the process is restarted. The
whole process can be repeated K (a parameter) times with the best solution
for k = kmax used as the new center solution. In the present paper we just
experimented with K = 1.

4.2 Comparing Variable Neighborhood Search to Concentric Search

In VNS the perturbations are performed on the center (best found) solution
while in concentric search the perturbations are performed on perturbed
solutions. In order to search far away in the solution space from the best
found solution, a sequence of many perturbations is required. In concentric
search the perturbations are performed on perturbed solutions that may be
already quite far from the center solution, thus a relatively small number
of perturbations is required to move the search far away from the center
solution.



Solving the Planar p-Median Problem 9

4.3 Implementation of the Concentric Search

We modify the original concentric tabu search to adjust it to the special
structure of the location-allocation problem. Since the number of solutions
in the basic neighborhood can be very large, we propose to randomly select
m (a parameter similar to b in VNS) solutions in the basic neighborhood
rather than all of them. Another difficulty is that when a solution in the
neighborhood is selected, a local search such as IALT (Brimberg and Drezner
(2013)) is applied to it, and the resulting solution may have a different
radius. Yet another issue is that when IALT is applied on the perturbed
solution and we use only k = 1 in the basic neighborhood, IALT may return
to the center solution especially if it is a good one. We therefore define
the neighborhood as exchanging t (a parameter) pairs of demand points
between subsets rather than only one. These t pairs are selected randomly
and the same demand point may be selected again. This is identical to the
tth neighborhood in VNS. However, the perturbation (shaking) is performed
on the best found solution in the kth neighborhood rather than on the center
solution.

There are three variants of the concentric search:

(i) the original one (Drezner (2002)), termed “CON(Orig)”, moves the search
only to greater values of k;

(ii) the ring moves (CON(RM), Drezner (2005)) allows the repetition of the
search for the same k if the best known solution for that k was improved
while scanning all members of the basic neighborhood of k;

(iii) all moves (CON(AM), Drezner (2005)) which allows the search to pro-
ceed with a lower value of k if the best known solution for that k was
improved.

In all variants, a list of the best solutions for each radius k ≤ kmax

is stored. An indicator is maintained for each list member that indicates
whether its basic neighborhood was already evaluated (indicator of 1) or
not (indicator of 0). If a solution better than the best found solution (which
is the center solution) is found during the process, the center solution is
replaced and the whole process restarts.

4.4 The Concentric Algorithm

The parameters kmax, the number m of randomly selected members in the
neighborhood and t, the neighborhood radius, are given.

Let



10 Zvi Drezner, Jack Brimberg, Nenad Mladenović and Said Salhi

k be the radius of a solution (the number of demand points not associated with same
facility as the center solution). The starting (center) solution is defined with k = 0.

Ik be an index vector for k = 0, . . . , kmax. Ik = 1 if the neighborhood of the best known
solution with radius k has already been evaluated, and Ik = 0 otherwise.

fk be a vector for of the values of the objective function of the best known solution
with radius k, k = 0, . . . , kmax.

listk be a list of length n of the subset assigned to each demand point in the best known
solution with radius k for k = 0, . . . , kmax.

The concentric Algorithm is described in Figure 5.

Fig. 5 The Concentric Algorithm

1. Set: I0 = 0 and Ik = 1 for k = 1, . . . , kmax; f0 to the value of the objective
function for the center solution; list0 to the list of the center solution.

2. Select the smallest 0 ≤ k ≤ kmax for which Ik = 0.
3. If no such k exists, stop with the center solution as the output of the

algorithm.
4. Otherwise, set i = 1:

(a) Create a list list∗ = listk of the subset assignments of the best found
solution with radius k.

(b) (shaking operation) Repeat the following t times:
- Randomly select a pair of demand points with different assigned
subsets in list∗,

- Perturb the solution by exchanging between them and update
list∗.

(c) Apply IALT on the perturbed solution yielding a solution with an
objective function f .

(d) If f < f0, replace the center solution and go to Step 1.
(e) Find the radius r of the resulting solution by comparing its list with

list0.
(f) For CON(Orig): if r ≤ k or r > kmax go to Step 4h.

For CON(RM): If r < k or r > kmax go to Step 4h.
For CON(AM): If r > kmax go to Step 4h.

(g) If f < fr, then update fr = f , listr and set Ir = 0; if r = k go to
Step 2.

(h) Set i = i+ 1 and if i ≤ m go to Step 4a.
5. Set Ik = 1 and go to Step 2.

5 Computational Experiments

Programs were compiled by an Intel 11.1 Fortran Compiler with no parallel
processing and run on a desktop with the Intel 870/i7 2.93GHz CPU Quad
processor and 8GB RAM. Only one thread was used. The triangulation,



Solving the Planar p-Median Problem 11

which is required for DSR, was coded using a Fortran program based on
Sugihara and Iri (1994) using subroutines first developed by Ohya et al.
(1984). We thank Atsuo Suzuki for providing and modifying the triangula-
tion Fortran program.

We tested the algorithms on the four problems given in Brimberg et al.
(2000). The first one (n = 50) is the well-studied 50-customer problem from
Eilon et al. (1971). The second one (n = 287) is the ambulance problem
from Bongartz et al. (1994); the last two (n = 654 and 1060) are from
the TSP library (Reinelt (1991)). The best known solutions are taken from
Brimberg et al. (2000); Taillard (2003); Brimberg et al. (2014). These solu-
tions were proven optimal by Krau (1997) for the n = 50 and 287 instances
investigated. Our computational results for n = 50 were all optimal, and
thus, not reported here. We tested 32 values of p for the n = 287 problem
listed in Table 2, 28 values of p for the n = 654 problem listed in Table 3,
and 20 values of p for the n = 1060 problem listed in Table 4, for a total
of 80 instances. Each instance was run 10 times from different randomly
generated starting solutions.

5.1 Experiments with VNS

We tested the VNS heuristic starting from one START solution (VNS(1)) or
from the best of 100 START solutions (VNS(100)). Note that each START
solution includes an IALT application at the end. These two variants are
designed to evaluate the effect of a “good” starting solution on the perfor-
mance of the VNS algorithm. We used m = 100, 200, and 300. The results
are summarized in Table 1. We applied kmax = min{p, 20}, b = 10, and
tested various values of the stopping condition m. Note that in the stan-
dard VNS, b = 1 is used and thus no such parameter is defined.

5.2 Experiments with the Concentric Algorithm

We tested the three variants of the concentric search (CON(Orig), CON(RM),
and CON(AM)). The starting solution used the best of 100 runs of START.
We also tested a starting solution obtained by one application of START,
but the results were significantly inferior and thus not reported. Each vari-
ant was repeated ten times for each value of p selected for each problem.
The results are also summarized in Table 1.

The selection of t is quite tricky. If t is too small, the subsets are only
slightly modified and IALT may terminate with the center solution. If t
is too large, the perturbed solution may resemble a random solution that
has lost some of the structure of the center solution. Following extensive
experiments we recommend kmax = n/2, t = 2n/p for perturbing the center
solution, and t = 2+ n

100
(i.e., t = 4, 8, 12 for n = 287, 654, 1060, respectively)

for perturbing other solutions. The quality of the solution and run time
depend on the value of m. We tested m = 100, 200, 300.



12 Zvi Drezner, Jack Brimberg, Nenad Mladenović and Said Salhi

5.3 Results

The average for all values of p for each n are reported in Table 1: (i) per-
centage of the minimum result and the average result above the best known
solution and (ii) average run time per one run per instance. Percentages are
reported to three decimal digits. If the value is “exactly” zero we report it
as 0, and if it rounds to zero to three decimal places we report it as 0.000%.
In Tables 2-4 we report results for specific variants of the algorithm for each
set of problems.

5.4 Discussion of Results

Comparing the VNS trials that begin with one run of START to those
with the best of 100 runs of START clearly shows that selecting a better
starting solution significantly improves the final VNS result. Run times for
START are very short (Drezner et al. (2013)): 100 runs of START require
about 0.03, 0.7, 3, and 13 seconds for the n = 50, 287, 654, 1060 problems,
respectively. Furthermore, the total execution time for VNS starting from
the best of 100 runs of START is shorter in most cases because the starting
solution is better and fewer iterations of VNS are performed.

Both VNS and the concentric algorithms performed very well solving
the n = 287 instances. The optimal solution was found for each of the 32
instances by both VNS(100) and the concentric procedures. The concentric
algorithm performed better than VNS both in the quality of the solutions
and shorter run times. Both provide much better results than those reported
in published papers. In Table 2 we report the optimal solution and run time
in seconds per run for the n = 287 instances using CON(AM) and m = 200.
317 of the 320 runs found the optimal solution. The three cases for which
the optimal solution was not found are: (i) for p = 75, 9 out of 10 runs were
optimal and the average was 0.0006% above optimum, and (ii) for p = 85, 8
out of 10 results are optimal and the average is 0.011% above optimum. The
average for all 32 values of p was therefore 0.00036% above optimum. The
results did not change by applying DSR. We therefore report only the run
times (including DSR) in seconds per run for each instance. Performing all
320 runs reported in Table 2 required less than 200 minutes of computing
time.

VNS performed slightly better on the n = 654 instances. The best av-
erage of the best found solution and the average solution above the best
known solution was best for VNS(100)+DSR using m = 300. Run times
were also generally lower for the VNS(100)+DSR algorithm. The detailed
results for this variant are reported in Table 3.

Results for the n = 1060 instances show about the same performance
with a slight edge to the concentric search. Also, the run times for the
concentric search are lower than those for VNS. The best averages above
the best known solution were obtained for CON(AM)+DSR using m = 300.
The details of these results are reported in Table 4.



Solving the Planar p-Median Problem 13

Table 1 Average Performance of 10 Runs of the Algorithms

n = 287 n = 654 n = 1060
Method Min† Ave† ‡ Min† Ave† ‡ Min† Ave† ‡

m = 100

VNS(1) 0.006 0.074 35.3 0.223 1.010 78.9 0.411 1.111 145.4
VNS(1)+DSR 0.006 0.022 35.5 0.125 0.512 79.5 0.251 0.683 148.4
VNS(100) 0 0.012 35.2 0.084 0.250 73.5 0.116 0.284 133.9
VNS(100)+DSR 0 0.010 35.5 0.066 0.189 74.0 0.094 0.240 136.0

CON(Orig) 0 0.007 17.7 0.114 0.295 59.5 0.109 0.279 31.2
CON(Orig)+DSR 0 0.005 18.0 0.053 0.206 60.0 0.058 0.214 33.4
CON(RM) 0 0.008 18.1 0.171 0.320 62.1 0.123 0.278 32.6
CON(RM)+DSR 0 0.007 18.4 0.104 0.215 62.6 0.059 0.221 34.8
CON(AM) 0 0.004 20.5 0.108 0.280 116.7 0.090 0.261 56.5
CON(AM)+DSR 0 0.003 20.7 0.065 0.194 117.2 0.064 0.217 58.6

m = 200

VNS(1) 0.009 0.090 65.2 0.221 0.998 158.0 0.367 1.070 305.0
VNS(1)+DSR 0.009 0.019 65.4 0.118 0.504 158.6 0.158 0.682 308.1
VNS(100) 0 0.005 67.3 0.071 0.210 138.4 0.079 0.257 276.0
VNS(100)+DSR 0 0.005 67.5 0.051 0.166 138.9 0.054 0.215 278.1

CON(Orig) 0 0.002 33.3 0.119 0.277 121.9 0.108 0.274 60.9
CON(Orig)+DSR 0 0.002 33.6 0.075 0.197 122.4 0.076 0.224 63.0
CON(RM) 0 0.001 33.4 0.084 0.277 126.4 0.113 0.273 60.5
CON(RM)+DSR 0 0.001 33.6 0.054 0.211 126.9 0.060 0.226 62.5
CON(AM) 0 0.000 36.8 0.093 0.247 269.9 0.089 0.273 170.6
CON(AM)+DSR 0 0.000 37.0 0.056 0.184 270.4 0.055 0.226 172.7

m = 300

VNS(1) 0.006 0.049 96.0 0.250 0.999 230.6 0.331 1.014 483.2
VNS(1)+DSR 0.006 0.018 96.2 0.130 0.568 231.2 0.186 0.668 486.1
VNS(100) 0 0.006 96.5 0.055 0.207 204.4 0.089 0.250 401.0
VNS(100)+DSR 0 0.005 96.7 0.037 0.160 204.9 0.051 0.206 403.1

CON(Orig) 0 0.001 47.9 0.115 0.254 181.8 0.091 0.254 97.6
CON(Orig)+DSR 0 0.001 48.1 0.047 0.183 182.3 0.064 0.222 99.7
CON(RM) 0 0.002 48.1 0.116 0.272 199.1 0.098 0.263 105.5
CON(RM)+DSR 0 0.002 48.3 0.056 0.196 199.6 0.062 0.215 107.6
CON(AM) 0 0.001 51.7 0.076 0.225 430.4 0.077 0.241 282.7
CON(AM)+DSR 0 0.001 51.9 0.055 0.163 430.9 0.047 0.201 284.7

†Percentage above the best known solution (optimal for n = 287)
‡Time (seconds) per run

As expected the post-optimization procedure gave net improvements on
the final solution. Although the improvements are relatively small we still
recommend this step since the increase in computational times is insignifi-
cant. The biggest improvement with the DSR post-optimization procedure
is obtained with m = 100. Also, computation times are lower with m = 100
+ DSR than when higher values of m (200, 300) are used without DSR,
while the quality of solutions remains comparable.



14 Zvi Drezner, Jack Brimberg, Nenad Mladenović and Said Salhi

Table 2 Results for 10 Runs of the n = 287 Instances by CON(AM)+DSR with
m = 200

p Optimum † p Optimum † p Optimum † p Optimum †

5 9715.6275 14.0 13 5725.1853 24.1 25 3348.7101 29.2 65 924.5547 51.2
6 8787.5568 14.2 14 5469.6478 26.1 30 2716.9038∗ 28.9 70 814.2238 54.1
7 8160.3203∗ 18.5 15 5224.7028 24.9 35 2238.1839 34.9 75 730.0354∗ 65.7
8 7564.2949 21.7 16 4981.9608 27.1 40 1900.8361 36.2 80 655.3788 50.4
9 7088.1283 22.7 17 4755.1890 25.4 45 1630.3115 39.5 85 588.3680 66.3
10 6705.0356 26.2 18 4547.3651 29.0 50 1402.5836 48.0 90 529.2126 75.7
11 6351.5910 22.8 19 4342.0648 27.4 55 1203.9849 55.3 95 480.8592 68.7
12 6033.0474 26.3 20 4148.8443 26.8 60 1055.1389∗ 40.0 100 441.2417 63.5

† Time in seconds per run.
∗ Slightly improved optimal solutions compared with Brimberg et al. (2000).

Table 3 n = 654 Results Using VNS(100)+DSR with m = 300

p BK (1) (2) (3) (4) p BK (1) (2) (3) (4)

5 209068.7935 0 10 0 48.7 35 39257.2685 0 1 0.108 125.4
6 180488.2126 0 10 0 35.4 40 35704.4076 0 1 0.047 139.4
7 163704.1681 0 10 0 38.1 45 32306.9721 0 3 0.184 172.2
8 147050.7904 0 10 0 41.8 50 29338.0106 0 1 0.463 217.7
9 130936.1241 0 10 0 46.7 55 26699.1699 0 1 0.321 194.8
10 115339.0328 0 10 0 50.6 60 24504.3952 0 1 0.223 284.3
11 100133.2007 0 10 0 49.4 65 22747.0996 0.059 2 0.463 324.5
12 94152.0549 0 10 0 55.1 70 21465.4361 0 1 0.226 342.9
13 89454.7613 0 10 0 54.2 75 20312.9668 -0.212 3 -0.080 345.2
14 84807.6690 0 9 0.002 60.0 80 19193.8610 0 1 0.524 521.6
15 80177.0422 0 8 0.005 68.4 85 18316.5391 0.306 1 0.668 512.2
20 63389.0238 0 10 0 103.1 90 17514.4230 0.400 1 0.594 598.3
25 52209.5106 0 10 0 108.1 95 16786.3887 0.173 2 0.381 603.3
30 44705.1920 0 9 0.000 108.5 100 16083.5345 0.065 1 0.346 486.5

(1) Percent of best found solution above best known solution (BK)
(2) Number of times that the best found solution (not BK) was obtained
(3) Percent of average solution above best known solution (BK)
(4) Time in seconds per run

6 Conclusions

Two heuristic algorithms are proposed for solving the planar p-median prob-
lem. One is a VNS algorithm and the other is a concentric search which is
a variation of VNS. We also add a front-end subroutine for finding “good”
starting solutions and a post-optimization procedure that solves decom-
posed problems based on Delaunay triangulation with a powerful local
search. Computational experiments demonstrate the effectiveness of both
algorithms. The two algorithms perform consistently well on a wide range
of problem instances tested with a small edge to the concentric search. Com-



Solving the Planar p-Median Problem 15

Table 4 n = 1060 Results Using CON(AM)+DSR with m = 300

p BK (1) (2) (3) (4) p BK (1) (2) (3) (4)

5 1851877.3 0 10 0 35.3 55 422638.7 0.046 1 0.341 63.5
10 1249564.8 0 10 0 25.8 60 397674.5 0.178 1 0.346 78.8
15 980131.7 0 10 0 64.0 65 376630.3 0 1 0.187 76.6
20 828685.7 0 2 0.007 60.6 70 357335.1 0 1 0.171 123.4
25 721988.2 0 3 0.050 58.3 75 340123.5 0 1 0.241 99.6
30 638212.3 0 6 0.059 30.4 80 325971.3 0.001 1 0.165 209.4
35 577496.7 0 6 0.114 22.5 85 313446.6 0.222 1 0.374 291.1
40 529660.1 0 1 0.289 49.3 90 302479.1 0.140 1 0.359 538.2
45 489483.8 0.006 2 0.139 90.0 95 292282.6 0.035 1 0.381 1,394.5
50 453109.6 0.119 1 0.310 54.6 100 282536.4 0.194 1 0.480 2,327.6

(1) Percent of best found solution above best known solution (BK)
(2) Number of times that the best found solution (not BK) was obtained
(3) Percent of average solution above best known solution (BK)
(4) Time in seconds per run

putational results also demonstrate that better end results are obtained on
average when better starting solutions are used.

The post-optimization procedure gave a small net improvement on the
overall performance of the heuristics. However, since the extra computa-
tional effort was relatively insignificant, we recommend that such a proce-
dure be employed.

Results for the n = 287 instances are significantly better than those
reported in the literature. Results for the n = 654, 1060 instances are similar
or slightly better than the results reported in the literature.

Acknowledgements We would like to thank the referees for their time and con-
structive comments that helped to improve the presentation as well as the content
of the paper.

References

Bongartz, I., Calamai, P. H., and Conn, A. R. (1994). A projection method for ℓp
norm location-allocation problems. Mathematical Programming, 66:238–312.

Brimberg, J. and Drezner, Z. (2013). A new heuristic for solving the p-median
problem in the plane. Computers & Operations Research, 40:427–437.

Brimberg, J., Drezner, Z., Mladenović, N., and Salhi, S. (2014). A new local search
for continuous location problems. Eurpopean Journal of Operational Research,
232:256–265.

Brimberg, J., Hansen, P., Mladenović, N., and Salhi, S. (2008). A survey of solution
methods for the continuous location-allocation problem. International Journal
of Operations Research, 5:1–12.

Brimberg, J., Hansen, P., Mladenović, N., and Taillard, E. (2000). Improvements
and comparison of heuristics for solving the uncapacitated multisource Weber
problem. Operations Research, 48:444–460.



16 Zvi Drezner, Jack Brimberg, Nenad Mladenović and Said Salhi

Brimberg, J. and Mladenović, N. (1995). A variable neighbourhood algorithm for
solving the continuous location-allocation problem. Cahiers du GERAD.

Carlsson, S. (1984). Improving worst-case behavior of heaps. BIT Numerical

Mathematics, 24:14–18.
Chen, P. C., Hansen, P., Jaumard, B., and Tuy, H. (1998). A fast algorithm for

the greedy interchange for large-scale clustering and median location problems
by D.-C. programming. Operations Research, 46:548–562.

Chen, R. (1983). Solution of minisum and minimax location-allocation problems
with euclidean distances. Naval Research Logistics Quarterly, 30:449–459.

Cooper, L. (1963). Location-allocation problems. Operations Research, 11:331–
343.

Cooper, L. (1964). Heuristic methods for location-allocation problems. SIAM

Review, 6:37–53.
Drezner, Z. (1984). The planar two-center and two-median problems. Transporta-

tion Science, 18:351–361.
Drezner, Z. (1996). A note on accelerating the Weiszfeld procedure. Location

Science, 3:275–279.
Drezner, Z. (2002). A new heuristic for the quadratic assignment problem. Journal

of Applied Mathematics and Decision Sciences, 6:163–173.
Drezner, Z. (2003). A new genetic algorithm for the quadratic assignment problem.

INFORMS Journal on Computing, 15:320–330.
Drezner, Z. (2005). The extended concentric tabu for the quadratic assignment

problem. European Journal of Operational Research, 160:416–422.
Drezner, Z., Brimberg, J., Salhi, S., and Mladenović, N. (2013). Effective heuristics

for solving the multi-source Weber problem. in review.
Drezner, Z., Hahn, P. M., and Taillard, E. D. (2005). Recent advances for the

quadratic assignment problem with special emphasis on instances that are dif-
ficult for meta-heuristic methods. Annals of Operations Research, 139:65–94.

Drezner, Z., Klamroth, K., Schöbel, A., and Wesolowsky, G. O. (2002). The
Weber problem. In Drezner, Z. and Hamacher, H. W., editors, Facility Location:

Applications and Theory, pages 1–36. Springer, Berlin.
Eilon, S., Watson-Gandy, C. D. T., and Christofides, N. (1971). Distribution

Management. Hafner, New York.
Gabow, H. N., Galil, Z., Spencer, T., and Tarjan, R. E. (1986). Efficient algo-

rithms for finding minimum spanning trees in undirected and directed graphs.
Combinatorica, 6:109–122.

Hansen, P. and Mladenović, N. (1997). Variable neighborhood search for the
p-median. Location Science, 5:207–226.

Krau, S. (1997). Extensions du problème de Weber. PhD thesis, École Polytech-
nique de Montréal.

Lee, D. T. and Schachter, B. J. (1980). Two algorithms for constructing a De-
launay triangulation. International Journal of Parallel Programming, 9(3):219–
242.

Love, R. F. and Juel, H. (1982). Properties and solution methods for large location-
allocation problems. Journal of the Operational Research Society, pages 443–
452.

Megiddo, N. and Supowit, K. J. (1984). On the complexity of some common
geometric location problems. SIAM Journal on Computing, 13:182–196.

Mladenović, N. and Hansen, P. (1997). Variable neighborhood search. Computers

& Operations Research, 24:1097–1100.



Solving the Planar p-Median Problem 17

Murtagh, B. A. and Niwattisyawong, S. R. (1982). An efficient method for the
multi-depot location-allocation problem. Journal of the Operational Research

Society, 33:629–634.
Ohya, T., Iri, M., and Murota, K. (1984). Improvements of the incremental method

of the Voronoi diagram with computational comparison of various algorithms.
Journal of the Operations Research Society of Japan, 27:306–337.

Reinelt, G. (1991). TSLIB a traveling salesman library. ORSA Journal on Com-

puting, 3:376–384.
Schöbel, A. and Scholz, D. (2010). The big cube small cube solution method

for multidimensional facility location problems. Computers and Operations

Research, 37:115–122.
Sugihara, K. and Iri, M. (1994). A robust topology-oriented incremental algorithm

for Voronoi diagram. International Journal of Computational Geometry and

Applications, 4:179–228.
Taillard, É. (2003). Heuristic methods for large centroid clustering problems.

Journal of Heuristics, 9:51–73.
Weber, A. (1929). ÜBer Den Standort Der Industrien, 1. Teil: Reine Theorie

Des Standortes. English Translation: on the Location of Industries. University
of Chicago Press, Chicago, IL. Originally published in Tübingen, Germany in
1909.

Weiszfeld, E. (1936). Sur le point pour lequel la somme des distances de n points
donnes est minimum. Tohoku Mathematical Journal, 43:355–386.

Wesolowsky, G. O. (1993). The Weber problem: History and perspectives. Loca-

tion Science, 1:5–23.


