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Abstract

We discuss the relationship between the recurrence ceeffecof orthogonal polynomials with respect to a gen-

eralized Freud weight

2241

w(z;t) = |z exp (—:c4 + t:cz) , z €R,

with parameters\ > —1 and¢ € R, and classical solutions of the fourth Painlevé equatidfe show that the
coefficients in these recurrence relations can be expréssedans of Wronskians of parabolic cylinder functions that
arise in the description of special function solutions @& fhurth Painlevé equation. Further we derive a second-
order linear ordinary differential equation and a diffdiaidifference equation satisfied by the generalized &reu
polynomials.

1 Introduction

Let i be a positive Borel measure defined on the real line for whidh@moments
I / z"du(z), mneN,
R

exist. The Hilbert spacé? () contains the set of polynomials and hence Gram-Schmidogahalization applied to
the set{1,z, 22, ...} yields a set of monic orthogonal polynomials on the real tieéined by

/ P, (2) P () dis(x) = hpbmn, m,n €N,
R

with h,, > 0, d.,,,, the Kronecker delta anB,,(x) is a polynomial of exact degree
A family { P, (z)}52, of monic orthogonal polynomials satisfies a three-termmeaice relation of the form

2Py (z) = Ppy1(z) + anPp(z) + BnPu_1(x), neN, (1.1)
with P_;(z) = 0 andPy(z) = 1. Respectively multiplying (1.1) by, (x) and P, («) and integrating gives

1
hn—l

Q= S / x P2 (z) du(x), Bn = /xPn(:zr)Pn,l(:zr) du(x).

hn R R
The converse statement, known as the spectral theoremtfargamal polynomials, is often attributed to Favard [17]
but was seemingly discovered independently, around the siame, by both Shohat [38, 39] and Natanson [34]. Itis
interesting to note that the result can be traced back téeeearbrk on continued fractions with a rudimentary form
given already in 1894 by Stieltjes [42], see [12], also [34), 4 he result also appears in the books by Stone [41] and
Wintner [45], see [26]. A modern proof of the result is givgnBeardon [2].


http://arxiv.org/abs/1510.03772v1

Theorem 1.1. If a family of polynomials satisfies a three-term recurreralation of the form
2P, () = Puy1(z) + anPo(x) + BnPr-1(z),
with initial conditionsP_;(z) = 0 and Py(z) = 1, wherea,,, 8,, € R, then there exists a measuyieon the real line

such that these polynomials are monic orthogonal polyntssiatisfying

/ P, (z) Py (x) dip(x) = hpdmn, m,n € N,
R

with h,, > 0.
Proof. See, for example, [12, 26]. O

Two important problems arise in the study of orthogonal polyials.

1. Direct problem:Given a measurg(z), what can be deduced about the recurrence coefficfentss,, }, n € N?

2. Inverse problemGiven recurrence coefficien{s,,, 8, }, n € N, what can be deduced about the orthogonality
measure:(x)?

Given an orthogonality measusgéz), several characteristic properties of the sequéitéz) } >, are determined
by the nature of the measure. Extracting this informatiomfthe measure is an extension of the direct problem and
one of the interesting and challenging problems in the stididystems of orthogonal polynomials. Properties typjcall
studied include the Hankel determinants, the coefficiehtsethree-term recurrence relation, the coefficients ef th
differential-difference equation and the differentiabiation satisfied by the polynomials. For instance, the recuwe
coefficients can be expressed in terms of Hankel deternsramhprising the moments of the orthogonality measure.
We refer to [12, 26, 43] for further information about ortloogl polynomials.

For classical orthogonal polynomials, namely the Herntisgyuerre and Jacobi polynomials, the meagi(re is
absolutely continuous and can be expressed in terms of ehtMeiigctionw(x) which is non-negative, with support
on some intervala, b] € R (Wherea = —oo andb = oo are allowed), i.edu(r) = w(z) dz. The properties that these
orthogonal polynomials satisfy are well known and include fact that (cf. [26]):

(a) their derivatives also form orthogonal polynomial sets
(b) they satisfy a Rodrigues’ type formula

Po() = s {w(o)o” @)

KpW
wherew(x) is the weight functiong(x) is a polynomial iz independent of: andx,, a constant;
(c) they satisfy a non-linear equation of the form

U(I)% [Pn(x)Pnfl(I)} = (anx + bn)Pn(x)Pnfl(x) + CnPr%(x) + anr%—l(x)v

wherea,,, b,, ¢, andd,, are independent af;
(d) they satisfy a second order linear differential equatibthe Sturm-Liouville type

d’P, dP,

o(z)

whereo(z) is a polynomial of degreel 2, 7(x) is a linear polynomial, both independentof and \,, is
independent of;
(e) they satisfy the differential-difference equation

dPp,
W(I)% = (anx + bp) Pp(x) + ¢ Pr—1(x). (1.2)



The converse, that any polynomial set which satisfies anyobtiee above properties must necessarily be one of
the classical orthogonal polynomial sets, also holds. hiqdar, Al-Salam and Chihara [1] showed that orthogonal
polynomial sets satisfying (1.2) must be either Hermiteguexre or Jacobi polynomials.

Askey raised the more general question of what orthogorighpmial sets have the property that their derivatives
satisfy a relation of the form

dPn n+s
= n kP .
This problem was solved by Shohat [40] and later, indepethddyy Freud [23], as well as Bonan and Nevai [6].
Maroni [31, 32] stated the problem in a different way, trytodind all orthogonal polynomial sets whose derivatives
are quasi-orthogonal, and called such orthogonal polyabseis semi-classical.
A useful characterization of classical orthogonal polyiedais the Pearson equation

d
@) = @) (13)

whereo(x) andr(x) are polynomials with dgg) < 2 and dedr) = 1.

Semi-classical orthogonal polynomials are defined as gahal polynomials for which the weight function satis-
fies a Pearson equation (1.3) with dey> 2 or dedr) # 1; see Hendriksen and van Rossum [25].

The relationship between semi-classical orthogonal pmtyials and integrable equations dates back to Shohat
[40] and Freud [23], see also Bonan and Nevai [6]. Howeveas wot until the work of Fokas, Its and Kitaev [19, 20]
that these equations were identified as discrete Paintpwiens. The relationship between semi-classical ortha
polynomials and the Painlevé equations was discussed Igni¥29] who, for example, showed that the coefficients
in the three-term recurrence relation for the Freud weid8} [

w(z;t) = exp (—x4 + txz) , z €R, 1.4
with ¢ € R a parameter, can be expressed in terms of simultaneougsalof the discrete equation
Gn(Gn—1 + @n + qn+1) + 2tgn = n, (1.5)

which is discrete P(dP,), as shown by Bonan and Nevai [6], and the differential dgnat

2 2 2
(Zj; = i (%) + gqi +4z2q; 4+ 2(2° + 3n)qn — QTLE’ (1.6)
which is a special case of the fourth Painlevé equation -egeation (1.8) below — witlhh € N. This connection
between the recurrence coefficients for the Freud weigh) @éind simultaneous solutions of (1.5) and (1.6) is due to
Kitaev, see [19, 21]. The discrete equation (1.5) is alsaknas the “Freud equation” or the “string equation”.

It is known (cf. [26]) that polynomials orthogonal with resyt to exponential weights(z) = exp{—Q(z)} onR
for polynomial@(z) satisfy structural relations of the form

dP,
dx

Such structural relations and the three-term recurreriagae reveal that the orthogonal polynomials satisfy aselc
order differential equation.

It had been generally accepted that explicit expressiarth@associated coefficients in the three-term recurrence
relation and orthogonal polynomials were nonexistent feighits such as the Freud weight (1.4). To quote from the
Digital Library of Mathematical Functionf36, §18.32]:

() = An(2) Po—1(2) + Bn(z) Py ().

“A Freud weights a weight function of the form
w(z) =exp{—Q(x)}, —o0 <z <00,

whereQ(x) is real, even, nonnegative, and continuously differeteia®f special interest are the cases
Q(x) = z*™,m = 1,2,.... No explicit expressions for the corresponding OP’s ardaivie. However,
for asymptotic approximations in terms of elementary fiord for the OP’s, and also for their largest
zeros, see Levin and Lubinsky [28] and Nevai [35]. For a umifasymptotic expansion in terms of Airy
functions for the OP’s in the cagg(r) = 2* see Bo and Wong [4]. For asymptotic approximations to
OP's that correspond to Freud weights with more generaltfomsQ (z) see Deiftet al. [15, 16], Bleher
and Its [3], and Kriecherbauer and McLaughlin [27].”



In [13], the direct problem was studied for semi-classicafjlierre polynomials orthogonal with respect to the
semi-classical Laguerre weight

w(z;t) = 2> exp(—2? + tz), reRT, A> -1, .7)

with ¢ € R a parameter, and it was shown that the coefficients in the{tenen recurrence relation of these polynomials
can be explicitly expressed in terms of Wronskians of pdialsglinder functions which also arise in the description
of special function solutions of the fourth Painlevé eipra{Pv)

2 2
% = 2iq (%) + gq3—|—4zq2+2(z2—A)q—|— ?, (1.8)
where A and B are constants, and the second degree, second order eqgatidied by the associated Hamiltonian
function, see equation (4.16).

Polynomials orthogonal with respect to a symmetric measanebe generated via quadratic transformation from
the classical orthogonal polynomials, cf. [12]. For exaepplaguerre polynomials generate a class of generalized
Hermite polynomials while Jacobi polynomials give rise tdass of generalized Ultraspherical polynomials.

In this paper we are concerned with the positive, even wéigtttion on the real line arising from a symmetrization
of the semi-classical Laguerre weight (1.7), namely theegaized Freud weight

w(z;t) = x> exp (—x4 + tx2) , z € R, (1.9

with parameters > —1 andt € R.

We use two different methods to derive the differentiafediénce equation satisfied by generalized Freud poly-
nomials{S,,(z;t)}52,, orthogonal with respect to the generalized Freud weigi®)(1in §2 we modify the ladder
operator method (cf. [8, 9, 26]) to derive a general formolathe coefficients of the differential-difference as well
as the second order differential equation satisfied by mohjials orthogonal with respect to a generalized Freud type
weight which vanishes at a point. It is important to note ttigt second order differential equation is linear with
coefficients that are rational functionsofwith parameterg and A involving parabolic cylinder functions. 183 we
derive the generalized Freud weight (1.9) through a syniragiin of the semi-classical Laguerre weight (1.7)54n
we are concerned with specific results for generalized Fneight (1.9). We show that the coefficiefit(¢; A) in the
three-term recurrence relation

xSp(z5t) = Spy1(x;t) + Bn(t; ) Sn—1(x; t),

satisfied by the polynomials associated with the weight)(da@ be expressed in terms of Wronskians that arise in the
description of special function solutions ofiPwhich are expressed in terms of parabolic cylinder funaidrurther

we apply the results df2 to the weight (1.9) to derive the differential-differerempiation and the linear, second order
differential equations satisfied by generalized Freudpatyials{S,, (z;t)}>2,. A method due to Shohat [40], based
on the concept of quasi-orthogonality and applied to theytig(1.9) is discussed ig4.5.

2 Semi-classical orthogonal polynomials

The coefficientsA,,(z;t) andB,,(z; t) in the relation

%(I; t) = —Byp(z;t)Po(x;t) + An(z5t) P (3 1), (2.2)
satisfied by semi-classical orthogonal polynomials arentdrest since differentiation of this differential-difésmce
equation yields the second order differential equatiorsfadl by the orthogonal polynomials. Shohat [40] gave a
procedure using quasi-orthogonality to derive (2.1) foightsw(x; t) such that' (z; t) /w(x; t) is a rational function,
which we apply to (1.9) later. This technique was redisceddry several authors including Bonan, Freud, Mhaskar
and Nevai approximately 40 years later, see [35, p. 126-43@%khe references therein for more detail. The method
of ladder operators was introduced by Chen and Ismail in[#lated work by various authors can be found in, for
example, [10, 11, 18, 33] and a good summary of the techn&jpmvided in [26, Theorem 3.2.1].

In [8], Chen and Feigin adapt the method of ladder operatotisd situation where the weight function vanishes
at one point. Our next result generalizes the work in [8]irgi\a more explicit expression for the coefficients in (2.1)
when the weight function is positive on the real line excepidhe point.



Theorem 2.1. Let
w(z;t) = o — k| exp{—v(z;t)}, z,t, keR, (2.2)

wherew(z;t) is a continuously differentiable function & Assume that the polynomial®, (z;¢)}>2 , satisfy the
orthogonality relation

/ P, (z;t) Py (x5 t)w(z; t) d = hpOmn.
Then, fory > 1, P, (z; ) satisfy the differential-difference equation

dP,

(x — k) T (z;t) = =B (x;t) Py (x;t) + Ap(2;6) Pr1 (23 1), (2.3)
where
Anlait) = 5 [ P2 0wl ) dy + anai0) (2.42)
n—1 — 00
— k 0
B (z;t) = 2 — / P (y; t) Pa—1 (y; ) K (2, y)w(y; t) dy + bn (s t), (2.4b)
where ) ,
K(z,y) = L@ =V W) 2.5)
T —y
with
N0 [T PAyt)
an('rvt) - hn—l e y _ k U)(lj,t) dyv (263)
bn(:c;t) _ v / Pn(y; t)Pnfl(y; t) U)(y; t) dy (26b)
hn—l o Yy — k

Proof. Consider the generalized Freud-type weight (2.2). S%@% (z;t) is a polynomial of degree — 1 in z, then
X
it can be expressed in terms of the orthogonal basis as

dP n—1
— (i) = ;O en i Py (3 ). (2.7)
Applying the orthogonality relation and integrating by {sawe obtain

* dP,
Cn,j =/ W(y;t)Pj(y;t)w(y;t) dy
OO dw

~ [Rsop@neen] ™ [ ro{ w0 RS eo b

= —/fo Pn(y;t)Pj(y;t)fl—;U(y;t) dy
= /700 Po(y; 1) Ps(y; t) [Z—:(y;t) - y_Lk] w(y;t) dy,

provided thaty > 1.



Now, from (2.7), we can write

dx = —o0 y
—oo =0 J
= [ R Y BEOBED S - w0 i ay
—00 j=0 J
00 n—1
+ D) [ P Y BB g,
—0o0 j=0 J
< Puyit) = Pi(yit) Py t)
- /700 y—Fk = h; (w:t)dy
o0 nol (x v v
= [ Pty BEOBED [ - 0] wtmo

o0 Py (x v v
w0 w0 = =) [ P X PEOBED e - i w0y
. 2 .
(k= Pyt Pit)
- _OOPn(yvt) (y_k>j_0 hj (y7t)dy
-0 [ Ry DUNEED R - o] w
—o0 =0 J
- 7/00 Puly; t)> Z i 5 (y’tzfjj (&) w(y;t) dy
—00 j=0 J

It now follows from the Christoffel-Darboux formula (cf. ¢2)

3

nile i t)Pj(z;t P,(z:)P,_1(y;t) — P (y; t)P_1(x; t
Z(y)() (w3t) P (y3t) (y:t)Pri(z;t)

that
x—k [ ,
Ap(x5t) = h Py (y; )K (2, y)w(y; t) dy + an(x;t)
n—1 — 00
z—k [
By (x;t) = = / P (y; t) P—1 (y; ) K(z, y)w(y; t) dy + b (s t),

with a,, (x;t) andb,, (z;t) given by (2.6). O

Lemma 2.2. Consider the weight defined l§.2) and assume that(z; ) is an even, continuously differentiable
function onR. Assume that the polynomid]®,, (x; ) }52, satisfy the orthogonality relation

/ P, (z;t) Py (x; t)w(z; t) do = hpOmn.
and the three-term recurrence relation
Pn+1(517;t) = xPn(:C;t) _ﬂn(t;)‘)Pnfl('r;t)a (28)



with Py = 1 and P, = z. Then the polynomialB, (z;t) satisfy

o] 2(n,.
N % w(y;t) dy =0, (2.9)
/OO Pn(y; Zﬁnkl(y;t) w(y;t) dy _ %[1 _ (_1)"] hp_1, (210)

wheren € N and

hn:/ Pa(y; tyw(y; t) dy.

— 00

Proof. Sincew(z;t) is even when(z;t) is assumed to be even, the integrand in (2.6a) is odd and heeg) = 0.
Furthermore, the monic orthogonal polynomidls(z;t) satisfy the three-term recurrence relation (2.8), with
P, =1andP;, = z, hence

* Po(yst)Pooa(yst) L [yPa1(yst) = BuoaPaa(y; t) | Puoa(y;t)

~ > Pry(yit
:/ ngl(%t)w(yﬁ)dy‘f'k/ 17(k)w(y;t) dy

w(y;t) dy

—00 Yy —
* Puoa1(y;t)Pra(y;t
— B 1/ 1(4: ) Paly )w(y,t)dy
y— k
Pn 9 n 7t
—hn l_ﬁn 1/ 1y 2<y )w(yvt)dy7
y—k
since the integrand in the second integral is odd. Henceg idi@fine
> Po(y;t)Pa-1(y;t)
In = ‘ : ;t d 5
L _ % w(y;t) dy
thenlI,, satisfies the recurrence relation
R
In = hn—l - Bn—lIn—l = hn—l - h—lln—la
n—2
sincef,, = hy/h,—1. lterating this gives
hn—l hn—l hn—l hn—l
In=—I, o=hy 1—+—Ih 3=—IL 4=hy 1 —7—1I )
hn73 ? ! hn74 ’ hn75 * ! hnfﬁ °
and so on. Hence, by induction,
hon— h
Iy = Q;LV L, Ion41 = han — hQ—NIQ,
1 1
and so, since
o P2 Pl y7
/ By i) w(y;t) dy
< Py(y;t
:/ Py(y )dy+k/ 2(v: )W(y;t)dy:(),
oS —oo Y — k
we have that
Iy =0, Iyny1 = han,
as required. O

Corollary 2.3. Let
w(z;t) = o — k| exp{—v(z;t)}, z,t, keR,

wherewv(z; t) is an even, continuously differentiable functionRnAssume that the polynomidl®,, (z; t) }°2 , satisfy
the orthogonality relation

/ P, (z;t) Py (23 t)w(z; t) d = hpOmn.



Then, fory > 1, P,(z;t) satisfy the differential-difference equation

(0= 1) S22 030) = —Bulest) Pa(ai )+ A5 ) Pa1(530),
where
An(ait) = =2 [ PR e s dy 211a)
Bulait) = 5 [ Pust)Paca 3 OK o)ty )y + ol (<17 (2.11)
Proof. The result is an immediate consequence of Theorem 2.1 anchaer?. O

Lemma 2.4. Letw(z; t) be the weight defined {2.2) with v(x; t) an even, continuously differentiable function®n
and A, (x;t) and B, (z; t) defined by{2.11) Then

xAp(x;t) dv

5, +7 = (v = k)—=(=;1),

Bp(x:t) + Bpya(at) = e

wheny > 1.

Proof. From (2.11), (2.8) and the fact that = h,,_15,, we have

Bulest) + B i) = T2 [ Puly)Pacs 4 0K )i t) dy

n—1 — 00

z—k [
- / Po(y; t) Py (y; ) K(z, y)w(y; t) dy

+ 5[l = (=) + 37 = (=)™

- xh_nk {/00 Pr(ys ) [BnPr1(y; 1) + Pasa (y; )] K2, y)w(ys t) dy} I

— 00

_|_

x—k [*

== / yP2(y; K (z, y)w(y;t) dy +
x—k [* dv dv

= P2(y;t) | —(y;t) — — (3t i) d
[ Pt |0 - S| wls d

+ﬂ%%@/ifg@ﬂnuwm@wmy+7

x—k [ dv

= P2(y: t)— (y: t ) d
—/ Pt s i) dy
_x—kdv

X

e - 2( ;- . .
) [ PR 0wl dy+ b A+

_7(55—/*?)/00 a2 Wyt _w—k/“’ 2., AW
xAn(z;t)
Bn

dv

—(z—k) T (z;t) + + 7, (2.12)

since p p

w v o
—(y:t) = | ——(y; t) + —— . t).
dy(y,) { dy(y,)er_k]w(y,)

The first integral in (2.12) vanishes since the integrandld, dience it follows, using integration by parts, that

z—k o0 e dp,
Bufait) + Buia(oit) = =5 { [Pt~ [ 2P T 0wt dy)
dv, xAp(z;t)
— (= — k)@(ff,f) + 5, +7,
and the result follows from the orthogonality Bf,. O



Lemma 2.5. Letw(z; t) be the weight defined {2.2)with v(x; t) an even, continuously differentiable function®n
and A, (x;t) and B, (z; t) defined by2.11) Then

d ' dv, o Ana(zt) '
{—(:c - k)ﬁ + Bp(z;t) + (x — k)%(:zr, t) — ”Y}Pnl(iﬂ, t) = TPn(:c,t). (2.13)
Proof. From the differential-difference equation (2.3) we have
dP,_
(x— k)= L(ast) = = Buo1 (258) Pacr (258) + A1 (251 Pyo (3 1)
= BP0 + 2 op i) - PG,
n—1

using the recurrence relation (2.8). Hence, using Lemma 2.4

714";(5“ D p(it) = —(z — ) ot (410) = Bua(ws )P (a30) + 7»“4”5—1(5”? Up, i)
n—1 n—1
=—(z—k) d?;l (x;t) — Bp—1(x; t) Py—1(x;t)

+ {Bn(:v; t) + Bp_1(z;t) — v+ (x — k)j—;}(x,t)} Po_q(z;t)

=—(z—k) dzy;_l (x;t) + By(z;t) P (23 t) + [(x - k);l—;)(x,t) - 7] Po_1(z;t)

—{ B+ Bulwit) + o = D0 = Paalai)
O

Theorem 2.6. Letw(z;t) = |z —k|” exp{—v(z;t)}, forz, ¢, k € R, withv(z;t) an even, continuously differentiable
function onR. Then

2
(o= )22 50) + R ) 2 (5 0) + T ) Pas ) = 0, (2.142)
dx dx
where
dv rz—k dA,
Rn(ﬂfat)—’Y—(x—k)%(%t)—mﬁ(%ﬂ*‘la (2.14b)
o An(xst)An o (x5t)  dB,, vB,(z;t)
o [dv, B, (z;t) By (x;t) dA, ,
— By(a3t) [d—(a:,t) p el R e r e e CLOE (2.14c)
with
z—k [ ,
An(w;t) = - » Py t)K(z, y)w(y; t) dy
z—k [
Bn(a;t) =+ — / Py (y; 1) Paa (y: K (2, y)w(ys t) dy + 37[1 — (=1)"].
Proof. Differentiating both sides of (2.3) with respectitave obtain
d’P, ap, dAy, , ,
(x — k) T (x;t) = —[Bn(z;t) + 1]%:6,& + T (2;t) Pp—1(z;t)
- ddﬂ(:v; ) Po (@5 t) + An(z; 1) P (250). (2.15)
X
Substituting (2.13) into (2.15) yields
d?P, B dP, dB, A (x5 t)Ap—q (1)
(0= ST @) = [Bales0) + U2 i) = | G2 i)+ 200 B
dA, , [ Bu(xit) | dv, ol _
R e s | SURTED N CED)
and the results follows by substituti®, 1 (x; ¢) in (2.16) using (2.3). O



3 Semi-classical Laguerre weight
We recall that the semi-classical Laguerre weight [13, &%jiven by

w(z;t) = 2 exp(—2® +tr), = €RT, (3.1)
where) > —1. The weight function satisfies the differential equation

d
xd—w(x, t) + (222 — to — Nw(x;t) =0,
T

which is the Pearson equation (1.3) withz) = x andr(z;t) = —222 +tx + A + 1.
Explicit expressions for the recurrence coefficientst; \) ands,,(¢; ) in the three-term recurrence relation

xpn(x; t) = PnJrl('r; t) + an (t§ )\)Pn (I; t) + ﬂn(t; )‘)Pnfl(x; t)v (32)
associated with the semi-classical Laguerre weight (3etwbtained in [13], and are given in the following theorem.

Theorem 3.1. Supposel,, »(z) is given by

_ dya d" ey
\Iln,,\(z) =W (1#)\, E, ey dzn_l

) L W) =1,
where

Ya(z) = dm
A(2) jz—m{[l—i—erf(z)] exp(2®)}, if A=meN,

with D, (¢) is the parabolic cylinder function anefc(z) the complementary error function

{DAl(—\/iz) exp (%,22), if AEN,

erfe(z) = % /OO exp(—t?) dt, (3.3)

Then coefficients., (¢; A) and 8, (¢; A) in the recurrence relatior§3.2) associated with the semi-classical Laguerre
weight(3.1)are given by

an(t; ) = %qn(z) + %t, (3.4a)
dgn
Ba(t; N) = —g—dqz —12(2) = L2gu(2) + 22 + 1n, (3.4b)

with z = 1t, where

- d \Ijn+1,>\(2)
qn(2) = 2Z+dz In Tr(2)

which satisfie®ry (1.8)with parameterg A, B) = (2n + A + 1, —2)\?).
Proof. See [13]. O

3.1 Symmetrization of semi-classical Laguerre weight

In this section we show that symmetrizing the semi-classiaguerre weight (3.1) gives rise to the generalized Freud
weight (1.9).

Let {le”(x; t)} denote the monic semi-classical Laguerre polynomialsogiehal with respect to semi-classical
Laguerre weight (3.1) with

/ L (23t) LMY (231) 2 exp(—a? + ta) dz = K (t) S
0

Define

Som(z;t) = L (2258);  Somi (z3t) = 2Q (2%1), (3.5)
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where

(@Y)
RS L1 (050) ()
QM (a;t) = = |LY) (ast) — LM (1) (3.6)
. LM (0;)

are also monic and of degreefor = # 0.
Then

/ L (2 ) LY (2 8)2? exp(—2? + tz) da = 2/ LN (@2 4) L (22 1) exp (=2 +t2?) da
0 0

= / LN (@2 6) L (2% 8) |2 exp (—z* 4 t2?) da

— 00

= / Som (2;)Sop (z; 1) 2|22 exp (=2 + th) dx

= Kn(t)0mn.
which implies thaf Sa,,, (x;t) }5°_, is a symmetric orthogonal sequence with respect to the eeggiiv
w(z;t) = |z)** T exp(—z* + t2?),

onR, i.e. the generalized Freud weight (1.9).
It is proved in [12, Thm 7.1] that the kernel polynomi&. (z;t) are orthogonal with respect tow(z;t) =
2 M exp(—a? + tx). Hence

K (t)0mn = / QW (@ QLY (23 )™ exp(—a? + tr) da
0

=2 /OOO QW (2% )QWM (22 )2 P exp (—a* + ta?) da
— / - [IQ,gg) (2% t))] [a:@w (2% t)} 2| exp (—2* + t2?) da
= /OO Som+1(2;t)San41 (2 t)|9c|2’\+1 exp (—:v4 + th) dx.
Lastly, since in each case the int:grand is odd, we have that
/OO Som+1(2; ) San (2 t)|9c|2AJr1 exp (—:v4 + t$2) dr =0, m,n € N,

and so we conclude th&s,, (z; t)}°2, is a sequence of polynomials orthogonal with respect totka eeight (1.9)
onR.

4 The generalized Freud weight

4.1 The moments of the generalized Freud weight

Itis shown in [13] that the moments of the semi-classicablveprovide the link between the weight and the associated
Painlevé equation. The recurrence coefficients in thestbeem recurrence relations associated with semi-clalssic
orthogonal polynomials can often be expressed in termslofisns of the Painlevé equations and associated discrete
Painlevé equations.

For the generalized Freud weight (1.9), the first momegtt;; \), can be obtained using the integral representation
of a parabolic cylinder (Hermite-Weber) functidh, (¢). By definition

wo(t; A) = / |22 exp (—:v4 +t2?) da

o0
= / M exp (—x4 + ta:2) dx
0

o0
= / yA exp (—y2 + ty) dy
0

T(A+1)
= W exp (%t2) D_>\_1(_ %\/Et)

11



since the parabolic cylinder functidn, (¢) has the integral representation [362.5(i)]

_1g2 0o
Dv(g) = M/ g~ v—1 exp (—%82 . 58) ds, ?R(V) <0.
I'(—v) 0
The even moments are
ton(t; A) = / 2 |22 exp (—:174 + ta:Q) dx

— 00

an >
= o7 (/ |22 exp (—:v4 + tz?) dx) ,
dn
whilst the odd ones are
tant+1(t; ) = / 2L |22 M exp (—:c4 + txz) dr =0, neN,

since the integrand is odd.
We note that

o0
pan(t; ) = / 2" [z exp (—a? + ta?) da

= / 2|22 exp (—a? + ta?) da
= po(t; A +n).

Also, when)\ = n € N, then
dn
Doyi(= §V3H) = 3Var 2o {1+ et (30)] exp (26) ),
whereerf(z) is the error function [36§12.7ii)].

4.2 Recurrence coefficients of the generalized Freud polynuals

Monic orthogonal polynomials with respect to the symmegigneralized Freud weight (1.9) satisfy the three-term
recurrence relation
xSp(x;t) = Spt1(x;t) + Bn(t; N)Sn—1(z; 1), (4.1)

whereS_;(z;t) = 0 andSy(z;t) = 1.
Our interest is to determine explicit expressions for theireence coefficients,, (¢; A) in the three-term recurrence
relation (4.1). First we relate them to solutions ¢f F1.8).

Lemma 4.1. The recurrence coefficients, (¢t; \) in (4.1)satisfy the equation

2
d:g" = ﬁ <%> + 385 — 167 + (3t — $A0)Bn + %, (4.2)
where the parameterd,, and B,, are given by
Agp = =2 \—n—1, Agpi1=A—n,
By, = —2n?, Bopi1 = —2A+n+1)%
Further 3,,(¢; A) satisfies the nonlinear difference equation
Bt + Bo+ ot = Lt + 2n+ 22+ 1)[1 — (-1)"] 4.3)

80n ’

which is known as discrete (dR).
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Proof. See, for example, [18, Theorem 6.1]. O
Remarks 4.2.
1. Equation (4.2) is equivalent tg\P(1.8) through the transformatigh, (¢; A) = 1w(z), with = = —1¢. Hence

Ban(t; N) = %w(z; -2\ —n—1, —2n2), (4.4a)
BQnJrl(t;)\) = %w(z,/\—n,—2()\+n+ 1)2)7 (44b)
with z = —%t, wherew(z; A, B) satisfies R, (1.8). The conditions on the ¥ parameters in (4.4) are precisely

those for which R, has (1.8) has solutions expressible in terms of the pam@bglinder function

P(2) = po(—22; ) = 1;((;\_%7—;/12) exp (32%) D_)\—l(\/iz),

[22, 37]; see also [13, Theorem 3.5].
2. The link between the differential equation (4.2) and tifeedence equation (4.3) is given by the Backlund

transformations
1 dB, 1 1 Tn
1= 18, + L+ = 4.5a
Brt1 28, dt 5Bn + 7 +4ﬂn ( )
1 dp, 1 1 Tn
el = ————— — =0p + 5t + ——, 4.5b
Br-1 28, di 56n + 7 +4[3n ( )

with v, = 3n+1(2A+1)[1 - (—1)"]. Lettingn — n-+1in (4.5b) and substituting (4.5a) gives the differential
equation (4.2), whilst eliminating the derivative yieltie tdifference equation (4.3).

Lemma 4.3. The recurrence coefficients, (¢; A) in (4.1)are given by

T d Ta(t; A+ 1)
Ban(t; A) = P In EENTSYRE (4.6a)
S\ d Tn1(t; A)
ﬁ2n+1 (t7 )\) - dt In Tn(t, B\ + 1)1 (46b)
wherer, (t; \) is the Wronskian given by
N dox d" oy
Tn(t, A) —W (QI))\,W,..., dtn_l 5 (47)

with
P(A+1
Oa(t) = po(t; A) = 2((T1)/2) exp (3t7) D_x_1(— 3V2t).
Proof. From the parabolic cylinder solutions ofyP(1.8) given in [13, Theorem 3.5], it is easily shown that the
equation

d?y 1 (dy 2
—J - (ZZ 33 — t? 1.2 1 -
A2 2y (dt) +3Y ty” + (8t 2A)y—|— 16y’ (4.8)
has the solution$yY' (¢; AY!, BY! ,
utt %y (’ ’ )}j:1,2,3
d | Ta_1(t;N)
Mt +2n—1,-2)%) = Lt + — In =2 4.9
yn(,/\—l-n , )\) 2+dtn ) (4.93a)
d . Tt A+1)
24 _ox—mp—1,-2m2) = —p 22" 7/ 4.9b
yn ( ’ )\ n ’ n ) dt n Tn(t,)\) 9 ( )
d Tn(t; A)
Bl (g )\ — — N 2 —
Yy (A —n+1,-2(A+ n)?) o In G D) (4.9¢)
wherer,, (¢; A) is the Wronskian (4.7). Comparing (4.4) and (4.9) gives #sréd result. O
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The first few recurrence coefficients (¢; A) are given by

Bi(t; A) = @y,
2
faltin) = - TR
L% A+1
202 — 1By —A—1 23,
t N %N A+ +2X+4)Dx + (A + 1)t
2004+2) 203 —tDy—A—1 2A+2)2A\+2)®3 — (A +1)tDy — (A +1)?]

B3(t; A) = —

Ba(t; A) =

where
(= 3Vv21)
D_y_ 1(——\/—t)

() = jtln{D a1( = 5V2t) exp (3t )}—1t+1f (4.10)

We note that p
(I))\(t) = Eln(bA(t)’
whereg, (t) = exp(§t*)D_x_1 (—3V21) satisfies

d2¢A 1 deA
—2t—=—2(A+1)¢gr =0,
and®, (¢) satisfies the Riccati equation

dd
d—;: —®3 + LDy LA+ 1) =0,

see Lemma 4.4.
Using the recurrence relation (4.1), the first few polyndméae

Si(z;t,A) =z,

So(x;t, \) = 2% — By,

tdy+A+1
20,

2003 — (12 4+2)0y — A+ 1)t 5 2N +2)P3 — (A + 1)tdy — (A + 1)?
20202 —tdy —A—1) 20202 — t®y — A— 1) ’
20+ 3)t®3 — (A + 1)(t2 —2)P) — (A +1)*t 4

4+ 2)82 — 2\ + 1)tdy — 2(A + 1)2
20 +2)2 = 2|83 — (A + 1)(A+4)tPx — (A +1)?(A +3)

a 4N +2)3 — 2\ + 1)tdy — 2(A + 1)2

Sa(x;t,\) = 2 +

Sy(z;t,\) = 2t +

55(1'; t, /\) =

Lemma 4.4. The function®, (¢) defined by4.10)satisfies the Riccati equation
dd,

dt

and has the asymptotic expansiontas oo

=—®F + 3Py + (A +1), (4.11)

_ 1
Tt+ Z T (4.12)
where the constants, are given by the nonlinear recurrence relation
an+1 =2(2n—1)a —22(1 Ant1—j,

with a; = A. In particular, ast — oo

2A(1—))  4A(A—1)(2A—3)
t3 + to

DA(t) = St + % + +0(t77). (4.13)
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Proof. Letting @, (t) = %m ¢a(t) in (4.11) yields

Py, dox
e 1)y =
72 7 ()\ + )gf))\ 0,

which has solution

ox(t) = {C1D_x-1(— 1V21) + CD 1 (3V31) fexp(2?),

with C; andC;, arbitrary constants. Hence settiGg = 1 andC> = 0 gives the solution (4.10) and shows tids{(¢)

satisfies (4.11).
s 2
o (S) >

Substituting (4.12) into (4.11) gives
=01 = 22 t2n Z Z @jn+1-j;

o0 oo
@2n—-1a, a
Z £2n =3t Z 12n—
n=1
hence, comparing coefficients of powerg gfivesa; = A and

n=1

ant1 =22n—1)a —22(1 Apt1—js

as required. Hence
a; = /\7 as = —2A(/\ - 1), asz = 4A(A - 1)(2A - 3),

which gives (4.13) as required. O
Lemma 4.5. Leth,,(¢; A) be defined by

H,(t:)\) = %m T (t; N), (4.14)
wherer, (¢; \) is the Wronskian given by

d dn!
ulti ) =W (o 2
with
ox(1) = St exp (44%) Do (— 5v20).

ThenH, (t; \) satisfies the second-order, second-degree equation

d?H,\* | ( dH, > dH, L4 H, dH,
Proof. Equation (4.15) is equivalent ta-3 the Ry o-equation
2o\ > do 2 do (do do
—— ) 42— - 4= 200 | [ — + 20 | =0, 4.16
(dz2> <Zd2 0) " dz <d " O) <d2+ ) 0 ( )

as shown in [13, Theorem 4.11]. Equation (4.15) is the sanegaation (4.15) in [13]. Special function solutions of
Srv (4.16) in terms of parabolic cylinder functions have beeassified in [22, 37]; see also [13, Theorem 3.5].

We remark that equation (4.16), and hence also equatioB)(4slequivalent to equation SD-I.c in the classification
of second order, second-degree differential equatioris thié Painlevé property by Cosgrove and Scoufis [14], an
equation first derived and solved by Chazy [7].
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Lemma 4.6. Ast — oo, the recurrence coefficiemt, (¢) has the asymptotic expansion

n 2n2A—-n-+1 _
Ban(t;0) = + = % +0(t7?), (4.17a)
_ 2 _ 2 _ )\
Bamsr (t:N) = % +2 . n_ 20 4”‘;" Azm) o), (4.17b)

forn € N.

Proof. In terms of the functior,, (¢; \) defined by (4.14), the recurrence coefficients are given as

Bon(t; ) = Hy(t; A+ 1) — Hi (85 ), (4.18a)
Bant1(t; A) = Hny1 (G A) — Ho(t; A + 1), (4.18b)

Ast — oo, H,(t; A) has the asymptotic expansion

nt  n\  2nA(n—N)

. _ -5
H,(t;\) = St T 3 +0(t°), (4.19)
forn € N, see [13, Lemma 5.2]; note that the functiakg(¢) andS,,(¢) in [13] are the same as our functiongt; \)
andH,,(t; \), respectively. Substituting (4.19) in (4.18) immediatgiyes the result. O

4.3 The differential-difference equation satisfied by genalized Freud polynomials

In this section we derive a differential-difference eqoasatisfied by generalized Freud polynomials using outtsesu
in §2.

Lemma 4.7. For the generalized Freud weiglit.9)the monic orthogonal polynomials, («; t) satisfy

/OO K(z,y)Sp(y;t) w(y; t) dy = 4(z® — 3t + B + Bas1) b, (4.20)
/ K(z,y)Sn(y;t)Sn-1(y; t) w(y; t) dy = 4xhy,, (4.21)
where ot i

with v(x;t) = 2* — to? and
hn = / Si(y; hw(y; t) dy. (4.22)
Proof. For the generalized Freud weight (1.9) we have
w(z;t) = [z exp (-2 + ta?),

i.e.v(x;t) = 2* — tz?, and so
K(z,y) = 4a? + day + 4y* — 2t.

Hence for (4.20)
/ K(z,y) S (y; t) w(y; t) dy = (42 — 2t)/ Saly;t) w(y; t) dy

+4x/ ySﬁ(y;t)W(y;t)dy+4/ y2Sh(yit) w(yst) dy

— 00

= (422 — 2)h,, + 4o / S (U3 ) [Snsr (U3 ) + BSns (3 1) w(y: t) dy

i 4/00 [Snea (32) + BuSuma(y: )] “wlv: 1) dy

— 00

= (42 — 20)hy, + 4hp i1 + 452 hy 1
= 4($2 - %t + ﬁn + Bn-{-l)hna
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sincefS,, = h,/h,—_1, the monic orthogonal polynomials, (z; t) satisfy the three-term recurrence relation (4.1), and
are orthogonal, i.e.

/OO S (y; 1) Sn (y; t)w(y; t) dy = 0, if m#n. (4.23)

Also for (4.21)
/_ K (2, y)Sn(y; t)Sn—1(y; t) w(y; t) dy
= (42® —2t)/_ Sn(y;t)Sn—1(y; t) w(y;t) dy+4x/_ YSn(y; ) Sn—1(y;t) wly;t) dy

+ 4/ Y2 Sn(y; t)Sno1(yit) w(y;t) dy

— 00

=4z /OO Sn(y; t) [Sn(Yst) + Bro1Sn—a(y; t)|wly; t) dy

+ 4/ [Sn1(y3t) + BnSn—1(y; )] [Sn(y;t) + Bn—2Sn—2(y; )] w(y; t) dy
= 4xh,,
using the recurrence relation (4.1) and orthogonality3®.2 O

Theorem 4.8. For the generalized Freud weigftt.9)the monic orthogonal polynomiafs, (z; t) satisfy the differential-

difference equation
ds,

x%(:c;t) = —Bu(x;1)Sn(z;t) + Ap(x;t)Sp—1 (25 1), (4.24)

where
Ap(z;t) = 4B (22 — %t + Bn + Bnt1), (4.25a)
By(z;t) = 42”8, + (A + §)[1 = (=1)"], (4.25b)

with 3,, the recurrence coefficient in the three-term recurrencatieh (4.1).

Proof. Corollary 2.3 shows that monic orthogonal polynomigjgz; ¢) with respect to the weight
w(z;t) = |z)** T exp{—v(z;t)},

satisfy the differential-difference equation (4.24), whe

Ap(zst) = hx / K (@, y) S5 (y; thw(y; t) dy, (4.26a)
n—1 — 00
T o0
Balait) = - [ Ko )S.sSualy Ol dy + 0+ DL+ (1) (4.260)
For the generalized Freud weight (1.9), using Lemma 4.dgitHe result. O

4.4 The differential equation satisfied by generalized Fred polynomials
Now we derive a differential equation satisfied by geneeaigreud polynomials.

Theorem 4.9. For the generalized Freud weigfit.9)the monic orthogonal polynomials, (z; t) satisfy the differen-

tial equation
2

d?s,, as,
x S2 (z;t) + Ry (x;t) —S (z;t) + T (x; 8)Sp(x;t) = 0, (4.27)
dzr dzr
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where

222

Y g 2 _
R, (x;t) = —4z™ 4+ 2tx” + 22+ 1 2 L4 Bt Bt (4.28a)
T, (z;t) = dnzd + 1628, (Bn + Bn+1 — %t)(ﬁn + Bn-1— %t)
n 3 A - (="
+4z[l + 22+ (=13, — i Z;_(it I;)[i ﬁ(+11) .
2 n n
+ A+ DI - (-1)"]x (t — %) ) (4.28b)

Proof. In Theorem 2.6 we proved that the coefficients in the difféerequation (2.14a) satisfied by polynomials
orthogonal with respect to the weight

w(w;t) = |z — k[" exp{—v(z; 1)},

are given by (2.14b) and (2.14c). For the generalized Freeidhw (1.9) we use (2.14b) and (2.14c) with= 0,
v =2X+1,v(z;t) = 2* — t2?, andA,, and B,, given by (4.25) to obtain the stated result. O

Remark 4.10. We note that if{ P,,(x)}5, is a sequence dflassicalorthogonal polynomials (such as Hermite,
Laguerre and Jacobi polynomials), thBp(z) satisfies second-order ordinary differential equation

a2P, dP,
o(w)—dxg (@)= = Ml (4.29)

whereo (z) is @ monic polynomial with de@) < 2, 7(z) is a polynomial with de¢r) = 1, and),, is a real number
which depends on the degree of the polynomial solution, sehier [5]. For classical orthogonal polynomials, the
polynomialsc(xz) andr(z) are the same as in the associated Pearson equation (1.3)nthast the coefficients in
second-order ordinary differential equation satisfied ly polynomials for the generalized Freud weight given in
Theorem 4.9 are not the same as the polynomi@l$ = = andr(z) = —42* + 2tz +2) + 1 in the Pearson equation
(1.3) satisfied by the generalized Freud polynomials since

w'(x;t)  7(x) — o' (x) 220 +1

= _—(Eg X X .
ot~ ey = a2t =, € R\{0}

4.5 An alternative method due to Shohat
Itis shown in [35] and [40] that the monic orthogonal polyrialss,, (z; t) orthogonal with respect to the generalized
Freud weight (1.9) are quasi-orthogonal of order= 5 and hence we can write

n

sy,

vt (a5t) = > enrSelait), (4.30)
k=n—4
where the coefficient,, j, is given by
1 [~ ds,
Cnk = o /_Ooxﬁ(x,t)sk(x,t)w(x,t) dz, (4.31)

forn —4 <k <nandhy # 0.
Integrating by parts, we obtainfar— 4 <k <n —1,

hicnk = {xSk(x;t)Sn(:r;t)w(:c;t)} - /OO i [ Sk (x; )w(x; t)] Sp(z;t) do

—o0 0o dzr

o0

_ / i [Snw)sk(x;t) + xsnw)%(:c;ﬂ] w(w;t) d - / S (01 1)S o) G o)

— 00 —00

= —/OO xSn(x;t)Sk(x;t)d—w($§t) dx

o dx

= —/ Sp(;t) Sk (3 t) (—da’ + 2t2* 4+ 2) + Vw(a;t) da

= /OO (42" — 2tx?) Sy, (25 1) Sk (w; )w(w; t) da, (4.32)

— 00
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since p
x%(m, t) = (—da* + 227 + 2X + Vw(z;t).

Iterating the three-term recurrence relation (4.1), thiedng relations are obtained

:E2Sn = On+2 + (ﬁn + ﬁn-i—l)sn + ﬁnﬁn—lsn—% (433&)
x4Sn — Ont+4 + (ﬁn + ﬁnJrl + ﬂn+2 + ﬂn+3)Sn+2
+ [Bn (Bn—l + ﬁn + Bn-}-l) + Bn-{-l (Bn + Bn-{-l + Bn+2)} Sn

+ ﬂnﬁnfl(ﬂn72 + ﬁnfl + ﬂn + BnJrl)San + (ﬂnﬁnflﬂn72ﬂn73)snf4- (433b)
Substituting (4.33) into (4.32) yields the coefficiefits ,}7=. , in (4.30).
Cnn—4 = 4ﬁnﬁn—16n—2ﬁn—37 (434&)
s =0, (4.34b)
Cnn—2 = 4ﬁnﬁn—1(6n—2 + ﬁn—l + ﬁn + ﬁn-l—l - %t)a (434C)
Com1 = 0. (4.34d)

Lastly we consider the case whén= n. Integration by parts in (4.31) yields

hncn,n = / l'(iclﬁ(w,t)sn(l',t)U}(,’E,t) dzr

o
0o
—_1
- 2
—00

= —%hn—l—/ S2(x;t) (22" —ta® — A — 3 w(z;t) da

T
S2(x;t) [w(:v;t) + x(jl—w(x;t) dx
T

— 00

- /Oo (22" — t2®) Sk (23 t) w(m;t) dz — (A + 1)hy,. (4.35)

— 00

From the three-term recurrence relation (4.1), we have

22S? = (Sny1 + BnSn-1)?
=S2,1+2B0Sn41Sn-1 + BS2_y
2 Sh = 2% (Shi1 + 280 Sns1Sn-1 + B Sn_1)
= 2257 11 + 2Bn(2Sn41)(€Sn-1) + Bra?Sy_,
= (Snt2 + ﬁn+15n)2 + 260 (Snt2 + Bnr15n) (Sn + Bn15n—2) + B (Sn + Bn71Sn72)2
= 520+ 2(Bns1 + Bn)Sni25n + (Bui1 + Bn)?Si + 28nBn—15n+25n—2
+ 260801 (B + Brs1)SnSn—2 + Br 87 157

and so by orthogonality
[ St u@ ) de = o + 82y = (B + Bl (4.36)

/ 2?2 (zt)w(z;t) doe = hpro + (Bug1 + Bn)*ha + BBo_1hn—2

— 00

= ﬂnJrQﬂnJrlhn + (ﬂnJrl + ﬂn)2h’n + ﬂnﬂnflhn
= [(ﬁn-ﬁ-l + ﬁn + ﬁn—l)ﬁn + (Bn+2 + Bn-{-l + Bn)ﬁn-{-l} hn
= L [t(Bnt1 + Bn) + N+ A+ 1] Ay, (4.37)

usingh, 11 = Bn+1h, and dR (4.3). Hence from (4.35), (4.36) and (4.37) we have

Cnn = t(ﬂnJrl + ﬂn) +n+A+1- t(ﬂnJrl + ﬂn) - (/\ + 1)
— . (4.38)
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Combining (4.34) with (4.30), we write

dsS,
dx

Y (,T; t) = Cn,n—4Sn—4(x; t) + Cn,n—ZSn—Q(x; t) + Cn,nSn (x; t)' (439)

In order to express,,_4 andsS,,_» in (4.39) in terms of5,, andS,,_1, we iterate (4.1) to obtain

S, 5= M’ (4.40)
anl
xSn72 - Snfl xQ - anl x
Sn_3 = = Sn-1— —— 5, 4.41
° Bn—Q Bn—lﬁn—Q ! Bn—lﬁn—Q ( )
xSn73 - Sn72 $3 - (ﬂnfl + ﬂn72)x $2 - Bn72
Sn—a = = Spo1————8,. 4.42
* Bn—3 Bn—lﬁn—QBn—3 ! ﬁn—lﬁn—Qﬁn—i’) ( )
Substituting (4.34), (4.38), (4.40) and (4.42) into (4.8@)ds
dsSy,
:Cd—(x;t) = —Bn(2)Sn(z;t) + Ap (23 8) Sp—1 (x5 ), (4.43)
X

whereA, (z) andB,,(z) are given by (4.25).

5 Conclusion

In this paper, for the generalized Freud weight (1.9) we tudotained explicit expressions for the coefficients of the
three-term recurrence relation and differential-differe equation satisfied by generalized Freud polynomials. We
also proved that the generalized Freud polynomials satisfigear ordinary differential equation. We note that the
closed form expressions for the coefficients provided allovestigation of other properties, including propertiés o
the zeros such as monotonicity, convexity and inequaki#isfied by the zeros. However, although the expressions
for the coefficients given in this paper are explicit, theg mther complicated and given in terms of special function
solutions of the fourth Painlevé equation which does neessarily lead to elegant results in applications. For this
reason, a natural extension of this work would be an invastig of asymptotic properties using limiting relations
satisfied by the polynomials as the parametensd/or\ tend tooo.
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