
REFINE 2009

Relational Concurrent Refinement: Automata

John Derrick1

Department of Computer Science,
University of Sheffield, Sheffield, UK

Eerke Boiten2

School of Computing, University of Kent,
Canterbury, Kent, UK

Abstract

Data refinement in a state-based language such as Z is defined using a relational model in terms of the
behaviour of abstract programs. Downward and upward simulation conditions form a sound and jointly
complete methodology to verify relational data refinements. In models of concurrency, refinement takes
a number of different forms depending on the exact notion of observation chosen, which can include the
events a system is prepared to accept or refuse, or depend on explicit properties of states and transitions.
In this paper we continue our program of deriving relational simulation conditions for behavioural notions of
refinement by defining embeddings into the relational model that extend our framework to include various
notions of automata based refinement.
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1 Introduction

The last 10 years have seen significant research effort in comparing notions of refine-
ment in different models of specification and computation, particularly motivated by
the desire to integrate specification languages that use different paradigms. In par-
ticular, we have considered the integration of state-based and concurrent specifica-
tion methods, and the introduction of relational verification methods for refinement
into a concurrency context.

In a process algebra such as CSP [15] a system is defined in terms of actions (or
events) which represent the interactions between a system and its environment. The
exact way in which the environment is allowed to interact with the system varies
between different semantics. Typical semantics are set-based, associating one or
more sets with each process, for example traces, refusals, divergences. Refinement is
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then defined in terms of set inclusions and equalities between the corresponding sets
for different processes. A survey of many prominent process algebraic refinement
relations is given in [25].

In state-based systems, specifications are considered to define abstract data types
(ADTs), consisting of an initialisation, a collection of operations and a finalisation,
all of which are relations. A program over an ADT is a sequential composition of
these elements, transforming a global visible state into another one via a sequence
of hidden local states. Refinement is defined to be inclusion of behaviour for all
programs, and is normally verified through simulations [9]. For a complete method,
often two kinds of simulations are defined: downward and upward simulations.

Research on combining relational and concurrent refinement concentrated ini-
tially on providing joint semantics, and on identifying correspondences between
variations of the relational models and concurrency semantics. In the latter cate-
gory, see e.g. work by Bolton and Davies [6,7] and Reeves and Streader [19]. Our
work on relational concurrent refinement started [5,10] from the powerful idea that
the relational finalisations can encode the observations embedded in concurrency
semantics. The relational simulation rules can then be used to extract simulations
for concurrency. These provide a “canned induction” method of verifying concur-
rent refinement, by checking a fixed number of conditions for each possible action,
rather than checking inclusion between potentially large sets. We derived simula-
tion rules for failures-divergences refinement [10], including also outputs and internal
operations [4], and for readiness refinement [10]. These were mostly based on the
total relations model (as described below). Trace refinement and other relations
based on the partial relations model were considered in [11], and different interpre-
tations of divergent behaviour in [3]. In all these cases, the refinement notions have
been imported from a concurrency context, represented in a relational formalism,
and then expressed in terms of Z data types. Thus it provides for an integration
of paradigms by allowing specification using Z schemas and sets while adapting a
concurrency-style semantics.

This paper continues the programme by considering concurrent refinement no-
tions in the context of automata based specification. In Section 2 we provide the
basic definitions and background. In Section 3 we introduced automata and IO
automata, their refinement notions, and derive their relational simulation rules. We
conclude in Section 4.

2 Background

This background section presents the standard refinement theory [12] for abstract
data types in a relational setting. The relational model of data refinement where
all operations are total, as described in the 1986 paper by He, Hoare and Sanders
[14], traditionally received the most attention. The standard refinement theory
of Z [26,12], for example, is based on this version of the theory. However, later
publications by He and Hoare, in particular [13], dropped the restriction to total
relations, and proved soundness and joint completeness of the same set of simulation
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rules in the more general case. De Roever and Engelhardt [9] also present the partial
relations theory, without putting much emphasis on this aspect.

2.1 A partial relational model

A program (defined here as a sequence of operations) is given as a relation over a
global state G, implemented using a local state State. The initialisation of the pro-
gram takes a global state to a local state, on which the operations act, a finalisation
translates back from local to global. In order to distinguish between relational for-
mulations (which use Z as a meta-language) and expressions in terms of Z schemas
etc., we use the convention that expressions and identifiers in the world of relational
data types are typeset in a sans serif font.

Definition 1 (Data type)
A (partial) data type is a quadruple (State, Init, {Opi}i∈J ,Fin). The operations
{Opi}, indexed by i ∈ J , are relations on the set State; Init is a total relation from
G to State; Fin is a total relation from State to G. If the operations are all total
relations, we call it a total data type. 2

Definition 2 (Program)
For a data type D = (State, Init, {Opi}i∈J ,Fin) a program is a sequence over J.
The meaning of a program p over D is denoted by pD, and defined as follows. If
p = 〈p1, ..., pn〉 then pD = Init o

9 Opp1
o
9 ... o

9 Oppn
o
9 Fin. 2

As usual we assume that the data types are conformal, i.e., they use the same
index set for the operations.

Definition 3 (Data refinement)
For data types A and C, C refines A, denoted A vdata C (dropping the subscript if
the context is clear), iff for each program p over J , pC ⊆ pA. 2

Downward and upward simulations [9] form a sound and jointly complete [14,9]
proof method for verifying refinements. In a simulation a step-by-step comparison
is made of each operation in the data types, and to do so the concrete and abstract
states are related by a retrieve relation.

Definition 4 (Downward simulation)
Assume data types A = (AState,AInit, {AOpi}i∈J ,AFin) and C = (CState,CInit,

{COpi}i∈J ,CFin). A downward simulation is a relation R from AState to CState

satisfying

CInit ⊆ AInit o
9 R

R o
9 CFin ⊆ AFin

∀ i : J • R o
9 COpi ⊆ AOpi o

9 R

2

Any relational data types A and C in this paper are assumed to be defined as in the
above definition (occasionally with extra conditions imposed).
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Definition 5 (Upward simulation)
For data types A and C, an upward simulation is a relation T from CState to AState

such that

CInit o
9 T ⊆ AInit

CFin ⊆ T o
9 AFin

∀ i : J • COpi o
9 T ⊆ T o

9 AOpi

2.2 Totalisations

The natural encoding of particular programmes being “impossible”, e.g. leading to
a deadlock, in the partial relational model is through the empty relation. However,
a non-deterministic choice (union of relations) may then ensure that possible rather
than certain erroneous behaviour is not observable at all – see [11] for a detailed
discussion. Sticking with the core idea of relational concurrent refinement, this can
be solved by observing more (e.g. refusals) at the end of a program as we have done
elsewhere. A more traditional approach is to encode error behaviour explicitly in
operations. This is often called “totalisation”, as it typically increases operations’
domains to become total, but here and elsewhere we also apply it resulting in
relations that remain partial.

There are two main types of totalisation: the non-blocking (or non-strict, or
chaotic) totalisation represents erroneous behaviour as leading to all possible states
including a new error state; the blocking (or strict) totalisation maps error traces
only to a “sink” state. The totalisations turn a partial relation on a set S into a
total relation on a set S⊥, which is S extended with a distinguished value ⊥ not in
S.

Definition 6 (Totalisation)
For a partial relation Op on State, its totalisation is a total relation on State⊥,
defined in the non-blocking model by

Ôp
nb

== Op ∪ {x, y : State⊥ | x 6∈ dom Op • (x, y)}

or in the blocking model by

Ôp
b

== Op ∪ {x : State⊥ | x 6∈ dom Op • (x,⊥)}

2

Characterisations of downward and upward simulations on these totalised rela-
tions can be simplified to remove any reference to ⊥. This results in the standard
definitions of downward and upward simulations for partial relations, see [12].

Although in this paper we explore the partial relation model, we will need, on
occasion, elements of the kind of totalisation we have just described in order to give
a relational counterpart to some of the refinement preorders we look at below.
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2.3 Refinement in Z

The definition of refinement in a specification language such as Z is usually based
on the totalised framework just given. Specifically, a Z specification can be thought
of as a data type, defined as a tuple (State, Init , {Opi}i∈J ). The operations Opi

are defined in terms of (the variables of) State (its before-state) and State ′ (its
after-state). The initialisation is also expressed in terms of an after-state State ′.
In addition to this, operations can also consume inputs and produce outputs. As
finalisation is implicit in these data types, it only has an occasional impact on
specific refinement notions. If specifications have inputs and outputs, these are
included in both the global and local state of the relational embedding of a Z
specification. See [12] for the full details on this – in this paper we only consider
data types without inputs and outputs. In concurrent refinement relations, inputs
add little complication; outputs particularly complicate refusals as described in [4].

In a context where there is no input or output, the global state contains no
information and is a one point domain, i.e., G == {∗}, and the local state is State ==

State. In such a context the other components of the embedding are as given below.

Definition 7 (Basic embedding of Z data types) The Z data type (State,
Init , {Opi}i∈J ) is interpreted relationally as (State, Init, {Opi}i∈J ,Fin) where

Init == {Init • ∗ 7→ θState ′}
Op == {Op • θState 7→ θState ′}
Fin == {State • θState 7→ ∗}

Given these embeddings, we can translate the relational refinement conditions of
downward simulations for totalised relations into refinement conditions for Z ADTs,
where we note that the finalisation conditions are always satisfied in this Z inter-
pretation.

Definition 8 (Standard downward simulation in Z)
Given Z data types A = (AState,AInit , {AOpi}i∈J ) and C = (CState,CInit ,
{COpi}i∈J ). The relation R on AState ∧CState is a downward simulation from A
to C in the non-blocking model if

∀CState ′ • CInit ⇒ ∃AState ′ • AInit ∧ R′

∀ i : J ; AState; CState • pre AOpi ∧ R ⇒ pre COpi

∀ i : J ; AState; CState; CState ′ • pre AOpi ∧ R ∧ COpi

⇒ ∃AState ′ • R′ ∧AOpi

In the blocking model, the correctness (last) condition becomes

∀ i : J ; AState; CState; CState ′ • R ∧ COpi ⇒ ∃AState ′ • R′ ∧AOpi

and then the applicability (second) condition above is equivalent to

∀ i : J ; AState; CState • R ⇒ (pre AOpi ⇔ pre COpi)
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2

Any Z data types A and C in this paper are assumed to be defined as in the above
definition.

The translation of the upward simulation conditions is similar, however this time
the finalisation produces a condition that the simulation is total on the concrete
state.

Definition 9 (Standard upward simulation in Z)
For Z data types A and C , the relation T on AState ∧ CState is an upward simu-
lation from A to C in the non-blocking model if

∀AState ′; CState ′ • CInit ∧ T ′ ⇒ AInit
∀ i : J ; CState • ∃AState • T ∧ (pre AOpi ⇒ pre COpi)
∀ i : J ; AState ′; CState; CState ′ •

(COpi ∧ T ′)⇒ (∃AState • T ∧ (pre AOpi ⇒ AOpi))

In the blocking model, the correctness condition becomes

∀ i : J ; AState ′; CState; CState ′ • (COpi ∧ T ′)⇒ ∃AState • T ∧AOpi 2

2.4 Process algebraic based refinement

Process algebras [15,18,2] provide a means to describe and verify concurrent systems
and processes, and provide operators such as synchronisation, communication, and
various flavours of composition. The semantics of a process algebra is often given
by means of a semantics which associates a labelled transition system (LTS) to
each term. Varying how the environment interacts with a process leads to differing
observations and these can be thought of as differing testing scenarios, and therefore
different preorders (i.e., refinement relations) – an overview and comprehensive
treatment is provided by van Glabbeek in [24,25]. We will need the usual notation
for labelled transition systems (LTSs):

Definition 10 (Labelled Transition Systems (LTSs))
A labelled transition system is a tuple L = (States,Act ,T , Init) where States is a
non-empty set of states, Init ⊆ States is the set of initial states, Act is a set of
actions, and T ⊆ States ×Act × States is a transition relation. The components of
L are also accessed as states(L) = A and init(L) = Init. 2

Every state in the LTS represents a process itself – namely the one representing all
possible behaviour from that point onwards. Specific notation needed includes the
usual notation for writing transitions as p a−→ q for (p, a, q) ∈ T and the extension
of this to traces (written p tr−→ q) and the set of enabled actions of a process which
is defined as:

next(p) = {a ∈ Act | ∃ q • p a−→ q}.
In [11] we showed how different process algebraic preorders can be embedded

into the relational model. Here we review how this is achieved for the trace preorder
which defines refinement as trace inclusion. In the next section, we provide that
type of characterisation for each notion of automata refinement.
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Definition 11 σ ∈ Act∗ is a trace of a process p if ∃ q • p σ−→ q. T (p) denotes
the set of traces of p. The trace preorder is defined by p vtr q iff T (q) ⊆ T (p). 2

As observed previously [10] the partial relations model records exactly trace
information for the embedding with trivial finalisation in Definition 7: possible
traces lead to the single global value; impossible traces produce the empty relation.
To prove the correspondence between trace preorder and data refinement we need
to provide a definition of the traces of an abstract data type.

Definition 12 The traces of a Z data type (State, Init , {Opi}i∈J ) are all sequences
〈i1, . . . , in〉 such that

∃State ′ • Init o
9 Opi1

o
9 . . . o

9 Opin

We denote the traces of an ADT A by T (A). 2

Then the following can be proved [11]:

Theorem 2.1 With the trace embedding, data refinement corresponds to trace pre-
order. That is, when Z data types A and C are embedded as A and C,

A vdata C iff T (C ) ⊆ T (A)

On the basis of this result, we can extract the simulation rules that correspond
to this notion of refinement from the partial relation simulations as applied to this
embedding (i.e., without a totalisation in between). These are of course the rules
for standard Z refinement but omitting applicability of operations, as used also e.g.,
in Event-B [1]. The conditions for a downward simulation in the partial relational
model are (c.f. Definition 4):

CInit ⊆ AInit o
9 R

R o
9 CFin ⊆ AFin

∀ i : J • R o
9 COpi ⊆ AOpi o

9 R

The first and last of these are just the standard initialisation and correctness condi-
tions, respectively. The finalisation condition in fact places no further requirements
with the trace embedding. The same is true for upwards simulations, hence we
have:

Definition 13 (Trace simulations in Z)
Given Z data types A and C , the relation R on AState∧CState is a trace downward
simulation from A to C if

∀CState ′ • CInit ⇒ ∃AState ′ • AInit ∧ R′

∀ i ∈ J • ∀AState; CState; CState ′ • R ∧ COpi ⇒ ∃AState ′ • R′ ∧AOpi

The total relation T on AState ∧ CState is a trace upward simulation from A
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to C if

∀AState ′; CState ′ • CInit ∧ T ′ ⇒ AInit
∀ i : J • ∀AState ′; CState; CState ′ •

(COpi ∧ T ′)⇒ (∃AState • T ∧AOpi)

2

3 Automata based refinement

Automata [17] offer another perspective on refinement to those given by a process
algebra or state-based context. In [17] Lynch and Vaandrager provide a comprehen-
sive treatment of refinement for automata, defining a number of simulation defini-
tions and results relating them. In this section we describe the relationship between
automata based refinement and our relational characterisation, hence answering the
question raised in [17] concerning their connection.

In Section 3.2 we subsequently consider IO-automata and thus provide a rela-
tional characterisation for IO-automata refinement and a set of simulation rules.

3.1 Basic definitions

For our purposes automata are simply LTSs. We do not consider systems with
internal evolution, thus there is no special element τ ∈ Act .

Lynch and Vaandrager use the trace preorder as the definition of refinement;
simulations are then used to provide sound and jointly complete techniques. How-
ever, slightly confusingly the term refinement is also used in [17] to mean a restricted
form of downward simulation. To remain consistent with the notation introduced
above we use refinement to mean data refinement in a relational setting. Lynch
and Vaandrager define simulations in the standard fashion, that is, use Definitions
4 and 5 transcribed into the framework of automata 3 . Thus we have (eliding some
obvious quantification):

Definition 14 (Simulations for automata)
Let A and C be automata. A downward simulation from A to C is a relation f over
states(A) and states(C ) such that

If s ∈ init(A) then f (s) ∩ init(C ) 6= ∅
If astate a−→ astate ′ and cstate ∈ f (astate)
then ∃ cstate ′ ∈ f (astate ′) • cstate a−→ cstate ′

An upward simulation from A to C is a total relation f over states(A) and states(C )

3 Downward and upward simulations are called forward and backward simulations, respectively, as is some-
times the case.
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such that

If s ∈ init(A) then f (s) ⊆ init(C )
If astate a−→ astate ′ and cstate ′ ∈ f (astate ′)
then ∃ cstate ∈ f (astate) • cstate a−→ cstate ′

2

Along with many other results and examples, the standard soundness and joint
completeness results are given for these simulations with respect to the trace pre-
order.

Lynch and Vaandrager raise a number of questions regarding the relationship
between the refinement theory and simulations given for automata and those for
data refinement. In particular, they comment in [17]:

Surprisingly, the definition of refinement between data types is completely differ-
ent from the definition of trace inclusion between automata: informally, one data
type is refined by another if any program that uses the former would function at
least as well using the latter.

Clearly, an important topic of future research is to study the connection between
automata based simulation techniques and methods for data refinement.

As should be clear, the partial relational framework can be used to answer these
questions. In particular, the most natural relational embedding of an automaton in
that framework is the following.

Definition 15 (Automata embedding)
An automaton (states(A),Act ,−→, init(A)) has the following embedding into the
relational model.

G == {∗}
State == states(A)
Init == {s : init(A) • ∗ 7→ s}
Opi == {s, s ′ : states(A) | s i−→ s ′ • s 7→ s ′}
Fin == {s : states(A) • s 7→ ∗}

2

As can easily be seen, with this embedding the definitions in Definition 14 are
equivalent to the trace simulations described in Definition 13. This answers the
query in [17] in the following way. The automata embedding in Definition 15 is
equivalent to the trace embedding given in Definition 7. Furthermore, the au-
tomata simulations are equivalent to the trace simulations (Definition 13). Thus
with this embedding relational data refinement is trace inclusion (Theorem 2.1),
and the ’completely different’ goes away, or put another way, with this automata
embedding looking at consistency of program behaviour is the same as trace inclu-
sion. The question for connections between automata based simulation techniques
and methods for data refinement can now be seen as one of varying the embedding
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q0 q1 q2 q3

but but butbut

liq liq

butbut

liq
but

liq

liq choc

Fig. 1. Four IO automata

as has been described in this paper.

3.2 IO automata

IO automata [16] are a class of automata that distinguish explicitly between the
input and output of a system, and thus share characteristics with both standard
automata and state-based languages such as Z and B. In such a model the set of
actions is partitioned into input and output actions. A particular computational
interpretation is taken, viz: output actions are actions initiated by the system, while
input actions are under the control of the environment. A system can never refuse
to perform its input actions, and its output actions can never be blocked by the
environment.

Since we are considering systems without internal evolution in this paper, IO
automata do not differ from IO transition systems as discussed by Tretmans in [22],
and we use the notation introduced there.

Definition 16 (Partitioned automaton; IO automata)
A partitioned automaton is a LTS where the set of actions Act is partitioned into
input actions LI and output actions LU (LI ∪ LU = Act, LI ∩ LU = ∅). An
IO automaton p is a partitioned automaton for which all input actions are always
enabled in any state. That is, for all states p:

∀ a ∈ LI • p a−→

The class of IO automata with input and output actions LI and LU is denoted
IOT S(LI ,LU ). 2

Example 3.1 Four IO automata are given in Figure 1 (adapted from [22]), where
LI = {but}, LU = {liq , choc}. Input actions are always enabled, but may have
no effect in a particular state; where this occurs it is denoted graphically with a
self-loop without explicit label. 2

To define refinement between IOTSs we use the idea of refusals sets after a
particular trace given in the definition below.
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Definition 17 (Refusals after a trace)
Let p be an LTS, σ a trace of p, and X ⊆ Act. Then p after σ ref X iff

∃ q • p σ−→ q and X ∩ next(q) = ∅

2

This was used in [11] to define conformance and extension, however, it can
also be used to define the input-output testing relation, viot . It is defined via the
notion of weakly quiescent traces, which are traces after which no more outputs are
possible.

Definition 18 (Weakly quiescent traces, IOTS preorder)
The weakly quiescent traces of a partitioned LTS A are denoted by δ–traces(A), and
consist of all the traces σ ∈ Act∗ such that A after σ ref LU . The IOTS preorder
is defined for IOTSs A and C by:

A viot C iff T (C ) ⊆ T (A) and δ–traces(C ) ⊆ δ–traces(A)

2

The definition of viot is the same as that given in [21,20] for IO-automata,
which is shown to be equivalent to the quiescent trace preorder of [23]. Introducing
internal actions gives rise to some minor differences between the definitions which
we do not repeat here, see references given above for more details.

The following hold between the systems introduced above: q0 viot q1 but q1 6viot

q0, q2 viot q1, q3 viot q1, but q1, q3 6viot q2 and q1, q2 6viot q3.

3.2.1 Relational characterisation of IOTS refinement
The IOTS preorder can be defined for arbitrary partitioned LTSs, in which case it is
usual to interpret these as under-specified IOTSs, where some input actions are not
specified in some states. One might define an alternate relation, vioconf , specifically
for partitioned LTSs. Another approach, given in [8], is to give a demonic semantics
for process expressions. In this semantics a transition is added for each non-specified
input, and after this transition any behaviour is possible. We will follow the latter
approach here. We give a relational characterisation of viot , and in doing so derive
simulation rules for it. To do this we will use the partial relational framework, but
with some elements of totalisation used to deal with the demonic process semantics.

To define viot between arbitrary partitioned LTSs, we define A viot C iff Â v
Ĉ , where Â is an appropriate relational embedding – i.e., rather than explicitly
constructing the IOTS representing its demonic semantics, we give its relational
version directly. This relational embedding needs to totalise operations in LI to
represent the fact that they are always enabled, and include a modification of LU

to represent the fact that after an unspecified input any behaviour is possible, and
an appropriate finalisation to ensure subsetting of δ–traces. We thus make the
following definition.
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Definition 19 (IOTS embedding)
A partitioned LTS L = (states,LI ,LU ,−→, init) is embedded into the relational
model as L̂ = (State, Init, {Ôpi}i∈LI∪LU

,Fin), where

G == {∗,LU }
State ==states ∪ {⊥}, where ⊥ 6∈ states
Init == {g : G; s : init • g 7→ s}
Ôpi ==

i−→ ∪{⊥ 7→ ⊥} ∪ {x : states, y : State | i ∈ LI ∧ x 6 i−→• x 7→ y}
Fin == {x : State • x 7→ ∗} ∪ {(⊥,LU )}

∪ {x : states | (∀ i ∈ LU • x 6 i−→) • x 7→ LU }

2

Theorem 3.2 With the IOTS embedding, data refinement corresponds to the IOTS
preorder. That is, let Ã denote the IOTS obtained by giving the partitioned LTS A
a demonic semantics, then

Â v Ĉ iff T (C̃ ) ⊆ T (Ã) and δ–traces(C̃ ) ⊆ δ–traces(Ã)

Proof The crucial point to note is that ∗ represents the observation of a trace,
and LU the observation of a quiescent trace, i.e., we have that

(g , ∗) ∈ tr
Â
≡ tr ∈ T (Ã)

(g ,LU ) ∈ tr
Â
≡ tr ∈ δ–traces(Ã)

The latter means that either A after tr ref LU , or tr contains an input action that
was impossible in A (encoded in the pair (⊥,LU ) ∈ Fin).

1. Suppose Â v Ĉ , i.e., for all tr we have tr
Ĉ
⊆ tr

Â
.

Given tr ∈ T (C̃ ). Then we have (g , ∗) ∈ tr
Ĉ
⊆ tr

Â
. Thus tr ∈ T (Ã).

Given tr ∈ δ–traces(C̃ ). Then (∗,LU ) ∈ tr
Ĉ
⊆ tr

Â
. Thus tr ∈ δ–traces(Ã).

2. Suppose that T (C̃ ) ⊆ T (Ã) and δ–traces(C̃ ) ⊆ δ–traces(Ã).
Consider a program tr . If tr

Ĉ
is empty (due to some output action being im-

possible in tr) then tr
Ĉ
⊆ tr

Â
as required. If (g , ∗) ∈ tr

Ĉ
then tr ∈ T (C̃ ). Thus

tr ∈ T (Ã) and consequently (g , ∗) ∈ tr
Â

. If (g ,LU ) ∈ tr
Ĉ

then tr ∈ δ–traces(C̃ ).
Thus tr ∈ δ–traces(Ã) and consequently (g ,LU ) ∈ tr

Â
.

Thus tr
Ĉ
⊆ tr

Â
for any tr , and Â v Ĉ as required. 2

We can now extract the simulation rules that correspond to this notion of re-
finement.

3.2.2 Simulations
We have embedded an IOTS into a partial relational model, but one augmented with
both refusals and a distinguished element, ⊥. The downward simulation conditions
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for this data type are, of course:

CInit ⊆ AInit o
9 R̂

R̂ o
9 CFin ⊆ AFin

∀ i : I • R̂ o
9 ĈOpi ⊆ ÂOpi o

9 R̂

We will extract the underlying conditions in the usual fashion, however, one will
obtain different conditions depending on whether an operation is in LI or LU .

First, the initialisation condition, which under the totalisation adds no extra
constraints beyond normal. Second, if i ∈ LU , then Ôpi == Opi ∪ {(⊥,⊥)}, so that

R̂ o
9 ĈOpi ⊆ ÂOpi o

9 R̂ iff R o
9 COpi ⊆ AOpi o

9 R

Third, if i ∈ LI , then Ôpi is the non-blocking totalisation over states ∪ {⊥}, thus

R̂ o
9 ĈOpi ⊆ ÂOpi o

9 R̂ iff (dom AOpi C R) o
9 COpi ⊆ AOpi o

9 R and
ran (dom AOpi C R) ⊆ dom COpi

Note, that for an IOTS (as opposed to an arbitrary partitioned LTS), input
actions are always enabled, and thus in that case this correctness condition reduces
to R o

9 COpi ⊆ AOpi o
9 R for LI .

Finally, the finalisation condition adds in the condition to check for refusals as
needed for δ–trace inclusion. So R̂ o

9 CFin ⊆ AFin will become

∀R • (∀ i ∈ LU • ¬pre COpi)⇒ (∀ i ∈ LU • ¬pre AOpi)

That is, if states are linked by the retrieve relation and C refuses output actions,
then so must A.

For upwards simulations, we use a similar line of reasoning to find that one
requires the standard initialisation, blocking correctness for output actions, non-
blocking applicability and correctness for input actions together with the refusal
condition

∀CState • (∀ i ∈ LU • ¬pre COpi)⇒ ∃AState • T ∧ (∀ i ∈ LU • ¬pre AOpi)

which can be combined with the usual totality of upward simulation to give

∀CState • ∃AState • T ∧ ((∀ i ∈ LU • ¬pre COpi)⇒ (∀ i ∈ LU • ¬pre AOpi))

These are summarised in the following definition.

Definition 20 (IOTS simulations in Z)
Given Z data types A and C , both representing partitioned LTSs, J = LI ∪LU . The

13
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relation R on AState ∧ CState is an IOTS downward simulation from A to C if

∀CState ′ • CInit ⇒ ∃AState ′ • AInit ∧ R′

∀ i : LU ; AState; CState; CState ′ • R ∧ COpi ⇒ ∃AState ′ • R′ ∧AOpi

∀ i : LI ; AState; CState • pre AOpi ∧ R ⇒ pre COpi

∀ i : LI ; AState; CState; CState ′ • pre AOpi ∧ R ∧ COpi

⇒ ∃AState ′ • R′ ∧AOpi

∀R • (∀ i : LU • ¬pre COpi)⇒ (∀ i : LU • ¬pre AOpi)

The relation T on AState ∧CState is an IOTS upward simulation from A to C
if

∀AState ′; CState ′ • CInit ∧ T ′ ⇒ AInit
∀ i : LU ; AState ′; CState; CState ′ • (COpi ∧ T ′)⇒ (∃AState • T ∧AOpi)
∀ i : LI ; CState • ∃AState • T ∧ (pre AOpi ⇒ pre COpi)
∀ i : LI ; AState ′; CState; CState ′ •

(COpi ∧ T ′)⇒ (∃AState • T ∧ (pre AOpi ⇒ AOpi))
∀CState • ∃AState • T ∧ ((∀ i : LU • ¬pre COpi)⇒ (∀ i : LU • ¬pre AOpi))

2

3.2.3 Angelic process semantics
Above we used a totalisation to define viot between an LTS and an IOTS, specifi-
cally the demonic process semantics discussed in [8]. An alternative view of under-
specified input actions is that the under-specification represents an implicit skip.
Such an interpretation was introduced in [23] and discussed in [8], where it is called
the angelic process semantics.

The relational embedding of such a semantics only alters the input action com-
ponent from that we defined above. Thus, when deriving simulation conditions for
such an embedding, the initialisation, refusal conditions and correctness for output
actions remain the same.

For input actions, they are embedded as

Ôpi == Opi ∪ {(state, state) | state 6 i−→}

and the downward simulation condition

R̂ o
9 ĈOpi ⊆ ÂOpi o

9 R̂

evaluates to

R o
9 (COpi ∪ (dom COpi C skip)) ⊆ (AOpi ∪ (dom AOpi C skip)) o

9 R

However, this does not have a particular interesting simplification.

14
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4 Conclusions

This paper has explored the relation between automata based refinement and no-
tions of refinement for relational data types and process algebras. The notions of
trace refinement and basic refinement for automata were shown to coincide through
sharing the same sound and complete set of simulation rules. Refinement for IO
automata (IO transition systems [22]) was shown to be different from any refine-
ment relation considered so far in our relational concurrent refinement programme
[10,4,11,3]. This was due to the separation of input and output actions, requiring a
different treatment in refinement, each sharing some characteristics with previously
considered methods of “totalising” operations.
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