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Abstract

We study alternative dynamics for Value at Risk (VaR) that incorporate a slow moving
component and information on recent aggregate returns in established quantile (auto)
regression models. These models are compared on their economic performance, and also on
metrics of first-order importance such as violation ratios. By better economic performance,
we mean that changes in the VaR forecasts should have a lower variance to reduce transaction
costs and should lead to lower exceedance sizes without raising the average level of the VaR.
We find that, in combination with a targeted estimation strategy, our proposed models lead to
improved performance in both statistical and economic terms.
Keywords: Long memory time series; Quantile forecasts; Conditional loss

1 Introduction

Value at Risk (VaR) is now a ubiquitous indicator of financial market risk. Its formal adoption in

regulatory standards has ensured its integration into the everyday operation of financial institutions
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Panopoulou, Gareth Peters, David Veredas, and seminar participants at the Computational and Financial Econometrics
conference (Dec 2013). We are grateful to the Engineering and Physical Sciences Research Council for financial support
of Evangelia Mitrodima’s PhD.
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and regulators. A large literature has developed to find better ways of estimating VaR. The goal

of this paper is to contribute to improvements in the time series forecasting of VaR by taking into

account some well known features of risk dynamics in stock returns, and to do so while targeting the

economic implications of the VaR model. The economic implications we refer to are the transaction

costs from variation in VaR, and the extent that shocks exceed anticipated risk thresholds.

While we pay due attention to the statistical performance of the models, we are motivated by

the potential for achieving relatively smoother VaR series without raising the overall level of VaR.

Given the role of VaR in setting practical limits on trading positions, frequent changes could lead

to unnecessary transaction costs or to induce conservatism leading to misallocation of capital. We

hypothesize that gradual adjustments to VaR that capture low-frequency movements would help

make the series smoother. At the same time, we anticipate that this approach will reduce the need

for costly recapitalization of investment strategies.

It is widely recognized that clustering and asymmetry in return volatility imply that VaR

increases when the value of investments falls. This in turn implies that a trader would be forced to

reduce her position at an unprofitable juncture, effectively selling low and buying high, in order to

bring capital in line with risk controls. Intuitively, this problem calls for adjustments to portfolio

positions in a timely manner. If the VaR series includes small gradual adjustments that come closer

to anticipating the severity of anticipated shocks, there could be a translated benefit in portfolio

performance. By allowing for a gradually time-varying tendency for VaR, we hope to achieve this

outcome.

There are several approaches to estimating VaR. As the VaR is a prespecified quantile of the

return distribution, it can in principle be estimated from any time series model of returns where

the distribution of the future return is known conditionally. Alternatively, one could use the history

of past returns to non-parametrically estimate the relevant percentile. The two approaches could

also be combined by using a model, e.g. from the ARCH (Engle, 1982) family, to obtain a filtered

distribution. Christoffersen (2009) provides an overview of the types of methodologies available

for VaR forecasting, and also a detailed analysis explaining the range of possibilities under the

Filtered Historical Simulation approach. Under this system, it is possible to use a parametric

filtering method to estimate and forecast volatility, and then use this in a simulated environment

to determine the relevant quantile forecast of the distribution. In this paper, we focus on the

Conditional Autoregressive Value at Risk (CAViaR) model proposed by Engle and Manganelli

(2004). CAViaR is a semiparametric approach that involves modeling the desired quantile directly

in a non-linear autoregressive framework. We examine ways to modify CAViaR specifications to

incorporate insights from the volatility modeling literature.
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We have two main reasons for focussing on CAViaR models. Firstly, though several existing

studies have compared various types of VaR models, the potential of CAViaR models in their

various specifications has not been fully explored. This is particularly true for CAViaR models with

longer memory, although the volatility literature contains several analogous models. In addition,

we hope to make an additional contribution by examining some of the empirical properties of

CAViaR models, such as the types of issues that arise in their estimation.

We systematically evaluate three approaches proposed in the literature to improve the dynamics

of the original CAViaR model specifications. First, we consider the role of the ‘news impact

function’ - the term coined by Engle and Ng (1993) to represent the impact of the ‘shock’ in today’s

return on the next day’s variance. Drawing parallels to the volatility literature, we consider whether

the ‘news’ is best represented by today’s return, or a conditionally scaled version of it. CAViaR

models traditionally incorporate the size of the return as an input in the news impact function. We

explore whether it is more effective to consider the news element to be the scaled return (scaled by

the filtered quantile), so that large shocks are more meaningful on days when the scale of the return

was expected to be low.

Previous authors have extended CAViaR models by accounting for autocorrelation in returns,

see Kuester et al. (2006), and more generally by including regressors other than lags of VaR in their

models. This approach has been found to work well for out-of-sample prediction: we hypothesize

that this performance is partly explained by variation in the average return across sample periods.

In view of this, the second new approach we examine involves incorporating past daily, weekly and

monthly returns as regressors in the quantile specification, à la Corsi (2009), to capture possible

horizon effects in a simple manner.

The notion that there is a time-varying serial correlation in returns could also be captured by

regime-based or other nonlinear models. Gerlach et al. (2011) propose a threshold-based model

whereby the VaR process entirely shifts based on whether the previous day’s return was above

or below an assumed threshold (usually zero). This approach also performs well in forecasting

comparisons. We ask if we could achieve similar results while reducing the day to day variation

in the VaR brought about by the threshold structure. To attempt this, we include in our model a

slowly moving component of the VaR interpreted as generating a time-varying mean. By allowing

for more gradual adjustments in the mean of the process, our aim is to reduce its overall variance

relative to a model with discontinuities. Thus, the final element of our proposals is a two component

model for VaR in the spirit of Engle and Lee (1999) or Ding and Granger (1996).

VaR models are evaluated on their performance in different ways. These include the out-of-

sample hit ratio, or the proportion of actual exceedances (when the loss exceeds the VaR) relative
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to the expected number of exceedances. Danielsson (2002) showed that most models were not

entirely reliable when examined for their hit ratios over different estimation windows, offering a

motivation to seek improvements in VaR models. In addition, Kuester et al. (2006) found that most

models tend to have more hits than expected out-of-sample, often failing the basic unconditional

coverage test. More recently, Gerlach et al. (2011) have shown that CAViaR models perform well

compared to other approaches in estimating VaR. They compare a wide range of models based on

hit ratios, the unconditional coverage (UC) test from Kupiec (1995), the conditional coverage (CC)

test of Christoffersen (1998), and the Dynamic Quantile (DQ) test of Engle and Manganelli (2004).

The latter two tests are based on the idea that hits or exceedances should be independent of each

other. In terms of comparing statistical performance, we report all the above criteria, along with the

duration test of Christoffersen and Pelletier (2004) which Berkowitz et al. (2011) find to perform

well in some cases.

Our other criteria for comparison are the mean and variance of the VaR time series, the realized

conditional VaR (cVaR), and the mean excess loss. The realized cVar is the average loss conditional

on exceedances. In isolation, this metric may favour models that have hits more often on low loss

days, irrespective of the number of hits or the total realized loss. The mean excess loss is defined

as the average of the amount by which the VaR was exceeded when hits occurred. The larger this

number, the greater the amount of capital (in excess of the allocated loss bearing capacity) that

needs to be replaced just as the portfolio value has fallen. This is similar to alternative economic

criteria for VaR model selection proposed by Lopez (1997) and Sarma et al. (2003). Basak and

Shapiro (2001) argue that VaR-based portfolio management induces systemic risk due to the

tendency for liquidity feedback. This is because sales are induced by risk-adjustment requirements

precisely when prices have fallen. A model that leads to lower conditional excess losses would

plausibly help alleviate this risk. While it is well understood that the criteria above cannot be used

in isolation for model selection, it is our goal to identify the model specifications that help meet

more of them simultaneously.

Finally, another contribution of our paper is to show how an alternative estimation strategy can

make a difference to the results. We simply select starting values for the parameters in an analogous

way to the variance targeting approach used in GARCH model estimation (Christoffersen, 2003).

This strategy leads to better estimates for comparable datasets in most cases, as we discuss later in

the paper.

In the next section, we set out the various specifications we examine, including the component

model. We then use the following sections to, in turn, explain our estimation strategy, describe the

empirical exercise and finally provide conclusions.
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2 The Models

We discuss below the various types of CAViaR models, extending their specification to meet our

objectives of smoother and economically more desirable VaR forecasts. Throughout this paper,

our quantity of interest is the quantile of returns, with the understanding that the VaR is typically

reported as the additive inverse of the relevant return quantile.

2.1 Original four CAViaR models

For a return series {rt}, Engle and Manganelli (2004) introduce CAViaR models in a generic format

as

qθ,t (β) = βθ,0 +

m∑
i=1

βθ,iqθ,t−i (β) +

n∑
j=1

βθ, jl
(
xt− j

)
, (1)

where the θ-quantile is modeled as a combination of autoregressive terms and a function of

a finite number of lagged values of observables contained in x (including the history of returns

{rs}
t
s=0). It is clear that the parameter vector β is allowed to depend on the quantile being modeled.

For the rest of this paper, we drop the θ subscript for ease of reading, though it is understood that

any set of βs here refers exclusively to a specific quantile level θ. Also, as this is quite clearly

understood in the literature, we will no longer point out the dependence of the series of quantile

estimates on the parameters β. Hence, qθ,t (β) will simply be referred to as qt.

Engle and Manganelli (2004) estimate and test four specifications with well known counterparts

in the volatility or variance-modeling literature. Although we list all four specifications, the rest

of the paper will focus on only three of these, as is explained below. In each of the four cases, the

number of lags of past information in Eqn. 1 is set at 1. These specifications are, for a given series

of returns rt,

• Adaptive CAViaR:

qt = qt−1 + β
[{

1 + exp ( f (rt−1 − qt−1))
}−1
− θ

]
This model has the property that it automatically raises the VaR after a hit or exceedance

and gradually reduces it until the next hit - a simple way to address volatility clustering. It

is found to perform much worse than other models, so we will not consider it further in this

study. However, see McAleer et al. (2010) for how such a scheme appropriately modified

may have appeal from a regulatory reporting perspective.
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• Symmetric Absolute Value CAViaR(SAV):

qt = β0 + β1qt−1 + β2|rt−1| (2)

• Asymmetric Slope CAViaR (AS):

qt = β0 + β1qt−1 + β2r+
t−1 + β3r−t−1 (3)

where the notation employed is: x+ = max(x, 0) and x− = −min(x, 0).

• Indirect GARCH(1,1) CAViaR, henceforth IG:

qt = −
(
β0 + β1q2

t−1 + β2r2
t−1

) 1
2 (4)

While IG models are useful for modeling extreme quantiles like those required for VaR

estimation, they do have the disadvantage that the quantiles need to be signed, so they cannot

be used to model quantiles that could change signs over time.

2.2 Other CAViaR specifications

We now discuss various alternative specifications and extensions of the models in Equations 2 - 4.

2.2.1 The news impact function

The news impact function captures the response of the conditional quantile to today’s information,

and it may have several features such as non-linearity and asymmetry. For CAViaR models where

rt = εt (i.e., the mean daily return is assumed to be zero and εt is a daily error term), the news

impact is modeled as a function of the past return(s). However, one could also interpret the ‘news’

or the surprise element of the return as the size of the return relative to the conditional quantile

based on the previous day’s information. As qt−1 is known at time t − 2, we could then think of

scaling rt−1 by qt−1 to obtain this interpretation. In comparison to volatility models of the form

rt = σtzt, this would be analogous to treating the standardized return zt as news. Consider the case

where the return generating process is conditionally iid (say normal) with mean zero. Then, the

ratio rt/qt would represent on average a fixed proportion, based on θ, of a standard normal variable.

The original three models we consider can be adjusted with scaled news impact functions as

follows:
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• SAVscaled:

qt = β0 + β1qt−1 + β2|rt−1/qt−1|. (5)

• ASscaled:

qt = β0 + β1qt−1 + β2 (rt−1/qt−1)+ + β3 (rt−1/qt−1)− , (6)

and

• IGscaled:

qt = −
(
β0 + β1q2

t−1 + β2 (rt−1/qt−1)2
) 1

2 . (7)

The IG model may be further modified to display asymmetry in the news impact. Two of the

most widely used GARCH news impact functions are Nonlinear Asymmetric (NA), due to Engle

and Ng (1993), and GJR, following Glosten et al. (1993). The specifications for indirect GARCH

CAViaR versions are:

• IG-NA:

qt = −
(
β0 + β1q2

t−1 + β2 (rt−1/qt−1 − β3)2
) 1

2 (8)

• IG-GJR:

qt = −
(
β0 + β1q2

t−1 + β2r2
t−1 + β3r2

t−1Irt−1<0
) 1

2 (9)

Here, the IG-NA CAViaR naturally lends itself to the scaling approach used above.

2.2.2 Adjusting for serial correlation in returns

Kuester et al. (2006) show that adjusting for serial correlation in returns improves the forecasting

performance of CAViaR models. Consider the CAViaR model with serial correlation in returns:

rt = αrt−1 + εt

qt = αrt−1 + qεt (10)
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where we are using the notation that qεt is the θ-quantile of εt, just as qt is the θ-quantile of rt.

We can now write any specification for qεt , e.g. qεt = β0 + β1qεt−1 + f (εt−1) . Kuester et al. (2006)

propose the AR-IG-CAViaR specification as:

qt = αrt−1 −
(
β0 + β1(qt−1 − αrt−2)2 + β2 (εt−1)2

) 1
2 (11)

where they write VaRt = −qt. The AR-SAV and AR-AS CAViaR models would then be written as:

• AR-SAV:

qt = αrt−1 + β0 + β1qεt−1 + β2 |εt−1|

= αrt−1 + β0 + β1(qt−1 − αrt−2) + β2 |εt−1| (12)

• AR-AS:

qt = αrt−1 + β0 + β1qεt−1 + β2ε
+
t−1 + β3ε

−
t−1

= αrt−1 + β0 + β1(qt−1 − αrt−2) + β2 (εt−1)+ + β3 (εt−1)− (13)

The corresponding versions to the IG-NA and IG-GJR models incorporating an AR parameter

(in returns) would be:

• AR-IG-NA:

qt = αrt−1 −

β0 + β1(qt−1 − αrt−2)2 + β2

(
εt−1

qt−1 − αrt−2
− β3

)2


1
2

(14)

• AR-IG-GJR:

qt = αrt−1 −
{
β0 + β1(qt−1 − αrt−2)2 + β2 (εt−1)2 + β3 (εt−1)2 Irt−1<αrt−2

} 1
2 (15)

2.2.3 Incorporating multi-horizon returns as regressors

It is possible to expand the information set used to predict the quantiles by incorporating other

regressors. For instance, Jeon and Taylor (2013) use information in the implied volatility (IV)

of options to enhance CAViaR forecasts, both directly using a forecast combination strategy, and

also by using the IV as a regressor. Rubia and Sanchis-Marco (2013) show that using regressors

representing liquidity and financial conditions may improve the performance of a CAViaR model.
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In a more direct approach, Schaumburg (2012) modifies the original IG-CAViaR model by the

inclusion of the previous day’s return as a regressor, further incorporating a threshold-based

approach titled the AR-TGARCH CAViaR:

qt = β1rt−1 −
(
β2 + β3q2

t−1 + β4r2
t−1 + β5r2

t−1Irt−1<0
) 1

2 (16)

Note that this model is the same as the IG-GJR specification in Eqn. 9, with the previous day’s

return as an added regressor. This is in fact different from the AR-IG-GJR model in Eqn. 15

because of how it is derived. It may also be worth examining whether incorporating past returns at

lower frequencies as regressors would improve forecasting ability.

When we observe that the VaR from our model has not been exceeded for a long period of

time, should we adjust our model? If so, should the adjustment lead to an increase or decrease in

the VaR? This is a difficult question because it depends on your view of the return process and on

the loss function. This also has significant economic implications. Historically, we have observed

that large positive aggregate returns over a long period of time are followed by large negative

shocks. This is not just a liberal interpretation of the adage “The higher they climb, the harder they

fall.” A large literature on bubbles is dedicated to identifying instances where asset prices have

deviated persistently from their true value. Unfortunately, it is very difficult to precisely quantify

how large is ‘large’ for returns and how long is the ‘long’ period before prices revert. Hence,

our approach is simply to consider the possibility that past returns at lower frequencies contain

important information for VaR estimation.

The notion of incorporating information about different horizons has significant support in the

literature. Glosten et al. (1993) document that monthly return volatility dynamics are different

from daily dynamics in that positive returns lead to a prediction of a decrease in volatility, whereas

daily returns are negatively correlated with conditional volatility. Bianco et al. (2009) find that

returns have dependence at different frequencies. Venetis and Peel (2005) find changes in the serial

correlation in returns based on the volatility. Among those that consider the impact of different

frequencies or horizons in asset pricing are Adrian and Rosenberg (2008) and Duffie et al. (2007).

The latter find that future defaults are predicted by one year lagged stock return performance.

Similarly, Doshi et al. (2013) use past returns among other variables to find credit default swap

prices.

A simple approach to introducing long memory in volatility is employed by Corsi (2009).

Following the reasoning in his HAR-RV model, we modify all the above models to include past

returns as regressors. We begin by considering the following multi-horizon models:
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• SAV-mh

qt = β0 + β1qt−1 + β2|rt−1| + β3rw
t−1 + β4rm

t−1. (17)

where rw
t , r

m
t are average returns over the week and, respectively, the month until and

including t. In the estimation, we apply the convention that a week is 5 working days and a

month consists of 22 working days.

• AS-mh

qt = β0 + β1qt−1 + β2r+
t−1 + β3r−t−1 + β4rw

t−1 + β5rm
t−1 (18)

• IG-mh

qt = −
(
β0 + β1q2

t−1 + β2r2
t−1

) 1
2 + β3rt−1 + β4rw

t−1 + β5rm
t−1 (19)

• IG-NA-mh

qt = −
(
β0 + β1q2

t−1 + β2 (rt−1/qt−1 − β3)2
) 1

2 + β4rt−1 + β5rw
t−1 + β6rm

t−1 (20)

• IG-GJR-mh

qt = −
(
β0 + β1q2

t−1 + β2r2
t−1 + β3r2

t−1Irt−1<0
) 1

2 + β4rt−1 + β5rw
t−1 + β6rm

t−1 (21)

Later, in Section 2.3.2, we will consider a similar extension for long memory versions of the

above models.

2.2.4 Another threshold-based nonlinear effects models for comparison

Gerlach et al. (2011) propose the threshold-CAViaR model as:

qt =

 β1 + β2qt−1 + β3 |rt−1| ,

β4 + β5qt−1 + β6 |rt−1| ,

rt−1 ≤ 0

rt−1 ≥ 0
(22)

The nonlinearities in this model imply that there would be both shifts in the level of VaR, and

changes in the impact of today’s return on VaR, depending on whether the return is greater or

less than a threshold value (0 in Eqn. 22). In order to achieve these two effects without moving

to a completely non-linear model, we could apply a slightly modified version of the news impact
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function borrowed from the E-GARCH model of Nelson (1991). The Shifted Asymmetric Slope

or SAS-CAViaR model could be written as:

SAS: qt = β0 + β1qt−1 + β2 (rt−1 + β3) + β4 (rt−1 + β3)− (23)

However, the T-CAViaR specification also allows the autoregressive parameter in the quantile

itself to change based on the sign of the return. This added flexibility performs well in tests, so it

once again seems to suggest that there could be a change in the level and rate of mean reversion

for the quantile process. In Section 2.3 we propose a two-component model in order to avoid the

sudden shifts that are brought about by threshold crossing, and to achieve a smoother series that

could potentially save transaction costs.To this end, we focus on extending the CAViaR models

based on the approach of Engle and Lee (1999), which has been successfully applied to option

pricing by Christoffersen et al. (2008) and Christoffersen et al. (2010).

2.3 Component CAViaR models

2.3.1 Using the GARCH structure to write component models

A standard GARCH(1,1) model (Bollerslev, 1986) is written as

rt = εt = σtzt; zt ∼ iid N(0, 1)

σ2
t = ω + aε2

t−1 + bσ2
t−1

For this model, if zθ is the θ-quantile of the standard normal distribution, we have qt = σtzθ,

where qt is the θ-quantile of εt. This implies

q2
t = ωz2

θ + az2
θε

2
t−1 + bq2

t−1

= ω̃ + ãε2
t−1 + bq2

t−1

which is the IG-CAViaR model of Eqn. 4.

Engle and Lee (1999) define the Component GARCH model as

σ2
t = ht + b

(
σ2

t−1 − ht−1
)

+ a
(
ε2

t−1 − ht−1
)

ht = ω + ρht−1 + ϕ
(
ε2

t−1 − σ
2
t−1

)
11



where ht is now a slower-moving component around which the variance fluctuates.

By analogy to the IG relation above, the two-component IG version of the CAViaR model

becomes

q2
t = u2

t + β
(
q2

t−1 − u2
t−1

)
+ a

(
z2
θε

2
t−1 − u2

t−1

)
u2

t = ωz2
θ + ρu2

t−1 + ϕ
(
z2
θε

2
t−1 − q2

t−1

)
Allowing zθ to be subsumed in the respective parameters removes any parametric assumptions,

giving

Component - IG (C-IG):

qt = −
{
u2

t + β1
(
q2

t−1 − u2
t−1

)
+ β2

(
β3r2

t−1 − u2
t−1

)} 1
2

u2
t = β4 + β5u2

t−1 + β6
(
β7r2

t−1 − q2
t−1

)
(24)

where we are estimating β3 and β7, though they could both be interpreted as the appropriate

identical scaling factor that would set the ‘shock’ term to be zero in expectation if the underlying

process was a Component GARCH model.

The Component N-GARCH model in Christoffersen et al. (2010) may be written as:

σ2
t = ht + b

(
σ2

t−1 − ht−1
)

+ a
(
εt−1 − c1

√
ht−1

)2

ht = ω + ρht−1 + ϕ (εt−1 − c2σt−1)2

so the two-component version of the indirect N-GARCH CAViaR becomes

q2
t = u2

t + β
(
q2

t−1 − u2
t−1

)
+ a

(
zθεt−1 − c1

√
u2

t−1

)2

u2
t = ωz2

θ + ρu2
t−1 + ϕ (zθεt−1 − c2qt−1)2

Following from the scaling approach in the IG-NA model in Eqn. 8, and utilizing the flexibility of

the CAViaR approach, we can simplify and reduce the number of parameters to get the following
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model (C-IG-NA):

qt = −

u2
t + β1

(
q2

t−1 − u2
t−1

)
+ β2

(
εt−1

ut−1
− β3

)2


1
2

u2
t = β4 + β5u2

t−1 + β6

(
εt−1

qt−1
− β7

)2

(25)

Further, the GARCH model of Taylor (1986) and Schwert (1989) takes the form

σt = ω + bσt−1 + α |εt−1| (26)

giving us the SAV-CAViaR model as:

qt = ω̃ + bqt−1 + α̃ |εt−1|

or the asymmetric form

σt = ω + bσt−1 + α1ε
+
t−1 + α2ε

−
t−1 (27)

giving us the AS-CAViaR model:

qt = ω̃ + bqt−1 + α̃1ε
+
t−1 + α̃2ε

−
t−1

Consider again the stationary form of Eqn. 26

σt = σ + b (σt−1 − σ) + ασ (|zt−1| − E |z|)

In component form, we could define

σt = σt + b (σt−1 − σt−1) + α (|εt−1| − σt−1E |z|)

σt = ω + ρσt−1 + γ (|εt−1| − σt−1E |z|)

The corresponding component version is then

qt = ut + b (qt−1 − ut−1) + α (zθ |εt−1| − ut−1E |z|)

ut = ω̃ + ρut−1 + γ (zθ |εt−1| − qt−1E |z|)

This is the same as writing the C-SAV model as:

qt = ut + β1 (qt−1 − ut−1) + β2 (|εt−1| − β3ut−1)

ut = β4 + β5ut−1 + β6 (|εt−1| − β7qt−1) (28)
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A similar exercise for the AS-CAViaR model begins with rewriting the volatility equation (Eqn.

27) as

σt = σ + b (σt−1 − σ) + α1σ
(
z+

t−1 − E
[
z+]) + α2σ

(
z−t−1 − E

[
z−

])
where σ is replaced by its time-varying counterpart and the process is again rewritten as

σt = σt + b (σt−1 − σt−1) + α1
(
εt−1 − σt−1E

[
z+]) Iεt−1>0 + α2

(
|εt−1| − σt−1E

[
z−

])
Iεt−1<0

σt = ω + ρσt−1 + γ1
(
εt−1 − σt−1E

[
z+]) Iεt−1>0 + γ2

(
|εt−1| − σt−1E

[
z−

])
Iεt−1<0

The CAViaR version then becomes

qt = ut + b (qt−1 − ut−1) + α1
(
zθ |εt−1| − ut−1E

[
z+]) Iεt−1>0 + α2

(
zθ |εt−1| − ut−1E

[
z−

])
Iεt−1<0

ut = ω̃ + ρut−1 + γ̃1
(
zθ |εt−1| − qt−1E

[
z+]) Iεt−1>0 + γ̃2

(
zθ |εt−1| − qt−1E

[
z−

])
Iεt−1<0

We can thus estimate the Component AS (C-AS) CAViaR model as:

qt = ut + β1 (qt−1 − ut−1) + β2 (|εt−1| − β3ut−1) Iεt−1>0 + β4 (|εt−1| − β5ut−1) Iεt−1<0

ut = β6 + β7ut−1 + β8 (|εt−1| − β9qt−1) Iεt−1>0 + β10 (|εt−1| − β11qt−1) Iεt−1<0 (29)

2.3.2 Alternative flexible component structure

As Engle and Manganelli (2004) point out, though the original CAViaR models are exactly

specified counterparts of corresponding GARCH models, CAViaR models are in fact more general

than the assumed GARCH models. Thus, while we can derive CAViaR specifications from

GARCH models, it is not necessary to do so, mainly because we do not assume the parametric

form of the distribution of residuals. In order to introduce a long-memory component, we do not

necessarily need to work with the GARCH component structure. An alternative direct approach

is to replace the intercept parameter β0 with a time-varying process that induces a long memory

property to the VaR. Consider the AS-CAViaR model in Eqn. 3. We could rewrite it as:

qt = u + β1(qt−1 − u) + β2r+
t−1 + β3r−t−1 (30)

Taking the unconditional expectation, we get

u = q −
β2E

[
r+] + β3E

[
r−

]
1 − β1

(31)
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Unlike the traditional approach to writing such models, here u , q. Substituting u from Eqn. 31

back into Eqn. 30, we see that it is the same as writing

qt = q + β1(qt−1 − q) + β2
(
r+

t−1 − E
[
r+]) + β3

(
r−t−1 − E

[
r−

])
(32)

By allowing u to vary over time, we write the general form of the Component CAViaR model

as:

qt = ut +
∑

i

βi (qt−i − ut−i) +
∑

i

γi f (rt−i)

ut = ω +
∑

i

δiut−i +
∑

i

φig (rt−i)

This shows that we need not write the model as a combination of two processes with zero-mean

shocks. As a result, we can consider estimating the following component versions of the original

models as:

Flexible Component - SAV (FC-SAV):

qt = ut + β1(qt−1 − ut−1) + β2 |rt−1|

ut = β3 + β4ut−1 + β5 (rt−1) (33)

Flexible Component - SAV multi horizon (FC-SAVmh):

qt = ut + β1(qt−1 − ut−1) + β2 |rt−1|

ut = β3 + β4ut−1 + β5rt−1 + β6rw
t−1 + β7rm

t−1 (34)

Flexible Component - AS (FC-AS):

qt = ut + β1(qt−1 − ut−1) + β2r+
t−1 + β3r−t−1

ut = β4 + β5ut−1 + β6 (rt−1) (35)

Flexible Component - AS multi horizon (FC-ASmh):

qt = ut + β1(qt−1 − ut−1) + β2r+
t−1 + β3r−t−1

ut = β4 + β5ut−1 + β6rt−1 + β7rw
t−1 + β8rm

t−1 (36)
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Flexible Component IG (FC-IG):

qt = −
{
u2

t + β1
(
q2

t−1 − u2
t−1

)
+ β2r2

t−1

} 1
2

ut = β3 + β4ut−1 + β5rt−1 (37)

Flexible Component IG multi horizon (FC-IGmh)

qt = −
{
u2

t + β1
(
q2

t−1 − u2
t−1

)
+ β2r2

t−1

} 1
2

ut = β3 + β4ut−1 + β5rt−1 + β6rw
t−1 + β7rm

t−1 (38)

2.3.3 Interpreting the alternative component structure

Consider again the FC-AS model in Eqn. 35. Substituting the relationship in Eqn. 31 for ut,we see

that

qt =

[
β4 +

(
1 − β5

1 − β1

) (
β2E

[
r+] + β3E

[
r−

])]
+ β5qt−1 + β6 (rt−1/qt−1)

and that

q =
β4

1 − β5
+
β2E

[
r+] + β3E

[
r−

]
1 − β1

or u = u =
β4

1 − β5

In these alternative component models, the deviation qt − ut is the component that represents

an adjusted distance from the unconditional mean q and the dynamics of ut capture the time

dependence in qt, albeit with an adjusted mean level. We have introduced a long memory feature

in the quantile process. As long as the persistence of the component ut is higher than that of qt − ut

we are able to interpret it as a ‘long-term’ component; with the caveat that qt tends to a quantity

different from ut in the long run.

3 Estimation

CAViaR parameters (β) are estimated by the regression quantile (RQ) criterion:

min
β

1
T

T∑
t=1

[
θ − I (rt < qt (β))

] [
rt − qt (β)

]
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The optimization surface for this problem is known to be multimodal and thus problematic

to minimize over. Engle and Manganelli (2004) estimate the parameters by a genetic algorithm

approach, proposing a large number of uniform random parameter vectors, picking a proportion of

them and then inputting these in a simplex based search algorithm (fminsearch) in MATLAB. We

find that it is important to get the relative scale of the parameters right to improve the chances

of finding a global minimum. To this end, we apply a procedure based on targeting of the

empirical (unconditional) quantile of the returns series by assuming stationarity of the quantile

time series, but only as an input to the optimizer. We start the minimizer (fminsearch) at a grid

of initial parameter values, in each case setting the starting value for β0 to be consistent with

the other parameters and the appropriate in-sample quantile of the data. To clarify, we are not

reducing one parameter as is done in parametric GARCH models when applying variance targeting

- our approach is merely designed to obtain helpful starting values for the optimizer. As an

example, for the SAV model (Eqn. 2), for each starting value pair of β1 ∈ {0.5, 0.65, 0.8, 0.95}

and β2 ∈ {−0.25, 0, 0.25}, we set

β0 = q̂ (1 − β1) − β2Ê [|r|]

where the ˆ symbol represents an unconditional estimate of the quantity from the data (in-

sample). In the case of the scaled models, we make a further simplification, substituting in

quantities for the normal distribution where appropriate. For instance, E |z| =
√

2/π for z ∼ N (0, 1).

As an example, for the 1% quantile, Ê
[
|r/q|

]
is substituted with

[
1/φ−1(0.01)

] √
2/π, where φ−1 (·)

is the inverse of the standard normal distribution.

In our comparison of the realized quantile function with the same data and models as in Engle

and Manganelli (2004), we find that we tend to obtain a lower RQ using this approach. This

approach appears to become more important as the number of parameters increases.

4 Empirical exercise

In this section, we provide details of the comparative performance of the various models. We begin

first by describing the data and then in each case the criteria for comparison.

4.1 Data

Given our twofold objective of providing model comparisons while also highlighting estimation

differences, we carry out the empirical exercise on the same dataset as in Engle and Manganelli
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(2004). This dataset, which is downloadable from the website of Professor Manganelli

(www.simonemanganelli.org), consists of two stocks - General Motors (GM) and IBM - and

the S&P 500 index for the period April 7, 1986 to April 7, 1999. Of this, the last 500 days

(corresponding to two years) is left for out-of-sample testing.

The models we consider are (with equation numbers in parentheses):

• SAV (2), AS (3), IG (4), IG-NA (8), IG-GJR (9)

• AR (11 - 15) and multi-horizon (17 - 21)versions of the above models

• SAVscaled (5), ASscaled (6), IGscaled (7)

• SAS (23), C-SAV (28), C-AS (29), C-IG (4), C-IG-NA (25)

• Flexible component counterparts of SAV, AS, IG, along with their multi-horizon versions

(33 - 38).

The comparisons are tabulated in Tables 1 - 14 at the end of the paper.

4.2 Estimation strategy

Before proceeding to the performance comparisons, we focus briefly on the importance of the

estimation strategy. As mentioned before, rather than use a large matrix of uniform random

numbers as the basis for starting the optimization procedure, we choose a grid of starting values

in each case to be consistent with each other and with a stationary quantile process. The most

direct evidence of the effectiveness of this strategy is the improvement in the estimation of the

three original models relative to the original paper. Even for the simplest model, the 1% SAV in

Table 3, we see that the objective function is lower for all the assets and the proportion of hits both

in-sample and out-of-sample has been improved. For example, in the case of S&P500 we obtain

0.0080 proportion of hits out-of-sample, while in the original paper the out-of-sample proportion

is 0.0180. The only exception is the case of the AS model at 5% for S&P500. Although the RQ

and proportion of hits in-sample are similar to the original algorithm, the proportion of hits out-of-

sample is higher using our algorithm (0.0700¿0.0640). This is an example where we can see the

tension between the news impact and the level of the autoregressive parameter. In our estimates the

autoregressive parameter of the model is lower (0.8757¡0.9025), but the parameter on the lagged

value of the negative return is higher (0.3372¿0.2871) than that reported by Engle and Manganelli

(2004) in their Table 1.
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4.3 Out-of-sample results

Our out-of-sample forecasting exercises are based on one-day-ahead rolling forecasts, but not

rolling estimates. We initially estimate the model for the in-sample period, and produce a one-

day ahead estimate of the VaR. Further updates over the course of the out-of-sample period are

based on rolling the return data ahead one day, using the estimated parameters from the in-sample

period. Banks typically use one-day ahead 1% forecasts as described in Berkowitz and O’Brien

(2002) and Berkowitz et al. (2011). However, they would naturally update their model estimates

regularly, not least because the composition of their portfolios would change from day to day. We

replicate the approach of Engle and Manganelli (2004), which tests the models’ ability to capture

long-term underlying dynamics in the quantiles.

The out-of-sample forecasts are compared first on their hit ratios. Although the hit ratio is

a metric with widely known and well documented flaws, it remains a first-order criterion for

regulators. Also, several authors in succession have shown that many VaR models tend to produce

higher than expected hit ratios out-of-sample and also fail the basic unconditional coverage test.

Following Danielsson (2002), we consider a hit ratio in the range of 0.8 to 1.2 to be acceptable.

In other words, for the θ = 5%, a proportion of hits ranging between 0.04 and 0.06 would be

acceptable. Throughout the analysis in the tables provided, we highlight in bold the hit rates that

lie within the range 0.8 to 1.2.

We also provide the p-values for the out-of-sample Dynamic Quantile test (DQout) from

Engle and Manganelli (2004), the Likelihood Ratio tests of unconditional coverage, independence

and conditional coverage (respectively LR-uc, LR-i, LR-cc) from Christoffersen (1998), and the

duration tests (D and Di) from Christoffersen and Pelletier (2004).

We also report the economic criteria for smoothness (mean and variance of the VaR series),

realized c-VaR (ES), and mean excess loss (MEL), as defined in the introduction. The mean level

of the quantile series is used as a check to ensure that the variance has not decreased at the cost of a

raised average level of capital. Other approaches proposed in the literature include Komunjer and

Giacomini (2005) and Gaglianone et al. (2011).

4.3.1 Overall model performance

As VaR is used for the determination of the capital requirements of the firm, the risk manger should

carefully choose the internal model with respect to all the criteria considered here. One reason for

considering the hit ratio is that an excess number of exceedances would require that the manager

increase the constant factor in the formula for setting the capital level and thus get penalized. On
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the other hand, overestimation of VaR would again have negative results in the face of competition.

Turning to the proportion of hits out-of-sample at the 1% quantile level, we find that nearly all

the models produce acceptable hit ratios for GM. On the other hand, nearly all the models fail in

producing accurate out-of-sample hits for IBM. For S&P 500, there is an even mix of models that

generate a hit ratio in the acceptable range. At the 5% probability level, the results are similar for

GM, while more models are within the acceptable range for IBM and S&P500.

For the test statistics, we report by ∗ the assets for which the test statistic does not support the

specific form of dependence being tested given the obtained p-value at 1% significance level. In

other words, we highlight the models that are not supported, or where the null hypothesis of lack

of (the respective type of) dependence in hit sequences is rejected.

Models for GM are not rejected by any test at either significance level. For IBM, IG-GJR and

AR-IG-GJR are both rejected by the DQ test at 1% and 5%. All the other models pass the tests

although they do not produce accurate hits out-of-sample. Some accurate forecasts are produced

for IBM at 5% and those models are not rejected by the DQ test. On the other hand, the models

that are able to deliver accurate forecasts or perform well on other criteria for S&P500 are rejected

by the DQ test and vice versa: those that pass the test produce biased forecasts out-of-sample. We

are unable to explain the reason for this contradiction.

Most models share a similar average level of VaR at each asset and level. However, some

models perform slightly better than others. In the case of GM, the Flexible Component models are

generally superior to all others at the 1% level, while the more complex models (based on IG and

AS rather than SAV) are marginally better at the 5% level. In the case of s&P500, the Flexible

Component models outperform at the 5% level, while there is no clear pattern at the 1% level. In

general, longer memory and more complex dynamics are useful in keeping the mean of the VaR

series low despite an improvement in hit ratios.

When comparing smoothness through variance, as expected, the introduction of long memory

features lowers the variance of the overall series. Even incorporating scaled news impact functions

has the effect of significantly reducing the variance, as it pushes up the persistence of the series.

Threshold effects, on the other hand, do increase variance as feared. This is illustrated visually in

Figure 1 where the VaR series estimated using SAS (green) and FC-AS (black) models are plotted

for S&P500 at 1%.

In terms of reducing cVaR and MEL, the introduction of asymmetry and long memory, as well

as multi horizon regressors, all improve the excess losses.
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4.3.2 Effect of adjusting the news impact function

Scaling the news impact function uniformly improves upon the original models, which in any case

perform better than expected thanks to the estimation procedure. The main feature of the models

with scaled news impact functions is a higher autoregressive parameter on past values of q, much

closer to 1.

4.3.3 Effect of incorporating an AR parameter for returns

The AR models perform exceedingly well, once again improving upon the original models. One

reason why the AR models may perform better is the difference in the average return in and out-of-

sample. In the estimation sample, the mean of daily returns is 0.01%, while in the out-of-sample

period it is 0.1% for GM. Also, IBM has an in-sample mean of 0.000289, whereas the mean of

the out-of-sample period is 0.0021. While the in-sample means differ from the out-of-sample ones,

there is no evidence that this is not just a result of randomness of the sample, given the datasets in

question have been widely studied and no breaks have been identified.

4.3.4 Effect of introducing a component structure

The Flexible Component models are found to be promising for capturing the behaviour of the

time-varying quantile and provide us with accurate ratio of violations across the assets. At 1%

all the three models deliver accurate forecasts for GM and S&P500. We are also able to obtain

improved forecasts for IBM using the F-C-AS model, although in general most models perform

poorly on hit ratios with IBM. All the models pass the tests for producing uncorrelated hits out-of-

sample. However, we notice one rejection from the DQ test - but not from the other tests - while the

forecasting performance of the model is acceptable in terms of the ratio of hits (C-IG for S&P500

at 1% probability level).

Besides being able to produce accurate ratio of hits for both the in-sample period and the out-

of-sample, the models also perform well on smoothness criteria.

On the other hand, the increased number of parameters and the increased structure imposed

by the Component models directly derived from GARCH models does not appear to offer any

advantage in improving hit ratios, but there is a slight improvement in the economic loss criteria.
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4.3.5 Effect of incorporating multiple horizon returns

The introduction of multi horizon returns is effective not only in improving the original CAViaR

models, but also in improving the overall performance with respect to IBM. However, once we

account for long memory in the Flexible Component models, the introduction of multi horizon

regressors only offers marginal gains at best. It appears that there is some information in the past

returns that helps introduce conservatism in the VaR series, without raising the average level of

capital required.

5 Conclusion

This paper presents improvements in the economic performance of existing CAViaR models

through the introduction of long memory properties, the use of an alternative estimation strategy,

and finally by including information on multi-horizon returns among the predictors for VaR.

The modifications to the models are motivated by the need to allow VaR to change smoothly

while taking into account variation in the underlying mean level of VaR. In addition to controlling

transaction costs, the effect of such improvements may also be to reduce the severity of unexpected

components of extreme losses when the VaR is exceeded.

Our empirical exercise used a very long series of data, in part to allow comparison with the

original paper, but also to examine the ability of the models to capture long-term underlying

dynamics of the quantile process. The semiparametric nature of the model makes this difficult

because a slight shift in the parameters could cause a significant change in the number of

exceedances. As a result, the trade-off between introducing complexity or smoothness and the

predictive performance of the model is noticeable. However, the models perform very well out-of-

sample, suggesting that CAViaR models in general are good at capturing the underlying quantile

process. However, the results from the introduction of alternative dynamics all point to the need

for longer memory features in CAViaR models.

Some questions are left to future work. We have attempted to evaluate the VaR models using a

range of criteria rather than a single metric. similar to c-VaR, but it would be of interest if we were

to estimate the models using altered loss functions to get a handle on c-VaR directly.Taylor (2008)

offers an alternative approach, where he uses the asymmetric least squares (ALS) regression to

estimate expectiles rather than using a quantile regression. Such a direct approach would be useful

to further examine some of the arguments in the present paper, including the link between severity

of losses and aggregate past returns.
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Figure 1: VaR for daily SP500 returns for SAS (green) and C-AS (black) models at 1%.
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