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Abstract

Traditional approaches in access control rely on immutable criteria in which to

decide and award access. These approaches are limited, notably when handling

changes in an organisation’s protected resources, resulting in the inability to ac-

commodate the dynamic aspects of risk at runtime. An example of such risk is a

user abusing their privileged access to perform insider attacks.

This thesis proposes self-adaptive authorisation, an approach that enables dy-

namic access control. A framework for developing self-adaptive authorisation is

defined, where autonomic controllers are deployed within legacy based authorisa-

tion infrastructures to enable the runtime management of access control. Essential

to the approach is the use of models and model driven engineering (MDE).

Models enable a controller to abstract from the authorisation infrastructure it

seeks to control, reason about state, and provide assurances over change to access.

For example, a modelled state of access may represent an active access control

policy. Given the diverse nature in implementations of authorisation infrastruc-

tures, MDE enables the creation and transformation of such models, whereby

assets (e.g., policies) can be automatically generated and deployed at runtime.

A prototype of the framework was developed, whereby management of access

control is focused on the mitigation of abuse of access rights. The prototype

implements a feedback loop to monitor an authorisation infrastructure in terms

of modelling the state of access control and user behaviour, analyse potential

solutions for handling malicious behaviour, and act upon the infrastructure to

control future access control decisions.

The framework was evaluated against mitigation of simulated insider attacks,

involving the abuse of access rights governed by access control methodologies. In

addition, to investigate the framework’s approach in a diverse and unpredictable

environment, a live experiment was conducted. This evaluated the mitigation

of abuse performed by real users as well as demonstrating the consequence of

self-adaptation through observation of user response.

ii



Acknowledgements

I would like to express my thanks and gratitude to my supervisor, Rogério de
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Chapter 1

Introduction

A critical concern for organisations surrounds the assurances of confidentiality,

integrity, and availability of their computer based resources. To provide such

assurances, organisations utilise access control to protect against unauthorised

access. Current approaches, such as Role Based and Attribute Based Access

Control (RBAC and ABAC) [58, 97], rely on the assessment of immutable criteria

before awarding access.

Whilst RBAC and ABAC approaches are capable of protecting from unautho-

rised access, they do not take into account the dynamic aspects of risk at runtime,

due to uncertainty in user behaviour. A number of approaches in improving access

control have been proposed in response to such concerns. These include dynamic

access control methods that consider risk [83], trust [12], and usage [109], as part of

the criteria for accessing resources, whereby they seek to enable a fine granularity

of control. However, such approaches introduce complexity into the definition of

access control, potentially restricting access unnecessarily, or introducing errors.

Moreover, to be effective, these approaches must accommodate every possible

abuse at time of defining the criteria for access.

Regardless of adopting a fine grained approach to access control, abuse of

access is still possible. Any form of access, no matter how restrictive, presents the

risk of attacks due to uncertainty in user behaviour. To accommodate for this risk,

organisations employ a range of methods [92] to monitor and audit access within

their systems and resources. Traditionally, human administrators are relied upon

to actively identify and drive changes in access control in response to detected

abuse, natural organisational change, or identified errors in the criteria for access.

However, as evident by recent scandals [10, 20, 141], much more could be done.

Implementations of access control (e.g., authorisation infrastructures [32]),
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CHAPTER 1. INTRODUCTION 2

must be capable in handling the dynamic aspect of risk at runtime, driven by

the uncertainty in user behaviour. It is therefore necessary for such systems to

actively observe how access rights are being used, in order to infer whether the

current criteria and assignment of access are enabling a user to conduct malicious

activity.

1.1 Research Problem

Authorisation infrastructures [32] consist of integrating independent systems for

implementing access control. These include systems to facilitate storage of user

access rights; user authentication; the issuing, release, and validation of user access

rights; decision for access; and enforcement of access control decisions. As such,

no one system exhibits a complete view of the configuration of access.

It is therefore challenging for human administrators to maintain a true aware-

ness of the configuration of access, particularly within a runtime environment.

With no complete view of access, obtaining assurances [57] against changes made

to mitigate the abuse of access is limited. This potentially enables erroneous

changes that cause a greater impact to the organisation over identified abuse.

In addition, and as evident in case studies of historic insider attacks [27], the

use of human administrators alone is inefficient in mitigating abuse in a timely

manner. Improving on access control methodologies is one solution, yet such

approaches [12, 66, 83, 109] are unable to actively mitigate abuse, since they are

constrained to a static definition of the criteria for access control at runtime.

Given these problems, this thesis considers the following research question.

How can access control be managed to handle unpredictable changes in user

behaviour at runtime?

Enabling the management of access control presents several challenges. First,

authorisation infrastructures that implement access control contain a multitude

of systems in which an access control methodology is achieved. There are many

diverse implementations that can exist within an authorisation infrastructure [81,

112, 114], and as such, a challenge concerns how a single solution can integrate,

observe, and adapt such a variety of systems at runtime.

Second, an authorisation infrastructure may be owned by a single organisation

(i.e., centralised), or multiple organisations (i.e., federated [93, 140]), where access
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to resources is assigned by multiple third party organisations. As a result, observ-

ing and obtaining a unified perception of the configuration of access is challenging,

due to the need to operate across multiple management domains.

Third, given the nature of change against the criteria and assignment of access,

a certain degree of assurance is required. As with the need to verify the definition

of an access control model against requirements at development time [57], it also

becomes necessary to verify any changes in the definition of access control at

runtime.

1.2 Research Approach

Given the current limitations in access control, the approach presented in this

thesis proposes a framework that enables the automated management of access

control through self-adaptation.

The framework observes and controls authorisation infrastructures at runtime,

via the automated adaptation of access control policies and user privileges. The

framework defines a means for adapting the criteria and assignment of access

depending on the presence of insider threat (related to the abuse of access control).

The framework has been implemented as a prototype consisting of an autonomic

controller, configurable within RBAC and ABAC authorisation infrastructures.

The approach is demonstrated as a reactive means to handling insider threat.

This is an important contrast to how existing approaches aim to handle malicious

behaviour in access control. Rather than deploying restrictive access control poli-

cies that attempt to preempt malicious behaviour, this approach positions the

automated adaptation of access control in response to malicious behaviour.

The approach relies on self-adaptation [121] and model driven engineering [16]

as a means to achieve automated management of authorisation infrastructures.

Applying self-adaptive techniques to authorisation infrastructures enables the in-

frastructure to observe, reason, and act on its own configuration of access control.

Through the use of a feedback loop [22], it is possible to employ a clear separa-

tion of concerns between the decision for access, and decision for a management

change, therefore reducing the complexity in the criteria for access that dynamic

access control approaches introduce.

Model driven engineering (MDE) [16] enables a self-adaptive system to ab-

stract and generate models of its own system and environment state, such as the

runtime state of access in terms of the configuration of access control. Models are
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important in enabling the reasoning of environment and system state, as well as

the adaptation of system state. For instance, model transformation [126] enables

the conversion of one model (e.g., a particular implementation of an RBAC access

control policy) to another (e.g., a homogeneous model of RBAC). Through model

transformation, a self-adaptive solution is therefore able to observe and adapt

diverse implementations of access control.

Finally, in order to evaluate the approach, the framework is deployed within

a centralised (single organisation) RBAC authorisation infrastructure, and a fed-

erated (multi-organisation) ABAC authorisation infrastructure. The framework

is then evaluated in terms of simulating case studies of insider threat, as well as

evaluated within a live experiment using gamification [60]. The latter demon-

strates a novel approach to evaluating self-adaptive systems under diverse and

unpredictable change.

1.3 Thesis Contributions

The goal of this thesis is to design and evaluate a framework for the runtime

management of access control. In pursuit of this goal, this thesis presents several

contributions.

1. The definition of a framework to enable the automated management of au-

thorisation infrastructures through self-adaptation, capable in mitigating

the abuse of access by adapting access control policies and user privileges at

runtime.

2. An approach to generating and transforming a model of the state of access,

causally connected to the configuration of access control within distributed

and complex systems at runtime.

3. A means to automating the management of federated identity providers [93],

in order to mitigate the abuse of access given the existence of multiple man-

agement domains.

4. A novel approach to evaluating self-adaptive systems through gamifica-

tion [60], enabling the generation of data representative of change (e.g.,

abuse of access) that is diverse and unpredictable.
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1.4 Thesis Structure

The rest of this thesis is structured as follows. Chapter 2 presents a literature

review aimed at scoping the thesis’s research problem and reviewing related work.

The literature review discusses the following topics: traditional methods in access

control, insider threat, recent approaches in access control with respect to insider

threat, self-adaptive software systems, and self-protecting software systems.

Chapter 3 proposes the Self-Adaptive Authorisation Framework (SAAF), a

framework for enabling the automated management of authorisation infrastruc-

tures. It presents the conceptual aspects of the approach, notably the role of au-

tonomic controllers in observing and adapting authorisation infrastructures. The

approach is also classified with respect to a recent taxonomy of self-protecting

systems [150], leading to a discussion of the approach and related work.

Chapter 4 describes the implementation of a SAAF autonomic controller pro-

totype, deployable within RBAC and ABAC authorisation infrastructures. A

major focus of the chapter is on the role of models at runtime, and defining a

means in which the controller can be integrated with diverse implementations of

authorisation infrastructures. A preliminary experiment then demonstrates miti-

gation of a historic case of insider threat, simulated within an RBAC authorisation

infrastructure.

Chapter 5 presents a formal definition of change within authorisation infras-

tructures. The formal approach is used to drive the simulation of a fictitious

insider attack within a federated ABAC authorisation infrastructure. Several ex-

periments are discussed in this chapter, evaluating the prototype’s ability to mit-

igate insider attacks given limitations in the observation and control of federated

authorisation infrastructures.

Chapter 6 seeks to complement the previous evaluation by deploying SAAF

within a real user environment. In this chapter, an online game has been devel-

oped for emulating an organisational resource, protected by a centralised RBAC

authorisation infrastructure. The prototype controller is deployed and evaluated

in detecting and mitigating malicious behaviour conducted by players of the game,

at real time, whereby the prototype is faced with diverse and unpredictable change.

Lastly, Chapter 7 presents the conclusions of the thesis by stating the achieve-

ments, limitations, and identification of future work.



Chapter 2

Literature Review

2.1 Introduction

Modern organisations are facing increasing security threats, where their intellec-

tual property, systems, and resources are at risk to internal and external attacks.

This had led to the use of a wide range of security controls in order to provide

assurances in the fundamental aspects of security: the CIA triad of confidentiality,

integrity, and availability [115].

Confidentiality refers to the prevention of unauthorised access to information

and systems (e.g., a top secret document is not disclosed to the public). Integrity

aims to assure information and systems remain accurate, and behave as expected

(e.g., software has not been tampered with to act maliciously). Lastly, availability

seeks to assure that information and systems remain available when needed (e.g.,

an authorised employee is not hindered in accessing a critical system).

Various controls exist for organisations to maintain assurances in confiden-

tiality, integrity, and availability. These range from administrative procedures

(e.g., definition of security policies) to technical solutions, such as physical con-

trols (e.g., electronic door locks and alarms), authentication and access control

systems, network security, application security, and encryption. As such, an or-

ganisation may employ several layers of control in order to prevent or mitigate

security threats. For instance, an organisation may utilise firewalls to prevent

access to their network from wide area networks, and deploy intrusion detection

systems [120] to identify external attacks. Additionally, an organisation may in-

stall anti-virus tools to maintain the integrity of installed applications, and access

control systems to prevent unauthorised access to confidential resources.

6
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This research focuses on access control, with the intent on improving the man-

agement of access control in light of a particular type of security threat: insider

threat. Specifically, the goal is to extend access control in order to handle preva-

lent insider threats that modern organisations are victim to, by introducing a

greater degree of automation.

Access control, where an organisation seeks to govern user access to electronic

resources (e.g., systems, hardware, and data), refers to how a user is identified,

the privileges a user has, the constraints of access a user is subject to, and how

access is decided. It is considered the enabling technology for users to gain access

to resources, in which a user can exhibit insider threat. Insider threat refers to

the potential of a user within an organisation to cause damage against that organ-

isation, in terms of theft, sabotage, and fraud. Users who abuse their privileges

to carry out insider threat can be mitigated through active management of access

control (i.e., removal or assignment of access). However, current solutions in ac-

cess control are limited in automating such a process, relying on manual practices

to identify and respond to such threat.

A solution to automating the management of access control is self-adaptation.

Self-adaptation, where a system is capable of observing and adapting itself, is

considered due to the ability for a system to reason about its own state, identify

non-conventional states, and adapt its state to protect, manage, or repair. Self-

adaptation can be applied to existing approaches in access control to improve

upon the handling of insider threat, through active adaptation of access control

rules and user privileges. This enables a direct response to an ever changing and

dynamic environment (i.e., the organisation, its users, and its resources).

In this chapter, a literature review explores the topics of access control and

self-adaptation, along with their relation to the mitigation of insider threat. It

is structured as follows. Section 2.2 provides a core overview of access control.

Common access control models within industry are highlighted, as well as emerg-

ing models attaining increased interest in the security research area. Section 2.3

introduces insider threat, highlighting different types of attacks, and current ap-

proaches used for detection and mitigation. In Section 2.4, an overview of self-

adaptation and self-adaptive software systems is presented, discussing prevalent

self-adaptive reference models, challenges in realising self-adaptation, and an ex-

ample self-adaptive solution. Section 2.5 discusses relevant work on self-protection

and their application to mitigating insider threat. Lastly, in Section 2.6, a sum-

mary of the literature review is given.
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2.2 Access Control

Access control is the government and restriction of access to a resource [130],

where a resource could be anything from a software system (web application,

database) to an electronic device (electronic door lock, mobile phone). Through

well structured access control policies (rules), assignment of user access rights,

and precise separation of duties, an organisation garners a certain level of protec-

tion from unwanted access. By definition, access control mitigates the potential

damage from malicious insiders by limiting a user’s scope of access.

Access control embodies two concepts: identities and permissions. An iden-

tity is a digital representation of a subject (a user), where a subject could be a

human being, a system, or even a process [12]. An identity contains information

about the subject, particularly relevant for authentication [110] where a subject

must identify themselves (e.g., entering in a username and password, or use of

biometrics [117]). Most importantly, an identity contains a set of subject access

rights (i.e., privileges). Access rights represent a subject’s right of access to a re-

source, used in conformance to a set of permissions. Permissions define the access

right(s) required in order to obtain access to a resource. Once a subject invokes

the required access right(s) to a resource, the subject is said to be authorised.

Access control models seek to classify and define how access is governed, in

terms of how permissions are expressed, who can define permissions, and what

an access right looks like. The Mandatory Access Control [75] (MAC) model

enables subjects with a set of access rights to access resources in conformance

to centrally specified permissions (i.e., defined by security administrators). In

contrast, the Discretionary Access Control [75] (DAC) model enables subjects in

a similar sense to MAC to access resources, yet, permissions can be specified by the

subjects themselves in relation to the resources that they own. Additionally, the

Bell-LaPadula model (BLP) [11] awards access based on labelled classifications,

such as Top Secret or Public, and a subject’s level of security clearance.

Arguably, the most adopted [102] access control model in industry is Role

Based Access Control (RBAC) [97]. RBAC introduced the notion of roles, where

a role is assigned a set of permissions that enable access to a resource. Finally,

Attribute Based Access Control (ABAC) [152] presents a more generic view of the

RBAC, where instead of roles, attributes (e.g., 〈gender ,male〉) are used in order

to collate and assign permissions.
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The rest of this section addresses RBAC and ABAC. This includes the discus-

sion of the eXtensible access control markup language (XACML) [101]; the role

of authorisation infrastructures in implementing access control; and the notion of

federation, where access control is implemented across multiple organisations.

2.2.1 Role Based Access Control

The Role Based Access Control model is the culmination of works by Ferraiolo

et al. [49] and Sandhu et al. [123] that led to a National Institute of Standards

and Technology (NIST) RBAC standard [97]. The RBAC standard is defined

by three layers, each layer extending the layer prior with additional features.

The layered approach provides flexibility for organisations to adopt the standard,

whereby not all functionality may be necessary. These layers are referred to as

Core, Hierarchical, and Constrained.

Figure 2.1: Role Based Access Control Model [97]

RBAC Core (Figure 2.1) defines the minimum requirements to conform to

the RBAC standard. It defines the fundamental elements that must exist within

an RBAC implemented access control system, namely, subjects (identities), roles,

resources, actions, permissions, and sessions. Subjects are assigned a set of roles,

where a role may define a job function within an organisation (e.g., operations

manager). Roles are assigned permissions, where each permission details the

ability for a subject to execute an action (e.g., print) on a resource (e.g., printer).

A subject’s session captures a set of roles that the subject has currently activated.

RBAC Hierarchical extends RBAC Core by introducing the ability for roles

to inherit permissions of another role (role hierarchy, Figure 2.1). The RBAC

standard defines inheritance by stating that a role1 inherits from role2 only if

role1 contains the same permissions as role2.
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RBAC Constrained extends RBAC Core and RBAC Hierarchical by introduc-

ing constraints in regards to subjects and roles. Constraints are used to prevent a

subject from abusing business functions within their position of power. For exam-

ple, a constraint may exist that prevents a subject who is a student from marking

their own work, as a member of staff. The RBAC standard defines two types of

constraints: Static Separation of Duties (SSD), and Dynamic Separation of Du-

ties (DSD), as labelled in Figure 2.1. SSD refers to the restriction of subject role

assignment, meaning if a subject owns role1, they may not own role2. DSD refers

to the restriction of which roles a subject may activate within a session. This

means, if a subject has activated role1 but also has been assigned role2, access to

permissions assigned to role2 are denied.

There are many proposals that extend RBAC, highlighting not only RBAC’s

popularity in industry, but also in the research area. Kalam et al. extend RBAC

to include the notion of organisations in Organisation Based Access Control (Or-

BAC) [69]. Introducing organisations enables the specification of RBAC rules rele-

vant to an organisation, where there are many sources of authority (SOAs) sharing

access. Similar work by Demchenko et al also address the problems caused by mul-

tiple sources of authority, proposing Role Based Access Control for Distributed

Multidomain Applications (RBAC-DM) [44]. Demchenko highlights limitations of

RBAC in collaborative environments (containing multiple SOAs), and addresses

them via the use of multi-domain authorisation sessions (where an RBAC session

can span across several organisations). Lastly, Bertino et al.’s GEO-RBAC [13] in-

troduces the notion of location, where a subject’s geographical location influences

the activation of a subject’s assigned roles. GEO-RBAC addresses the need for

spacial aware access control, where subjects may only access a resource depending

on their location.

2.2.2 Attribute Based Access Control

Attribute Based Access Control (ABAC) is a recent development in access control,

garnering increased attention from the research community. There are a number

of proposals [58], critiques [122], and implementations [32, 93, 101]. ABAC can

be considered a natural progression from the RBAC model, whereby instead of

permissions assigned to roles, permissions are assigned to attributes of a sub-

ject. An attribute is defined as a tuple 〈AttributeType,AttributeValue〉, where

AttributeType is either unique to an organisation or something commonly owned
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by identities (e.g., email address, gender, etc.), and AttributeValue represents the

value of the attribute. For example, an attribute for a subject’s identity with first

name John is described as: 〈firstName, John〉.
ABAC implementations and proposals have put forward additional criteria for

access control, as opposed to simply replacing the notion of roles in RBAC with

attributes. Notably, environment conditions are considered in order to provide

additional context to a subject’s request for access. For example, a subject re-

questing access outside of normal office hours should not be granted access, despite

having the necessary attributes to gain authorisation to the resource. The inclu-

sion of environment conditions has the ability to expand the criteria necessary to

award access, and further protect an organisation’s resources from attacks (e.g.,

credential stealing attacks [128], by blacklisting IP addresses).

Sandu states that the leap from RBAC roles to the use of attributes offer a

number of benefits [122]. This highlights the fact that ABAC unifies many access

control models, such as attributes used for roles (RBAC), location (GEO-RBAC),

and security labels (Bell-LaPadula). However, the resulting benefits of ABAC

come with complexity. Organisations now have to be more specific when utilising

ABAC, as access rights could be represented as anything a subject, resource,

or environment might own. This has the potential to lead to conflicting access

control policies, or increased challenges when managing access, due to no clear

representation of an access right.

2.2.3 Extensible Access Control Markup Language

The eXtensible Access Control Markup Language (XACML) standard [101] is

used to define a plethora of access control policies, primarily enabling the specifi-

cation of ABAC and RBAC policies [100]. The purpose of XACML is to provide

an extensible format that organisations can use for specifying access control rules,

as well as a format in which access requests and decisions can be conveyed. The

extensible characteristics of XACML enables integration between independent ac-

cess control systems, whereby common terminology is used. In addition to the

markup language, XACML promotes separation of access control from resources

(i.e., a resource relies on an external service to perform access control decisions).

Separating access control decisions allows for centralised management, removing

redundancy in access control rules that are typically specified and interpreted

locally at each resource.
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XACML describes a set of conceptual components necessary to implement

separation of access control from resources (Table 2.1). These components are

the enabling factors of access, whereby in real systems [48, 148] that implement

such components, access control can easily be monitored, and managed, in a

centralised manner. This removes the need for each of an organisation’s resources

to implement access control, and for administrators to replicate access control

rules in a redundant fashion.

Component Description

Policy administration point (PAP) The source of authority / system that
issues access control policies

Policy decision point (PDP) Evaluates access requests against policies
to provide access decisions

Policy enforcement point (PEP) Makes access requests and enforces
access decisions

Policy information point (PIP) Contains subject identity information
(attributes)

Table 2.1: XACML components

2.2.4 Authorisation Infrastructures

An authorisation infrastructure [32] is a loose term for a collection of services

and mechanisms that implement an access control model. There are a number

of varying terms for authorisation infrastructures, such as the ones defined by

authentication and authorisation infrastructures (AAIs) [81], XACML’s reference

authorisation architecture [101], and privilege management infrastructures [31].

Chadwick et al. [32] define an authorisation infrastructure as follows:

Definition 1 (Authorisation Infrastructure [32]) “Authorisation infras-

tructures manage privileges and render access control decisions, allowing

applications to adjust their behaviour according to the privileges allocated to

users.”

Key to this definition and other variations is the existence of independent ser-

vices that facilitate the management of subject access rights (identity services),

and access control decisions (authorisation services). Examples of authorisation

services include the axiomatics policy server [4], PERMIS standalone authori-

sation service [114] (both of which utilise the XACML standard to define access
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control policies), and the community authorisation service (CAS) [112]. Examples

of an identity service include directory services, such as the Lightweight Directory

Access Protocol [76] (LDAP). Other forms of identity services include creden-

tial issuing services (such as SimpleSAMLphp [131] and the Shibboleth identity

provider [93]). These types of identity services not only maintain a subject’s ac-

cess rights (privileges), but can be configured to decide what access rights can be

issued and released to given services across multiple domains.

General Model for Authorisation Infrastructures

To abstract from varying implementations of authorisation infrastructures, Fig-

ure 2.2 defines a general model of an authorisation infrastructure. Based on

existing implementations [32, 81, 101], identity services may authenticate sub-

jects, and maintain, assign and release a subject’s access rights (i.e., privileges)

to authorisation services based on policies (e.g., Shibboleth’s attribute release

policy [93]). Authorisation services may validate and evaluate a subject’s ac-

cess rights against a set of policies (e.g., PERMIS’s access control and credential

validation policies [114]).

Figure 2.2: General authorisation infrastructure model

The combination of both identity services and authorisation services results

in the implementation and conformance to an access control methodology (e.g.,

RBAC [97]). Policies within authorisation services are used to define the con-

straints of access (i.e., RBAC role permission assignments), whereas policies and

subject attribute repositories (e.g., LDAP [76]) within identity services contain or

define what subjects have in terms of assigned privileges.
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Associated with policies and access rights is the notion of source of authority

(SOA) and issuer [32]. An SOA is the owner of a resource that establishes the

rules of access (as policies) to their resources. An issuer is the identity service

or person that issued a subject a set of access rights, which are either stored in

an attribute repository as unsigned or signed attributes [64], or are generated at

time of request [99].

The key facet of authorisation infrastructures, highlighted by the general

model, is the use of services to implement and provide access control, exter-

nal to an organisation’s resources. This implies a separation of duties between

provisioning of functionality within resources, and the assessment of right to ac-

cess [32, 81, 101]. Specifically, access control is implemented by services that

provide the following functionality:

1. Authentication and disclosure of subject information, such as access rights

and subject identifiers (identity services)

2. Evaluation of access rights against access control rules, and decision of access

(authorisation services)

3. Coordination of access requests and enforcement of access control decisions

(policy enforcement points - PEPs)

With reference to the flow of communication in Figure 2.2: to obtain authorisa-

tion, subjects (users) authenticate (1) with a given identity service that maintains

a set of access rights for each subject. The authenticated subject can then request

(2) access to a particular resource. The resource’s policy enforcement point (PEP)

communicates with an authorisation service (3), which can first validate (4) the

subject’s set of access rights (i.e., ensure they are legitimate), and then decide

upon access. The authorisation service sends a response back to the PEP with a

message indicating if authorisation should be granted or denied (5).

PERMIS Authorisation Infrastructure

An example of an authorisation infrastructure is PERMIS [32]. PERMIS is a

modular based authorisation infrastructure that implements an RBAC / ABAC

model. Figure 2.3 portrays one configuration of a PERMIS authorisation infras-

tructure, tailored for use within a single organisation. Specifically, the figure

details a PERMIS standalone authorisation service interacting with a resource’s

policy enforcement point (PEP) and an identity service, to govern access.
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Figure 2.3: A simple example of a PERMIS authorisation infrastructure

The authorisation service’s role is to analyse requests made through a re-

source’s PEP, validate them and assess whether or not access should be granted.

Access control decisions are governed by policies defined by sources of authority

(SOAs). Policies are written and stored as XML files using either PERMIS’s own

proprietary schema, or the XACMLv2 schema. A policy contains a set of rules

conforming to RBAC / ABAC, such as permission assignments, environment con-

straints, and role hierarchies. Subject access rights are specified either as plain

text attributes or in the form of an X.509 Attribute Certificate (AC) [64], often

referred to as a credential. A credential is a digitally signed access right, signed

by the administrator who issued the access right to the subject, and stored within

an identity service (e.g., LDAP).

Components within the PERMIS authorisation service interpret policies and

subject credentials in order to generate access control decisions via its Policy De-

cision Point (PDP). The credential validation service (CVS) is a novel concept

of PERMIS, whereby the authorisation service has the ability to validate a sub-

ject’s set of credentials to ensure whoever issued the credential, is a trusted issuer.

The PDP assesses the subject’s set of valid attributes (once validated) to check

if the subject meets all the requirements for access (defined within a PERMIS

authorisation policy), thus granting / denying access.

2.2.5 Federated Identity Management

Federated identity management (or federated access) is the sharing of access across

multiple management domains (organisations). Various access control models are
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suitable for federated access control [44, 58, 69, 139], demonstrated by several im-

plementations [32, 93, 131]. The International Telecommunications Union (ITU)

defines federated identity management [63] as follows.

Definition 2 (Federated Identity Management [63]) “A set of functions

and capabilities (e.g., administration, management and maintenance, discovery,

communication exchanges, correlation and binding, policy enforcement, authenti-

cation and assertions) used for: assurance of identity information (e.g., identi-

fiers, credentials, attributes); assurance of the identity of an entity (e.g., users /

subscribers, groups); and enabling business and security applications.”

Basically, federated identity management is the management of identities

across multiple organisational domains. Subjects are capable of using their identi-

ties / privileges to access resources owned by organisations other than their own (a

service provider) so long as these are issued by a trusted third party organisation

(an identity provider). Each service provider maintains their own set of access

requirements to their resources, and identity providers maintain their subject’s

set of access rights (as identities) that can be used to access such resources.

Figure 2.4 shows a high level overview of a federated environment, containing

a service provider (SP) and several identity providers (IdPs). Subject identities

managed by an identity provider can be assigned a set of attributes that are stored

within an identity service (e.g., simpleSAMLphp [131]). Subjects can use their

attributes to gain access to a service provider’s resources given that the service

provider trusts the identity provider. To control the release of attributes, some

identity providers may define attribute release policies [93] to prevent certain

types of information from being released to service providers. When an identity

provider releases a subject’s set of attributes, it is typically in the form of a

signed certificate [64] or assertion [99], indicating what attributes the subject

owns, who assigned the attributes, and how long the attributes are valid for. To

control access, each service provider within the federation manages their own set

of permissions defined in access control policies. The service provider ultimately

decides upon access through the use of authorisation services (which provide access

control decisions local to the organisation).

A problem that arises from federation of access control, is that service provider

organisations will likely face large and unknown user bases. Coupled with the fact

that identity providers do not have to release personal or meaningful identifiable

information (e.g., e-mail address, name, etc.) about their subjects (often opting to



CHAPTER 2. LITERATURE REVIEW 17

Figure 2.4: Conceptual view of federated / collaborative access

use a uniquely generated persistent (PID) or transient ID (TID) instead [131]), a

service provider may find it challenging to manage access at a federated level. This

requires identity providers to cooperate with service providers, where currently

no efficient medium exists to facilitate management change between federated

organisations.

2.3 Insider Threat

Insider threat refers to an organisation’s risk of attack by their own users or em-

ployees. It is fast becoming a prominent topic that organisations need to address,

as highlighted by recent scandals in the media [10, 20, 143]. The CERT Guide

to Insider Threats (Cappelli et al.) [27] defines malicious insider threats as the

following.

Definition 3 (Insider Threat [27]) “A malicious insider threat is a current

or former employee, contractor, or business partner who has or had authorised

access to an organisation’s network, system, or data and intentionally exceeded

or misused that access in a manner that negatively affected the confidentiality,

integrity, or availability of the organisation’s information or information systems.”

A common characteristic of insider threat is that malicious insiders utilise their

knowledge of their organisation’s systems, and their assigned access rights, to en-

able attacks. This places a malicious insider in a fortuitous position, whereby

the insider (as an authorised user) can cause far greater damage than an external

attacker, simply due to their access rights [28]. Authentication, access control,
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and authorisation infrastructures provide critical security measures in enabling

confidentiality, integrity, and availability to an organisation’s resources. How-

ever, unless additional measures are put into place, malicious insiders can abuse

these security measures, as the scope of such systems assume that if a user has

authenticated, and has the required access rights, access to resources should be

given.

There has been a significant amount of research in methods to detecting insider

threat. These range from the use of honeypots [132] that store fake information to

entice and catch out malicious insiders, to characterising insider attacks [98] based

on analysis of historical attacks, as well as the development of detection tools [61]

that enable the identification of abnormal activity within an organisation. Whilst

there are a number of novel techniques [14, 37] that enable the detection of insider

threat, there is little research that utilises such techniques within an automated

solution [30, 136]. Many existing approaches require analysis by human agents to

identify and execute resultant actions to mitigating attacks, and few tackle the

potential abuse of access.

The rest of this section discusses the classification of insider threat, as well as

current methods of insider threat, techniques in detecting and mitigating insider

attacks, and related advancements in access control.

2.3.1 Classifying and Characterising Insider Threat

Capelli et al. [27] classify three forms of insider threat: sabotage, where malicious

users attempt to damage or corrupt organisational resources, theft, where resources

are stolen and distributed, and fraud, where activity is covered up or information

is used to commit crimes, such as falsifying money transfers.

Characterising attacks within these classifications has led to a variety of mod-

els of insider threat, such as CERT’s Management and Education of the Risk of

Insider Threat (MERIT) models [26]. A set of MERIT models exists for char-

acterising sabotage attacks [90], and theft attacks [89]. These MERIT models

outline the characteristics pertaining to different classification of attacks, identi-

fying stark differences in social and technological factors that have led to an attack

occurring. For example, sabotage attacks were more technically sophisticated in

comparison to theft, suggesting that insiders committing sabotage were advanced

computer users. A contrasting example looks at the sociological factors behind an

attack, such as fraud attacks were often committed by low-level employees over
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long periods of time until caught. By contrast, data theft is often committed by

highly educated personnel (e.g., scientists, engineers) who steal information prior

to resignation [27, 141].

As opposed to a characterisation model per classification of threat, Nurse et

al.’s approach opts for a unifying model [79, 98]. Their approach is capable of

describing all classifications of threats, presenting a usable model to facilitate

detection and mitigation, to what is already a challenging problem. With ref-

erence to this model, insider attacks are clearly characterised by catalysts, actor

characteristics, attack characteristics, and organisation characteristics.

Catalysts and actor characteristics refer to behavioural and psychological

events pertaining to the malicious insider in question. For example, an actor

characteristic is the insider’s attitude to work (i.e., loyalty, uncaring), their per-

sonality (i.e., introvert, or share traits within the dark triad of behaviour [65]),

previous historical behaviour (i.e., breaking policy, physical altercations, rule vi-

olations) and psychological state (i.e., are they disgruntled about past events).

Nurse et al. claim that a mix of social and technical factors precipitates the mo-

tivation to carry out an attack, and a major tipping point to this are catalyst

events. For example, redundancy, demotion, or moving to a competitor.

Many of these factors are difficult to identify from a technological standpoint,

especially in forming an assessment of psychological state that leads to the execu-

tion of an attack. However, previous research utilises these factors in an attempt

to predict the likelihood of insider threat. For example Kandias et al. [71] monitor

a user’s technological activity and couple this with psychometric testing to indi-

cate stress. Whilst the approach is novel, and shows promise in terms of outlining

focused monitoring strategies, psychometric testing is not always a practical or

time-relevant activity to carry out. That is to say, psychometric testing can give

a general awareness of an attacker’s personality, but does not account for recent

events that impact an attacker’s mood or motivation.

Attack characteristics and organisation characteristics refer to technological

factors. For example, an attack characteristic refers to the type of attack the in-

sider carries out (e.g., abuse access rights, deletion of backups), which are linked

to the classification of attack. Within the attack itself, there exists a set of attack

steps that are indicative of the actions performed against organisation characteris-

tics. For example, an attack step will target a particular organisation resource, via

exploiting a vulnerability (i.e., within the resource itself, security configurations,

or lack of security measures). These characteristics provide concrete evidence
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of an insider attack, and are essential when considering a reactive approach to

detecting malicious insiders.

Lastly, various methods exist in which to describe insider attacks. Attack

trees [91, 118] seek to model high level attacks that define a set of attack paths to

achieve a desired goal (e.g., discover the scope of an access control policy). This

approach is useful in defining high level attacks, such as network intrusions, yet is

limited in the modelling of abuse of access (due to the diversity of user behaviour).

Rather than define a set of attack steps that model abuse of access, process

models [17, 47] can be used to identify where abuse could occur. This can guide the

deployment of relevant mitigative solutions in protecting resources, but also enable

the detection of attacks. For example, Bishop et al. [17] have demonstrated the use

of process models in identifying insider sabotage attacks within a system workflow.

Similar approaches have also been shown to work at runtime in detecting the

sabotage of executing software, whereby software infected with malware has been

automatically repaired based on modelling execution norms [113].

2.3.2 Methods of Insider Threat

There are a variety of methods of insider threat that organisations are vulnerable

to, some of which are identified by the 2013 Vormetric Insider Threat Report [104].

The report identifies that the abuse of privileged user access rights was seen as

the forefront method of concern for organisations, which remains a focal point of

this research. However, it is worth considering other methods of insider threat in

order to scope what this research does not intend to address.

Theft of physical devices is a major concern for organisations, typically aligned

with data theft. For example, there have been cases where a laptop or USB

device has been used as a vessel to transport confidential documents outside of an

organisation [54]. It is arguable that as devices become smaller, and the popularity

of tablet devices rises, the ability for employees to steal, or even lose them outside

of the organisation, increases.

Another method of insider threat concerns application vulnerabilities. An ex-

ample of this method is an employee installing a seemingly innocent application

on their workstation. The application has not been approved by the organisation’s

user platforms team and as such is seen as an insider threat once installed. An

insider threat exists as the application may contain malicious code that compro-

mises the integrity of the organisation’s network, or carry out credential stealing
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attacks [128] to allow an external attacker to gain entry. This activity is of-

ten referred to as accidental or unintentional insider threat [138], where through

direct or indirect action an employee creates a risk despite no intentional mal-

ice. Organisations attempt to mitigate such risks through implementing a change

management control procedure [68], which guides any changes to an organisation’s

network, systems, and software.

A second example related to application vulnerabilities is the risk from dis-

gruntled employees leaving back door access via in-house developed applications.

This example is often used to commit sabotage [27], where an employee has cre-

ated a security hole within an application to by-pass security controls (such as

firewalls and access control systems). This begs the question can any applica-

tion within an organisation be trusted, and is it possible to increase the trust in

applications as non-malicious?

Clearly there are many approaches to address when mitigating insider threat,

indicating there can be no single solution. It is therefore necessary to adopt a

layered approach to provide a high coverage in mitigation of insider threat. For

example, physical security is needed to mitigate theft of physical devices, change

management to prevent unsolicited applications from being installed, and intru-

sion detection to cover the possibility of back-door vulnerabilities left by disgrun-

tled employees. In addition, incorporating recent approaches in understanding

data flow and execution in deployed applications [17, 113] can greatly improve

upon the trust organisations have in their applications.

2.3.3 Detection and Mitigation

Insider threat presents a unique scope of attacks which are arguably more chal-

lenging to detect when compared to external attacks, such as network intrusion

or deployment of malware. These conventional attacks are obvious in terms of

‘attack steps’ performed, making it less of a challenge to detect. Whilst such

attacks are entirely possible of a malicious insider, they are not representative of

the attacks that many organisations consider to be most vulnerable from, being

the abuse of privileged access rights by the employees of an organisation [104].

As such, detection and mitigation approaches are still within their infancy in

terms of application in industry. Detecting attacks, such as the abuse of access,

is traditionally done through auditing of logs (e.g., access control logs, server

logs, etc). This continues to be a prevalent method in detection [54]. A problem
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with traditional methods is that they are highly reliant on human analysis, where

detected attacks may go unchallenged, or responded to in an incorrect or untimely

manner. To improve upon this, a number of automated solutions exist within the

scope of detection of insider attacks, in a runtime environment.

Intrusion detection systems (IDSs) were introduced as a means of identifying

attacks, as well as flaws within an organisation’s deployed security systems. The

concept of an IDS is well known, with a number of approaches available [43].

Primarily, IDSs are concerned with identifying and notifying administrators of

attacks and ongoing attacks. However, they also provide the basis to detecting

malicious insiders. IDSs are useful in identifying insider attacks, but often are seen

as separate to existing security systems (i.e., independent). Here, administrators

must act on alerts from the IDS by instigating responses via other security systems

(e.g., access control systems) to halt or prevent identified attacks.

IDSs can be categorised by signature / pattern based or anomaly based detec-

tion. Signature based detection utilises information about historical attacks (e.g.,

a repeated pattern observed in network traffic). For example, SNORT [120], is

capable of detecting the rate at which a user accesses a node on a network, or a

sequence of packets sent across a network. anomaly based detection makes use

of thresholds / rules that classify activity based on a set of heuristics to identify

anomalies. PAYL [144] takes a statistical approach to measure activity against a

pre-defined norm, triggering alerts when the measure exceeds a given threshold. A

signature based approach provides a stronger indication of an attack, as observed

signatures of an attack can be matched precisely. However, the approach is lim-

ited in detecting unknown attacks, and is only as accurate as the set of known

signatures available. By contrast, anomalous based detection is capable of iden-

tifying new and anomalous behaviour (that deviates from the norm). Whilst this

is beneficial in detecting unknown attacks, detection is not as accurate, resulting

with a greater likelihood of false positives.

A significant step to detecting the abuse of access is to consider user behaviour

at an application level. Bertino et al. [14] discuss their anomaly based IDS ap-

proach based on mining database trace logs and attributing behaviour (usage)

of the (RBAC protected) database to a user’s role in an organisation. Doing so

enables the profiling of normal behaviour per organisational role, in order to iden-

tify anomalous behaviour within each role profile. Rather than utilise pre-defined

rules to classify behaviour, Bertino et al. make use of a machine learning clas-

sifier [46] to identify normal and anomalous behaviour. Here the characteristics
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of an activity are compared to a perception of normal behaviour for the role. A

machine learning approach reduces the need for a set of complex detection rules,

or fine grained security measures to mitigate insider threat. However, such an ap-

proach requires the organisation to have a clear understanding of different attack

profiles associated to roles, to train classification of behaviour [86]. This in itself

can be just as complex as defining a set of detection rules.

2.3.4 Mitigating Insider Threat through Access Control

As discussed previously, the potential for the abuse of privileged access rights

is seen as a major vulnerability for organisations in being susceptible to insider

threat [104]. This thesis positions that whilst access control seeks to provide as-

surances in confidentiality and availability of an organisation’s resources, it also

presents vulnerabilities given the fact that users can abuse their access. Tradi-

tional approaches can no longer be seen as enough to assure confidentiality of

resources, as no assumption is made about how a user is utilising their access. It

is therefore important to consider user behaviour alongside the traditional assign-

ment of user privileges, prior to awarding access.

To this end, a number of recent methods extend access control away from the

traditional mechanisms presented by RBAC and instead enable dynamic qualities.

These dynamic access control approaches [18, 19, 66, 109] incorporate mechanisms

from detection based systems, as well as expand upon the criteria of access to

decide upon access.

Usage Control (UCON) [109] builds upon traditional access control models

whereby obligations and conditions are used to assess a subject’s usage of a re-

source, as part of an access decision. A novel aspect of UCON is its ability to

capture a subject’s state within a resource, and use this as a contributing factor

within the access decision. Whilst the UCON model is sophisticated in identifying

and managing a subject’s usage, it only allows for a transient solution to man-

aging insider threat. For example, a subject could invalidate usage requirements

for a particular resource, but go on to access other resources despite being seen

as a threat. In addition, the UCON approach to access control has the poten-

tial to become complex, with usage rules woven with traditional access control

rules on a per resource basis. Lastly, whilst UCON extends access control to con-

strain access, its view of usage is scoped only to user access of protected resources.

To build an accurate picture of insider threat, additional dimensions should be
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considered, such as social factors and contextual information (i.e., whether the

subject is accessing the resource from an untrustworthy connection).

A step forward from usage is the inclusion of trust and reputation when gen-

erating an access control decision, via a Trust Policy Decision Point [19]. Here,

a weighting of trust is calculated based on the usage or feedback from resources,

providing additional context to a subject’s usage. Serrano et al. [127] explore trust

management to achieve access control. Within trust management, subjects and

protected resources are given a level of trust, calculated from dimensions, such as

past behaviour of the subject, the access rights they already own, the issuer of

access rights, and feedback from other subjects / resource owners.

In similar works by Bistarelli et al. [18], a formal framework for trust policy

negotiation is proposed. In contrast to Serrano et al., access is awarded through

the reasoning of access control policies and a trust level generated from a subject’s

given set of credentials. An interesting aspect of this work is that Bistarelli et al.

state that not all subjects will know all the required credentials for access. There-

fore they propose an additional control that notifies the subject of the required

credentials, providing a subject is deemed trustworthy enough. This adds an extra

level of security to prevent unnecessary revealing of requirements for access, as

knowledge of which could be abused by a malicious subject.

Both works attempt to ensure a better accuracy of access (and mitigating

insider threat) by assessment of a level of trust / reputation of subjects. Potential

applications of such methods are more favourable towards federated environments,

where Serrano et al. suggest Paypal as an application domain (using trust in terms

of authorising payments). However, the methods proposed demonstrate a singular

authorisation technique, lacking integration with current standards (RBAC) and

existing access control systems. In addition, neither address the problem caused

by the occurrence of an insider attack, where the approach may fail to mitigate

an insider attack. If a subject abuses their credentials you may expect, from the

viewpoint of a system administrator, the credentials or access rights of a subject

are removed entirely. Trust management is limited in this case, as static rules are

defined that result in transient limitations of access.

Lastly, similar dynamic approaches specialise in expressing access control rules

with a set of temporal constraints [66]. In this instance, access control policies

contain a set of branch like rules, relevant to a set of system and environment

states. Given a state that conforms to a temporal constraint or one that exhibits a

particular event, access control mechanisms are constrained to a branch of relevant
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access control rules. This approach to enabling dynamic access control (along with

the aforementioned) is defined as dynamic policies.

The dynamic policy approach, whilst capable in preventing access based on

foreseen threats, has several limitations. Here, it is necessary for dynamic policies

to contain a comprehensive set of access control rules to accommodate for all

potential risk of abuse at runtime. The approach is also vulnerable in the sense

that any prevention of access is bounded to a particular state, meaning that it

is open to potential subterfuge (i.e., in perception of trust of a subject) and that

prevention of access is transitive.

2.4 Self-Adaptation

Self-adaptive software systems (SASs) are characterised by the system’s ability to

reason and adapt its state automatically at runtime. The theory of self-adaptive

software stems from control theory [103], where controllers observe a system, and

based on observations, modify input to the system in accordance to a set of goals

(e.g., ensure a system operates within an optimum range). A plethora of examples

exist that extend control theory to demonstrate innovative methods that enable

the classification, development, deployment, and evolution of self-adaptive sys-

tems in complex modern environments, from research roadmaps [34], to reference

models [73]. de Lemos et al. define self-adaptive systems [42] as the following:

Definition 4 (Self-Adaptive Systems [42]) “Systems that are able to modify

their behaviour and / or structure in response to their perception of the environ-

ment and the system itself, and their goals.”

Key to this definition is the notion of perception and adjustment [34]. The

former refers to the ability of a system to capture and analyse its own system state,

and state of the environment it resides in, emphasising ‘self’. The latter refers to

the ability of a system to adjust its own execution or configuration, emphasising

‘adaptation’. In terms of perception, a self-adaptive system will aim to identify

non-conventional operation states [24], a state that warrants adaptation (e.g., a

high load on a web server). Adjustment aims to bring a self-adaptive system out of

a non-conventional operation state, and into a conventional operation state [24].

The rest of this section discusses prevalent reference models that are used to

develop self-adaptive systems, and how self-adaptive systems are classified. This

is followed by discussion of two key issues facing self-adaptive systems, being, the
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notion of ‘when’ to adapt (triggering adaptation), and ‘what’ and ‘how’ to adapt

(decision theory). Finally, a solution to architectural-based self-adaptation (the

Rainbow framework [53]) is discussed as an example of a re-usable framework for

self-adaptive systems.

2.4.1 Reference Models for Self-Adaptive Systems

To guide the development of self-adaptive systems, several reference models [2,

73, 77] have been defined within the research area [42]. These reference models

differ in terms of approach, yet all rely on the use of feedback loops [22, 55].

Figure 2.5: CADA generic feedback loop [22]

Dobson et al. [45] propose a generic feedback loop (extended by Brun et

al. [22]), referred to as CADA - Collect, Analyse, Decide, Act. The Collect activ-

ity contains the collection of application requirements that govern the extent of

adaptation, and collection of information to generate an awareness of system and

environment state. Collected data is filtered and stored in a useable format, such

as a model, in order to maintain an awareness of current and historical system

states. Given a state of the system, the Analyse activity attempts to identify if

there is need for adaptation. The Decision activity performs analysis of the so-

lution domain, and planning. Once a solution is selected, planning identifies how

the solution should be realised. Finally, the Act activity defines the realisation

of an adaptation against a system, as well as informing users and administrators,

and logging of adaptation. For each activity, Brun et al. propose a number of

questions which should be considered when implementing feedback loops [22]. In

general, the robustness and reliability of each phase of the feedback loop should be
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scrutinised. For example, in Collect and Analyse, it is necessary to understand the

scope of information to collect, and how accurate information is. Whilst CADA

provides a flexible view of key activities within a feedback loop, it negates specific

information on process flow and architecture. As such, it is important to review

current self-adaptive reference models.

An early reference model [107] for self-adaptation, by Oreizy et al, presented a

methodology for developing self-adaptive software systems. The model considers

a two tiered approach, in which a software system has an adaptation management

lifecycle, and evolution management lifecycle. The evolution management lifecy-

cle can be likened to an enabling architecture that can observe, model and enact

change against implementation (i.e., the system). The adaptation management

lifecycle can be likened to that of a controller, which utilises evolution manage-

ment to analyse states of the system, and decide upon change. For example,

adaptation management evaluates changes in the architectural model (a model

of the target system). Changes trigger the need for adaptation, which is planned

and deployed as a set of change descriptions to the architectural model. Evolution

management reflects these changes to the architectural model against the target

system, synchronising the real system with the changed model. A key part of

Oreizy et al.’s reference model is the notion of consistent modelling of the target

system. This ensures the self-adaptive system’s perception of ‘self’ is up-to-date.

Figure 2.6: Oreizy et al. self-adaptive reference model [107]

The Model, Analyse, Plan, Execute - Knowledge (MAPE-K) reference model,

as defined by Kephart et al. [73] follows a more traditional representation of a
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feedback loop (Figure 2.7). In this reference model, an autonomic manager which

embodies a feedback loop observes and adapts a manageable element (i.e., a target

system). Kephart et al.’s approach identifies an architecture for feedback loops

within autonomic systems. It has a heavy reliance on knowledge gained through

observation, and execution of loop activities. Knowledge is key to the MAPE-

K reference model, and represents any information that enables the provision of

self-adaptation, critical to guiding accurate adaptation and identification of non-

conventional system states. The MAPE-K reference model is appealing due to

its simplicity and extendable nature. For instance, an autonomic manager that

incorporates the MAPE-K feedback loop could also become a managed element.

The significance of this approach is that autonomic managers can be adapted,

allowing for evolution of autonomic elements, and adaptation across distributed

systems.

Figure 2.7: MAPE-K reference model for autonomic computing [73]

Kramer and Magee [77] propose a three-layer reference model (Figure 2.8) in

which feedback loops enable adaptation, as well as evolution of a target system.

Component control contains a set of components that enable the functionality of

the target system. Similar to the MAPE-K reference model, this layer refers to

the managed element, and sensors and actuators. Change management enables

adaptation of components within the target system, in accordance to a set of

plans. For example, should a component fail, the change management layer would

observe the component’s state, identify the relevant plan to resolve the failed state,

and instantiate a new component. Goal management generates new plans in

accordance to unaccounted states. In terms of the MAPE-K reference model, this

is similar to employing an autonomic manager to managing a low-level autonomic

manager (as a managed element). A novel concept of the three-layer reference

model is the existence of feedback within each layer. Should feedback loops fail
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to enable the component control layer to operate as intended, the problem is

escalated to the next layer for resolution.

Figure 2.8: Three layer reference model for self-managing systems [77]

Andersson et al. describe a reflective reference model [2], focusing on abstrac-

tion of the target system (Figure 2.9), and adaptation through the use of models.

The reference model is inspired by computational reflection [82], where the concept

has been repurposed for self-adaptive systems. In the self-adaptive case, reflection

is performed on systems as a whole (Figure 2.9). Andersson et al. state that in

order for a system to adapt itself, the system must maintain a representation of

itself, similar to the knowledge aspect of the MAPE-K reference model, yet with

greater emphasis on defining state. To demonstrate this, the reflective reference

model specifies a system with a meta- and base-level. The base-level refers to

the executing system, where computation is guided by a domain model (config-

uration and rules), which represents the domain (real world requirements). The

meta-level refers to an abstraction of the executing system (the meta-model), and

enables adaptation through meta-computation (i.e., analysis and decisions that

lead to adaptation). Adaptations are realised through the reflection of modelled

state, as shown by the causal connection between the meta-model and base-level

sub-system. The benefits of utilising a reflective approach include the ability to

maintain a closed representation of the target system. The causality between the

meta-model and base-level sub-system ensures that the meta-model is current,

synchronising any changes that occur within the sub-system.

Finally, Weyns et al. position the FOrmal Reference Model for self-adaptation

(FORMS) [146] that builds upon Andersson et al.’s reflective reference model.

In general, a FORMS self-adaptive system exists within an environment (syn-

onymous to any system’s environment: users, external systems, etc.), and has

base-level and reflective sub-systems. FORMS is defined using Z notation [133]

(a standardised formal specification language). The benefit of using Z notation
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Figure 2.9: Reflective reference model for self-adaptive systems [2]

is that key dimensions of the self-adaptive system can be explicitly formalised,

capturing common properties that one would expect to exist in many types of

self-adaptive systems. For example, Weyns et al. formalise the self-adaptive sys-

tem’s environment as a collection of processes and attributes. A process refers

to something that performs computation, yet cannot be controlled by the self-

adaptive system. The result of a process leads to a change in attribute values,

such as a printer’s ‘print’ process that lowers the printer’s ‘ink’ attribute level.

Weyns et al.’s reference model is novel, due to its approach in formalising aspects

and principals of a self-adaptive system. Whilst other reference models have fo-

cused on the flow of events, FORMS precisely identifies what to consider when

developing a self-adaptive system.

2.4.2 Classifying Self-Adaptive Systems

Self-adaptive systems are said to contain self-* properties, which can be used as a

means for general classification. In this research, four self-* properties are consid-

ered, as defined by the IBM autonomic computing initiative [56]: self-configuration

(adapting a system’s configuration of software entities), self-healing (detection and

recovery from system faults), self-optimisation (managing performance of a sys-

tem), and self-protection (detecting and recovering, or mitigating from malicious

activity). There are many other references to self-* properties [73, 119], yet it

is generally considered [121] that IBM’s initiative provides the de-facto classifica-

tions.

In addition to classifications through self-* properties, a number of works

have discussed characteristics of self-adaptive systems [1, 22, 121]. Salehie et

al. characterised [121] self-adaptive systems in terms of object to adapt (where

adaptation takes place), realisation issues (how adaptation is decided upon and
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applied), temporal characteristics (when adaptation occurs), and interaction con-

cerns (with other systems and human operators). Alternatively, Andersson et

al.’s approach [1] extends a viewpoint of characterising traditional systems, for

self-adaptive systems. Here, a set of characteristics are described, beginning with

goals (the objectives of a self-adaptive system), change (what triggers adaptation),

mechanisms (how adaptation is achieved), and effect (the impact of adaptation).

An example characteristic regarding ‘how’ self-adaptation is achieved is the or-

ganisation [1, 121] of the self-adaptive system. A top-down approach, also referred

to as centralised [149], is a self-adaptive system that opts for a singular controller

that controls multiple system components. In contrast, a bottom-up approach

opts for multiple controllers, also referred to as decentralised [149], across multi-

ple system components that operate together to achieve self-adaptation.

Another example, relating to the ‘mechanisms’ of self-adaptation, is how de-

cision making is achieved [121]. Salehie et al. state that self-adaptive systems

either employ static or dynamic decision making. Static decision making refers to

a process that is hard coded into the self-adaptive system, and cannot be changed

during runtime. Dynamic decision making refers to a process that can change

at runtime, either by the system itself, or by an external party (i.e., a human

operator). In addition to these two categories, Yuan et al. [149] characterise these

further by identifying theoretical foundation, such as whether decision making is

based on logic, heuristics, utility [74], or machine learning [86].

Regarding what type of adaptation can occur, self-adaptive systems are char-

acterised in terms of parametric and / or structural adaptation [1]. Parametric

refers to the change of system parameters that impact the behaviour of the exe-

cuting system (e.g., increasing the time interval of a sensor reading). Structural

refers to the change of composition of the system (e.g., activating servers within

a video streaming system).

Finally, several approaches specialise in characterising certain types of self-

adaptive systems. For example, Weyns et al. [147] provide a reference model that

can be used to characterise distributed self-adaptive systems. In addition, Yuan et

al. [149] provide a taxonomy that can be used to classify self-protecting software

systems.
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2.4.3 Triggering Adaptation

Triggering adaptation refers to when a self-adaptive system is put into a non-

conventional state, as a consequence of system and / or environment change. It

relates to Andersson et al.’s change characterisation, and is of particular interest

as it concerns the mechanisms that define non-conventional states (i.e., ‘when’ to

adapt). A popular approach is Event - Condition - Action (ECA), as exemplified

by the Rainbow [53] framework, whereby conditions (that express facets of non-

conventional states) are used to evaluate consequences of changes in the system

(events) that trigger adaptation (action).

Specifying and evaluating conditions of non-conventional states are exempli-

fied in various approaches. Schneider [124] use formal proof to specify conditions

that enforce security policies. Conditions are evaluated against a running sys-

tem to confirm if security policies are properly enforced, and halting execution

should an event indicate potential constraint violations. Rainbow [53] makes use

of Stitch [36], an architecture-based adaptation language, which defines heuristic

based conditions (containing quality dimensions and thresholds) that trigger the

need for adaptation on a system’s architecture. Bertino et al. [14] employ a data

mining and machine learning approach to classify whether behaviour is normal or

is malicious within the use of an RBAC configured database. The condition in

this case is a machine learning classifier that classifies a user’s behaviour (i.e., a

collection of events invoked by a user) as malicious.

What constitutes conditions of a non-conventional operation state is often rel-

evant to the given self-adaptive system. In the context of malicious behaviour, for

a given organisation, any number of conditions can represent malicious behaviour,

and thus trigger adaptation. Whilst the approaches discussed can be utilised to

identify malicious behaviour, a unifying mechanism is needed to trigger adapta-

tion.

One solution is Baracaldo and Joshi’s [9] approach that exemplifies the use of

a unifying mechanism to produce a level of trust. A level of trust is calculated

through a multitude of conditions being met, where Baracaldo and Joshi cite

several solutions, including Bertino et al.’s machine learning approach. A set

of condition violations can act as input to the calculation of a user’s level of

trust, such as the inference of unauthorised access, or requesting access from an

untrusted connection. A calculated weighting, as positioned by Baracaldo and

Joshi is useful, given that a change to this weighting can trigger adaptation (as

a result of multiple constraint violations), but also provide an indication to the
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extent of adaptation required (e.g., high impact strategies for persistent malicious

users), and a measure of ‘when’ to adapt.

2.4.4 Decision Theory

Deciding what and how to resolve non-conventional operation states is a problem

facing self-adaptive systems where there exists a multitude of strategies. It relates

to Salehie et al.’s realisation issues characterisation. For example, an e-mail ser-

vice notices abnormal login activity from an unrecognised IP address in a foreign

country. The e-mail service may choose to temporarily disable login ability from

all but previously trusted IP addresses, instead of removing complete access to

the targeted account. Both solutions will prevent the abnormal behaviour from

continuing, but given the state of the system, a self-adaptive manager must decide

upon which strategy is most appropriate.

Utility theory [50] aims at identifying an optimum solution in the field of eco-

nomics, and was applied by Kephard et al. [74] to self-adaptation for decision

making. In their approach, utility functions are used to map multiple dimensions

of system states against desirable values. A controller then executes the utility

function to select adaptations enactable against the system. The goal of a utility

function is to calculate the trade offs between multiple quality dimensions of a par-

ticular system state, whereby dimensions are prioritised by preferences specified

by the deploying organisation.

An implementation of utility in self-adaptation is Stitch [36], a language for

architecture-based self-adaptation. The Stitch language enables the specification

of utility as a feature of its Strategy Definition Language, considering the notion

of quality dimensions, utility preferences, and impact vectors. Quality dimensions

define utility functions mapped to a property of a given system state (e.g., a

scale from 0 to 1 that captures a weight of ‘happiness’ for average response time).

Utility preferences enable the ability to prioritise particular quality dimensions

over one another (e.g., response time has greater importance than system cost).

Finally, impact vectors describe the cost of actions (adaptations) on each quality

dimension.

One of the challenges involving the specification of utility preferences is the

quantification of the characteristics of given states. Self-adaptive systems that are

targeted towards system performance have a plethora of state characteristics that

are transferable to utility (i.e., power consumption of a server, bandwidth usage,
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latency, processing power). However, quantifying qualitative aspects of a system

state, such as ones for the response to malicious behaviour can be problematic.

One option is mapping qualitative aspects of a system state (e.g., the criticality

of a system component) to a monetary cost, via cost sensitive modelling.

Cost sensitive modelling refers to the assessment of monetized trade offs. A

relevant example of this work is the framework proposed by Strasburg et al. [136],

where cost sensitive modelling is used to automatically select responses to intru-

sion detection. Here, a self-adaptive action is synonymous to a ‘response’ (e.g.,

counter attack the source address) as a result of detecting an intrusion. Each

response is assigned a cost, which is calculated through the cost of performing the

response (e.g., processor usage), plus a level of impact of response on the system

(negative effect of response on the system), minus the response goodness (intru-

sions that response can address). The response cost can then be used to rank

responses to a given intrusion.

2.4.5 Rainbow Framework

The Rainbow framework [53] is a solution to architecture-based self-adaptation. It

is described as an example of a reusable framework for self-adaptive systems that

provides relevant learning outcomes to the research contributed by this thesis.

Architecture based self-adaptation is the structural adaptation of systems, such

as the removal or addition of system components. Adaptation occurs as a result of

changes to resources, user requirements, and system faults, characterised in terms

of event - condition - action (ECA). Rainbow uses architectural models of the

system at runtime, modelling a target system as a group of related components,

connections, and properties. The state of the architectural model is constantly

updated through the use of probes (sensors) within the target system, and assessed

against a set of constraints to identify non-conventional operational states. Upon

identifying a non-conventional operation state, the Rainbow framework adapts the

target system through structural changes (via effectors), to achieve conventional

states.

Rainbow promotes the use of external controllers to enable self-adaptation

of entire systems. This promotion of separation of duties (between system and

adaptation) enables the integration with legacy based systems with little to no

modification of existing system code.



CHAPTER 2. LITERATURE REVIEW 35

Figure 2.10: Rainbow framework [53]

Rainbow achieves its goals through its three-layer approach presented in Fig-

ure 2.10. The system layer refers to the target system to be controlled, and com-

plimentary services, such as probes (that allow observation of the current state

of the system), effectors (that allow for control over the system), and resource

discovery (that allows for the discovery of new types of resources available to the

system, i.e., new components).

The architecture layer enables the self-* properties of the target system, and

is comparable to an autonomic manager in the MAPE-K reference model. In

this layer, a feedback loop is executed. Here, the runtime system is modelled

as an architectural model. It uses the input of gauges that have aggregated data

from probes in the target system to identify current state (i.e., current throughput,

latency of system components). The modelled architecture is then checked against

constraints (e.g., violations in allowable latency of a system component), which

then triggers the enactment of adaptation via the adaptation engine.

Lastly, the translation infrastructure is key to enabling portability to Rainbow,

as each target system may have its own bespoke view of the abstract concepts

Rainbow models within the architecture layer. For this reason, the translation

infrastructure is capable of using a mapping that converts from system specific

types, into the abstract types that Rainbow understands. This allows for unre-

stricted deployment within many diverse systems.
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2.5 Self-Protection

Many of the approaches that can be applied to the mitigation of abuse of access,

such as the ones discussed in Section 2.3.4, offer some form of dynamic or adap-

tive behaviour. Some of these approaches can be classified as a self-protective

system (a specialisation of self-adaptive systems), where self-adaptation is used to

mitigate malicious activity. As such, it is important to distinguish what is meant

by dynamic / adaptive (i.e., protective), and what is meant by self-adaptive (i.e.,

self-protective), in the context of security.

The difference between the two is exemplified clearly by Yuan et al. [149], where

they provide an example of an authentication algorithm that periodically changes

its pass key, as adaptive. This is in contrast to a system that periodically changes

the authentication algorithm it uses at runtime, as self-adaptive. The former is

adaptive since no change occurs within the system itself, such as is the case with

dynamic access control policies. The latter is self-adaptive, as the system changes

itself based on perception of its own state (i.e., changes its execution). Yuan et

al. define self-protecting systems as follows:

Definition 5 (Self-Protecting System [149]) “Self-protecting software sys-

tems are a class of autonomic systems capable of detecting and mitigating security

threats at runtime.”

There are various self-protective solutions that seek to detect and mitigate

malicious behaviour. Self-protection in access control is one such solution, yet few

approaches exist that are able to concretely address self-adaptation with a view to

mitigate the abuse of access. Other solutions include self-protection at the network

layer (e.g., intrusion response systems [96, 134, 136]), as well as self-protection in

terms of architecture [151] (e.g., available servers, components). These approaches

are exemplified and discussed in the following.

2.5.1 Intrusion Response

Intrusion response systems (IRSs) are an established method of identifying and

responding to malicious activity, although they do not explicitly class themselve’s

as self-adaptive systems. A sub class of intrusion response systems, known as

automated intrusion response systems (AIRS) [96], can be considered to be self-

protecting systems as they share activities that map closely to the CADA feedback
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loop. Additionally, there is evidence of similar characterisations, such as differ-

ences between static [96] and dynamic decision making [136] (referred to as non-

adaptive, and adaptive decision making), temporal characteristics (i.e., reactive

and proactive), and decision theory.

Mu et al. [96] define a static decision model applicable to automated intrusion

response; it is based on a hierarchical planning of responses (adaptations), which

are assigned to risk thresholds. The target system (the network that the IRS

protects) exhibits a calculated level of risk at runtime, which warrants a neces-

sary response when intrusions are detected, in order to repel the detected attack.

Examples of adaptations include adding rules to firewalls that block IP addresses

to particular ports, or removing connectivity to a host. An interesting aspect of

Mu et al.’s approach is the discussion of applicable goals [30] within IRS systems:

Analyse attacks seek to perform responses to further evaluate the attack identi-

fied. Capture the attack aims to put a halt to the attack by blocking entry to a

network for a particular IP. Finally, maximise confidentiality proposes to tighten

security (e.g., through stricter firewall rules).

Other works take intrusion response further, specifically in reference to the

decision making methodologies, which introduce the notion of adaptive decision

making. Stakhanova et al. [134] propose a dynamic decision making model in

achieving the selection of response to an identified attack. Here, the approach

analyses system state post execution of a response, to assess the effectiveness.

The success or failure of a response is then factored in to future decisions.

The advantage of an IRS is the ability to respond to unauthorised and external

attacks, where many adaptations involve changes to architecture (structural) or

firewall rules (parametric). Whilst an IRS is well positioned to mitigating external

malicious behaviour, it is limited in mitigating attacks related to the abuse of

access. These internal attacks offer different traits to that of external attackers,

where arguably, there is a greater challenge in detecting a malicious authorised

user, over that of an unauthorised user. In addition, IRS solutions lack specific

mechanisms to perform relevant adaptation (i.e., generation and deployment of

user privileges and complex policies) in the context of access control.

2.5.2 Architectural-Based Self-Protection

Architectural-based self-protection (ABSP) [151] presents a general solution to

detection and mitigation of security threats, via runtime structural adaptation.
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ASBP utilises an architectural model of the running system used to identify the

extent of impact of identified attacks. Once attacks or security threats have been

assessed, a self-adaptive architectural manager (Rainbow [53]) is utilised to per-

form adaptations to mitigate the attack. One example adaptation the approach

offers is to throttle network connections to a server, in order to disrupt ongoing

attacks. Another example is the deployment of application guards where a pro-

tective wrapper is deployed around architectural components (e.g., a web server).

These provide mitigation measures that improve upon the integrity of architec-

tural components (e.g., the encryption of session IDs susceptible to hijacking).

Another similar example of self-protection is one proposed by Morin et al.,

which takes a novel approach in managing access control, through the use of ar-

chitectural adaptation [94]. An access control policy, defined by a security expert,

is used to generate an architectural model (which reflects the properties of the ac-

cess control policy), and synchronised against the running system. Morin et al.’s

approach shows the effective deployment of access control across an entire system,

where unlike a top down approach proposed by XACML, there is no centralised

point of failure. A limitation in this approach is that this form of architectural

adaptation is expensive, requiring all resources that need access control to be

engineered in a particular manner, lowering the usefulness of the approach in in-

dustry. In addition, it lacks the ability to automatically evolve and reflect changes

to access control, once malicious behaviour has occurred. However, the technique

poses a novel and viable means of realising a change to access control, once such

a change has been formulated.

In terms of applying an architectural based approach to detecting and mitigat-

ing insider attacks, this is a complimentary but incomplete solution. Whilst archi-

tectural based self-protection can deploy additional security components (e.g., the

application guard - to aid in threat detection), it is unable to employ fine grained

parametric adaptation in relation to access control. Moreover, a perception of the

state of access is critical to performing necessary changes to mitigate malicious

behaviour, which is challenging through the use of architectural models alone.

2.5.3 Self-Protection in Access Control

There are a variety of methods that seek to realise self-protection within access

control. One example in tackling insider threat, is through risk-adaptive access

control [83], as exemplified by Baracaldo and Joshi [9], Kandala et al. [70], and
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Cheng et al. [35]. Risk adaptive access control (RADac) seeks to determine (at

runtime) a risk to protected resources, calculated by internal and external factors

(e.g., a national terrorist threat level). Based on the given risk, the level of

access for a subject dynamically changes to reflect the risk on resource(s). For

example, a government data system is under a distributed denial of service attack.

Coupled with a national security threat level, a subject that previously could

read, write, and delete from the government data system, can now only read

against the system. This approach can be considered ‘self-protective’ as a system’s

perception of its environment (risk models) leads to a change (adaptation) in the

way access is decided upon (albeit representative of dynamic policies, as opposed

to the adaptation of policies).

Figure 2.11: Adaptive risk management and access control architecture [9]

In particular, Baracaldo’s and Joshi’s framework (Figure 2.11) combines qual-

ities of RADac and TrustPDPs [19] to mitigate insider threats. This approach

extends components standardised by XACML (Table 2.1), so that access is gov-

erned on user access rights and trust (where a trust value is calculated from user

activity). Access control policies are woven with trust thresholds, stating a level

of trust required when a user requests a permission. The policy decision point

(PDP) utilises trust data stored within the trust repository to decide upon access,

whereby a risk module confirms if the user has the necessary level of trust. Risk

in this context is associated to roles and permissions, calculated by a cost to the

organisation multiplied by the probability of occurrence. Whilst a cost value is a

viable measure an organisation could provide, a viable measure of probability is

far more unlikely. For example, figures of probability (such as 0.1%) are defined

without any evidence in being a meaningful value. In terms of adaptation, should

a user’s trust be identified as too low, the privileges of the user become limited.
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Baracaldo claim that this demonstrates that the framework is capable in adapt-

ing to insider threats, but it is not clear if a user could potentially improve upon

their trust (thus continuing an attack), or if the user’s access rights are concretely

removed.

Pasquale et al. define SecuriTAS [111] as a form of self-protection via access

control. SecuriTAS aims to enable dynamic decisions in awarding access, based

on a perceived state of the system (and environment). It furthers the concepts

in RADac to include a notion of utility, whereby given a perceived state of the

system, the optimum set of security controls are used. This is achieved through the

use of a MAPE-K controller, which updates and analyses a set of models (defining

system objectives and vulnerabilities, threats to the system, and importance of

resources in terms of a cost value) at runtime. A novel aspect of this work is that

it is positioned towards physical security, whereby a resource (e.g., a computer

terminal) is stored within an office. SecuriTAS may change the conditions of

access to the office based on the presence of high cost resources, or the presence of

highly authorised staff. Pasquale et al. provide an example of a professor detected

within an office, reducing the perceived level of threat against a set of physical

resources. If the professor is present, a user with the role of student can access

the office. However, if the professor is not present, the user is unable to access.

An advantage of SecuriTAS is that it is pre-emptive in mitigating potential

insider attacks, by employing its own adaptive approach to access control. This

is an added benefit in comparison to static access control methods (e.g., RBAC),

due to the validity of potential threats increasing the level of access required for

a resource. This is similar to a government organisation strengthening access

given a significant national security threat (e.g., from terrorism). However, whilst

this reduces the ability of a malicious user to perform an attack, it may be seen

as restrictive. For instance, it may prevent legitimate users from gaining access

who have never and may never perform malicious behaviour. Lastly, malicious

behaviour can still occur (as in any access control model), as accessing users

could abuse their access rights where no threat was previously foreseen (e.g., the

professor abusing his access within the aforementioned example). In order to

address malicious behaviour that does occur, a fine grained reactive response is

required as a result of observing malicious acts.
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2.6 Summary

In summary, this chapter has presented an overview of core background and state

of the art in some topics that are relevant to this thesis, namely: access control,

insider threat, self-adaptation, and lastly self-protection. Motivation for this re-

search has been provided in terms of discussing access control and its relevance in

protecting organisational resources. Insider threat has been discussed in relation

to the detection and mitigation of abuse of access, whereby authorised users, with

access to protected resources, perform malicious behaviour. The discussion follows

a viewpoint that handling insider threat is intrinsic to access control, and how ac-

cess control is managed. Through active management of access control, insider

threat can be mitigated by way of changing the conditions of access, as demon-

strated through solutions that seek to incorporate the notion of user behaviour

when granting access.

The notion of self-adaptive systems is discussed, providing a review of recent

reference models, classification dimensions, and challenges that face self-adaptive

systems. This was further refined into focusing on self-protective systems, a spe-

cialisation of self-adaptive systems appropriate to the detection and mitigation

of malicious behaviour. Finally, in terms of applying self-adaptive techniques to

handling insider threat, this research follows the definition of a self-protective

system, whereby self-protection is achieved via the parametric self-adaptation of

access control.

As a first step towards applying self-adaptation to handling insider threat, the

following chapter proposes the Self-Adaptive Authorisation Framework (SAAF).

The framework identifies how self-adaptation is defined in terms automating the

management of access control, discussing the notion of autonomic controllers (that

perform adaptation), models (critical in enabling analysis of ‘self’), the target sys-

tem (i.e., the authorisation infrastructure), and the environment. A framework

is required as existing solutions are limited in achieving self-adaptation of access

control, specifically, where access control is implemented via authorisation infras-

tructures. The framework is discussed at a conceptual level, in order to highlight

the challenges, benefits, and limitations of self-adaptation towards handling in-

sider threat.



Chapter 3

Self-Adaptive Authorisation

Framework

3.1 Introduction

The detection and mitigation of insider threat, attributed to the abuse of access in

an organisation’s resources, is often not at the forefront of concern. Traditionally,

organisations rely on human administrators to identify the need for change to

mitigate malicious behaviour, such as through the analysis of audit trails [62].

Assuming users will act appropriately within their access rights is an increasingly

risky assumption to make, especially relevant as organisations have begun to work

together and federate access to their resources. This only serves to make the

identification and enactment of changes to access control a difficult task.

The immediacy in identifying and responding to abuse is necessary to miti-

gating and handling insider threat. Whilst solutions [14, 79, 144] exist to detect

malicious user activity, few automated mechanisms exist that both identify, and

actively respond. An automated response is essential to realising a timely solution

to what could be a persistent high severity attack, which can ultimately be solved

through the introduction of self-adaptation.

As such, the contribution of this chapter is the proposal of the Self-Adaptive

Authorisation Framework (SAAF); a framework to enable the automated man-

agement of authorisation infrastructures (i.e., access control).

This framework is exemplified in terms of the automated detection and miti-

gation of insider attacks. It enhances authorisation infrastructures through provi-

sioning an extra layer of security that achieves self-protection of an organisation’s

42
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resources. The novelty of the proposed approach is that the framework presents

a means to enable the benefits of dynamic access control in existing authorisation

infrastructures, whilst promoting separation of concerns between the decision for

access, and the decision for a management change. In addition, the framework

is extendable to different access control models and diverse implementations of

authorisation infrastructures.

The framework is related to dynamic access control [9, 12, 66, 109], which

shares similar goals in managing access. However, the framework adopts a dis-

tinctively different approach, based on self-adaptation, where there are several

overarching benefits. For example, it promotes concrete (persistent) changes to

authorisation infrastructures to mitigate and further prevent attacks, as opposed

to transient solutions when deciding upon access.

The rest of this chapter is organised as follows. In Section 3.2 the objectives,

motivation, and conceptual design of the Self-Adaptive Authorisation Framework

(SAAF) are described. Section 3.3 outlines SAAF’s target system and environ-

ment, notably what can be observed and controlled. Section 3.4 describes the

conceptual stages of SAAF’s adaptation process, in detecting and analysing mali-

cious behaviour to mitigate abuse of access. Section 3.5 classifies SAAF’s approach

in terms of a self-protecting system to enable comparison of SAAF with related

work. Section 3.6 identifies the evaluation strategy in which to determine the

feasibility of SAAF. Section 3.7 compares SAAF with related work, outlining the

benefits and limitations. Finally, in Section 3.8, a summary of the chapter is

provided.

3.2 Self-Adaptive Authorisation Framework

The Self-Adaptive Authorisation Framework (SAAF) defines an approach in which

self-adaptation can be realised in authorisation infrastructures. It is designed

to integrate with existing technologies that enable access control, such as PER-

MIS [32], Shibboleth [93], and XACML [101], as opposed to designing new tech-

nologies that have been developed with self-adaptation in mind. The reason for

this is to ensure clear separation of concerns (between access control and self-

adaptation), re-use of popular (and proven) technologies that are prevalent in

modern organisations, and to allow organisations to integrate self-adaptation with

their existing systems. To this end, the major characteristic in this thesis’s ap-

proach is not to create a new dynamic access control methodology, but to make
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existing proven access control methodologies self-adaptable at runtime.

The following describes the objectives of the framework, a discussion on why a

self-adaptive approach is taken to achieve these objectives, and then a description

of the framework’s conceptual design.

3.2.1 Objectives

The objective of SAAF is to enable the autonomous monitoring and analysis of

state of an authorisation infrastructure, make judgements on the behaviour exhib-

ited through target system and environment change, and adapt the authorisation

infrastructure to self-protect against insider attacks. Moreover, SAAF seeks to

achieve the following:

• The automated management of authorisation infrastructures, exemplified

through detection and mitigation of insider attacks;

• The achievement of automation through complete separation of the decision

of access (access control), and the management of access control (adapta-

tion);

• The specification of a reusable process that can mitigate abuse of access

rights (i.e., insider attacks) through the runtime parametric adaptation of

an authorisation infrastructure;

• A reusable approach to enable automated management of access control in

existing legacy based technologies, complementing existing standards.

SAAF’s objectives are aligned with the confidentiality and integrity properties

of the CIA triad [115]. SAAF maintains confidentiality as it seeks to prevent

access to protected resources once a user has exhibited malicious behaviour. Es-

sentially, a user who becomes malicious can no longer guarantee their activity

is legitimate, therefore it must be assumed that any further access to resources

breaks confidentiality. In addition, SAAF maintains integrity as it seeks to pre-

vent future access to resources once a user has been identified as malicious. This

prevents a malicious user from further compromising or sabotaging resources yet

to be attacked.
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3.2.2 Motivation for Self-Adaptation

A general problem facing authorisation is that once the criteria for access have

been defined (i.e., through access control policies and issuing of access rights), the

process of awarding access remains largely static [58, 97]. Authorisation infrastruc-

tures that seek to govern access to subjects follow the basis that if a subject meets

the criteria for access, then the subject should be authorised. Few approaches ad-

dress the fact that despite a subject fulfilling all the necessary requirements for

access, they may abuse their pending authorisation.

In July 2010, it is alleged that a US army intelligence analyst downloaded a

quarter of a million classified documents from the US Department of Defence [20].

The analyst claims to have had unprecedented access to classified networks for

over a period of 8 months, allowing the theft of documents and the ultimate release

to the general public. It can be said that the analyst used their legitimate access

to abuse their position and perform an insider attack. Assuming an access control

system or authorisation infrastructure was in place to protect these resources

(classified documents), a traditional access control methodology would not have

been enough in identifying or responding to the analyst’s abuse.

As discussed in the literature review, within the last decade a push has been

made towards dynamic access control methodologies. These approaches build

upon awarding access based on traditional static criteria, by introducing a per-

ception of usage [109], risk [9], threat [111], and trust [12, 127], as part of the

criteria for access. Taking into account these perceptions, authorisation awarded

to a subject can fluctuate based on the actions of the subject, or events within

the environment (e.g., national security level being raised in threat of terrorism).

These approaches seek to restrain access in light of abuse scenarios, such as the

data theft example previously described. However, they face several limitations,

which are addressed by this thesis’s self-adaptive approach.

Separation of Concerns

Dynamic approaches to access control [9, 70, 127] consider mutable input in decid-

ing access governed by immutable definitions for access (e.g., a subject’s historic

usage and access rights evaluated against an access control policy). The dynamic

aspect of these approaches is akin to a human administrator temporarily pre-

venting subject access, despite the subject having the necessary access rights. In

essence, not only is there a requirement to specify authorisation in terms of an
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organisational viewpoint (i.e., roles, attributes, permissions), but there is a re-

quirement to weave a perception of malicious behaviour. The downside to this

is the resulting complexity in defining criteria for access, and an increase in the

likelihood of redundant or conflicting access control rules.

In contrast, self-adaptation promotes separation between functionality of a

target system (i.e., the process in awarding authorisation), and the functionality

that achieves self-adaptation (i.e., the dynamic aspect in deciding whether or not

a subject meets the criteria for access). Such an approach enables the clear sep-

aration between definition of criteria for access, and the definition of perception

of behaviour, whereby authorisation and behaviour are related, but exist inde-

pendently to each other. This has the benefit in allowing a broader definition of

behaviour outside the scope of authorisation, whilst removing potential conflicts

in which organisational roles (for example) should have access to which resource.

Persistence in Control

Dynamic access control is typical in governing access based on transient solutions.

For example, in trust management [127] a subject is awarded access based on their

given activity, reputation, and a perception of trust at the time of request. Each

time the subject requests access, the approach in place re-evaluates the perception

of activity and trust to decide upon whether or not access should be given. It

is arguable that if a subject has presented a low trust in the past, due to abuse

of access, re-evaluating this perception of trust per request is redundant (as the

subject has already shown themselves to be malicious). In addition, by making a

temporary decision in preventing access, these approaches are at risk of subterfuge.

A subject may change their behaviour to reflect an authorisation infrastructure’s

perception of trust, in order to improve their trust in which to resume access.

Self-adaptation promotes control in this sense, but is capable of both tran-

sient and persistent solutions. Transient solutions, as demonstrated by dynamic

access control approaches, may relate to the adaptation of the runtime execution

of an authorisation service, such as the required criteria of access at time of ac-

cess request. This creates an overhead in generating an access control decision.

For example, in risk-based approaches [35], an access decision must consider a

calculation of risk, subject behaviour, and the subject access rights at time of

request.

Alternatively, a persistent solution refers to adaptation of authorisation as-

sets that implement both the criteria of access (i.e., access control policies), and
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the conformance to access (i.e., subject access rights). Adaptation via this ap-

proach removes uncertainty from future access decisions, meaning that once a

subject has been prevented in access (by removal of access rights), access is per-

manently removed. In addition, a persistent solution reduces the possibility of

abuse where access can be awarded by multiple systems. For example, in a feder-

ated authorisation infrastructure, a subject may interact with many access control

systems. Assuming each access control system implements a dynamic access con-

trol methodology, each one maintains its own perception of trust, resulting in

vulnerabilities where a subject may be rejected by one system, but gain access via

another.

Re-use of Existing Standards and Technologies

Solutions via dynamic access control purport their own access control method-

ologies, requiring bespoke implementations to achieve access control [9]. From

an organisational perspective, migration to such approaches require a dramatic

change in governing access. This includes the deployment of bespoke access con-

trol systems, and moving away from existing standards [97].

Self-adaptation allows for an approach whereby existing standards and tech-

nologies can become dynamic. It does not require an organisation to change their

method of access control, or deploy new systems to utilise a bespoke methodol-

ogy. For example, with a solution utilising the MAPE-K reference model [73],

an organisation’s authorisation infrastructure becomes a manageable element. A

controller can be deployed to manage such an element given a set of goals (i.e.,

mitigate malicious behaviour). A benefit of this is a controller can abide by the

authorisation infrastructure’s implemented access control methodology.

Extendibility

Lastly, dynamic access control approaches are limited solely towards performing

adaptive decisions on access at time of request. Whilst these approaches offer tran-

sient solutions to the problem of misuse of access rights, they are not extendible to

handle wider aspects of the management of access control (by design). It is here

that a self-adaptive approach can demonstrate its flexibility and extendibility.

For example, self-adaptation in this thesis’s approach promotes the persistent

adaptation of authorisation assets to mitigate malicious behaviour. A solution to

enabling this requires the definition and implementation of mechanisms to achieve
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manipulation of such assets, from interfacing with a target system, to observation

and decision making. Given the existence of these mechanisms, a self-adaptive

approach can be extended to focus on other aspects of management of access

control, beyond mitigating malicious behaviour. This includes the potential for

automated policy repair in authorisation services, creation of access rights for new

subjects, and evolution to natural change in organisations (e.g., specification of

access for newly deployed resources, and removal of access rights from redundant

employees).

3.2.3 SAAF Conceptual Design

The Self-Adaptive Authorisation Framework (SAAF) considers three key concepts

of a self-adaptive system, being: the controller (i.e., to enable self-adaptation),

the target system (i.e., an authorisation infrastructure), and the environment (i.e.,

everything outside of the authorisation infrastructure).

Figure 3.1 portrays a conceptual model to achieve self-adaptation within au-

thorisation infrastructures, highlighting the separation of concerns between the

target system and controller, and what exists within the environment.

The target system consists of an authorisation infrastructure, all of its subsys-

tems, and authorisation assets. Subsystems exist as self-contained services that

fulfil the role of identity services and authorisation services in order to achieve

access control. An authorisation asset is characterised as either the digital rep-

resentations of a subject’s identity, including a representation of the subject’s

assigned access, or the specification of criteria for access (e.g., an access control

policy). Authorisation assets are viewed as the parameters of services within the

authorisation infrastructure. The emergent property of the combination of such

services and assets is the conformance to an access control methodology (e.g.,

RBAC).

The environment contains everything that can interact with the authorisation

infrastructure. This includes the users (subjects) of the authorisation infrastruc-

ture, protected resources, and any external systems that infer behavioural char-

acteristics in regards to users and protected resources (e.g., firewalls, intrusion

detection systems).

The SAAF controller is implemented using a feedback loop based on

the Monitor-Analyse-Plan-Execute-Knowledge (MAPE-K) reference model [73].

Monitoring processes data from probes that report system and environment
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Figure 3.1: SAAF conceptual design

change (to capture operational state). Analysis assesses state to identify the

presence of malicious behaviour, leading to the identification of solutions capable

in mitigation. Planning selects an appropriate solution and generates a step-by-

step plan in which a solution can be enacted against the authorisation infrastruc-

ture. Execution realises a plan against the target system whereby operations are

instructed through system effectors (that perform change). This results in the

adaptation of authorisation assets (the runtime parameters) within the authorisa-

tion infrastructure. Ultimately, control is achieved through manipulation of these

assets, in order to change how access is awarded for future requests.

Each of the four stages require knowledge, whereby knowledge includes a model

of access (the criteria and assignment of access), a model of behaviour (present and

historical subject behaviour), perception of malicious behaviour (rules that define

the conditions for malicious behaviour), and enactable solutions (for mitigation).

Lastly, a given implementation of the SAAF controller is bound to a single

access control methodology. For example, a controller can adapt an ABAC [58]
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based authorisation infrastructures, but is not capable of monitoring or control-

ling a MAC [75] based authorisation infrastructure. This is due to the intrinsic

nature of identifying the need for adaptation within a particular access control

methodology, and identifying how to respond to such need (i.e., each methodology

exhibits different processes as to how access is achieved and can be controlled).

The desired result is that a SAAF controller bound to a specific access control

methodology should be capable in controlling any authorisation infrastructure

that conforms to that methodology.

3.2.4 Scope of Attacks

Figure 3.2 identifies the scope of attacks possible within a self-adaptive autho-

risation infrastructure. The figure conveys a feedback loop depicting a subject

requesting r and gaining access d to a protected resource, as well as a feedback

loop depicting a controller observing probe information p and performing adap-

tations via effectors e. In addition, potential attacks (A1 to A12) are envisioned

in regards to the two feedback loops.

Figure 3.2: Attack points on self-adaptive authorisation

The possibility for attacks already exist within the traditional authorisation

infrastructure. Here, a subject can abuse their access in relation to resources A1;

provide false information A2; disrupt the running of the authorisation infrastruc-

ture A3; attack the authorisation infrastructure itself A4 (e.g., obtain additional

access); spoof authorisation decisions A5; or attempt to disrupt resources A6.

SAAF is only concerned with mitigating attacks against an organisation’s re-

sources (A1). The scope of mitigation is constrained to automatically halting
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abuse and protecting against reoccurrence, related to data theft, sabotage, and

fraud. However, it does not seek to repair the damage of attacks once identified,

such as the restoration of a database sabotaged by a malicious subject.

Few works reflect on the potential attacks that self-adaptation may en-

able [149]. However, it has been considered by Cardenas et. al. in the area

of cyber-physical systems [29], which shares similarities to self-adaptive software

systems. As such, it is recognised that the introduction of a controller has the

potential to enable attacks, including, falsifying probe data A7 and A8 in order

to hide malicious activity; disrupting the service of a controller A9 to prevent

detection and adaptation; gaining control of the controller A10; spoofing adapta-

tion A11 to gain proxy control of an authorisation infrastructure; or disabling the

service of effectors A12 thus preventing automated control. Whilst these forms of

attack present interesting paradigms, this is considered as an important aspect of

future work.

3.3 Target System and Environment

The scope of SAAF’s target system is aligned with the general authorisation in-

frastructure model presented in Chapter 2.2.4. With reference to this general

model and SAAF’s environment, this section identifies the assumptions on an

authorisation infrastructure, and concerns relating to observation and control.

Assumptions on Authorisation Infrastructures

In order for an instantiation of the target system (i.e., an authorisation infras-

tructure) to be made self-adaptable, the following assumptions are adhered to:

• Services of the authorisation infrastructure are capable of generating logs

of its actions to capture subject activity, e.g., successful access requests

and authentications that are identifiable to the requesting subject’s digital

identity;

• Services of the authorisation infrastructure have components that enable

observation and control of authorisation assets (authorisation policies and

subject privileges), and observation of activity surrounding authorisation

assets (changes in policies and assignment of privileges, and access requests

and decisions);
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• For authorisation assets to be made adaptable, source of authorities (SOAs)

must place trust in automated adaptation, but if this is not possible then,

– SOAs should be capable of accepting notifications about changes to

authorisation assets, and are willing to fulfil adaptation requests;

• Identity services provide some means of identifying a subject by their digital

identity, either through personal information, a unique persistent ID, or a

unique transient ID that the identity service can map to the subject.

Observation and Control of the Target System

The extent of observation and control of an authorisation infrastructure is con-

strained by the access control methodology implemented, and availability of

probes and effectors. It is further constrained by the existence of multiple manage-

ment domains, where the authorisation infrastructure is distributed and owned

by many organisations, such is the case in federated access [93]. With this in

mind, the following addresses a holistic view (i.e., no restriction) of what can be

observed and controlled within the target system.

The target system has two unmanageable, but observable assets. These are

the activity logs maintained by identity services (capturing authentications and

requests for release of access rights) and authorisation services (capturing access

requests and decisions). Observation of such assets, notably, activity relating to

the request and decision of access, is key to identifying malicious patterns of access,

as it can indicate behavioural anomalies (e.g., requesting access from insecure

locations, high volume of requests, non-conformance to business processes, etc.).

In regards to the control, there are four manageable (and thus observable)

authorisation assets. These are the attributes of a subject, credentials (the release

of an access right), policies of an identity service, and policies of an authorisation

service. Through the adaptation of such asset types, the SAAF controller is

capable of the following:

1. Control of subject access right assignments

Asset: Subject Attribute

Service: Identity Service

Objective: To remove, lower, or increase a subject’s level of access

Process: Change in an identity provider’s attribute repository

in relation to a subject entry
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Consequence: Permanently modifies a subject’s assigned access right,

therefore changing the scope of access a subject has in

accessing resources

2. Control of subject authentication

Asset: Subject Attribute

Service: Identity Service

Objective: To prevent or allow a subject to authenticate

Process: Change in an identity provider’s attribute repository

in relation to a subject entry

Consequence: Permanently modifies a subject’s ability to authenticate

with an identity service; resulting in preventing or enabling

access to resources that do not require authorisation

(e.g., workstations)

3. Control of attribute / credential release

Asset: Policy

Service: Identity Service

Objective: To prevent, limit, or increase the scope of what attributes

can be released on behalf of a subject as credentials

Process: Deployment of new policy in identity service

Consequence: Modifies what attributes can be released to resources;

preventing, limiting, increasing credentials a subject can use

4. Control over revocation of credentials

Asset: Subject Credential

Service: Identity Service

Objective: To prevent use of an active subject credential

Process: Change in an identity provider revoking credentials

Consequence: Revokes a credential (in terms of a released access right)

in use at a resource. Subjects who utilise long and short

term credentials can repeatedly re-use their credentials to

request access, despite changes in their assigned attributes

within their identity service’s attribute repository. The

scope of this applies to either authenticated sessions in which

a subject has a credential valid for such session, or if the

subject is issued with a long term digital certificate for use

throughout many authenticated sessions
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5. Control over criteria for access

Asset: Policy

Service: Authorisation Service

Objective: To change the criteria of access within the bounds

of the access control methodology

Process: Deployment of new policy at authorisation service

Consequence: Changes the requirements for access, such as the required

access rights / credentials to utilise a protected resource

Each approach to control has differing consequences for an organisation. For

instance a policy change in an authorisation service will likely impact a large

number of subjects, whereas changing a subject’s set of access rights only impacts

the individual subject.

Observation of the Environment

Unlike the target system, which can be observed and controlled by a SAAF con-

troller, the environment (i.e., users, protected resources, and external systems),

can only be observed. The environment can contain a wide and complex set of

observable types of change that could infer subject behaviour. This is poten-

tially limitless given what resources can exist, and what external systems may be

present within an organisation. Observation of the environment is critical, as it is

capable of providing context to subjects who request and gain access to resources,

as well as their activity beyond the scope of resources. For example, it is impor-

tant to observe both the subject’s request to access a database, and the subject’s

behaviour once authorised in accessing a database.

Enabling Observation: Probes

Given SAAF’s target system and environment, there are a finite set of probe types

available to a SAAF controller to observe both system and environment change.

Table 3.1 defines a set of probe types applicable to SAAF’s target system and

environment. Probes can be characterised in relation to an owner, being either an

authorisation service, identity service, or domain (i.e., the deploying organisation).

Probes can also be characterised by the type of changes that they observe.

System change typically refers to a change in the state of access within the

target system. For example, the ‘AS Criteria’ probe type is a probe that belongs

to an authorisation service, capable of notifying a SAAF controller of changes in
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Probe Type Owner Observed Change

AS Criteria Auth. Service System change to criteria for access (e.g.,
as defined in access control policies)

AS Access Auth. Service System & environment change in terms of
access requests and decisions

IS Criteria Identity Service System change to criteria for the release
of subject credentials (e.g., credential issuing
policies)

IS Subject Identity Service System change to assignment of subject
access rights (e.g., assignment of attributes in
subject attribute repository)

IS Release Identity Service System & environment change referring to
the request and release of subject access
rights as credentials

Resource Domain Environment change detailing a subject’s
activity within an authorised session for a
protected resource

Environment Domain Environment change detailing generic subject
activity beyond protected resources (e.g., in
external systems)

Table 3.1: Target system and environment probe types

the criteria for access. It delivers the change to the controller, where this may be

an activation or deactivation of an authorisation service’s access control policy.

Another example is the ‘IS Criteria’ probe type, capturing changes regarding what

credentials an identity service can release, or the ‘IS Subject’ probe type, capturing

changes to a subject’s assigned access rights. Without such notification of system

change, a SAAF controller is limited in gaining a perception of what the current

criteria for access is, or which subject is permitted to access which resource.

Environment change refers to a change in subject behaviour within the en-

vironment. For example, the ‘AS Access’ probe type provides a view of subject

activity in terms of subject access requests, including activated access rights and

granted / denied decisions. Another example is the ‘Resource’ probe type, cap-

turing environment changes in regards to an authorised subject’s activity within

a specific resource. Without instantiations of these probe types it is impossible to

gain a perception of subject behaviour, which is necessary in identifying attacks.
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Enabling Control: Effectors

In order to facilitate control over an authorisation infrastructure, the SAAF con-

troller requires a set of target system effectors. Effectors are components that

perform simple operations against the target system, such as deploy access control

policy, or revoke credential. It is expected that an effector receives the necessary

(adapted) authorisation assets as parameters to such operations.

Effector Type Owner Description

AS Criteria Auth. Service System change in criteria of access (e.g.,
deployment of new access control policy)

IS Criteria Identity Service System change in criteria for what an
identity service can release in terms of
credentials for a subject

IS Subject Identity Service System change in the assignment of
access to a specific subject

IS Credential Identity Service System change in the validity of an
issued subject credential

Table 3.2: Target system effector types

Table 3.2 details effector types necessary to achieve control over an authori-

sation infrastructure. These can be characterised in terms of adaptation of an

authorisation service, or adaptation of an identity service.

Adaptation of an authorisation service ultimately defines the criteria necessary

to gain access to a resource, as denoted by the ‘AS Criteria’ effector type. In

contrast, a greater extent of control is available in regards to adaptation of identity

services, where control over what access rights are issued, released, and are active,

can be achieved.

3.4 Adaptation Process

The following describes the conceptual aspects of each of the four stages of the

SAAF controller’s feedback loop. Each stage is broken down into a set of activities,

which rely on a set of models (i.e., knowledge) to facilitate their objectives.

3.4.1 Models (Knowledge)

Models are essential to SAAF, as they provide the perception of ‘self’ in terms

of the state of the authorisation infrastructure, and the environment. SAAF
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promotes the following three models to support its feedback loop.

Access Control Model

The access control model (ACM) exists to support the feedback loop with a mod-

elled perception of the state of access control. It is essential for the reasoning of

the runtime state of access, which ensures appropriate, consistent, and verified

adaptation prior to the enactment of any change against the target system.

In essence, the ACM is a homogeneous model that conforms to a given access

control methodology (e.g., RBAC). It is causally connected (Figure 3.3) to the

target system’s deployed access control policies and subject privileges. As such,

the homogeneous model should be capable of modelling the state of access control

exhibited in many diverse implementations of a given approach to access control.

For example, a PERMIS policy [31] and XACML [100] policy both conform to

RBAC, yet exhibit diverse differences in terms of format, structure, and terminol-

ogy. It is therefore important for an autonomic controller that seeks to manage

RBAC to be capable of abstracting from these complexities.

Figure 3.3: Causal connection of access control model to target system

In addition, the ACM is holistic, whereby aspects of access control distributed

across services within a target system are combined. This is essential to identify-

ing emergent relationships as a consequence of the integration of services within

an authorisation infrastructure. For example, several access control policies con-

tained within an authorisation service describe constraints over access to protected

resources. It is important to combine these constraints with assigned subject

privileges contained within identity services, as to identify relationships between

subjects, their privileges, and accessible resources.
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Finally, given the ACM’s causal relationship with the target system, adapta-

tion of the ACM should generate potential new states of access within the target

system. As such, meta-information must be maintained to specify ownership (i.e.,

the service(s) an asset exists in), which is essential to derive the relevant access

control policies or user privileges for a given service within the target system.

Behaviour Model

The behaviour model exists to provide a perception of subject activity in relation

to the modelled state of access. It is essential to identifying and recording current

and historic violations in subject behaviour, as to attain a view of malicious

behaviour against the organisation over time.

Primarily, the behaviour model seeks to maintain a set of mutable properties

for each relationship within the access control model (ACM). These properties

reflect patterns of interest concerning the controller’s perception of malicious be-

haviour, and are dynamically generated and updated as a result of the autonomic

controller’s monitoring stage. For example, given the relationship r1 that de-

scribes a subject’s ability to access a resource with a certain privilege, a set of

mutable properties may describe rates of successful or failed access attempts once

the relationship has been observed.

Ultimately, properties maintained within the behaviour model are used to iden-

tify malicious behaviour, based on the autonomic controller’s perception of mali-

cious behaviour. As such, the identification of malicious behaviour (referred to as

violations) is also recorded within the behaviour model.

Maintaining a history of violations enables the analysis of subject behaviour

in regards to malicious activity over time. In this case, analysing both new and

historical violations is seen as a critical factor when selecting appropriate solutions

to mitigate recently detected violations.

Constraints Model

The constraints model captures an organisation’s security requirements, in terms

of controlling the extent of adaptation. It is essential to providing assurances

against the realisation of undesirable states of access that are a consequence of

adaptation.

Unlike the access control model and behaviour model, the constraints model is

static and defined at deployment time. It contains a set of constraints used as
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test cases to verify any adaptation made against the access control model, prior to

enactment within the target system. The non-compliance of test cases denote an

undesirable state of access control, meaning a given adaptation does not conform

to the organisation’s security requirements.

The type of test cases that can be defined within the constraints model is

dependent on the access control model that the target system implements. For

example, in the case of RBAC Core, there is a limited set of test cases that can be

evaluated, as detailed in Table 3.3. The table exemplifies a set of test case types

that can be verified against a modelled state of access that conforms to RBAC

Core, whereby an example instantiation of the last test case would be: The printer

resource should be accessible by at least one subject.

Test Case Type Description

Subject, Role Test a subject is assigned a certain role
Role, Permission Test that a role can perform a permission
Role, Resource Test that a role can access all actions on a resource
Role Test a role has been assigned to a minimum set of subjects
Resource Test that a resource can be accessed by a minimum set of

subjects

Table 3.3: Example adaptation constraints as test cases for RBAC core

Constraints, or even the use of a constraints model is subjective to a deploy-

ment of SAAF. For example, different organisations will have their own require-

ments over the criteria of access at development time, and this would be extended

to reflect requirements over the criteria of access at runtime. Should no constraints

exist, it is assumed adaptation is unrestricted in changing the state of access.

3.4.2 Monitoring

The monitoring stage of SAAF is comprised of three activities: change detection,

the update of state of access, and update of state of subject behaviour. Figure 3.4

describes the flow between these three activities, and ultimately the initiation of

the analysis stage. These activities are described as follows.

Change Detection

The first activity of the monitoring stage involves the detection and filtering of

changes sent by probes within the target system and environment. Changes are
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Figure 3.4: Monitoring stage (normal and exceptional flow)

filtered based on relevance to the controller’s perception of state. Changes are

either relevant to maintaining a synchronised model of access (i.e., the runtime

parameters of the target system), or relevant to maintaining a perception of subject

behaviour.

With regards to the perception of behaviour, the monitoring stage relies on a

set of heuristic based rules referred to as triggers. Triggers define the conditions

for malicious behaviour, and if met, trigger the need for analysis. Each trigger rule

describes a relationship that can exist within the feedback loop’s access control

model, along with a set of conditions that describe malicious behaviour.

Several types of triggers can be considered. These are constrained to classifying

‘known’ patterns of malicious behaviour (defined by the deploying organisation).

From the viewpoint of the organisation, any behaviour that meets trigger condi-

tions is viewed as malicious. This is considered to be an ‘expert’ based approach

to identifying only known malicious behaviour, where an organisation defines the

extremes in behaviour. Adopting alternative approaches, such as a learning-based

approach [86] present additional challenges in asserting anomalous activity as be-

ing malicious. Whilst a learning-based approach (e.g., machine learning [86])

has the ability to detect unknown malicious behaviour (i.e., not defined by the

organisation), it requires greater levels of confidence that detected behaviour is

malicious.

In regards to detecting ‘known’ malicious behaviour, the following example

trigger types are defined:

• Signature based - A specific action observed, such as access requests made

from a blacklisted IP address, or a specific step in an attack.
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• Pattern based - A pattern of access requests or resource activity, such as

a threshold of high frequency access requests to a particular resource by a

particular subject / access right / identity service.

• Transactional based - A sequence of events that should be adhered to in

terms of access or resource activity, such as a subject following an applica-

tion’s workflow.

• Deviation based - Thresholds that denote a measure of deviation between

current behaviour and past behaviour, such as deviation of a subject’s access

requests to a particular resource based on average frequency and times of

day.

Modelling the State of Access

As changes to the runtime parameters of the target system are detected, it is

necessary to maintain a synchronised perception of the current state of access.

This refers to the causal connection between the SAAF controller’s access control

model and the active access control policies and subject privileges distributed

within the target system. The activity is critical in ensuring that any potential

adaptation has been derived from a perception of state that is consistent with the

target system. Failing this, adaptation performed cannot be seen as accurate.

The manner in which a target system defines its runtime parameters is im-

portant, as it is specific to its given implementation. As such, in order to attain

a modelled perception of state of access within the target system, the implemen-

tation’s specific view of access must be translated / transformed into a homo-

geneous representation that a SAAF controller can understand. This is not a

trivial activity, as transformation must consider the diversity in format, struc-

ture, terminology, and the relationship between terms, which may vastly differ in

implementations of subject privileges and access control policies.

Various approaches exist to enable transformation, such as model transforma-

tion [126] or the use of ontologies [84]. Ontologies have already been demonstrated

by Shi et al. [129] in successfully mapping an implementation of RBAC access con-

trol policies into another (e.g., the transformation of PERMIS policies [32] into

XACML policies [100]).

Regardless of the approach used, the process of transformation should exhibit

two necessary outcomes:
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• A homogeneous model of access that the SAAF controller can understand

for a given access control methodology (e.g., RBAC).

• The emergent relationships that describe a subject’s connection to protected

resources, in regards to subject privileges, and defined permissions.

Without the use of a homogeneous model, any implementation of a SAAF

controller becomes limited to a specific implementation of a target system. In

addition, the inability to identify a subject’s relationship to protected resources

severely limits the granularity of adaptation in mitigating violations (as the SAAF

controller has no means to identify which privileges were used to perform viola-

tions).

Modelling the State of Behaviour

As with the modelled state of access, a SAAF controller seeks to maintain a

modelled state of behaviour. Maintaining a perception of behaviour is crucial to

identifying the ongoing abuse of access rights. This involves measuring properties

of subject activity in their use of access rights and resources in authorised sessions.

The monitoring stage’s change detection activity employs a technique to dy-

namically generate properties of a system at runtime. It is based on an approach

of using gauges, as demonstrated by the Rainbow Framework [53]. A gauge is es-

sentially a component of a self-adaptive system that can measure a specific system

or environment property. In Rainbow’s case, this may be to measure the latency

of a network device, or fidelity of a content delivery service.

In SAAF’s case, the scope of properties observable of subject activity is poten-

tially unbounded, where a static approach to configuring such properties presents

a number of limitations. For instance, one would need to hardcode every sin-

gle property specific to a SAAF controller’s set of triggers, in order to identify

violations in behaviour. Therefore, a dynamic approach is needed to generate

properties of interest on the fly, as and when relevant subject activity is detected.

To achieve this, change detection must dynamically generate a set of behaviour

gauges, by interrogating the current state of access, and matching relationships of

interest presented by triggers. The modelled state of access essentially presents

a collection of unique relationship in which properties can exist. Triggers on the

other hand express relationships of interest (within the state of access) and a set of

conditions. A condition specifies a constraint on the relationship, which indicates

malicious behaviour if broken.



CHAPTER 3. SELF-ADAPTIVE AUTHORISATION FRAMEWORK 63

For example, a trigger may define the relationship subject with the role of ‘staff’

that accesses the resource ‘printer’, and a condition that states access cannot be

greater than 15 requests per hour. In order to detect a violation of this trigger, it

is necessary to measure the rate of access for any members of staff accessing the

printer. If there are 20 members of staff that conform to the trigger relationship

(i.e., subjects that can access the printer using role ‘staff’), then there are at least

20 properties to measure (i.e., the frequency of access per hour).

Figure 3.5: Gauge generation (detection of environment change)

For each change event detected by the monitor, the monitoring stage goes

through the following steps (Figure 3.5) to maintain the modelled state of be-

haviour:

1. Process environment change: Identify relationships within the modelled

state of access in which the change event conforms to. In turn, identify the

set of triggers which express an interest in conforming relationships;

2. Identify gauge: Each gauge contains a unique hash in which to match to

a specific property on a relationship, derived from the gauge parent trigger.

Should a set of triggers be identified as relevant for a detected change event,

this step aims to identify if past gauges have already been created;

3. Create gauge: Should no gauges exist but a change event matches a set of

triggers, it is necessary to create new gauges in order to evaluate conditions

set out by triggers. This is akin to a subject requesting access for the first

time, and in order to measure their rate of access to a printer, a gauge is

created.

4. Update state of behaviour: At the end of change detection, a set of

gauges have either been created or identified. In this step the change event

is used to update the values measured by a gauge. The state of behaviour is



CHAPTER 3. SELF-ADAPTIVE AUTHORISATION FRAMEWORK 64

then said to be updated, given that gauges maintain properties of behaviour

tied to relationships within the modelled state of access. Once a gauge

becomes full (i.e., its trigger condition is met), a violation has occurred,

initiating the analysis stage.

3.4.3 Analysis

The analysis stage defines three activities to analyse detected change for non-

conventional states (i.e., where malicious behaviour is ongoing), and identify pos-

sible solutions to respond to such states. Figure 3.7 describes the flow of activities

within the analysis stage, including the analysis of behaviour, analysis of solutions,

and solution verification.

Figure 3.6: Analysis stage (normal and exceptional flow)

Behaviour Analysis

Behaviour analysis seeks to analyse current and historic behaviour in order to

first confirm the presence of ongoing malicious behaviour as a violation within the

behaviour model, and second, to determine the impact of malicious behaviour.

This is a necessary task as a single violation by a subject may not warrant an

adaptation on its own. Moreover, each violation may exhibit various consequences

to the organisation, given the current state of the system. As such, it is necessary

to calculate the subject impact prior to analysing potential solutions.

Calculating a subject’s impact is similar to Baracaldo and Joshi’s approach in

calculating subject trust based on historical behaviour [9]. However, for SAAF it

is not a matter of calculating a subject’s level of trust, but a level of impact as

a consequence of a malicious subject’s actions. In turn, the level of impact will

become a factor in escalating appropriate and concrete solutions (with greater
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consequence) to mitigate a subject’s activity. In calculating such an impact, it is

important to consider multiple dimensions of behaviour (exemplified in Table 3.4)

associated with identified (malicious) subjects.

Behaviour Dimension Description

Cost of identified behaviour Artificial cost assigned to types of violations
Historical behaviour Past violations caused by the subject
Rate of detections Frequency and rapidness in identified behaviour
Collaborators Subjects identified in performing similar

acts of malicious behaviour
Countered adaptation Whether the identified behaviour is repetition

of prior violations, previously thought to be
resolved (i.e., reinstated access rights)

Table 3.4: Example criteria of behaviour

For example, a level of impact against the organisation, as dictated by a par-

ticular subject’s behaviour, can be calculated in terms of the sum of all costs of

the subject’s identified violations, multiplied by the total number of violations

the subject has caused (to escalate response to persistent attacks). This can be

improved by associating a level of risk to organisational resources [9], whereby the

calculation of impact considers the scope of access a subject has, and criticality

of accessible resources.

Solution Analysis

Solution analysis aims to identify a preliminary set of solutions capable of miti-

gating a subject’s malicious behaviour. It relies on a hierarchy of solutions (Fig-

ure 3.7) that can be enacted against the state of access, where many solutions

can mitigate the behaviour identified. For example, a solution S2 may seek to

remove a specific privilege from a subject (subject adaptation), or a solution S4

may remove a permission assignment to a resource within an access control policy

(policy adaptation).

Essentially, each solution defines a strategy to constrain / restrict an access

control model, given the presence of malicious behaviour. As such, each solution is

tailorable, where parameters of the solutions are populated with specific artefacts

of the detected malicious behaviour (e.g., the permission abused, the source sub-

ject, the privilege used, etc.). Each solution exists within a layer of the hierarchy,

categorised by no adaptation (do nothing), notification (warn a subject of their
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Figure 3.7: Example solution hierarchy in mitigating malicious behaviour

behaviour), subject adaptation (impacts only the subject in question), and policy

adaptation (impacts many subjects in a single adaptation). These layers are con-

sidered to exhibit increasing impact to the system, where a number of alternative

solutions may exist within each layer.

The use of solutions is akin to a strategy based approach to adaptation, as

demonstrated by Rainbow’s use of a strategy definition language [36]. A concern

with this approach is that an organisation may have to configure an exhaustive

set of solutions in order to handle malicious behaviour. However, given an access

control model there is a minimal and finite scope of actions that can be enacted

(e.g., remove role from permission, remove resource from policy).

Considering a subject’s calculated impact weighting (identified in behaviour

analysis), solution analysis identifies and tailors a subset of solutions that reflect

the behaviour. This is necessary as not all malicious behaviour will clearly warrant

high impacting solutions (such as solutions characterised by policy adaptation),

where analysing all available solutions may result in needless verification and

planning (at later stages of the feedback loop). In addition, it is possible for

solution analysis to identify an empty set of tailored solutions, meaning the subject

identified in causing violations presents an impact that is negligible to enacting

any of the defined solutions.

Solution Verification

The purpose of solution verification is twofold. First, it is to provide assurances

that adaptation result in a consistent state of access in the target system, whereby

resultant states conform to the implemented access control methodology. For

example, in regards to an RBAC implementation, adaptation will not break the

inherent constraints of RBAC, such as static separation of duties. Second, it is to
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provide assurances that adaptation will not conflict with any security requirements

specified by the deploying organisation, referred to as adaptation constraints. For

example, an organisation may specify fixed criteria for access that regardless of

detected violations, must remain active in the state of access.

Verification against an organisation’s adaptation constraints is non-trivial, as

argued by Montrieux [87], demonstrating the need to automate the process of

testing an organisation’s access control model (i.e., the state of access). Any

change to an access control model needs to assure that there are no unwarranted

repercussions. This requires a robust approach to checking each relation within

the model. Verifying changes to the state of access against adaptation constraints

is therefore challenging, and is a particular concern for self-adaptation (due to the

need for timeliness in responding to malicious behaviour).

An effective method of verifying a solution is to realise each tailored solution

at the model level (prior to adaptation of the target system). As the modelled

state of access (within the SAAF controller) is causally connected to the target

system, verification of change at model level is akin to verification at the system

level. Constraints can therefore be tested against an ‘adapted’ modelled state of

access, in accordance to the specification of a tailored solution.

Figure 3.8: Solution verification via model level adaptation

As portrayed by Figure 3.8, each tailored solution results in an adapted model

of the state of access, where the model can be verified against the organisation’s

adaptation constraints, and constraints implicit to the access control methodology.

Upon verification of an adapted model, the solution is either added to a list of

verified adapted modelled states of access, or rejected. The verified models are

then in turn used to initiate the planning stage. Failing the outcome of any
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verified solutions, solution verification results in no solutions that can mitigate

the identified attack.

3.4.4 Planning

The planning stage is focused on how to respond non-conventional states, com-

prising the two activities shown in Figure 3.9. The first identifies and ranks an

appropriate set of solutions out of the applicable set of tailored solutions identi-

fied in analysis. The second generates a step-by-step executable plan in which to

realise an appropriate solution.

Figure 3.9: Planning stage (normal and exception flow)

Selecting an appropriate solution is critical in limiting the enactment of solu-

tions that result in unnecessary impact to an organisation. Both the detection

of behaviour and solution selection are subjective, meaning different deployments

will have diverse preferences over what constitutes malicious behaviour, and what

constitutes an appropriate solution.

Solution Selection

In order to guide the selection of an appropriate solution, there is a need for

a multi-dimensional function to produce a ranking of utility [74], or ranking of

cost (cost sensitive modelling [136]). Such a function should consider criteria of

identified behaviour (e.g., criticality of abused resources) and criteria of solutions

(e.g., service downtime), dependent on the current state of the access control model

and behaviour model. Table 3.5 exemplifies a set of criteria that are applicable to

both a utility function approach, and a cost sensitive modelling approach.

Solutions may be discounted at this point, whereby it may be deemed that

a candidate solution presents a greater negative impact in comparison to the
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Selection Criteria Description

Behaviour impact Impact of malicious behaviour on organisation
Recoverability If a system can recover from a failed adaptation
Availability Measure of availability of access to resources
Service downtime Downtime as a result of adaptation
Operational cost Operational costs in performing adaptation
Adaptation time Immediacy of adaptation against the target system
Probability of Success Probability of success based on historic adaptation

Table 3.5: Quality dimensions of solution selection

identified behaviour. In this case, a solution would be inappropriate in mitigating

the behaviour. However, assuming a solution does not present a greater impact,

it is ranked amongst other candidate solutions. The solution with the lowest

rank (i.e., best utility or lowest cost) is then sent for planning. It is possible

for solution selection to result in a null set of solutions, whereby the identified

behaviour cannot be resolved at this point in time.

This process is necessary, as some solutions may become more appropriate over

time, and others less appropriate, as further violations are detected. For example,

if a single subject abuses their access rights to a printer, a solution may be to

modify an authorisation service’s access control policy, where a role required to

access the printer is no longer valid. The change to the policy would impact all

subjects assigned to the role, and for the current state, may not be considered as

appropriate due to the potential impact to non-malicious subjects. However, as

multiple subjects are identified in abusing their access rights to the same printer,

the solution may be seen as appropriate, given the persistence of abuse.

Solution Planning

Solution planning refers to how a solution’s actions are to be performed, including

the ordering of actions, and identification of action operators. A plan can range

from performing a single operation against a target system effector, to a complex

set of events that require an ordered set of actions against multiple effectors.

In the case of SAAF, a plan can be quite simple, given the type of operators

and effectors available within an authorisation infrastructure. Actions are taken

from the selected solution, indicating how the action is to be performed (e.g.,

encapsulate action as a HTTP request, send to effector), then ordered in terms

of generation of new authorisation assets (such as policies, digital certificates),
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followed by instructions to effectors (e.g., activate policy in authorisation service,

deploy new subject digital certificate). Should more complex plans be required,

da Silva et al. have shown that the generation of plans can be automated [40],

which produces a set of step-by-step instructions with specific details on how to

execute an adaptation.

A simple plan to lower a subject’s level of access is exemplified in Listing 3.1.

The plan is composed of two steps, the first is to obtain the subject’s digital

certificate, containing the subject’s set of assigned access rights, then remove a

particular access right to lower the subject’s access. An access right in this case is

in the form of RBAC roles, stored as a signed digital certificate within an identity

service. The lowering of access is achieved through removing a specified attribute

from the digital certificate, which was identified in the solution analysis phase.

The second step is to overwrite a subject’s existing attribute certificate within the

identity service’s attribute repository.

1 [ p l an : l owe rSub j e c tAc c e s s ]

2 Sub s = ‘ cn=bob , ou=orgUni t , o=org , c=gb ’ // un ique ID f o r s u b j e c t

3 S e r v i c e x = ldap : / / 1 2 7 . 0 . 0 . 1 / // end po i n t o f i d e n t i t y s e r v i c e

4 Step 1 : Update d i g i t a l c e r t i f i c a t e

5 C e r t i f i c a t e c = g e t D i g i t a l C e r t i f i c a t e ( Sub : s , S e r v i c e : x , Op : l d a p s e a r c h )

6 r emoveAt t r i bu t e ( C e r t i f i c a t e : c , AttrType : r o l e , A t t rVa lue : OpManager )

7 s i g n C e r t i f i c a t e ( C e r t i f i c a t e : c , I s s u e r C e r t : i c )

8 Step 2 : Deploy d i g i t a l c e r t i f i c a t e

9 u p d a t e I d e n t i t y S e r v i c e ( S e r v i c e : x , Op : ldapadd , Sub : s , AttrType : a t t rC e r t ,

10 At t rVa lue : ( C e r t i f i c a t e ) c )

Listing 3.1: Example SAAF controller plan

3.4.5 Execution

The execution stage considers two activities (Figure 3.10). The first is the exe-

cution of a plan, where actions are executed against relevant effectors within the

target system. The second is post execution, where the success of the plan is

observed and recorded within SAAF’s perception of state.

Plan Execution

Plan execution is a simple process in executing the set of actions against target

system effectors, as specified by a plan. Each action is executed in an idempotent

manner, meaning actions are repeated until the desired effector acknowledges the

action, or a timeout is met. The outcome of execution results in either a successful
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Figure 3.10: Execution stage (normal and exception flow)

or unsuccessful plan. A successful plan is characterised by a positive response from

all target system effectors. An unsuccessful plan is characterised by either an error

message or a failure to respond by at least one of the target system effectors.

To perform actions, operators exist within the executing stage of the feedback

loop. An operator is similar to that of Rainbow’s adaptation operators [53], which

define a set of actions that can alter a system’s architectural configuration. In

SAAF’s case, operators enable the modification of parameters of an authorisation

infrastructure. For example, an operator is capable of sending a message over a

given protocol to a target system effector, in order to either perform adaptation

of a subject’s access rights, or deploy new access control policies.

Post Execution

Upon completion of the successful execution of a plan, target system probes up-

date the perception of state within the authorisation infrastructure (as with any

system or environment change). This ensures the model of the state of access

is synchronised with the target system and environment. However, if identified

malicious behaviour is successfully mitigated it is necessary to reflect this within

the feedback loop. This enables future analysis and planning to take into con-

sideration active and unresolved behaviour, whereby a subject who persistently

conducts unresolvable behaviour may require alternative solutions.

Should a plan fail (e.g., due to a deactivated effector or error), the execution

stage must fall back to the planning stage. As the planning stage ranks a set

of candidate solutions, the next ranked solution is selected and planned. If all

candidate solutions are exhausted, the identified attack is marked as unresolved

within the feedback loop (at the planning stage).
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3.5 Classifying SAAF

SAAF is classified using the self-protection dimensions provided by Yuan et

al. [149]. Of relevance are the dimensions grouped by approach position (what

SAAF sets out to do) and approach characterisation (how SAAF achieves its ob-

jectives). A summary of each of Yuan et al.’s dimensions is defined, together with

how they were applied to SAAF.

3.5.1 Approach Position

Definition 6 (Self-protection levels [149]) Defines the extent of self-

protection in regards to detection and mitigation of malicious behaviour, as three

levels: ‘Monitor & Detect’ , able to monitor state and detect malicious activity.

‘Respond & Protect’, able to act on detected activity. ‘Plan & Prevent’, able to

strengthen its security posture based on past events.

SAAF is characterised as both fulfilling monitor & detect capabilities, as well

as respond & protect. It is capable of monitoring and building a perception of

state of an authorisation infrastructure, and detecting the presence of malicious

behaviour. It is arguable that SAAF is capable of plan & prevent, given the per-

sistent nature of adaptations made to prevent malicious subjects from continuing

attacks. However, from a self-protective viewpoint, plan & prevent has greater

relevance to pre-empting attacks before they can occur. For example, one strategy

would be to review authorisation policies and repair security holes before they are

exploited. With this in mind, SAAF can only respond & protect against current

attacks, as opposed to planning and preventing future possible attacks.

Definition 7 (Depths of defence layers [149]) Classifies a system based on

the depth of self-protection at architectural layers, for instance, self-protection at

‘network’, ‘host’, ‘middleware’, or ‘application’, or ‘depth-independent’.

SAAF’s scope of self-protection is confined to middleware, where the mitigation

of malicious activity is achieved through controlling security measures provided

by self-contained services (e.g., authorisation services). SAAF’s ability to protect

is reliant on its authorisation infrastructure operating as expected in provisioning

access, and that protected resources are capable of utilising the authorisation

infrastructure as intended.
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Definition 8 (Protection goals [149]) Classifies a system according to the tra-

ditional Confidentiality - Integrity - Availability (CIA) model.

SAAF ensures confidentiality through prevention of access as a result of malicious

behaviour. For example, any changes made to the criteria for access must conform

to a minimum set of security requirements that safeguard against unauthorised

access to a business critical resource. To a certain extent SAAF also ensures

integrity by prevention of access in relation to future abuse. SAAF is able to

mitigate such attacks by preventing further access to the attacked resource, as

well as other resources the subject has access to. However, it can only be said

that integrity is assured against resources that have yet to be attacked by an

attacker, where a threat was identified but no longer viable, due to the removal

of subject access.

Definition 9 (Life-cycle focus [149]) Defines where self-protection is consid-

ered in the life-cycle of a system, such as deployment time or runtime.

SAAF is positioned for systems at runtime, where an implementation of the frame-

work can operate with existing technologies, to provision self-protection against

malicious activity.

Definition 10 (Meta-level separation [149]) Indicates the extent of separa-

tion of concerns between a meta-level subsystem (i.e., a controller) and base-level

subsystem (i.e., the target system). The degree of separation is classified by ‘no

separation’, ‘partial separation’, and ‘complete separation’.

SAAF promotes a complete separation between the meta-level and base-level func-

tionality of a system. This is due to SAAF utilising a self-contained controller to

exist alongside services of an authorisation infrastructure, where the decision for

access, and the decision to adapt, are performed independently.

3.5.2 Approach Characterisation

Definition 11 (Theoretical foundation [149]) Classifies the theoretical basis

in a self-protecting system’s decision making methodology, in terms of: ‘Logical

/ formal models’, mathematically based techniques for defining security related

properties. ‘Heuristics-based’, knowledge based, or rule-based models that define

the conditions to decision making. ‘Optimisation’, techniques capable of select-

ing optimal adaptation strategies through quantitative metrics. ‘Learning-based’,

techniques that build upon cognitive, data mining, and probabilistic theory.
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SAAF promotes the mitigation of the abuse of access representative of ‘known’

attacks. This is achieved through a heuristics based approach. Heuristics refers

to the use of knowledge based rules to identify malicious behaviour and identify

an appropriate solution in response to violations.

Definition 12 (Meta-level decision making [149]) Classifies a system’s ap-

proach in decision making through coarsely grained categories: ‘Single strategy’, a

single objective approach that applies to detecting a single type of attack or vulner-

ability. ‘Multi strategy’, involves multiple levels of decisions, metrics, and tactics.

‘Cost sensitive modelling’, an approach which involves trade-offs with other non-

security related factors in mitigating malicious activity.

The decision strategy of SAAF is characterised as multi strategy. This is due to

SAAF promoting the mitigation of abuse of access on several levels (e.g., adapta-

tion of access control policies, and adaptation of user privileges / access rights).

Definition 13 (Control topology [149]) Classifies the scope of control. This

considers whether or not the approach self-protects at a local (i.e., a single host)

or global scale (i.e., an authorisation infrastructure). This is further refined as

centralised (i.e., a single controller), or decentralised (i.e., multiple connected con-

trollers).

SAAF follows a globally centralised control topology, allowing for a single controller

to control distributed components of an authorisation infrastructure.

Definition 14 (Response timing [149]) Classifies ‘when’ and ‘how’ often a

self-protecting system performs adaptation. A system is either ‘reactive’ (adapta-

tion post attack), ‘proactive’ (adaptation prior to attack), or both.

Adaptations in SAAF are made in a reactive manner, requiring the detection of

malicious behaviour, before triggering adaptation.

Definition 15 (Enforcement locale [149]) Indicates where self-protection is

enforced, either at the ‘system boundary’ (i.e., a firewall) or ‘system internal’

(i.e., protection of internal components of a system).

SAAF focuses on detecting and mitigating malicious behaviour attributed to au-

thorised subjects, characterised as system internal.
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Definition 16 (Self-protection patterns [149]) The method in which mali-

cious behaviour is mitigated. Approaches are classified as either ‘structural pat-

terns’, where a system architecture is modified to mitigate attacks, or ‘behavioural

patterns’, where the runtime behaviour of existing components of a system is

adapted.

As no structural change occurs as a result adaptation, SAAF is characterised as

following a behavioural pattern approach.

3.6 Evaluating SAAF

Self-adaptive systems are challenging to evaluate when compared to traditional

systems. This is due to the fact that self-adaptation has the ability to change a

system’s own state, requiring a test strategy to evaluate changes in state.

To evaluate SAAF’s feasibility, the conceptual design is first implemented as

a prototype autonomic controller capable of integrating with legacy based au-

thorisation infrastructures (Chapter 4). The prototype controller embodies the

concepts of self-adaptive authorisation, whilst also conforming to SAAF’s concep-

tual design. This will enable the evaluation of the principles of SAAF, but also

in regards to how well the prototype achieves SAAF’s objectives.

A preliminary small scale simulation of an insider threat scenario is necessary

to first determine the abilities of the prototype controller (Chapter 4). The simu-

lation is informal, but will indicate the prototype’s ability to integrate with legacy

services, ability to adapt legacy services, and if adaptation can prevent malicious

behaviour from continuing. In addition, it validates the design approach used in

implementing the prototype, identifying early limitations that may need to be

addressed.

Whilst the preliminary experiment will demonstrate the operation of the SAAF

prototype, it is limited in conveying robustness. As such, it is necessary to eval-

uate the SAAF prototype in a large scale simulation of a complex insider threat

scenario (Chapter 5). The simulation will demonstrate the SAAF prototype’s abil-

ity to repeatedly and robustly mitigate known scenarios of malicious behaviour

under various operational conditions. For example, the experiment will aim to

identify that SAAF can still achieve its objectives when faced with limitations

within its environment, such as a non-cooperating third party organisation. It is

intended that through simulation, comparisons can be made against the impact to

an organisation, with and without the deployment of self-adaptive authorisation.
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Finally, simulation can only demonstrate adaptation in light of known se-

quences of change within an authorisation infrastructure. What is challenging to

simulate is change by intelligent and unpredictable users, which is akin to what

SAAF would face in the real-world. To accommodate for this, it is necessary for

the SAAF prototype to detect and mitigate unplanned malicious behaviour. Ad-

ditionally, it is necessary to assess the SAAF prototype under prolonged and large

scale change as to emulate the real-world. To achieve this, a gamification [60]

approach is used to provide a safe platform in which human users can participate

and perform malicious behaviour (Chapter 6). In this case an online game is de-

ployed as a protected resource within an authorisation infrastructure. It is the

intention that the SAAF prototype will observe activity within the game, where

participants that try to cheat the game are viewed as malicious. In addition, as

the experiment involves real users, assessing changes in state (resultant of adap-

tation) and user activity, will concretely demonstrate a malicious user’s inability

to continue attacks.

In summary, the evaluation strategy aims to first demonstrate that self-

adaptation is possible within an authorisation infrastructure, second to demon-

strate robustness in consistently mitigating malicious behaviour, and third, to

evaluate mitigation of malicious behaviour by unpredictable and intelligent users.

It is through this strategy that conveying the feasibility of SAAF will be achieved,

and that self-adaptive authorisation is a worthwhile venture. However, there are

limitations. The simulation approach relies on case studies in order to evaluate

SAAF against real historic insider attacks. In many cases specific technical data

of historic insider attacks is not available, requiring certain assumptions to be

made. In addition, the approach does not aim to benchmark the performance of

the SAAF prototype, as this is seen as a complementary step to demonstrating

feasibility.

3.7 Related Work

To the best of our knowledge there are no other approaches that attempt to

solve the problem of abuse of access during runtime through using self-adaptation.

However, considering the wider problem of mitigating malicious behaviour, there

are a number of approaches that are related to SAAF, as outlined in the literature

review. Table 3.6 compares these related approaches to SAAF against some of

the dimensions presented by Yuan et al.’s classification of self-protecting systems,
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and additional dimensions specifically relevant to access control.

• General Properties, refers to whether the approach is static or adaptive;

• Target System, refers to how the approach integrates with a target system,

including, use of existing standards, separation of concerns, integration with

legacy systems, and lastly, if applicable for federated environments;

• Level of Protection, identifies the extent of protection (Yuan et al);

• Protection Strategies, if an approach considers multiple levels of strategies

(e.g., adapt at network and middleware level), and if the approach has mul-

tiple solutions to a mitigate behaviour (i.e., adapt a policy in multiple ways);

• Malicious Behaviour, types of malicious behaviour an approach mitigates;

• Scope of Adaptation, whether an approach is capable of adapting and con-

trolling at a policy level (i.e., impact multiple malicious users), on an individ-

ual level (i.e., impact an individual malicious user), or other (i.e., structural

changes in terms of shutting down networked servers);

• Adaptation, properties of the adaptation, either parametric or structural,

and whether this is reactive or proactive;

• Mechanisms, how adaptation is achieved, such as generation of new access

control policies, or dynamic selection of rules at time of access request;

• Decision Theory, how adaptation is decided upon (e.g., heuristic based

rules), and if decision is static, or dynamic (e,g., capable of changing condi-

tions for decisions during runtime, reflecting on prior adaptation).

As a baseline for comparison, a traditional (static) access control model is

compared (RBAC [97]). This is followed by novel approaches to access control,

where additional criteria are considered when deciding upon access, to restrict po-

tential abuse of access. For SAAF, access control methodologies, such as RBAC

and ABAC, provide the core functionality in protecting an organisations resource.

However, these are static and cannot adapt to changes in environment and the sys-

tem, notably, when an authorised subject abuses their access. Whilst UCON [109],

and TrustPDPs [19] extend traditional methods to restrict potential abuse of ac-

cess, they offer only transient and limited solutions to when malicious behaviour

does occur. Persistent solutions (in the form of adaptation) are required that not
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only reduce the ability for a subject to carry out malicious behaviour, but reacts

to when malicious behaviour is identified.

Intrusion response systems are compared (Mu et al. [96] and Stakanova et

al. [134]), due to the advancements already demonstrated in mitigating external

attacks (e.g., over a network). IRSs are closely related in terms of purpose to

SAAF, and as described in Table 3.6, are well suited to mitigating malicious

behaviour. Several key differences exist that limit IRSs in mitigating malicious

behaviour specific to abuse of access. Both SAAF and IRSs observe differing

domains of data to detect malicious activity. An IRS focuses on network traffic

and server logs (representative of external attacks), whereas SAAF focuses on data

specific to access control and usage of organisational resources within authorised

sessions. In terms of adaptation, an IRS can select solutions relevant to the system

boundary, such as modification of firewall rules (i.e., policy generation), changes

to network structures (i.e., server shutdown), and even carry out counter attacks

against the host of an external attacker [135]. For malicious behaviour relevant to

insider threat, these types of solutions lack the granularity of control necessary to

mitigating internal attacks, such as the fine granularity of access control provided

by SAAF.

An architectural-based approach is also compared (ASBP [151]), demonstrat-

ing a different angle to mitigating malicious behaviour via structural adaptation.

ASBP utilises the Rainbow framework [53] to perform architecture-based self-

adaptation. One of ASBP’s benefits is the ability to mitigate attacks at a struc-

tural level, which has the advantage of tackling types of attack (e.g., network based

attacks) beyond SAAF’s own scope. However, the mitigation of abuse of access is

limited as there is no explicit understanding of how access is defined. ASBP’s use

of an architectural model to define state is restrictive in this case, given the fact

that an access control policy (as a component property) is a composite property,

considered a complex model in itself. In addition, these composite properties are

inter-related with other component properties; they must be combined to define a

complete model of access (i.e., modelling identity services and authorisation ser-

vices). This is highlighted by the fact that an implementation of SAAF is only

relevant for a single type of access control model (e.g., RBAC).

Three risk-based adaptive solutions are then compared (RADac [83], Fuzzy

MLS [35], and Baracaldo et al. [9]), where the aims are very similar to that of

SAAF, but limited in terms of the granularity of adaptation. These approaches

demonstrate transient solutions to mitigating malicious behaviour, performing
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adaptation at time of request for access. For example, Baracaldo et al. have

taken an internal approach where a new access control system is proposed to in-

clude detection and adaptation capabilities [9]. Adaptation is achieved through

dynamic decision making within a policy decision point (PDP), where a change

in risk or trust could prevent a subject gaining access at time of subject access re-

quest (despite having all the necessary access rights). In contrast, SAAF presents

a separation of concerns approach, where adaptation is applied to existing access

control systems through the automated adaptation of access control policies and

subject access rights. In SAAF, the separation between access control, detection

and response to insider attacks is explicit. Furthermore, SAAF’s approach handles

insider threat through persistent solutions by adapting access control policies, and

subject access rights, for centralised and federated access control systems. The

benefit of doing so ensures that malicious subjects are prevented across multi-

ple systems, and enables integration with existing (legacy based) access control

technologies (i.e., that were not designed to be self-adaptable).

Lastly, Pasquale et al.’s self-adaptive approach (SecuriTAS [111]) is also com-

pared. Whilst SecuriTAS seeks to prevent a subject from performing certain at-

tacks, it does not react to when subjects carry out an attack. SecuriTAS reduces

the likelihood of an attack occurring by restricting the availability of access based

on threats and vulnerability (i.e., is preventative). In comparison, SAAF seeks

to detect and respond to attacks, and mitigate insider attacks as it happens (i.e.,

is reactive). The two approaches complement each other in terms of SecuriTAS

reducing the overall likelihood (or ability) for an attack to happen, whilst SAAF

is capable of directly responding to attacks as they occur.

With the exception of SAAF, no other solution is capable of mitigating ma-

licious behaviour via the self-adaptation of authorisation infrastructures. SAAF

integrates with existing technologies and standards, achieving mitigation via fine

grained adaptation of access control policies and user privileges. SAAF is by no

means a complete solution to mitigating insider attacks, given the fact there are

a number of types of attacks a malicious subject could perform beyond the scope

of authorisation. For this reason, SAAF is seen as a solution to handling (specif-

ically) the abuse of access rights as and when malicious behaviour is identified.

Therefore, solutions, such as Yuan et al.’s architectural-based solution [151], and

Pasquale et al.’s SecuriTAS [111] are necessary in terms of handling additional

types of internal attacks, as well as reducing the ability of subjects in performing

malicious attacks (respectively).
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3.8 Summary

In summary, this chapter has presented the Self-Adaptive Authorisation Frame-

work (SAAF) as a means to automate the identification and mitigation of in-

sider attacks. SAAF proposes an approach to achieve self-adaptive authorisation,

whereby parameters (access control policies and user privileges) of authorisation

infrastructures are adapted, at runtime, in light of malicious behaviour.

SAAF has been discussed at a conceptual level, identifying the framework’s

target system, environment, a proposed MAPE-K inspired controller, and its inte-

gration. The MAPE-K inspired controller has been the primary focus, highlight-

ing how, through the use of a feedback loop, autonomic management is achieved

within authorisation infrastructures. As such, the controller is shown to be a

promising component for implementing self-protection in legacy based authorisa-

tion infrastructures. A key advantage of the controller, compared to traditional

approaches, is its robustness when reacting to insider attacks, where circumstances

require the authorisation infrastructure to adapt itself in a persistent and timely

manner.

To demonstrate the framework’s approach for self-adaptive authorisation, and

also demonstrate its feasibility in application to real world problems, the rest of

this thesis discusses the implementation, deployment, and evaluation of a SAAF

controller prototype within various authorisation infrastructures. The following

chapter positions a model driven implementation of a SAAF controller proto-

type, exemplifying its deployment within a centralised authorisation infrastruc-

ture. Specific attention is made in regards to the use of model transformation,

which enables a SAAF controller to operate with multiple implementations of

Attribute and Role Based Access Control (RBAC and ABAC) authorisation in-

frastructures.



Chapter 4

Model Driven Self-Adaptive

Authorisation

4.1 Introduction

This chapter presents a model driven prototype of a SAAF autonomic controller,

and its deployment within an authorisation infrastructure. The aim of the pro-

totype is to demonstrate closing the loop whereby self-adaptive authorisation can

be evaluated. In some aspects, naive methods are used to implement stages of

SAAF’s feedback loop in order to achieve a proof of concept. As such, it is not

the goal of the prototype to evaluate alternative solutions to stages of SAAF’s

feedback loop, rather its goal is to evaluate the overall concept of SAAF.

Several challenges arise from instantiating SAAF into an autonomic controller,

namely: the ability to model, reason, and adapt an authorisation infrastructure

at runtime; how an autonomic controller can control diverse implementations

of an access control methodology; and lastly, what assurances a controller can

provide over adaptation at runtime. A solution to these challenges is to utilise

proven methodologies in implementing self-adaptive systems. Particular focus is

given to model driven engineering (MDE) [16], where software is developed with

reference to the definition and instantiation of domain models (e.g., an abstraction

of an access control methodology). MDE is an essential element of the SAAF

controller, as the controller benefits from increased interoperability due to the

use of ‘models’, in comparison to adopting a more constrained, and hardcoded

approach. Specifically, MDE enables:

1. Generation of models representing implementation specific views of access.

82
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2. Transformation of models into a homogeneous view of access.

3. Model verification to provision assurances before enacting adaptation.

The contribution of this chapter is primarily the realisation of a model driven

Self-Adaptive Authorisation Framework (SAAF). This describes the design and

implementation of the first operational prototype that enables and demonstrates

self-adaptive authorisation. Second, it is the provision of assurances that deployed

adaptations will conform to an organisation’s security requirements and access

control methodology. This involves the manipulation of several diverse models at

runtime including: generation, transformation, and verification.

The rest of this chapter is structured as follows. Section 4.2 discusses back-

ground topics to this chapter, focusing on model driven engineering and verifica-

tion. In Section 4.3, the prototype implementation of the SAAF controller is de-

scribed. Section 4.4 conveys the prototype’s integration with a centralised RBAC

authorisation infrastructure. In Section 4.5, a preliminary analysis of SAAF de-

scribes the application of the SAAF controller prototype to a simulated historic

insider attack. In Section 4.6, a summary of the chapter is provided. Finally,

Appendix A details complimentary text and results that supports this chapter.

4.2 Background

This section discusses two background topics key to the implementation of SAAF.

Namely, model driven engineering [15] applied to runtime modelling of access con-

trol, and rbacDSML [87] applied to runtime verification of access control models.

4.2.1 Model Driven Engineering

Model driven engineering (MDE) [16] is a software engineering approach that

uses models to abstract and reduce the complexity in implementing systems. It

also can be used as a means to capture the ‘knowledge’ of a system during run-

time [2, 16] (i.e., the ‘K’ in MAPE-K [73]). Models are viewed as first class

entities in MDE [125], where they provide understanding of a system (e.g., its

structure, state, configuration). A common approach within MDE is to abstract

a given system in terms of three layers, known as the 3+1 MDE architecture [15]

(Figure 4.1).
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Figure 4.1: The 3+1 MDE architecture [15]

The 3+1 MDE architecture classes model layers in terms of the real world,

M0 (i.e., the system), and the modelled world, M1 to M3 (i.e., abstractions of the

real world). A concrete example of this is an organisation’s requirements of access

M0 is modelled as a UML class diagram M1. The class diagram conforms to the

UML standard [106], which in this case represents a metamodel M2 of what can

exist within a UML model. Lastly, the UML metamodel must conform to a meta-

metamodel M3, defining the constructs of the UML modelling language (in this

case, the model object family (MOF) [105]).

Models in MDE are contextual, as without context a model is ambiguous.

Bezivin et al. argue that in order to provide context, a technical space [16, 78]

must be considered. The technical space describes a specific modelling framework

in accordance to the 3+1 MDE architecture, where there exists a family of lan-

guages to express models, and a set of tools capable of developing, generating,

and processing models. For example, the MOF technical space has already been

described for UML, another example is the XML technical space.

This research makes use of MDE to develop metamodels that are used to model

authorisation infrastructures at runtime. In this case, metamodels are developed

to describe states of access control methodologies, such as Attribute Based Ac-

cess Control (ABAC). The benefits of this approach allows for abstraction from

implementation specific knowledge, enabling a SAAF autonomic controller that

reasons and adapts at a model level to be free from constraints in interpreting

complexity in the target system. It enables a concise definition of the state of

access, one that can be transformed (into various implementations) and verified

for its conformance to an access control methodology.
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Model Transformation

Model transformation [126] is useful for simplifying models, or aggregating mul-

tiple models in order to reason about emergent properties. It has the benefit of

ensuring output models conform to their corresponding metamodel, negating con-

cerns that an output model may contain invalid types. This can be achieved in

terms of transforming a source model to a target model within the same technical

space (i.e., endogenous), or to a target model in a different technical space (i.e.,

exogenous) [85].

Figure 4.2: Exemplified model transformation pattern [67]

Jouault et al. discuss a model transformation pattern (instantiated in Fig-

ure 4.2), for endogenous transformation [67]. In this example, transformation is

confined to the Ecore [23] technical space, a prominent model management frame-

work. An ABAC PERMIS access control policy [31] (Section 2.2.4) is modelled

in terms of a PermisPolicyM , conforming to a metamodel PermisMM . A transfor-

mation program aims to transform the PermisPolicyM into a homogeneous model

of access ABACM , conforming to the ABACMM metamodel. The transformation

program is created using the Atlas transformation language (ATL) [67]), a domain

specific language for transforming models within the Ecore technical space. Given

a set of diverse ABAC policy formats, transformation enables the generation of a

homogeneous model of access that an autonomic controller can reason and adapt.

Model Verification

Model verification enables software developers to ascertain a level of confidence

in the modelled state of the system before deployment. It is concerned with how
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accurately the model achieves its intended goal.

Relevant to this research is the verification of the state of access. Verifying

that a model of access meets an organisation’s requirements is a complex and

non-trivial task, yet several approaches provide programmatic solutions. Hu et

al. make use of a model checker [38] in which MAC [75] access control policies are

modelled and assessed against logical constraints. In similar work, Hughes and

Bultan use a SAT solver [95] to verify XACML access control policies [59]. Here,

properties of access control are modelled as mathematical logical formulas that

result to true or false, and assessed against access requirements. A final exam-

ple is verifying RBAC access control through rbacDSML [87], by Montrieux. In

Montrieux’s approach, requirements are captured within a UML model of access,

and are evaluated using OCL constraints [145].

Traditionally, model verification is conducted at development time, where each

change requires verification. However, a self-adaptive approach requires verifica-

tion at runtime, whereby model verification is conducted in line with adaptations.

The challenge with adopting such approaches is the cost in verification, as most

model verification techniques perform an exhaustive task to produce a high level

of confidence of verified models.

4.2.2 rbacDSML: RBAC Verification Tool

As discussed previously, Montrieux’s rbacDSML approach [87] allows for the ver-

ification of RBAC access control models, enabling large organisations to manage

their access control models with greater accuracy, efficiency, and assurance.

rbacDSML defines a domain specific modelling language (DSL). It enables the

modelling of RBAC access control criteria in conformance to the RBAC standard.

A standalone tool has also been developed [88], and enhanced for self-adaptive

authorisation [8]. In addition to enabling the design of RBAC models, it also

enables verification of the model against the RBAC standard and access require-

ments. Finally, given a RBAC model that fails to meet the access requirements,

the rbacDSML tool is capable of identifying fixes to the model. However, this is

a time consuming process and currently inappropriate for runtime use.

rbacDSML is implemented as a profile that extends the Unified Modelling

Language (UML). It defines UML stereotypes and associations to express what can

exist in an RBAC model, and how elements of an RBAC model relate. Figure 4.3

conveys rbacDSML’s metamodel, in which users (subjects), roles, permissions, and
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Figure 4.3: Extended rbacDSML metamodel [8] in MOF

resources are defined as stereotypes. Facets of the RBAC standard are defined with

rbacDSML’s metamodel as stereotyped associations between stereotyped classes.

In addition to the stereotyped classes to represent the RBAC standard, the

rbacDSML tool also includes ‘scenario’ stereotypes. These stereotypes are critical

to capturing access requirements that an RBAC model must be verified against.

The use of OCL constraints enables the verification of scenarios against the RBAC

model, and can verify the model in a variety of ways: User scenarios exist to

specify an access control requirement, where a user must be granted (or denied)

access to a particular resource (e.g., User ‘bob’ can access Resource ‘printer’).

User - role scenarios express a condition where a role must be assigned to at least

one user (e.g., Role ‘staff’ must have at least one user). Role - resource scenarios

can be verified against an RBAC model to ensure a particular role has access to

a given resource, via the role’s permissions. Finally, Resource scenarios define a

minimum availability of access to a resource, where at least one user should be

capable in accessing a given resource.

4.3 SAAF Controller: Prototype

This section describes the design and implementation of the Self-Adaptive Autho-

risation Framework (SAAF) controller prototype. The aim of the prototype is to

showcase a fully working feedback loop, capable of monitoring and controlling a

class of authorisations infrastructures (i.e., categorised by a given access control
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model). For implementation reasons, some processes within the controller’s feed-

back loop have been simplified in order to close the loop, these processes can be

improved upon by future projects. Statistics pertaining to the substantive nature

of the prototype’s code base are identified in Appendix A.1.

4.3.1 Controller Architecture

The SAAF controller prototype (Figure 4.4) is implemented as a standalone Java

(1.7) application, in conformance to the conceptual design of SAAF. The scope

of control is constrained to RBAC and ABAC authorisation infrastructures. The

prototype employs an ABAC metamodel to instantiate runtime models of access.

Figure 4.4: SAAF controller prototype

The ABAC metamodel is designed and implemented using the Eclipse Mod-

elling Framework (EclipseEMF) [23]. EclipseEMF provides the ability to design

structured data models, which in turn are used to automatically generate Java

code. This generated code implements the SAAF Model Manager, allowing for

the creation, modification, validation, change notification, and automated serial-

isation of ABAC models. The ABAC metamodel is critical to the prototype, as

without it the controller is unable to reason about state in both RBAC and ABAC
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authorisation infrastructures (as RBAC is a specialisation of ABAC).

The monitor component, implemented as a concurrent process, continually

seeks to detect the four types of changes identified via its required interfaces.

Upon detection of change, monitoring results in either: the generation and update

of an ABAC model (i.e., the controller’s access control model), or the update of

the prototype’s behaviour model. Changes are observed via a variety of methods.

A Simple Object Access Protocol (SOAP) [21] server allows for probes to send

messages in a specified format to the prototype’s monitor. Alternatively, the use

of LDAP client tools (LDAP CTools [76]) enable the monitor to interface directly

with LDAP identity services. Finally, features of the host operating system can

be used to interface directly with elements of an authorisation infrastructure, such

as an authorisation service’s access control logs.

To generate a modelled state of access, the monitor must transform ‘implemen-

tation specific models (views)’ of access, from the perspective of services within

the controller’s authorisation infrastructure. This is with reference to the diverse

implementations of authorisation services and identity services that can conform

to the same access control methodology. Transformation is not a trivial task,

and requires a set of model transformation programs that take implementation

specific models (created from a target system’s authorisation assets), and outputs

the prototype’s ABAC model.

Model transformation programs are implemented in EclipseEMF using the At-

las Transformation Language (ATL) [67]. EclipseEMF is used to either automati-

cally generate metamodels of implementation specific services (e.g., converting an

authorisation service’s XML policy schema into a metamodel), or through manual

generation of metamodels using EclipseEMF’s graphical tools. ATL is used to ex-

press transformation rules that are capable of mapping elements and relationships

within input metamodels, to a target output metamodel.

The analyser, planner, and executor are invoked sequentially, once monitoring

has indicated the presence of malicious behaviour. In regards to analysis, a cost

function is used to produce a weighted impact of behaviour (behaviour analysis)

for malicious subjects, based on an aggregated cost of behaviour. Solution analysis

is performed in terms of generating adapted ABAC models (as solutions applied

to the current ABAC model). These adapted models embody the mitigation

of malicious behaviour at a model level. Solution verification is implemented

through the integration of an existing verification tool rbacDSML [88], whereby

adapted ABAC models are verified against an organisation’s security requirements
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(contained within the constraints model). In regards to planning, an appropriate

adapted ABAC model is selected via a cost sensitive function that weighs the

impact of identified malicious behaviour, to the impact of the modelled solution.

The selected adapted ABAC model is then used to represent the goals of a plan,

defining a new desired state of access.

The executor realises a plan by first transforming the adapted ABAC model

back into implementation specific models, used to automatically generate new

access control policies and access rights. Available to the executor is a set of

operators that enable the generation of authorisation assets, and activation of

assets within the target system. As with the monitor, the executor provides three

methods in which to interact with the target system:

• A SOAP client, capable of sending authorisation assets via SOAP messages

to target system effectors

• An LDAP client (specific to LDAP based identity services) for adaptation

of subject privileges

• Host operating system calls for persistent state storage of privileges and

polices on a shared file store

4.3.2 Scope of Observation and Control

The scope of the prototype is constrained to an Attribute Based Access Control

(ABAC) metamodel, and the availability of relevant probes and effectors.

ABAC Model and ABAC Metamodel

The ABAC metamodel has been implemented in conformance to Ecore. The

metamodel allows for the instantiation of both RBAC and ABAC access control

models. The ABAC model is used predominately by the analysis and planning

components, removing the need for these components to understand diverse im-

plementation specific views of RBAC and ABAC.

Figure 4.5 presents a class diagram of the ABAC metamodel, defined specifi-

cally for SAAF. Although ABAC is yet to be standardised, the metamodel used

by SAAF is capable of capturing the core facets of ABAC, which builds upon the

RBAC standard. Namely, this has replaced a Role with the use of Attribute, a

tuple 〈AttributeType,AttributeValue〉, such as 〈role, Staff 〉 or 〈gender ,Male〉. The

notion of Issuer is also introduced, which refers to the growing use of ABAC in
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Figure 4.5: SAAF ABAC metamodel defined in Ecore

federated environments. Issuer describes an identity service or identity provider

organisation. It allows for the containment of subjects within an issuer, as well as

definition of validAttribute to distinguish which issuers are trusted to issue which

attributes for subject as credentials (i.e., credential validation [32]). An instantia-

tion of the ABAC metamodel can be viewed as sets of elements and relationships:

ABACM = 〈S , SS , IS ,A,P ,RS ,AC ,R〉

Where: S is a set of subjects. SS is a set of subject sessions (i.e., where

subjects currently have been awarded access). IS is a set of issuers’ of attributes

to a subject (i.e., an identity service). A is the set of observed attributes (i.e.,

access rights). P is a set of ABAC permissions. RS is the set of protected

resources, and AC is the set of actions executable on resources. Lastly, a set of

relationships R exist that contain a subset of model elements. For example, given

r1 ∈ R, r1 may describe a tuple of: 〈is ∈ IS , s ∈ S , a ∈ A, p ∈ P , rs ∈ RS ,

ac ∈ AC 〉. Ultimately for this relation, it describes the capability of a subject

from a given issuer, in invoking a permission that allows the subject access to a

resource.

Implementation Specific Models

Two implementation specific metamodels are used to demonstrate the integration

of the controller prototype with existing implementations of ABAC.

For an identity service, an LDAP metamodel (LDAPMM ) is created in Ecore

to model an LDAP directory (see Appendix A.2). LDAPMM is used to model

subjects and attribute assignments within an LDAP directory. The metamodel
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has been defined manually, identifying the attributes of the LDAP directory, its

contained subjects as LDAP entries, and subject attributes.

Given that this is a prototype, currently the PERMIS policy language [32]

is the only policy language where adaptation will be demonstrated against. An

implementation specific model allows for the modelling of instances of PERMIS

policies, enabling the controller prototype to adapt PERMIS policies (and thus

integrate with PERMIS authorisation services).

Therefore, to demonstrate integration with an authorisation service, a PER-

MIS metamodel (PERMISMM ) is created in Ecore to model PERMIS authori-

sation policies. A PERMIS authorisation policy can express both RBAC and

ABAC access control rules, as well as credential validation rules for validation of

issuers. The metamodel is generated automatically through EclipseEMF using

PERMIS’s proprietary XML schema. A simplified variant (due to complexity) of

the PERMIS metamodel is described in Appendix A.3, sharing commonalities with

SAAF’s ABAC metamodel. For example, PERMIS’s roleAssignmentPolicyType

is synonymous with the validAttribute association between issuer and attribute

in the prototype’s ABACMM . Another example is PERMIS’s targetAccessPolicy-

Type, which is synonymous to capturing permission attribute assignments within

SAAF’s ABACMM .

Observation

The prototype (Figure 4.4) is deployed with a set of detectors to interface with

its target system and environment. A set of generic detectors are implemented to

observe changes in relation to: Access Decisions, Policies, Subject Access Rights,

and Resources. Detectors observe information via messages sent to SAAF’s SOAP

Server or via the host machine’s operating system. The types of change the

monitor can detect are formally described in Appendix A.4.

Control

A set of operators (Figure 4.4) are implemented to enable the realisation of plans

(generated by the planner component) via target system effectors. Operators are

used to either generate a particular type of authorisation asset, or deliver and

apply an authorisation asset on a particular service.

Generic operators, such as LDAPClient tools, and the SOAPSender enable

the deliverance or direct modification of authorisation assets within services of an
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authorisation infrastructure. These operators require the destination target of a

command to conform to a specific message format. These are described in Ap-

pendix A.5. Some actions require more specific operators, such as a PolicyBuilder

and CertificateEditor. The PolicyBuilder serialises implementation specific ‘pol-

icy models’ transformed from SAAF’s ABAC model, into the specific service’s

required file format and structure. The CertificateEditor generates X.509 certifi-

cates and is capable of signing policies or statements of access rights on behalf of

source of authorities or issuers respectively.

4.3.3 Modelling the State of Access Control (Monitoring)

The prototype’s ABAC model (ABACM ) is generated at runtime, syncronised with

the target system. To achieve a runtime modelled state of access, the controller

undergoes a process of model generation and model transformation.

Model Generation

The SAAF controller generates implementation specific models via its monitor

component within the MAPE-K loop, whereby probes obtain information about

target system services. Implementation specific model managers, automatically

generated through EclipseEMF, are used to instantiate these models. This is

done either through the injection of XML, or through bespoke injectors created for

specific services (e.g., LDAP). Each generated model is stored in a persistent state

that can be retrieved at any point during runtime. As discussed previously, the

prototype controller is implemented with two implementation specific metamodels:

one for LDAP identity services, and one for PERMIS authorisation services.

A model generated from the LDAP identity service provides a view of active

subjects and subject attribute assignments. A model generated from the PERMIS

authorisation service provides a view of active RBAC or ABAC access control

rules, such as permission assignments. Both of the generated models conform to

their implementation specific metamodels.

Model Transformation

Relying on implementation specific models is useful since it is easier to understand

and adapt the current state of the LDAP and PERMIS services. However, for

analysing and verifying a modelled state of access, the SAAF controller must

combine the implementation specific models into a single model. This single,
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homogeneous model embodies the authorisation infrastructure’s access control

methodology (i.e., ABAC). Figure 4.6 portrays the creation of SAAF’s ABAC

model through model transformation, when transforming implementation specific

generated models into ABAC.

Figure 4.6: Transformation of implementation specific models to ABAC

The ABAC model is the product of an Atlas Transformation Lan-

guage (ATL) [67] model transformation program, referred to as PER-

MIS+LDAP2ABAC. The transformation program takes as input a model gen-

erated from what is injected (i.e., observed) from the LDAP directory, and a

model generated from what is injected from the PERMIS active access control

policy. Using the three metamodels defined in Section 4.3.2 (i.e., PERMIS, LDAP,

and ABAC), a set of transformation rules are defined that map relationships and

elements of each implementation specific metamodels, to SAAF’s ABAC meta-

model (ABACMM ). The output of the transformation program is an ABAC model

(ABACM ) that conforms to the prototype’s ABACMM .

Each time either implementation specific models are updated, the SAAF con-

troller performs the PERMIS+LDAP2ABAC transformation. This ensures that

the SAAF controller maintains a synchronised modelled state of access that ex-

ists within the authorisation infrastructure. Once the ABACM has been created

through transformation, the SAAF controller is able to reason about the state of

access and adapt the ABACM in light of detected violations.

Listing 4.1 provides an excerpt of the PERMIS+LDAP2ABAC transformation

program, defined using the ATL language. It describes the generation of a Re-

source type within the ABAC model from a PERMIS’s targetDomainSpec type,



CHAPTER 4. MODEL DRIVEN SELF-ADAPTIVE AUTHORISATION 95

where policy56 refers to the schema ID of PERMIS. In addition, the creation of

subject types within the ABAC model is shown, where the LDAP subject type is

transformed and added to an issuer, within the ABAC model (ABACM ).

1 −−Get a l l the r e s o u r c e s from the Permis p o l i c y

2 l a z y r u l e g e tRe sou r c e s {
3 from

4 s : p o l i c y 5 6 ! TargetDomainSpec

5 to

6 t : saafABAC ! Resource (

7 ID <− s . ID ,

8 Name <− th i sModu l e . g e t I n c l u d e ( s ) . URL

9 )

10 }
11

12 −−Crea te s u b j e c t s from LDAP model

13 l a z y r u l e c r e a t e S u b j e c t s {
14 from

15 s : LDAP! Sub j e c t

16 to

17 t : saafABAC ! Sub j e c t (

18 ID <− s . I d e n t i f i e r ,

19 I s s u e r <− th i sModu l e . g e t S u b j e c t I s s u e r ( ) ,

20 A t t r i b u t e <− th i sModu l e . g e t S u b j e c t A t t r i b u t e s ( s . A t t r i b u t e )

21 )

22 do{
23 −−Add s u b j e c t to i s s u e r r e f e r e n c e

24 th i sModu l e . g e t S u b j e c t I s s u e r ( ) . Sub j e c t <− t ;

25 }
26 }

Listing 4.1: ATL transformation rules for resource and subject

4.3.4 Detecting Malicious Behaviour (Monitoring)

This prototype adopts a heuristic based approach to detecting ‘known’ malicious

behaviour, akin to pattern based rules utilised in intrusion detection systems [120].

Malicious patterns of subject behaviour are represented as a set of trigger rules,

defined within a behaviour policy. When a subject’s behaviour conforms to a

trigger rule, a violation has occurred, triggering behaviour analysis.

SAAF’s behaviour policy, is defined by a proprietary XML schema specific

to SAAF. It is parsed into the monitor in order to filter change, generate and

populate gauges, and identify violations. It was decided to use a proprietary

schema as existing universal policy languages, such as Ponder [41], presented

unnecessary complexity to demonstrate the prototype. In addition, a potential

policy language built to define violations and guide strategy selection (Stitch [36])
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was too specific to architectural based properties to use for the specification of

malicious behaviour.

An example policy and its specification is described in Appendix A.6. To

summarise, it can contain two sets of behaviours known as base and composite

behaviours.

Base behaviours are defined as a tuple that contains a relationship, a set of

conditions, and a cost weighting. The relationship refers to a relation within the

controller’s ABACM , such as how a subject, an issuer, an assigned attribute, and a

permission are connected. Given the relationship, a set of conditions are described

that define unacceptable patterns of behaviour in reference to the relationship.

For example, a rate of access over an interval (pattern based), a set of access

requests in conformance to a workflow (transaction based), a distance between

current and historical activity (deviation based), or access from a blacklisted IP

address (signature based). Lastly, a cost weighting defines an artificial cost to the

deploying organisation should changes observed in the authorisation infrastructure

conform to the set of conditions.

Composite behaviours vary slightly in comparison, where instead of a relation-

ship, they refer to a unordered subset of base behaviours that are contained in

the behaviour policy. This enables a composite behaviour rule to define malicious

behaviour in terms of a set of activities, where each activity could be viewed as

an iteration in base behaviours (e.g., components of a high severity attack). As

with a base behaviour, a set of conditions are applied, and a cost weighting.

4.3.5 Analysing Behaviour and Solutions (Analysis)

The implemented analyser operates on a snapshot of subject behaviour at the

time a violation has been detected. To mitigate violations, the analyser relies

on a set of template solutions that contain actions applicable to the ABACMM .

These template solutions, contained within a solution policy, define the type of

adaptations the controller can apply to its target system.

A limitation to this approach is that the analyser requires each violation to be

mitigated in order of detection, where this may lead to redundant adaptations or

bottlenecks in mitigation. Future implementations of the analyser should aggre-

gate detected violations, as well as operate with a fluid perception of behaviour.
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Behaviour Analysis

Behaviour analysis is implemented through the assessment of current and previ-

ous trigger violations. It requires a perception of behaviour, defined within the

controller’s behaviour model (BhvM ). The BhvM is a collection of real time prop-

erties and violations assigned to relationships within the prototype’s ABACM . It

is the product of SAAF’s monitoring and analysis stage, where properties reflect

trigger conditions defined within the behaviour policy.

For example, a set of triggers within the behaviour policy drives the dynamic

creation of gauges. Each gauge relates to a specific relationship within the

ABACM , such as r1=〈subject .Bob, role.Researcher , resource.ElectronicLibrary〉.
A gauge creates and maintains a particular property of its ABACM relationship,

such as totalDownloads , based on the conditions described within its respective

trigger. Given a set of gauges, a collated set of properties are maintained, such as

a tuple of properties 〈totalDownloads , requestsPerMin, requestsPerHour〉 for each

instance of an applicable ABACM relationship. As trigger conditions conform to

properties, violations are stored within the BhvM , maintaining a historical view of

all violations associated to their respective ABACM relationships. It is assumed

that all relationships can be connected to a source subject, in which to derive a

complete view of a subject’s behaviour and violations.

Given the BhvM , behaviour analysis must identify if a subject’s behaviour

warrants adaptation. A normalisation function is implemented to calculate the

impact of a subject against the organisation’s resources, based on the number and

aggregated cost of their violations. Each time a subject is detected in performing a

violation, the subject’s impact (SubImpact) is calculated and normalised on a scale

of 0 to 1, where 0 represents no malicious impact, and 1 represents the highest

malicious impact. Albeit simplistic, the naive approach enables the escalation

of a subject’s impact, given the persistence in identified violations over time.

However, beyond the proof of concept it will be necessary to consider a far wider

set of factors in determining impact, over cost alone.

SubImpact =
(
∑

vw × Vcount)− Costmin

Costmax − Costmin

As such, SubImpact is calculated as the sum of all costs of the subject’s violations

vw (derived from the corresponding triggers within the behaviour policy) multiplied

by number of violations Vcount the subject has performed. This is normalised based
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on a minimum and maximum cost that is set by the organisation in order to define

the extreme bounds of impact a subject can exert on an organisation.

Solutions

Solutions are characterised in terms of a change to the target system’s state of

access. The solution policy contains a set of template solutions, whereby each

solution is described by a tuple of required minimum observed impact (i.e., before

considering this solution against a violation), a set of parameterised solution ac-

tions (i.e., executable operations against an ABACM ), and a subset of behaviours

that a solution can mitigate (i.e., described by the behaviour policy). The mini-

mum observed impact is a value between 0 and 1, defining the scope of solutions

applicable to a subject’s calculated impact (calculated in behaviour analysis).

Each solution action describes a tuple of paramaterised operation and a cost

weighting. The paramaterised operation is an action that adapts a particular

aspect of the ABACM (e.g., lowerSubjectAccess(Subject), or removeAttributePer-

mission(Attr,Perm)). Whereas the cost weighting defines an artificial cost that

describes the perceived consequence to an organisation (e.g., the potential cost

lost to an organisation for completely removing a subject’s access).

For the prototype controller, the extent of solution actions are constrained to

removing and lowering the scope of access, either on an individual scale (subject

adaptation) or collective scale (policy adaptation), in conformance to the proto-

type’s ABACMM .

Likewise to SAAF’s behaviour policy, the solution policy is also defined using

a proprietary XML schema specific to SAAF. The solution policy’s specification,

along with a complete list of implemented solution actions are described in Ap-

pendix A.7.

Solution Analysis

Once violations have been detected and analysed, a set of applicable solutions are

identified. Given the calculated impact of detected violations, solution analysis

filters applicable solutions based on violation impact meeting the solution’s min-

imum impact threshold. This enables the controller to scope a set of solutions

that mitigate the violation, based on the varying impact and persistence of a sub-

ject’s malicious behaviour. For example, given a subject persistently identified as

causing violations, solutions with greater consequence to the subject are chosen.



CHAPTER 4. MODEL DRIVEN SELF-ADAPTIVE AUTHORISATION 99

Figure 4.7 depicts a partial view of the SAAF controller, capturing the process

of analysis, and providing the planner component with a set of solutions (as

adapted ABAC models). Here the analyser has analysed a subject’s malicious

behaviour, and identified a set of solutions, denoted as {S 1, S 2, S 3}. Each solution

is tailored in terms of populating the required parameters for each solution action,

either from the ABACM , or from the attributes of the detected violations. These

tailored solutions are then used to adapt a snapshot of the current access control

model, resulting in a set of adapted ABAC models, exemplified by {ABACM
1,

ABACM
2, ABACM

3}.

Figure 4.7: SAAF controller model verification

In some cases, where verification has been incorporated (i.e., to verify against

an organisation’s set of security requirements), these adapted models can be veri-

fied using the rbacDSML model verification component1. Depending on a positive

output of the verification tool (if applicable), the adapted ABAC models are col-

lated into a set of verified models, and sent to the planning component.

Solution Verification

For enabling verification, the prototype utilises a standalone version of rbacDSML,

by Montrieux [88]. Providing the prototype’s target system conforms to the RBAC

standard, any adapted ABAC model can be verified using rbacDSML.

Each adapted ABAC model represents a new state of access within the au-

thorisation infrastructure, essentially iterating changes in the design of access. It

1 Verification is limited to only RBAC compliant variants of SAAF’s ABACM , as rbacDSML
can only verify RBAC models
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is therefore necessary to obtain assurances that the new design will not conflict

with any of the organisation’s security requirements. For example, ensuring that

all resources are accessible by at least one subject. An organisation’s security re-

quirements are defined in SAAF’s constraints model, which is a static UML model

expressed in rbacDSML’s own proprietary UML profile.

The standalone version of the rbacDSML tool achieves verification of an access

control model via the execution of OCL constraints. Each security requirement,

defined as a rbacDSML scenario within SAAF’s constraint model, has a context :

a stereotype on which the scenario applies. The verification process evaluates

each OCL constraint on every instance of its context stereotype present in the

adapted ABAC model. For example, an RBAC static separation of duties (SSoD)

constraint’s context is the rbacDSML’s User stereotype (synonymous to subject).

If there are 20 subjects within the adapted ABAC model, the SSoD constraint will

be evaluated 20 times, once for each subject.

Figure 4.8: Transformation of ABAC to rbacDSML

For the prototype controller to make use of the rbacDSML verification tool,

the constraints model and adapted ABAC model have to be transformed into

an rbacDSML compliant UML model of RBAC. This is achieved by invoking

an ATL model transformation program: ABAC+CON2RBACDSML, as shown

in Figure 4.8. The transformation program combines the adapted ABAC model

(ABACM ) and the constraints model (ConstraintsM ), and outputs the rbacDSML

model (rbacDSMLM ).

Upon completion of the transformation, the model is verified against the con-

straints now woven within adapted ABAC model, in order to evaluate the model

against the organisation’s security requirements. The result is either a list of vio-

lated security requirements, together with their context elements. For example, if

the RBAC SSoD constraint has been violated for subject Bob, rbacDSML returns

WF SSoD, Bob as an element of the list. If no constraints have been violated,
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rbacDSML returns an empty list.

Each of the prototype’s generated adapted ABAC models undergoes model

verification. Should all of the adapted models return violations, the prototype

assumes there are no candidate solutions that can mitigate the detected violations.

The failure to handle an adaptation is logged by the controller for further action

to be taken by human administrators.

4.3.6 Mitigating Behaviour (Planning and Execution)

Mitigation of behaviour is achieved through the selection and planning of an

appropriate solution, and execution of the plan against the target system.

Solution Selection and Plan Generation

The prototype’s implementation of solution selection and plan generation are sim-

plistic approaches to what is a challenging problem, albeit simulates two important

steps: selection of an appropriate solution from a candidate set of solutions, and

creation of an executable plan in which to realise the selected solution.

Solution selection is implemented through a weighted calculation based on

Strasburg et al.’s cost-sensitive modelling approach [136] (see Chapter 3.4.4). It

aims to rank solutions based on a perception of cost that considers the trade-offs

between observed violations and enactment of a solution:

slcost =
∑

acost + slimpact − slgoodness

Solution cost (slcost) is the result between the negative consequence of the

solution against the state of access, and the positive consequence of the solution

in mitigating identified abuse.

The negative consequence of the solution is the aggregate cost of all of the so-

lution’s actions acost (as defined by the solution policy) and the cost of solution im-

pact slimpact . Solution impact is simply calculated as the number of non-malicious

subjects that will lose access as a result of enacting the solution, multiplied by a

base cost value. The base cost value reflects the cost of removing a single subject’s

access rights (as defined by the solution’s policy).

The positive consequence of the solution is referred to as solution goodness

(slgoodness). This is calculated as the aggregated cost of all violations caused by

malicious subjects that the solution can mitigate. The prototype’s perception of

a malicious subject is configurable. For instance, it may refer to all malicious
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subjects identified in abuse of a particular resource within a given period of time,

or refer to all malicious subjects that have yet to be mitigated (i.e., where prior

attempts at adaptation have failed).

Given a ranked set of solutions, where the solution that exhibits the least

amount of cost is identified as the most appropriate solution, plan generation is

enacted. Plan generation involves the ordering of actions of a selected solution

for relevant target system services that an executor can follow. For example,

generate authorisation assets, activate authorisation assets, and warn people of

interest (i.e., subjects, issuers, sources of authority). Should a plan fail, a plan is

generated and executed for the next ranked solution. However, if no solutions are

available (or all have failed) then it is assumed that all solutions exhibit a greater

consequence than the detected abuse.

Model Transformation and Execution

Given a selected adapted ABAC model, and a generated plan, the executor must

realise these changes within the target authorisation infrastructure. Whenever the

ABACM undergoes adaptation, the ABACM must be transformed back into the

implementation specific models. Implementation specific models are then reflected

within their respective services of the authorisation infrastructure. Transforma-

tion programs are beneficial here, as the SAAF controller is not concerned with

how to adapt implementation specific models. Instead, the controller relies on the

transformation program to realise the changes made against the ABAC model.

This enables the use of model transformation programs to automatically generate

relevant implementation specific models.

Two separate transformation programs have been created to enable this:

ABAC2PERMIS, generating a new PERMIS policy model containg changes to

access control rules within the adapted ABAC model, and ABAC2LDAP, gener-

ating a new LDAP model specifying new attribute assignments.

Once new implementation specific models have been produced, operators

within the executor generate new authorisations assets and deploy these via rele-

vant effectors, as shown in Figure 4.9. For example, changes to the LDAPM model

are used to generate new X.509 (digital) certificates. Here, an operator referred

to as the CertificateEditor (Section 4.3.2) takes attributes for adapted subjects,

and generates and signs digital certificates on behalf of the subject’s issuer. The

certificate is then deployed via an LDAP client, updating the subject’s access.
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Figure 4.9: Model transformation of ABAC to implementation specific

4.4 Authorisation Infrastructure Integration

This section describes the integration of the prototype controller within a cen-

tralised RBAC authorisation infrastructure. The prototype is also capable of

being deployed within other configurations of authorisation infrastructures, such

as one that is maintained within a federated environment (see Chapter 5).

The centralised authorisation infrastructure, described in Figure 4.10, is rep-

resentative of the prototype SAAF controller being deployed within a single or-

ganisation. The infrastructure utilises three servers: a resource server, an LDAP

server, and an authorisation server.

The resource server hosts a set of resources (e.g., web applications). A policy

enforcement point (PEP) is used by these resources in which to enforce access

control decisions made by an external authorisation service. Upon the PEP en-

forcing a grant decision, a subject can access the resource within an authorised

session. Probes can exist to observe changes within resources (i.e., a change due

to subject activity), which provides context to a subject’s authorised session.

The LDAP server is an example of an organisation’s identity service, hosting

an LDAP directory. The LDAP directory contains subject entries and subject role

assignments (expressed as plain text role attributes, or within a binary attribute

containing a signed digital certificate). Subjects authenticate with the LDAP

directory in order to gain initial access to the organisation’s resources. This is

achieved either via a single sign on service, or via authentication procedures im-

plemented directly within the resources. A probe on the LDAP server exists to

monitor changes to the LDAP directory, generating Subject Change notifications
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Figure 4.10: Centralised authorisation infrastructure

when a subject’s access rights have been modified or created.

The authorisation server contains a PERMIS standalone authorisation ser-

vice [114], and a deployment of the prototype SAAF controller. PERMIS protects

an organisation’s resources through the analysis of ABAC attribute - permission

assignments and the request for access, via its policy decision point (PDP). A

policy deployed by PERMIS in this deployment conforms to RBAC, and is also

capable of expressing validation rules for subject role assignments (should a sub-

ject’s access rights exist as digitally signed certificates).

Validation of subject access is performed by PERMIS’s credential validation

service (CVS), whereby a subject’s set of access rights can be validated against the

issuer of the access rights. In this architecture, PERMIS receives access requests

that identify the subject by the subject’s unique LDAP ‘distinguished name’ (DN),

along with the resource and action the subject wishes to access. Using the sub-

ject’s DN, PERMIS retrieves the subject’s access rights directly from the LDAP

directory, either in the form of a digital certificate or as unsigned attributes.

The SAAF controller is deployed on the authorisation server where it is best

suited for control of the PERMIS authorisation service. It generates a model of

access (using its ABAC metamodel) based on detection of Subject Change and

Policy Change. Each change causes a model transformation to produce a new
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state of access (the prototype’s ABAC model).

An effector allows for direct manipulation of the PERMIS authorisation ser-

vice, whereby generated policies (by the prototype’s executor) are stored in a

persistent state, and activated via initiating a reboot of the PERMIS Standalone

service2. To perform adaptations against the LDAP directory, LDAP client tools

are used to update either plain text attributes, or deploy newly created digital

certificates into LDAP binary attributes.

4.5 Preliminary Analysis of SAAF

In this section, the SAAF controller prototype is demonstrated through a scaled

simulation inspired by a historic insider attack [27]. The prototype controller is

shown considering several solutions while handling the simulated attack, whereby

only verified solutions are enacted.

4.5.1 Chemical Researcher Insider Attack

In late 2005, a chemical company was a victim of an insider attack [27, 54] in which

a single attacker carried out theft of intellectual property. As a consequence of

the attack the company suffered $400 million dollars’ worth of trade secrets being

stolen [54]. The malicious insider is said to have downloaded 17,000 sensitive PDF

documents from the company’s Electronic Library, as well as 22,000 abstracts.

The malicious insider was an employee of the chemical company, whereby it is

assumed he had legitimate access rights to the Electronic Library.

Assumptions

It is assumed the chemical company operated an authorisation service to man-

age access to their Electronic Library, and utilised identity services to maintain

access rights of their subjects. For the purpose of demonstrating an implementa-

tion of SAAF it is assumed that the chemical company implements RBAC (due

to RBAC’s popularity in industry) as their access control methodology. In this

instance, subjects have relevant roles, such as Researcher, who have permissions,

such as Get Document from Electronic Library. Finally, it is assumed the combi-

nation of authorisation services, identity services, and access control is one that

2A limitation in PERMIS is that it must be restarted to activate new policies at runtime.
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can be instantiated within the centralised authorisation infrastructure, portrayed

in Figure 4.10.

Attack Properties

The chemical company only identified the attack once the attacker had ended

his contract and had begun work at a competing company. From the account

of the attack it is difficult to surmise a complete picture in regards to detection.

However, the properties of the attack are characterised in terms of the attacker’s

usage of the Electronic Library (i.e., technical factors):

• 17,000 PDF files and 22,000 abstracts were downloaded over a period of four

months, and were not related to attacker’s role;

• Abuse of access took place on-site during office hours;

• Files accessed were downloaded over several periods of 15 to 20 hours

• Total documents downloaded were 15 times greater than the next highest

user of the Electronic Library.

These technical factors define observable activity within the company’s Elec-

tronic Library. Notably, the number of documents downloaded is 15 times greater

than the next highest user of the Electronic Library. This suggests that even

within the upper limits of what could be considered as normal behaviour, the ma-

licious insider’s activity was significantly higher. As downloads were spread across

15 to 20 hour periods, it suggests that documents were downloaded in batches.

As such, the malicious insider’s activity profiles a high frequency of downloads

per daily time intervals.

4.5.2 Adaptation Scenario

The chemical company insider attack is simulated within the self-adaptive authori-

sation infrastructure, described in Section 4.4. The authorisation infrastructure’s

state of access (pre-adaptation) is identified in Figure 4.11. At deployment-time,

8 users are active, with assigned roles held in the LDAP directory. The PERMIS

authorisation service has one active access control policy, which states users with

the role Supervisor, Researcher and Administrator can access the Electronic Li-

brary GetDoc resource. Note in this case, multiple roles have access to the same

permission expressed in the PERMIS access control policy.
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Figure 4.11: Deployed state of access (RBAC)

The properties of the chemical company case depict a long term attack,

whereby a single user downloaded a high volume of documents over a period of

4 months. In addition, the detection of the attack suggests it was made through

calculating the deviation of the attacker’s historic usage of the Electronic Library

to other users, where the attacker’s usage was 15 times greater [27]. The attack is

scaled down to simulate usage of the Electronic Library within a period of 4 hours

(as opposed to the 4 months in which the attack was conducted), and instead

of 22,000 documents, it is scaled to 240. It is also assumed that the acceptable

number of downloaded documents within that period of 4 hours is 16, which is 15

times less than the scaled figure of 240 downloads.

Deployment

The self-adaptive authorisation infrastructure is hosted across two virtual ma-

chines, each with 1024MB of RAM and running Ubuntu 12.04.3 LTS. The virtual

machines represent an identity service, containing an LDAP directory, and an

authorisation service, containing a deployment of PERMIS. The SAAF controller

is also deployed on the authorisation service machine, where it is best suited to

managing PERMIS access control policies. Finally, the existence of the Electronic
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Library is simulated via access requests made in the form of HTTP requests from

a Windows 7 machine (2GB of RAM). Access is simulated through the use of an

automated script, sending access requests to PERMIS, whereby user access rights

are evaluated. Each granted request to download a document from the Electronic

Library is seen as synonymous with a user downloading a document.

Domain Security Requirements

The domain represents the victim organisation (the chemical company), whereby

the organisation owns the authorisation infrastructure, its deployed services, the

prototype controller, and the protected resources (i.e., Electronic Library). The

domain’s requirements are necessary in governing the extent of adaptation, re-

gardless of what malicious behaviour is detected, and are modelled as rbacDSML

scenarios (adaptation constraints). In these cases, it may be that the chemical

company is only willing to risk automated adaptation where only low level workers

are impacted. To reflect these concerns, the following adaptation constraints are

deployed, captured within SAAF’s constraints model :

• C1 Administrator role must maintain access to all resources (Role Resource

Scenario)

• C2 At least one user must be assigned the Administrator role (User Role

Scenario)

• C3 Each resource should be accessible by at least one user (Resource Sce-

nario)

Despite some redundancy, these constraints aim to demonstrate different types

of constraint scenarios to evaluate against SAAF’s adapted models.

Identification

Considering the properties of the attack, the prototype controller is deployed with

a pattern based behaviour rule. Should the prototype controller detect usage of

the Electronic Library from users with the role of Researcher as greater than 3

times the frequency of average number of downloads (within the 4 hour interval),

a violation is identified. In addition, to classify severe behaviour, a composite rule

is applied, which indicates that after the first rule has been broken multiple times,

the behaviour is severe enough to warrant adaptations to access control policies

(i.e., adaptations that generate greater impact).
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Solutions

The prototype controller is deployed with a set of solutions, tailorable to de-

tected abuse. All of the below solutions are considered to be capable in resolving

malicious behaviour detected by the pattern based behaviour rule expressed ear-

lier. Solution S1 indicates adaptation to the individual, whereas, solutions S2 to

S5 indicates policy adaptation, impacting many individuals. They remain fixed

throughout runtime.

• S1 Remove all roles from 〈user〉

• S2 Remove 〈permission〉 from 〈role〉

• S3 Remove all permissions to 〈resource〉

• S4 Remove all permissions from 〈role〉

• S5 Remove all permissions from all roles

Execution

To demonstrate the full extent of adaptation and verification, the characteristics

of the chemical company insider attack are simulated as a coordinated attack

between 4 users with the Researcher role, with the intent to carry out IP theft

against the Electronic Library. There are 4 stages of the attack. In each stage

a new user is simulated to violate the prototype’s behaviour rules, allowing the

prototype to identify the malicious behaviour and respond to it accordingly. All

but three Researchers and the one Administrator take part in the attack. As

each stage is simulated, the number of solutions applicable to the behaviour may

increase, indicating that the Electronic Library is under persistent attack.

The first stage demonstrates the user Anne breaking the behaviour rule by

downloading a high number of documents at the start of the 4 hour attack period,

using her assigned Researcher role. The second and third stage simulate users

John and Mary carrying out similar activity to stage one, again within the same

4 hour window and using the Researcher role. Finally, the fourth stage simulates

the user Bob breaking the same behaviour rule, using his Researcher role. Each

stage considers a set of solutions, whereby the set of verified solutions is captured,

and the result of the adaptation engine is shown in terms of a selected verified

solution.
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Figure 4.12: Stage 1 Taint Flow

As an example, Figure 4.12 conveys the steps that user Anne takes to carry

out malicious behaviour. The normal flow (nf) of Anne’s behaviour is comprised

of her first authenticating her identity with the LDAP service (a). From here

Anne is able to request (b) her role (in the form of an attribute). This role is

then issued (c) and used in conjunction with a policy enforcement point (PEP)

to gain access and retrieve (d) a document from the Electronic Library. Given

that the perception of malicious behaviour is based on the frequency at which

Anne downloads documents, Anne’s taint flow (tf) (i.e., when Anne’s behaviour

is viewed as malicious) is identified once her total number of downloads crosses

the prescribed threshold (i.e., 240) in a 4 hour time interval.

4.5.3 Adaptation Results

The following presents a high level summary of the adaptations performed by the

SAAF controller prototype. A more detailed explanation of the adaptation results

can be reviewed in Appendix A.8.

The attacks were simulated over a period of 4 hours, in accordance to the

4 stages described in Section 4.5.2. A set of solutions {S1, S2, S3, S4, S5}
were deployed in the prototype controller, relevant to handling the pattern based

behaviour rule. The solutions were chosen to demonstrate the verification of

invalid and valid RBAC models at runtime. To gain a performance average for

the response to each attack stage, the experiment was executed 30 times. For

practical reasons, performance averages were obtained from simulating the attack

in a reduced attack period of 5 minutes, where adaptation and verification results

showed negligible difference to the 4 hour simulation.

Table 4.1 portrays the 4 stages of attack. In the first two stages, the prototype



CHAPTER 4. MODEL DRIVEN SELF-ADAPTIVE AUTHORISATION 111

Stage User Identified Valid Selected Avg. Response Std. Dev.
Solutions Solutions Solutions Time (sec)

1 Anne S1 S1 S1 18.70 1.11
2 John S1 S1 S1 10.74 0.64
3 Mary S1, S2, S3, S4, S5 S1, S2, S4 S1 45.12 1.30
4 Bob S1, S2, S3, S4, S5 S1, S2, S4 S2 44.79 1.31

Table 4.1: Verification and adaptation results

controller considers the malicious behaviour to be minor, only identifying solution

S1 as a relevant solution. At this point solution S1 has been tailored to the role

the user is activating (Researcher) and the resource they are accessing (Electronic

Library). In both stages, the tailored solutions result in a verified RBAC model

since there is no conflict with the 3 constraints described in Section 4.5.2. Solution

S1, which removes Anne and John’s access rights, thus their ability to access

the Electronic Library, is chosen as it is the only valid solution available. The

solution is realised by transforming the adapted RBAC model into an LDAP user

model, which is then used to update the current state of access rights within the

LDAP directory. Adaptation, from detection to response within the authorisation

infrastructure, took an average of 18.7 seconds to complete in the first stage, and

an average 10.74 seconds to complete in the second stage. The difference in time

is assumed to be a result of the Java virtual machine warming up, in which both

the prototype controller and verification tool is executed on.

Once the third stage of the attack was executed, the prototype controller iden-

tified that there was persistent malicious activity regarding the role of Researcher

and the resource Electronic Library. As a result, the SAAF controller selects a

wider set of solutions {S1, S2, S3, S4, S5}. In this case, multiple adapted RBAC

models are created in accordance to the tailored solutions. These are verified us-

ing the rbacDSML tool; resulting in solutions S3 and S5 as invalid. This is due

to solution S3 removing all access to the Electronic Library, violating adaptation

constraints C1, and C3. The same violation of constraints C1 and C3 occurred

when the SAAF controller deactivated all permissions within the RBAC model,

for solution S5.

Solution S1 is ultimately chosen as the most appropriate solution, given the

severity of the attack and the solutions available. This is a result of the prototype

controller calculating that adaptations S2 and S4 would cause greater impact than

allowing the attack to continue (Appendix A.8). As with stage 1 and 2, Mary’s

access right to the Electronic Library has now been removed, preventing her from
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further access. The adaptation of stage 3, from detection to response, took a total

average of 45.12 seconds. This is due to additional RBAC models undergoing

adaption, transformation into a rbacDSML UML model, and verification using

the rbacDSML verification tool.

Finally, in the last stage of the attack, the same solutions are identified and

verified similarly to stage 3. However, solution S2 is selected. Solution S2 removes

the permission that has been abused from the Researcher role, preventing any

future user with the same role executing that permission. The solution is realised

by transforming the adapted RBAC model into a new PERMIS model, which is

then deployed as a new access control policy. This has a negative consequence on

the remaining three users with the Researcher role, as they are no longer capable

of accessing the Electronic Library. However, the prototype controller has selected

this solution due to the persistent attacks against the Electronic Library, and its

resulting cost sensitive calculation (Appendix A.8). A contributing dimension of

the cost sensitive approach, is that in stage 4, there are more malicious subjects

that own the Researcher role when compared to non-malicious subjects.

In summary, subject adaptation has had the consequence of preventing a sub-

ject’s ability to be issued with the necessary roles to request access to a resource.

This is essentially blocking the flow of information at point b, conveyed in Fig-

ure 4.12. In addition, policy adaptation has had the consequence of preventing all

Researcher subjects ability to gain access due to removal of permissions. This is

achieved by blocking the flow of information at point d , conveyed in Figure 4.12.

4.5.4 Scalability of Verification

To demonstrate the scalability of verification, a set of randomly generated RBAC

models, increasing in size of model elements, were verified. For consistency, each

model generated contained a ratio of 50% subject elements, 15% role elements,

10% permission elements, 10% resource elements, and 15% constraint scenario

elements. The size of each model generated initially was set to 10 model elements,

increasing to 500, 1000, and then by intervals of 1000.

The verification of each model was repeated 10 times to obtain an average

and standard deviation. The scalability results are shown in Figure 4.13. As the

ABAC model size increased, the verification times were shown to follow a linear

pattern. Note that these performance measures only capture the time it takes to

complete a verification cycle, and does not represent a complete adaptation cycle.
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Figure 4.13: Scalability of model verification

4.5.5 Prototype Discussion

The prototype has demonstrated the detection, verification, and mitigation of a

simple abuse scenario. Notably, it has demonstrated the verification of RBAC

models, which has provided assurances against the deployment of inappropriate

solutions at runtime (within the target authorisation infrastructure). In addition,

the results have shown the escalation of abuse to be met with the verification

and enactment of stronger solutions, ultimately stopping the collaborated attack

through an adaptation to the access control policy. As such, the prototype has

been shown to successfully perform adaptation in regards to subject access rights,

and authorisation policies, mitigating detected abuse through persistent preven-

tion and limitation of access.

One limitation with respect to verification, is that mandatory constraints must

always be verified per adaptation. In some cases it can be argued that different

levels of verification are needed. For example, given a minor attack on the Elec-

tronic Library, the organisation may require a constraint guaranteeing at least one

researcher maintains access to the resource. However, should the attack continue

and become severe, the deploying organisation may require that the constraint is

no longer applicable, since the Electronic Library has suffered a severe attack. One

solution to this is to classify identified attacks against available constraints, indi-

cating which constraints should be verified per attack (in addition to mandatory

constraints).

In addition, there are several limitations regarding the prototype itself. No-

tably, the prototype’s MAPE-K components are very much interlinked, limiting

the ability to employ modular solutions within each stage of the feedback loop
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(e.g., alternative behaviour detection techniques). However, in order to achieve

a proof of concept for self-adaptive authorisation, this interlinked approach has

been intentional. In addition, each stage of SAAF’s feedback loop offers a num-

ber of challenges, with an expansive problem domain to explore. As such, naive

mechanisms were employed to demonstrate some stages of SAAF’s feedback loop

as to evaluate the holistic goal of SAAF, which is the feasibility of self-adaptive

authorisation.

4.6 Summary

In summary, this chapter has described the implementation of a prototype of

the Self-Adaptive Authorisation Framework (SAAF) controller, and its integra-

tion within a centralised RBAC authorisation infrastructure. The implementation

conforms to the conceptual design of SAAF, presented in Chapter 3. The core

functionality of SAAF has then been exemplified through a preliminary experi-

ment, essentially closing the loop, and demonstrating self-adaptive authorisation.

A key contribution of this chapter is the use of model generation, model trans-

formation, and model verification. This has been used to present the runtime

model driven self-adaptive approach to access control, capable of mitigating ma-

licious behaviour whilst providing assurances to adaptations. Second to this, it

is the use of model transformation to enabling adaptation of many RBAC and

ABAC implementations of identity and authorisation services. This has been

shown through the use of several model transformation programs that transforms

implementation specific models of two existing technologies into a homogeneous

model of access. The use of homogeneous and implementation specific models has

allowed for reasoning and analysis of access in a common format, whilst realising

adaptations in conformance to a given implementation’s view of access.

Whilst the preliminary experiment demonstrated the operation of SAAF at

a high level, further evaluation is required. As such, the following two chapters

seek to evaluate SAAF under different conditions and environments. Chapter 5

presents an approach in formally identifying ‘malicious change’ to simulate and

evaluate the runtime mitigation of abuse of access within a federated ABAC au-

thorisation infrastructure. Finally, Chapter 6 seeks to observe the consequence

of adaptation where the SAAF controller prototype is shown mitigating abuse

exhibited by real users.



Chapter 5

Simulating Insider Threat

5.1 Introduction

This chapter adopts a formal approach to evaluating the Self-Adaptive Authorisa-

tion Framework (SAAF). The approach aims to evaluate, via simulation, SAAF’s

robustness under repeatable conditions and environment change.

Existing approaches in evaluating self-adaptive software systems require the

observation and analysis of quality dimensions that are common to self-adaptive

systems [142]. Many approaches rely on the observation of performance as a

measure of success. However, evaluating performance alone provides a limited

view of success, in particular in some application domains where the social impact

of adaptation must be considered. This is the case for self-adaptive authorisation,

where adaptation may result in undesirable states, including the loss of access to

critical resources.

A common way for evaluating self-adaptive systems is through the use of case

studies. Case studies can be used to represent environment and system change,

which are expected to stimulate adaptation, thus providing the basis for evaluating

the impact of adaptation. For example, Rainbow’s ‘ZNN’ case study [53] is used

to evaluate architectural-based adaptation.

This chapter uses a fictitious case study describing a set of insider attacks

within a federated environment. The case study is applied to a self-adaptive

authorisation infrastructure using SAAF, and it aims to answer the following

questions: Can SAAF detect and mitigate malicious behaviour in federated de-

ployments? Does SAAF impact the performance and availability of its target

authorisation infrastructure? Finally, can SAAF detect and mitigate malicious

behaviour in a consistent manner?

115
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The contribution of this chapter is the evaluation of SAAF, using as a basis

a fictitious case study. Specifically, the evaluation demonstrates SAAF operating

within a federated environment, and how SAAF handles malicious behaviour given

the existence of non-cooperating third party organisations. Second to this is the

application of changeload [24] in formally describing malicious behaviour in the

context of authorisation infrastructures. Changeload is a means to describe a set

of environment and system change types that can be instantiated to stimulate

self-adaptation. In this chapter, a malicious changeload for the fictitious case

study is defined to simulate the abuse of access. The malicious changeload is then

simulated to evaluate SAAF under various operational conditions.

The rest of this chapter is structured as follows: Section 5.2 positions a moti-

vating case study used as a basis for evaluation. Section 5.3 provides the definition

of changeload in the context of authorisation infrastructures. Section 5.4 describes

the malicious changeload of the case study. Section 5.5 describes a set of experi-

ments and results that observes the runtime stimulation of malicious changeload,

and adaptation of a target system. Section 5.6 reflects on the outcome of the

experiments, along with the benefits and challenges of self-adaptive authorisa-

tion. In Section 5.7 the chapter is summarised. Finally, in Appendix B additional

information and results are provided that support this chapter.

5.2 Case Study: LGZLogistics

Given the challenges in obtaining detailed data on actual cases of insider attacks,

this fictitious case study draws upon several historical cases discussed in the CERT

guide to insider threat [27]. The type of malicious behaviour depicted in this case

study is categorised as data theft attacks. These attacks are performed inter-

nally to a fictitious logistics company, called LGZLogistics, representing a service

provider and identity provider within a federated authorisation infrastructure (see

Chapter 2.2.5). Malicious behaviour is conducted by disgruntled employees of the

logistics company, as well as employees of an external Trusted Business Partner

(TBP) [27]. The role of a TBP is key to this case study, as it is representative

of the relationship a service provider organisation has with an identity provider

organisation (e.g., LGZLogistics trusts the TBP to provide IT help desk services).

The case study focuses on two areas of insider threat that organisations are

highly vulnerable to: the abuse of user access rights by employees of the organi-

sation, and the abuse of access rights by TBP organisations [104].
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5.2.1 Context and Architecture

LGZLogistics portrays a small to medium sized company of 1000 employees, ten

of which are IT staff that support and administer a set of protected resources.

These resources are protected via an instantiated Attribute Based Access Con-

trol (ABAC) model, in the form of subject attribute assignments within identity

services, and an access control policy within an authorisation service.

Figure 5.1: LGZLogistics authorisation infrastructure architecture

LGZLogistics maintains a SimpleSAMLphp [131] identity service lgzIS to au-

thenticate its subjects (employees) and issue access rights (as credentials). The

organisation also maintains a PERMIS standalone authorisation service as [114],

to authorise subject access to its resources. These resources include an employee

database empDB, and a bespoke logistics tool lgT. The employee database contains

personnel information about the logistic company’s employees, which is required

for general IT help desk enquires.

LGZLogistics utilises the authorisation service as to authorise access for its

own subjects, as well as subjects from a second offshore contractor organisation

(a TBP). LGZLogistics trusts the contractor organisation to issue access rights to

their subjects as part of a business contract, for providing IT help desk services.

As such, the contractor organisation also operates a SimpleSAMLphp identity

service conIS that manages and releases its own employees’ access rights to re-

questing service providers (i.e., LGZLogistics). As part of their contract, subjects

from the contractor organisation are permitted access to empDB to facilitate help

desk duties. Access for subjects from either identity service is obtained as follows:

1. A subject attempts to perform an action on a resource;

2. The resource enacts a policy enforcement point (PEP) that requires the subject to au-

thenticate with their identity service (i.e., lgzIS or conIS);

3. Upon authentication, a short term credential is released to the resource’s PEP, denoting

a signed set of subject attributes (e.g., a SAML assertion [99]);

4. The PEP forwards the subject’s issued credential to the authorisation service as, which

validates the contents of the credential to ensure attributes released have been issued by

a trusted identity provider;
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5. If valid, the attributes are used to request access via the authorisation service as, along

with the resource, and action to be performed.

6. Lastly the authorisation service as decides whether to grant access in accordance to its

authorisation policy.

5.2.2 Access Control Model

LGZLogistics employ an ABAC methodology to protect its resources. As such,

an instantiation of ABAC considers the subjects of LGZLogistics and the subjects

of the contractor organisation. Each set of subjects have a permissible scope of

access rights that can be assigned to them.

Figure 5.2: LGZLogistics subject attribute permission assignments

Figure 5.2 defines access in the form of a class diagram. There are five ‘permis-

Role type’ attributes [31] (specific to the the PERMIS standalone authorisation

service) with corresponding values. Subjects are assigned these attributes, which

can then be used to invoke permissions.

In addition to the subject attribute assignments and attribute permission

assignments, LGZLogistics define a set of valid attribute assignment rules

(within its authorisation policy). Figure 5.3 specifies what attributes an
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Figure 5.3: LGZLogistics valid attribute assignments

identity provider is trusted to issue on behalf of its employees. For ex-

ample, LGZLogistics identity provider lgzIS is trusted to assign attributes

〈permisRole, SysAdmin〉, 〈permisRole, SysAnalyst〉, and 〈permisRole, Staff 〉 to its

employees. The contractor organisation identity provider conIS can only assign

attributes 〈permisRole,ContractorSupervisor〉 and 〈permisRole,Contractor〉.

5.2.3 Subject Behaviour

This section identifies typical subject behaviour for the day to day operations of

LGZLogistics, as well as a malicious behaviour scenario.

Typical Behaviour

The following describes a base line of subject behaviour, detailing the average us-

age of the authorisation infrastructure likely to occur in the day to day operations

of LGZLogistics :

• Each staff member requests ‘access’ to the lgT resource on average two times per day;

• Contractors receive on average fifty calls per day, each call requiring one ‘read’ access to

empDB;

• On average, one in five calls require access to ‘modify’ the empDB, which can only be

performed by a contractor supervisor, systems analyst, or system administrator;

• On average, each system analyst performs ten ‘read’ requests, and five ‘modify’ requests

per day to the empDB;

• A system admin performs on average one ‘read’, ‘modify’, ‘delete’, and ‘create’ request

per day to the empDB.
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Malicious Behaviour Scenario

The logistics company is victim to an insider attack, largely as a result of a catalyst

event [98]. The catalyst event refers to a notification to several key IT workers

that they have been selected for job redundancy.

A systems analyst that has been selected for redundancy is unhappy about

the decision, and attempts to damage the company in three ways. The first is to

attack the empDB resource by randomly corrupting employee records, invoking

the permission ‘modify’ empDB. The second is an attempt to disrupt access to

the lgT resource, essentially flooding the resource by initiating numerous autho-

rised sessions. The final attempt is socially motivated, whereby the analyst, who

works closely with employees of the contractor organisation, informs them that

LGZLogistics is going to cancel their contract to cut costs.

A contractor supervisor, now fearing job redundancy, decides to steal data from

the empDB resource. The supervisor has links with the internet underground [27],

and is aware of anonymous buyers looking for data fit for identify theft. By

persuading his peers, three other contractors decide to collaborate in stealing

employee information from the empDB, to sell it to the internet underground.

5.3 Defining Malicious Changeload

This section presents a definition of a malicious changeload model [24] related

specifically to malicious behaviour in the context of authorisation infrastruc-

tures. Essentially, it applies Cámara et al.’s existing definitions of a changeload

model [24] (which is specific to architectural-based self-adaptation) to authorisa-

tion infrastructures. As such, Cámara et al.’s definitions are included in order for

this chapter to be self-contained. However, some definitions have been slightly

modified in order to take into consideration malicious behaviour, supported with

examples relating to the LGZLogistics case study.

Cámara et al.’s changeload model was chosen in order to concretely define the

scope of change within an authorisation infrastructure. In addition, it enables

the definition of non-conventional states that describe a system with ongoing

malicious activity, where a set of events can trigger self-adaptation. Through the

specification of changeload, it is intended to concisely describe case studies of

insider threat within authorisation infrastructures, for the purpose of simulating

insider threat, and evaluating threat mitigation (i.e., adaptation).
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5.3.1 System and Environment Models

Following Cámara et al.’s approach, the LGZLogistics authorisation infrastructure

is formally defined in terms of an architecture model (Figure 5.4).

Definition 17 (Architecture Model [24]) “An architecture model is a tuple

A = (T ,G,Γ), where:

• T = Tcomp ∪ Tconn is a set of architectural types, where Tcomp and Tconn are

the sets of component and connector types, respectively.

• G = (N , E) is a graph describing a system configuration, where:

– N is a set of nodes, where a typing Λ assigns an architectural type

Λ(n) ∈ T to every n ∈ N .

– E is a set of edges, where each one of them consists of an unordered

pair of nodes (n, n′), such that Λ(n) ∈ Tcomp and Λ(n′) ∈ Tcomp.

• Γ is a function that assigns a set of properties Γ(ty) to each architectural

type ty ∈ T .”

Figure 5.4: Example architecture model for an authorisation infrastructure.

In the case of SAAF, an access control model provides the necessary rela-

tions between components of an architectural model (i.e., how a subject of an

identity service component can access a resource component). Despite this, the

use of an architectural model in this case is beneficial in defining properties of

a system and the environment. It enables the specification of properties of the
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system that describe an authorisation infrastructure’s runtime parameters and

workload, and properties of the environment that characterises the operational

conditions imposed on an authorisation infrastructure. These properties are said

to be contained within a system model and environment model, derived from the

architecture model.

Definition 18 (System Model [24]) A system model associated with an archi-

tecture model A = (T ,G,Γsys) is a function Γsys that assigns a set of system

properties Γsys(ty) to each architectural type ty ∈ T

Definition 19 (Environment Model [24]) “An environment model associated

with an architecture model A = (T ,G,Γenv) is a function Γenv that assigns a set

of environment properties Γenv(ty) to each architectural type ty ∈ T ”.

Example 1 Figure 5.4 displays an architecture model of the LGZLogis-

tics authorisation infrastructure, where the set of architectural types is

T ={IdentityServiceT ,AuthorisationServiceT ,ResourceT}. Examples of sys-

tem properties include Γsys(AuthorisationServiceT )={policy ,sub access rate}.
Environment properties (displayed inside the grey boxes) include

Γenv(AuthorisationServiceT )={sub access req rate, lgT access request rate},
and Γenv(ResourceT )={activeSessions ,latency}.

There can be a plethora of properties contained within both system and en-

vironment models, where such properties are dependent to a given deployment of

an authorisation infrastructure and its protected resources.

5.3.2 System and Environment State

Definition 20 (State Condition [24]) “A state condition is a tuple

(A,B ,VA,VB) that corresponds to the description of the evolution of a set

of (either system or environment) properties over time:

• A = 〈a1, . . . , ak〉 is a vector of attributes that enumerates the specific prop-

erties of interest (variables) for the (environment or system) state;

• B = 〈b1, . . . , bk〉 describes the dynamics of the attributes in A (how they

evolve over time, e.g., through a polynomial, exponential, or step function);

• VA = 〈vA1, . . . , vAk〉 is a vector of attribute values instantiating the attributes

in A;
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• VB = 〈vB1, . . . , vBk〉 is a vector of behaviour instances of the elements in B

(i.e., a behaviour instance vBi , i ∈ {1, . . . , k} is a function of type bi ∈ B,

describing the evolution over time of the attribute vAi ∈ VA).”

System State

The system state (Sysstate), defined in terms of a state condition, captures the value

of system properties and the execution of services at a given moment in time. For

example, the authentication of subjects, the release of subject attributes, the vali-

dation of subject attributes, and the authorisation of subject access. It is seen as a

snapshot of the system, whereby multiple changes may have already occurred. A

typical system state (Sys t
state) assigns values to the identified properties, dependent

on the subjects and protected resources that exist within the authorisation infras-

tructure (e.g., a subject’s assigned privileges, what permissions exist to protect a

resource).

Example 2 In this example, two system attributes are identified that denote ex-

ecution of the authorisation infrastructure: rate of attribute releases (of any kind)

from the identity service lgzIS, and rate of successful read requests per interval

to empDB. For typical execution of the identity service lgzIS, there is a constant

throughput of one attribute release per minute. For typical execution of the au-

thorisation service as, there is a constant throughput of three successful access

decisions to empDB.

• A = 〈lgzIS .sub attr release rate, as .empDB read rate〉

• B = 〈constant function, constant function〉

• VA = 〈1, 3〉

• VB = 〈θlgzIS (t) = 1/min, θas(t) = 3/min〉

Example 3 In this example, two system attributes are identified that denote au-

thorisation assets. Authorisation assets govern the outcome of execution within

system components, such as whether an access request is granted by an authori-

sation service. For example, the authorisation policy in the authorisation service

as is identified as AP1. These are composite attributes, whereby AP1 is a tuple of

vector attributes.

• A = 〈as .policy , lgzIS .emp0003.permisRole, lgzIS .emp0999.permisRole〉
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• B = 〈constant function, constant function, constant function〉

• VA = 〈AP1, SysAnalyst , Staff 〉

• VB = 〈θas.policy(t) = AP1, θas(emp0003.permisRole) = SysAnalyst ,

θas(emp0999.permisRole) = Staff 〉

Environment State

The environment state Envstate , defined in terms of a state condition, captures

operational conditions of external systems and users that interact with the autho-

risation infrastructure (Chapter 3, Figure 3.1). This includes conditions, such as

the rate of access requests by subjects, or number of active sessions in resources.

Building a perception of Envstate is essential to identifying states that exhibit

malicious behaviour (e.g., subjects exhibiting excessive deviation from normal ac-

tivity).

Example 4 In this example, three environment attributes are identified that de-

note operational conditions: (i) the number of active sessions in empDB, (ii) the

rate of authentication requests made by all subjects against the identity service

lgzIS, and (iii) the rate of access requests to access the resource empDB to autho-

risation service as. The values associated with these operational conditions are,

respectively, five active sessions, a throughput of one authentication requests per

minute, and a throughput of three access requests per minute.

• A = 〈empDB .active sessions , lgzIS .sub authentications req rate,

as .empDB read req rate〉

• B = 〈constant function, constant function, constant function〉

• VA = 〈5, 1, 3〉

• VB = 〈θempDB(t) = 5, θlgzIS (t) = 1/min, θas(t) = 3/min〉

5.3.3 Operational Profiles

An authorisation infrastructure can be considered to be in one of two types of

states, a conventional operational state, or non-conventional operational state [24].

In the context of this work, a conventional operational state refers to a state where

there is no ongoing abuse of access rights. A non-conventional operational state

refers to a state where there is ongoing abuse of access rights.
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Definition 21 (Conventional Operational Profile [24]) The conventional

operational profile (COP) of a system is the region of the state space S = [Rn ]X

where no anomalies related to malicious behaviour hold:

COP = {s ∈ S | ∀α ∈ AB , s 2 α}

AB is the set of all possible abuse of access that a system state can experience,

and S is the region of state space that does not hold any cases of abuse.

Example 5 A conventional operational profile is described as a set of states that

does not contain any known patterns of abuse of access (i.e., violations).

COP = {s ∈ S | s |= ¬(empDBViolation)}

A violation describes a predicate, that if true, denotes malicious behaviour

within the environment state.

Definition 22 (Non-conventional Operational Profile [24]) A non con-

ventional operational profile (NCOP) associated with malicious behaviour, is the

region of the state space S = [Rn ]X where the state holds at least one case of abuse

α:

NCOP = {s ∈ S | ∃α ∈ AB , s |= α}.

Example 6 A non-conventional operational profile is described as a set of states

that contain one or more occurrences of malicious behaviours. In this case, a

violation (empDBViolation) denotes a specific violation in access to the empDB.

NCOPempDBViolation = {s ∈ S | s |= empDBViolation}

The violation empDBViolation is focused on determining if any particular sub-

ject is requesting access to the empDB resource in a rapid manner. A subject that

requests access to empDB at a rate (subAccessReqRateempDB) greater than a max-

imum prescribed rate (maxSubAccessReqRateempDB) is considered to be malicious.

empDBViolation = subAccessReqRateempDB > maxSubAccessReqRateempDB

5.3.4 Change Types and Changes

This section describes the relevant change types applicable to an authorisation

infrastructures, followed by example instantiations of change types, referred to as

changes.
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Change Types

Change types affect either identity services or authorisation services, which are

characterised as part of an authorisation infrastructure, or its environment, con-

sisting mainly of protected resources. Change types are defined as a vector of

‘attributes’ that describe a change and the dynamics of a change.

Note that the domain of authorisation infrastructures refer to ‘attributes’ as

a piece of information that expresses something about the subject or the current

conditions within an accessed resource. This is not to be confused with attributes

of a formal model of change (i.e., changeload). However, authorisation attributes

can exist as vector attributes within such a formal model.

Definition 23 (Change Type [24]) “A change type, given a set of architec-

tural types T , is defined as a tuple (src,A,B) that characterises a change, where:

• src ∈ T identifies the source of the change;

• A = 〈a1, . . . , ak〉 is a vector of attributes that hold information about the

specific properties (variables) associated with the change type;

• B = 〈b1, . . . , bk〉 describes the dynamics of the attributes in A (how they

evolve over time, e.g., through a polynomial, exponential, or step function).”

In application to authorisation infrastructures, a change type describes an

observable event within identity services, authorisation services, or protected re-

sources. Essentially, the observation of such change will have a consequence on

properties contained within the system and environment model.

Definition 24 (Environment Change Model [24]) “An environment change

model CMenv is a set of change types applicable to the environment properties

(Γenv) of a system family with some degree of commonality ( e.g, common subset

of architectural types).”

Example 7 In the following, several examples of low level environment change

types are exemplified, depicting the process of a subject requesting access to a

resource. The instantiation of these change types will have a consequence on one

or more environment properties.

(i) Authentication request type captures (within an identity service) the
identity service receiving a request for authentication of a user.
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auth request type = 〈identity service,

〈authRequest(username, password)〉,
〈event〉〉

(ii) Attribute release request type captures a request received by the identity
service made by a service provider for a subject’s identity attributes.

attr release request type = 〈identity service,

〈attrRequest(identity ,

〈iAttribute type1, ..., iAttribute typen〉, target)〉,
〈event〉〉

identity = 〈identity type, identity value〉

It describes the request of a service provider (target) for a set of identity

attributes (iAttribute type) that have been issued to a subject (identity). The

set of attributes requested can be a null set, therefore requesting all releasable

attribute types for the subject identity. Note that an identity is referred to

by a type of identifier and a value. For example, identity type may be an

LDAP distinguished name.

(iii) Credential validation request type is the receipt of a credential valida-
tion request within an authorisation service.

cred validation request type =

〈auth service,

〈valRequest(identity , issuer , 〈iCondition1, ..., iConditionn〉,
〈iAttribute1, ..., iAttributen〉)〉,

〈event〉〉

It contains attributes issued by a given identity provider (issuer) for a re-

questing subject, detailing a request to validate a subject’s attributes. A set of

conditions specified by the issuer can also be contained, whereby a condition

refers to a type / value tuple, such as a single use declaration, or validity

time. A credential validation request can either push the subject’s known

attributes, or (given a null set) require the authorisation service to pull the

subject’s known attributes from the subject’s identity provider. In the latter

case, the authorisation service invokes an attribute release request.

(iv) Access request type is the request, received by an authorisation service,
and made by a resource on behalf of a subject.
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access request type = 〈auth service,

〈accessRequest(〈iAttribute1, ..., iAttributen〉, resource,

action, 〈rAttribute1, ..., rAttributen〉, identity)〉,
〈event〉〉

iAttribute = 〈iAttribute type, iAttribute value〉
rAttribute = 〈rAttribute type, rAttribute value〉

The request contains 1) the subject’s identity attributes (iAttribute), 2)

the resource and action to be carried out by the subject, 3) a set of re-

source environment attributes (rAttribute) provided by the resource (e.g.,

〈timeOfDay type, 11am〉), and 4) the requesting subject’s identity.

(v) Resource action step type models an action that has occurred within any
protected resource. The type is generic as resources are generally unique to
the organisation and their purpose, unlike with an authorisation service type
that exists to fulfil access control requirements.

resource action step type = 〈resource,

〈rAttribute〉,
〈step function〉〉

The type identifies an attribute modification by means of a step function.

The attribute modified (rAttribute) is a tuple of type / value, and can rep-

resent anything modelled within the resource type, be it generic or specific.

For example, this type could be instantiated to increase the total amount of

bandwidth consumed by a subject, within a given session.

Definition 25 (System Change Model [24]) “A system change model CMsys

is a set of change types applicable to the system properties (Γsys) of a family of sys-

tems that share some degree of commonality (e.g., common subset of architectural

types).”

Example 8 In the following, several examples of system change types are de-

scribed, conveying the system’s response to a subject requesting access.

(i) Authentication decision type captures the consequence (within an iden-
tity service) of an authentication request being responded to.

auth decision type = 〈identity service,

〈authDecision(auth request)〉,
〈event〉〉
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(ii) Attribute release type is the consequence of an attribute release request,
within an identity service.

attr release type = 〈identity service,

〈attrRelease(attr release request)〉,
〈event〉〉

attrRelease(attr release request) = 〈issuer , identity ,

〈iCondition1, ..., iConditionn〉
〈iAttribute1, ..., iAttributen〉〉

It details the releasable identity attributes (iAttribute) as a tuple stating the

type of identity attribute and its value. Identity attributes are released along

with the issuer of the attributes (i.e., an ID of the identity provider or in-

dividual whom assigned these attributes), the identity of the subject (i.e., a

persistent ID), and a set of conditions. Conditions are a type value tuple,

detailing the use of the released attributes. For example, a condition may

assert the released attributes may only be used once, or can only be used in

a given time frame.

(iii) Credential validation type is the consequence of a credential validation
request, within an authorisation service.

cred validation type = 〈auth service,

〈valCredentials(cred validation request)〉,
〈event〉〉

valCredentials(cred validation request) =

〈viAttribute1, ..., viAttributen〉

It returns valid attributes (viAttribute) for a subject if the provided iAt-

tributes conform to the authorisation service’s credential validation policy.

These are effectively the same as identity attributes, however, they are re-

ferred to as valid because an authorisation service has checked that the iden-

tity service is trusted to issue them.

(iv) Access decision type is the consequence of an access request, providing a
decision based on the attributes within an access request, and an authorisa-
tion service’s access control policy.

access decision type = 〈auth service, 〈accessDecision(access request)〉,
〈event〉〉

accessDecision(access request) = decision
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Changes

A change is an instantiation of a change type. Once enacted, the perception of

state (either system or environment) has changed.

Definition 26 (Change [24]) “Given a set of change types CT defined for a

set of architecture types T , and an architecture model A = (T ,G,Γ), a change is

a tuple (ct , srcinst ,VA,VB , ti , d) that corresponds to an instantiation of a change

type, where:

• ct = (src,A,B) ∈ CT determines the change type to be instanced as a

change;

• srcinst ∈ N , such that G = (N , E), where Λ(srcinst) = src, is the instance

of the source of change (i.e., where it actually occurs);

• VA = 〈vA1, . . . , vAk〉 is a vector of attribute values instantiating the attributes

in A;

• VB = 〈vB1, . . . , vBk〉 is a vector of behavior instances of the elements in B

(i.e., a behavior instance vBi , i ∈ {1, . . . , k} is a function of type bi ∈ B,

describing the evolution over time of the attribute vAi ∈ VA);

• ti ∈ R+
0 determines the time instant in which the change instance is trig-

gered;

• d ∈ R+
0 is the duration associated with the change.”

A set of exemplified changes are described in Appendix B.1. These changes

demonstrate the instantiation of change types for both environment and system

change, detailing the progression of a subject authenticating, requesting, and gain-

ing access to a resource.

5.3.5 Scenarios and Changeload

A scenario encompasses a set of changes over time, in light of a set of system

goals, and a given state. It is used to formally describe malicious behaviour over

time, such as a progression of violations.

Definition 27 (Scenario [24]) A scenario is a tuple (Sysstate ,Envstate ,G ,C ),

where:
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• Sysstate is a state condition that represents the state of the system (e.g.,

workload, which is the amount and type of work assigned to the system);

• Envstate is a state condition that represents the state of the environment of

the system (e.g., operational conditions of software and hardware resources

needed for the system to perform its service, and operations that is beyond

the scope of control);

• G is a set of system goals;

• C is a set of changes applied to the state determined by conditions within

the system and environment.

Key to a scenario is the definition of goals that should be fulfilled as the system

undergoes change. In relation to detecting and mitigating malicious behaviour, a

goal may refer to an error margin in detecting attacks, maximum response time

to resolving attacks, and impact of attacks before required policy changes. In

addition, is the distinction between a base scenario and a change scenario:

Definition 28 (Base Scenario [24]) A base scenario is a tuple

(Sys t
state ,Env t

state ,Gf , ∅), where:

• Sys t
state is a state condition that represents a typical state of the system;

• Env t
state is a state condition that represents the typical environmental state

of the system;

• Gf is a set of fixed system goals.

Base scenarios enable the definition of a state that conforms to a system’s

conventional operational profile. It is assumed that a base scenario defines a state

where no known malicious behaviour is present. Such an assumption requires that

only malicious behaviour intended to be stimulated against the base scenario can

be evaluated, as it is not possible to rule out the existence of unknown malicious

behaviour.

There can be numerous valid base scenarios to the LGZLogistics case study.

For example, a base scenario could describe the typical workload during a normal

business day within LGZLogistics. This includes a typical definition of criteria

and assignment of access. Alternatively, it could represent the initial deployment

of its authorisation infrastructure (i.e., no workload).
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Example 9 A base scenario for the LGZLogistics case study portrays the autho-

risation infrastructure and its expected system properties, and environment prop-

erties, for a typical work day. For simplicity, only the system and environment

properties relating to subject access are described. DailyAccess captures a base

scenario of a typical system state relating to access decisions, and a typical envi-

ronment state relating to access requests.

DailyAccessBaseScenario = (SysAccess t
state ,EnvReqs t

state ,Gf , ∅)

Each element of the base scenario tuple is expressed below. The system state

combines properties that indicate the runtime parameters of services (e.g., autho-

risation policies), as well as system workload properties (e.g., rate of permitted

access for a given subject). Both the system and environment states are defined in

conformance to LGZLogistic’s access control model (Section 5.2.2), and its defi-

nition of typical behaviour (Section 5.2.3).

SysAccess t
state =

〈〈as .policy , lgzIS .emp0003.attr , conIS .con0003.attr ,

as .emp0003.empDB .read , as .con0003.empDB .read〉,
〈constant function, constant function, constant function,

constant function, constant function〉,
〈AP1, {Staff , SysAnalyst}, {Contractor}, 0.6, 1.25〉,
〈θas.policy(t) = AP1, θas(emp0003.permisRole) = {Staff , SysAnalyst},

θas(con0003.permisRole) = {Contractor}, θas(t) = 0.6/min,

θas(t) = 1.25/min〉
〉

SysAccess t
state defines the state of access control, including policies and attribute

assignments. For example, subject emp0003 from identity service lgzIS, is assigned

attributes 〈permisRole, {Staff , SysAnalyst}〉. AP1 denotes a PERMIS authorisa-

tion policy that implements the valid attribute assignment rules in Figure 5.3, and

attribute permission assignments in Figure 5.2. Note, the system state defined is

not exhaustive, rather it focuses only on: system properties that define the current

state of access; provides an example of attribute assignment to a subject from each

identity provider; and an example rate of permitted access to the empDB resource.

EnvReqs t
state =

〈〈as .SysAdmin.empDB .Read , as .SysAdmin.empDB .Modify ,
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as .SysAdmin.empDB .Create, as .SysAdmin.empDB .Delete,

as .SysAnalyst .empDB .Read , as .SysAnalyst .empDB .Modify ,

as .ContractorSupervisor .empDB .Read ,

as .ContractorSupervisor .empDB .Modify ,

as .Contractor .empDB .Read , as .Staff .logisticsTool .Access〉,
〈constant function, constant function, constant function

constant function, constant function, constant function

constant function, constant function, constant function

contstant function〉,
〈0.8, 0.4, 0.2, 0.2, 4.8, 1.6, 6.7, 6.7, 3.8, 20.0〉,
〈θas(t) = 0.8/min, θas(t) = 0.4/min, θas(t) = 0.2/min, θas(t) = 0.2/min,

θas(t) = 4.8/min, θas(t) = 1.6/min, θas(t) = 6.7/min,

θas(t) = 6.7/min, θas(t) = 3.8/min, θas(t) = 20.0/min〉
〉

EnvReqs t
state defines the state of the environment with regards to subjects re-

questing access. The environment properties identified in the state condition refer

to collective behaviour per attribute per permission. For example, for subjects re-

questing access to ‘read’ empDB, with attribute 〈permisRole, SysAdmin〉, a rate of

0.8 requests per minute is observed. As there are two subjects with this attribute

(Figure 5.2), it is assumed that each subject has an average rate of 0.4 requests

per minute (i.e., one request every 150 seconds).

The fixed goals (Gf ) define the conditions that must be maintained within the

authorisation infrastructure, regardless of change. Ultimately, a goal requires a

system to be brought out of a non-conventional operational state (once identified).

However, goals also focus on a wider scope of conditions that attempt to ensure

that only necessary adaptations are taken, once in a non-conventional state. The

following describes a set of goals relevant to the LGZLogistics case study:

• Probability of 99% that all instances of known violation types are detected;

• Probability of 90% that violations are mitigated through subject adaptation;

• Probability of 99% that all adaptations performed exhibit a lower cost than

current and unmitigated violations, to the organisation.

Probabilities cited are pseudo values that indicate LGZLogistics requirements for

mitigation. However, an accurate probability can only be achieved through rigor-

ous benchmarking of the scenario in an off-line environment [24]. In any case,
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probabilities defined are specific to the deployment environment, and configuration

of the authorisation infrastructure.

Cámara et al. state that a change scenario represents a set of changes applied

to a base scenario [24]. As such, a change scenario instantiates a set of changes

within the authorisation infrastructure when it is in a particular state. Through

the application of change scenarios, it is expected to bring the authorisation infras-

tructure into an non-conventional state, where the authorisation infrastructure’s

fixed goals can be evaluated.

Definition 29 (Change Scenario [24]) A change scenario is a tuple (Sys t
state ,

Env t
state , Gf , C ). It is defined by a typical condition of the system followed by a

non-empty set of changes.

• Sys t
state is a state condition that represents a typical state of the system;

• Env t
state is a state condition that represents the typical environmental state

of the system;

• Gf is a set of fixed system goals;

• C 6= ∅ is a sequence of changes applied to the state determined by the system

and environment.

Example 10 The following sequence of changes describes subject emp0003 ac-

cessing the empDB resource.

c1 = (access request type, as , 〈request(〈〈permisRole, SysAnalyst〉〉, empDB ,

read , 〈NULL〉, pid = bxu915810faa4910)〉, 〈event〉, 5, 0)

c2 = (access request type, as , 〈request(〈〈permisRole, SysAnalyst〉〉, empDB ,

read , 〈NULL〉, pid = bxu915810faa4910)〉, 〈event〉, 10, 0)

c3 = (access request type, as , 〈request(〈〈permisRole, SysAnalyst〉〉, empDB ,

read , 〈NULL〉, pid = bxu915810faa4910)〉, 〈event〉, 15, 0)

c1 describes a single access request for emp0003, identified by privacy protected

id (PID) bxu915810faa4910, using attribute 〈permisRole, SysAnalyst〉, to access

empDB. Thereafter, at 5 second intervals, new changes are instantiated, whereby

the request for access to empDB is repeated. As a result, the subject affects a

number of environment properties associated to the system, namely, the subject’s

rate of access to empDB.
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The sequence of changes describes a rapid rate of access to the empDB resource

(labelled as CrapidAccess). With the sequence of changes defined, it is applied to the

base scenario with the following notation:

ExpectedToRapidUsageChangeScenario = (SysAccess t
state ,EnvReqs t

state ,Gf ,CrapidAccess)

CrapidAccess = {c1, c2, c3}

Changeload

Definition 30 (Changeload [24]) “A changeload is a set of change scenarios

that demonstrates changes either: valid within a conventional operational profile,

invalid, thus stimulating adaptation, or the result of adaptation.”

Cámara et al. formulated their changeload model primarily to classify sys-

tem and environment change that stimulates adaptation. As such, a malicious

changeload, in the context of authorisation infrastructures, is one that drives

stimulation of adaptation in response to the abuse of access control (i.e., places

a system into a non-conventional operational state). It is considered that both

environment and system stimulation are capable in generating non-conventional

operational states (and are often a by-product of each other), whereby environ-

ment change leads to system change.

5.4 Case Study: Changeload

Before stimulating change in a runtime execution of the LGZLogistics case study,

it is necessary to first identify the violations relevant to the case study, along with

change types, and the scope of change (i.e., what changes are likely to stimulate

adaptation).

5.4.1 Violations

A set of violations are defined as the upper bounds of abnormal behaviour, based

on the normal behaviour described in the LGZLogistics case study. It is assumed

that historical data of subject behaviour (if present), coupled with an expert

approach, is used to define relevant violations. With reference to the Self-Adaptive

Authorisation Framework (SAAF), each violation is defined as a trigger rule (with

an associated cost).
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The following violations detail patterns of access against LGZLogistic’s re-

sources, regarding short term and long term rates of access invoking certain per-

missions. For each violation a maximum rate of access is defined, whereby a short

term rate refers to subject access within a minute interval, and a long term rate

refers to subject access within a 10 minute interval (to simulate a scaled measure

of prolonged change).

For example, violation empDBShortRead and violation empDBLongRead classi-

fies malicious behaviour as any subject successfully requesting access to invoke

the ‘read’ action on empDB, at a greater rate than a max allowable. A constraint

is applied to the violation, whereby this violation only applies to subjects whom

do not have the attribute 〈permisRole, SysAdmin〉.

empDBShortRead =

(subAccessReqRateempDB.read > MaxAccessReqShortRateempDB.read) ∧
(subAttribute <> 〈permisRole, SysAdmin〉)

empDBLongRead =

(subAccessReqRateempDB.read > MaxAccessReqLongRateempDB.read) ∧
(subAttribute <> 〈permisRole, SysAdmin〉)

For violations empDBShortModify and empDBLongModify, malicious behaviour

is classified in terms of any subject successfully requesting access to invoke the

‘modify’ action on empDB, at a greater rate than a max allowable. As with the

aforementioned violations, a constraint is applied meaning the violation is only

applicable to subjects who do not have the attribute 〈permisRole, SysAdmin〉.

empDBShortModify =

(subAccessReqRateempDB.modify > MaxAccessReqShortRateempDB.modify) ∧
(subAttribute <> 〈permisRole, SysAdmin〉)

empDBLongModify =

(subAccessReqRateempDB.modify > MaxAccessReqLongRateempDB.modify) ∧
(subAttribute <> 〈permisRole, SysAdmin〉)

Violation empDBShortDelete classifies malicious behaviour in a subject rapidly

gaining access to delete entries within the emphDB resource.

empDBShortDelete =

(subAccessReqRateempDB.delete > MaxAccessReqShortRateempDB.delete)
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Violation lgTShortAccess classifies malicious behaviour of subjects rapidly

accessing the lgT (logistic tool) resource.

lgTShortAccess = (subAccessReqRatelgT > MaxAccessReqFastRatelgT)

Violation empDBTransaction is slightly different, whereby it classifies a trans-

action of non-conventional change. This type of violation denotes a pattern

whereby a rate of transactional requests are compared against a maximum rate.

The violation requires an environment property that measures the rate of access

requests, by a subject, in performing a read action succeeded by a modify action

against empDB. Basically, it aims to identify subjects who rapidly read and write

to the empDB resource.

empDBTransaction =

(subAccessReqRateempDB.readModifyTransaction >

MaxAccessReqLongRateempDB.readModifyTransaction)

A final violation, albeit by contrast does not capture subject activity directly,

is dueRedundancy. This violation is a consequence of a change made within the

empDB resource, indicating that a subject has been marked for job redundancy.

A subject facing the prospect of redundancy is seen as a potential risk, and as

such, a violation is used to increase the impact a subject has on an organisation.

This is viewed as a motivator for adaptation, as when combined with previously

identified violations, the subject’s activity may now warrant adaptation.

dueRedundancy = (subDueRedundancy == true)

5.4.2 Identifying Change Types and Change

To stimulate violations within the context of the LGZLogistics case study, it is

necessary to identify properties of interest and the change types that will impact

such properties. For this specific case study, only environment properties are

considered. These are properties that concern subject activity that cannot be

directly controlled (e.g., a subject’s rate of access requests).

Environment Properties

For each violation, and for each subject, there exists a set of environment prop-

erties that measure the extent of change in the environment. Many environment
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properties represent composite properties of subject-related changes over time. In

reference to SAAF, these properties are dynamically created as mutable attributes

within SAAF’s behaviour model (Chapter 3, Section 3.4.1), and updated through

the observation of environment change via probes.

For example, empDBShortRead asserts that if a subject’s access rate in request-

ing a read on empDB (who is not a SysAdmin) goes beyond a maximum number

of requests within a minute interval, a violation has occurred. To measure against

this violation, an environment property of as.subject.AcessReqRateempDB.read is

required (e.g., as.emp0003.AccessReqRateempDB.read).

Change Types and Changes

Once environment properties are identified it is necessary to select relevant

change types (and changes) that result in a non-conventional operational state.

For example, a non-conventional operational profile that contains the violation

empDBShortRead is realised through a succession of changes, whereby a single

subject successfully requests access to ‘read’ empDB. The violation occurs when a

subject, e.g., emp0003, has performed a number of Access request change type,

and is permitted by an Access decision change type.

The Access request change type is the result of a number of sequential

changes, such as the subject first authenticating with their identity provider, re-

questing a release of attributes as credentials, and validation of attributes. In this

instance, these changes need to be realised before a subject performs an Access

request change type.

All but one violation described for the LGZLogistics case study is trig-

gered by an Access request change type. The violation dueRedundancy is

triggered by a Resource action step change, whereby an environment prop-

erty for a given subject indicates a subject is due for job redundancy (e.g.,

empDB.emp0003.isSetForRedundancy).

5.4.3 Malicious Changeload

Using the LGZLogistics malicious behaviour scenario, the following set of change

scenarios are defined. Together they represent the malicious changeload for

the case study. There are seven change scenarios defined within the malicious

changeload, representative of the case study’s malicious behaviour scenario. Each
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change scenario is applicable to the base scenario defined in Section 5.3.5 (Exam-

ple 9).

The first change scenario (setSubjectRedundanciesChangeScenario) considers a set

of resource changes relevant to empDB, where changes identify four system ana-

lysts are to be made redundant (dueRedundancy).

setSubjectRedundanciesChangeScenario =

(SysAccess t
state ,EnvReqs t

state ,Gf ,CsetRedundancies)

CsetRedundancies = {
c1 = (resource action step type, empDB , 〈emp0003.Redundancy〉,

〈emp0003.Redundancy = true〉, 0, 0)

c2 = (resource action step type, empDB , 〈emp0004.Redundancy〉,
〈emp0004.Redundancy = true〉, 0, 0)

c3 = (resource action step type, empDB , 〈emp0005.Redundancy〉,
〈emp0005.Redundancy = true〉, 0, 0)

c4 = (resource action step type, empDB , 〈emp0006.Redundancy〉,
〈emp0006.Redundancy = true〉, 0, 0)}

The second scenario (emp0003ReadModifyChangeScenario) describes a malicious

change scenario resulting in violations empDBLongReadModify, empDBLongRead,

and empDBLongModify, whereby subject emp0003 persistently reads and modifies

records in the empDB resource, every four seconds. The function δ is defined

in order to calculate the time at which a change is executed within the change

scenario. For the following change scenario, δ is defined as δ(n) = 1
2
(4n− (−1)n +

1), where n refers to the nth change in the change scenario.

emp0003ReadModifyChangeScenario =

(SysAccess t
state ,EnvReqs t

state ,Gf ,CmaliciousTransactions)

CmaliciousTransactions = {
c1 = (access request type, as , 〈request(〈〈permisRole, SysAnalyst〉〉, empDB ,

read , 〈NULL〉, pid = emp0003)〉, 〈event〉, 3, 0)

c2 = (access request type, as , 〈request(〈〈permisRole, SysAnalyst〉〉, empDB ,

modify , 〈NULL〉, pid = emp0003)〉, 〈event〉, 4, 0)

. . .

cn = (access request type, as , 〈request(〈〈permisRole, SysAnalyst〉〉, empDB ,

read , 〈NULL〉, pid = emp0003)〉, 〈event〉, δ(n), 0)

cn+1 = (access request type, as , 〈request(〈〈permisRole, SysAnalyst〉〉,
empDB ,modify , 〈NULL〉, pid = emp0003)〉, 〈event〉, δ(n), 0)}
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The third scenario (con0002FastReadChangeScenario) describes a malicious change

scenario by subject con0002, resulting in violations empDBShortRead and

empDBLongRead. In the scenario, a contractor supervisor persistently accesses

the empDB resource at a rate of 2 seconds, in order to obtain employee data. The

scenario begins 150 seconds relative to the start of malicious changeload. The

function δ denotes the progression in time (seconds) between changes, defined as

δ(n) = 2n.

con0002FastReadChangeScenario =

(SysAccess t
state ,EnvReqs t

state ,Gf ,Ccon0002FastRead)

Ccon0003FastRead = {
c1 = (access request type, as , 〈request(〈〈permisRole,ContractorSupervisor〉〉,

empDB , read , 〈NULL〉, pid = emp0003)〉, 〈event〉, 150, 0)

. . .

cn = (access request type, as , 〈request(〈〈permisRole,ContractorSupervisor〉〉,
empDB ,modify , 〈NULL〉, pid = emp0003)〉, 〈event〉, δ(n), 0)}

For contractors con0003, con0004, and con0005, similar change scenarios exist

based on con0002FastReadChangeScenario . However, the scenarios are introduced in

stages of 30 second intervals (i.e., con0003 begins at 3 minutes from the start of the

malicious changeload, con0004 begins at 3.5minutes, etc.). The rate of changes

is defined as δ(n) = 2.5n, where subjects utilise their 〈permisRole,Contractor〉
attribute, in accessing empDB.

Lastly, emp0003FastAccessChangeScenario describes a further malicious change

scenario by emp0003, resulting in violation lgTShortAccess. In this scenario,

emp0003 persistently requests access every 370ms and gains access to lgT resource

(logisticsTool resource), to disrupt the performance of the resource. The scenario

begins 900 seconds relative to the start of malicious changeload. δ denotes a

function whereby progression in time (seconds) is defined as δ(n) = 0.37n.

emp0003FastAccessChangeScenario =

(SysAccess t
state ,EnvReqs t

state ,Gf ,Cemp0003FastAccess)

Cemp0003FastAccess = {
c1 = (access request type, as , 〈request(〈〈permisRole, Staff 〉〉, lgT ,

read , 〈NULL〉, pid = emp0003)〉, 〈event〉, 900, 0)

. . .

cn = (access request type, as , 〈request(〈〈permisRole, SysAnalyst〉〉, lgT ,

read , 〈NULL〉, pid = emp0003)〉, 〈event〉, δ(n), 0)}
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This malicious changeload (consisting of the seven change scenarios) concisely

describes the LGZLogistics malicious behaviour scenario. It is the intention that

the changeload can be repeated under various operational conditions, and also

used to compare future approaches to self-adaptive authorisation. As such, it

can be exploited to execute simulation of changes within an authorisation infras-

tructure, in order to evaluate the impact of violations, and trigger self-adaptive

responses. However, one limitation is that no parser currently exists to execute

a defined changeload. Therefore, a changeload can only be viewed as a model

of change, which must be manually transformed into an executable script (e.g.,

Jmeter simulation scripts).

5.5 Experiments

The LGZLogistics case study is simulated within a live self-adaptive authorisa-

tion infrastructure. This self-adaptive authorisation infrastructure is instanti-

ated across across four individual machines. Two machines running DebianLin-

uxv6.0.5 (512MB of memory) are deployed hosting an LDAP directory and an

installation of SimpleSAMLphp (v1.9.2) [131]. These are configured to operate

as the lgzIS and conIS identity services, respectively. A single machine running

UbuntuLinuxv10.10 (2048MB of memory) is deployed hosting an installation

of the PERMIS standalone service (v.0.3.2), instantiating authorisation service as,

and a prototype of the SAAF controller. Lastly, a single ‘client’ machine running

Windows7 (2048MB) is deployed to simulate activity between subjects accessing

a resource, and communicating with services of the authorisation infrastructure.

The rest of this section details a brief overview of the deployment of the pro-

totype of the SAAF controller, a description of how the malicious changeload

is simulated within the environment, the execution of experiments, and lastly, a

summary of results.

5.5.1 Deploying the SAAF Controller

In contrast to the centralised authorisation infrastructure conveyed in Chapter 4,

in the LGZLogistics case study, SAAF is deployed within a federated authorisation

infrastructure. The configuration of these two infrastructures differs greatly, where

additional services in the federated infrastructure are deployed to facilitate access

(and adaptation).
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Figure 5.5 portrays LGZLogistic’s federated authorisation infrastructure,

based on the architectural model described in Figure 5.1. Here, the infrastructure

is distributed across multiple management domains (identity provider and service

provider domains). LGZLogistics operates a service provider domain (to handle

authorisation and provision access to resources), and their own identity provider

domain (to handle identity management of their own employees). In addition, the

contractor organisation is said to operate their own identity provider domain (to

handle identity management of their own employees).

Figure 5.5: Self-adaptive federated authorisation infrastructure

SimpleSAMLphp [131] is used as the enabling technology to facilitate com-

munication between these management domains. It provides a layer of control

over ‘what’ information can be released or requested (in regards to subjects), and

how subjects can be authenticated. Deployments of SimpleSAMLphp are capable

of exchanging information via signed or unsigned SAML assertions [99], such as

messages containing a set of subject attributes and the subject’s unique identifier.

A SAAF prototype controller is deployed within LGZLogistics service provider

domain, whereby it is expected to manage authorisation assets across both man-

agement domains. However, self-adaptation over multiple management domains

is a challenging and non-trivial problem. Identity providers often do not release
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uniquely identifiable personal information to service providers, and use transient

(TID) or persistent (PID) IDs to allow service providers to identify subjects. In

addition, identity providers may not be as forthcoming to accepting adaptations

from an organisation outside of their management domain, meaning the SAAF

controller can only ‘request’ adaptation.

A solution to enabling adaptation across multiple management domains is the

deployment of an effector managed by the identity provider domain [7] (see Ap-

pendix B.2). Here an effector can map a service provider’s view of a subject (i.e.,

from a subject TID / PID to subject LDAP entry), and govern which adaptations

to perform. Instantiations of this effector are deployed on each of the identity

services (subject adaptation), as well as an effector capable of deploying and acti-

vating policies within the PERMIS authorisation service (policy adaptation).

A resource probe is deployed on the empDB resource to observe changes to

the state of an employee’s job redundancy property (resource change). In addi-

tion, a probe is deployed on the PERMIS authorisation service to detect access

change and policy change. A probe is not deployed on the contractor’s identity

service (conIS) simulating a limitation in federated authorisation infrastructures,

where third party organisations may prevent immediate access to their subject’s

attributes (subject change). This limits the SAAF prototype’s view of the state

of access, whereby the SAAF prototype must infer its perception of subjects from

the observation of access requests (via the authorisation service as).

The SAAF controller is configured (Appendix B.3.1) to detect and mitigate

the set of violations described in Section 5.4.1. Here, a solution policy exists

containing a set of solutions applicable to mitigating instances of these violations.

Each solution contains a weighting of cost to the deploying organisation (e.g., the

cost in removing subject access, or removing the trust in an identity provider).

A minimum subject impact weighting, on a scale of 0 to 1, is also defined, which

is used to constrain a subset of solutions relevant to resolving differing scales

of malicious subject behaviour. These weightings are used as part of solution

analysis and solution selection, as described in Chapter 4. The following solutions

are configured for this deployment:

• S0: noAdaptation default solution for when all other solutions cause greater impact

over an observed behaviour

• S1: removeSubjectAttribute removal of an individual abused attribute from a subject

(i.e., the cause of a violation)

• S2: removeAllSubjectAttributes removal of all attributes from a subject, typical for
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when subjects are persistently abusing access

• S3: removeAttributeAssignment removal of trust in an identity provider in issuing

valid attributes (policy change)

• S4: removeAllAttributeAssignments removal of all trust in an identity provider in

issuing valid attributes (policy change)

• S5: deactivatePolicy removal of all access to all of LGZLogistic’s resources

A limitation in this deployment is the inability to use the integrated rbacDSML

tool, preventing solution verification from taking place. This is due to the deploy-

ment operating within a federated environment that conforms to ABAC, which

rbacDSML is unable to accommodate for. It was decided that evaluating SAAF

within a federated environment provided greater contributions as opposed to en-

hancing rbacDSML to operate within a federated ABAC environment. For exam-

ple, focusing on self-adaptation in federated deployments enables the evaluation

of adaptation when faced with non-cooperating management domains. As a con-

sequence, a SAAF constraints model is not defined, meaning all solutions are

assumed to result in acceptable changes to the implemented access control model.

5.5.2 Executing LGZLogistics Changeload

The execution of the LGZLogistics malicious changeload (Section 5.4.3) is achieved

through enacting environment change via a number of protocols:

1. LDAP binds [76], for the authentication of subjects within identity providers.

2. SAML assertions [99], for the requesting and deliverance of released at-

tributes as signed credentials (to and from identity provider services).

3. SOAP messages [21], for credential validation requests, credential valida-

tion responses, access requests, and access decisions (to and from protected

resources and authorisation services).

An installation of the Jmeter testing (v.2.11) tool [3] (deployed on the Windows

‘client’ machine) automates each of the change types applicable to an authorisation

infrastructure, using the aforementioned protocols. Here, subjects are simulated

in authenticating, requesting, and obtaining access to protected resources.

Using the experimentation profile proposed by Cámara et al. [24], the malicious

changeload is executed across multiple runs as part of four experiments. The

four experiments are designed to evaluate the SAAF prototype. Exp1 and Exp2
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evaluate the prototype in mitigating the malicious changeload under normal and

high loads, respectively. Exp3 and Exp4 also evaluate under normal and high

loads, respectively, but simulate limited control due to the deactivation of the

contractor’s identity provider effector.

Figure 5.6: Executing changeload experimentation profile [24]

Each experiment is executed six times (referred to as ‘runs’), where each run

follows the set of stages stated in Figure 5.6. A run adheres to a steady state

time (realisation of the base scenario, described in Example 9), environment stim-

ulation (the execution of the malicious changeload), time to react (detection of

malicious behaviour and decision to act), time to adapt (time it takes to per-

form adaptations), a keep time (to observe system recovery post adaptation), and

check time (post analysis of each run). At the end of each run the system and

environment states are reset before performing the next run.

Steady state time is maintained for a period of 30 minutes in order to en-

sure the controller and authorisation infrastructure is evaluated in a warmed up

state. During this time, the baseline scenario is simulated within the authorisation

infrastructure. After 30 minutes, the malicious changeload scenario is initiated

(environment stimulation). From this period on there is a set of staggered vi-

olations in which several periods of ‘time to react’ and ‘time to adapt’ overlap

environment stimulation. This is necessary in order to evaluate the prototype’s
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ability to detect and mitigate multiple attacks that have been conducted collabo-

ratively. Post adaptation is referred to as keep time, where the baseline scenario

resumes and no further adaptation takes place. Lastly, keep time remains the

same for each run within an experiment.

5.5.3 Experiments Execution

The first two experiments, Exp1 and Exp2, demonstrate adaptation under increas-

ing loads on the controller (in terms of processing environment change). The last

two experiments, Exp3 and Exp4, duplicate the same normal and high loads on the

controller, yet simulates a scenario where the contractor identity provider effector

has failed, or has purposely been deactivated to prevent adaptation.

Baseline execution

Baseline runs identify the impact of the malicious changeload whereby no adapta-

tion takes place. During these runs, the prototype controller is active, yet limited

to only detecting the number and types of violations that have occurred.

Figure 5.7: Baseline (i) normal load, (ii) high load

Figure 5.7 (i) and (ii) describe the rate of access of key subjects within

the LGZLogistics authorisation infrastructure (taken at minute intervals). Note

that ‘all.Staff’ indicates an aggregate rate for all subjects with attribute

〈permisRole, staff 〉, whereas, all others represent the access requests of an in-

dividual. Figure 5.7 (i) depicts execution of malicious changeload under normal

load, simulated as the continuation of the base scenario throughout environment

stimulation. Figure 5.7 (ii) depicts execution of malicious changeload under high
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load, simulated as an increase to the base scenario’s ‘staff’ rate of access, from

20req/min to 600req/min.

The normal load baseline (i) is representative of a baseline run for Exp1 and

Exp3, whereas the high load baseline (ii) is representative of the baseline run for

Exp2 and Exp4. This is because each pair of experiments undergo the same steady

state and malicious changeload scenarios for their corresponding runs.

Comparing the baseline runs portrayed minimal difference in violations ob-

served. Point A indicates the start of the malicious changeload (1800 seconds into

the run), where the setSubjectRedundancies change scenario is executed, send-

ing the controller several resource change events. It also indicates the start of

emp0003ReadModify change scenario, at point B, where a system analyst begins

to persistently read and modify records in empDB at a rate of 15req/min. At

point C a contractor supervisor (con0002FastRead) begins to persistently read

the empDB resource at a rate of 33req/min. This is followed by D, where three

contractors also begin malicious behaviour, exhibiting a slightly lower request rate

of 24req/min. Lastly, at point E, emp0003FastAccess change scenario is stimu-

lated, representing a system analyst attempting to disrupt the performance of

resource lgT, accessing at a rate of 160req/min.

The only exception between the two baselines is indicated at point F (high load

baseline). As a result of the client machine being pushed to its limits (overloaded

by emp0003FastAccess), a slowdown in load occurred after 3000 seconds into the

run. Whilst this presented an anomaly to the baseline, adaptation runs were not

impacted, as shown in Figures 5.8 and 5.9 (due to adaptation occurring before a

slowdown could occur on the adaptation runs).

Regarding the detection of malicious behaviour, the controller detected 275

violations in normal load (i), and 260 violations in high load (ii). These

were confined to six types of violations: dueRedundancy, empDBTransaction,

empDBShortRead, empLongRead, lgTShortAccess, empLongModify. The high

load baseline had fewer detections due to the slowdown of client requests at 3000

seconds into the run.

Exp: 1 & 2, Normal and High Loads

Experiments Exp1 and Exp2 undergo the same malicious changeload, albeit against

a normal and high load, respectively. These are discussed in the context of the

Figure 5.8 and Table 5.1 (adaptation under normal load). The table of results

for adaptation under high load can be viewed in Appendix B.3.3 (Table B.5). In
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addition, a break down of solution selection is described in Appendix B.3.2.

Figure 5.8: (i) Exp1 normal load, (ii) Exp2 high load

Step Subject Impact Violation Identified Selected RTime ATime Result
Solutions Solutions (Avg, Std) (Avg, Std)

1 emp03 0.07 dueRedundancy S0 S0 4.6, 0.5 N/A N/A
2 emp04 0.07 dueRedundancy S0 S0 2, 0 N/A N/A
3 emp05 0.07 dueRedundancy S0 S0 2, 0 N/A N/A
4 emp06 0.07 dueRedundancy S0 S0 1.8, 0.4 N/A N/A
5 emp03 0.4 empDBTransaction S1 S1 291.6, 59.6 182.2, 48.6 1
6 con02 0.07 empShortRead S0 S0 1.4, 0.5 N/A N/A
7 con02 0.27 empShortRead S1 S1 186.6, 77.5 153.4, 22 1
8 con03 0.07 empShortRead S0 S0 2.4, 1.1 N/A N/A
9 con04 0.07 empShortRead S0 S0 1.6, 0.5 N/A N/A
10 con03 0.27 empShortRead S1 S1 94.8, 33.8 165.2, 63.2 1
11 con05 0.07 empShortRead S0 S0 4.6, 2.8 N/A N/A
12 con04 0.27 empShortRead S1 S1 139.8, 23.1 146.2, 38.9 1
13 con05 0.27 empShortRead S1 S1 70.2, 9.7 120.4, 27.7 1
14 emp03 0.8 lgTShortAccess S2,S3,S4,S5 S2 297.8, 35.8 189.4, 63.8 1

Table 5.1: Exp1: Adaptation with normal load (time in milliseconds)

Both experiments resulted in the consistent identification and selection of so-

lutions to violations, where 14 attack steps were identified and responded to.

Table 5.1 details these attack steps, where each step describes:

• A malicious subject who has carried out a violation;

• The calculated impact of the subject to the organisation;

• The violation observed;

• A set of identified solutions in which to mitigate the violation;

• The selected solution used to mitigate the violation;

• The response time (RTime) in which to select the solution;
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• The time to carry out an adaptation ATime ;

• The result as to whether a solution was successful (1), failed (0), or not

applicable (i.e., no adaptation performed).

Reviewing Table 5.1, steps 1 to 4 identify a resource change event (at point

A), which triggered the violation dueRedundancy. For each subject, an impact

level was calculated based on past behaviour observed. The controller calculated

a low impact for these subjects (0.07), as none of these subjects have any previous

violations. However, the result of this means that the controller is less tolerable

to future violations.

Step five portrays the controller’s first adaptation in response to subject

emp0003 triggering a second violation (empDBTransaction at point B). As a

result, the subject’s impact level was recalculated from 0.07 to 0.4. Solu-

tion S1 was identified (as being within scope of the subject’s level of impact),

and realised in the form of an adapted ABAC model (whereby the subject’s

〈permisRole, SysAnalyst〉 attribute is removed). The adapted ABAC model was

then assessed by the controller’s planning stage, ensuring the identified solution

does not cause a greater cost to the organisation over observed violations. As the

solution only impacts the malicious subject, and no other solution is applicable

to the impact of the subject, solution S1 is selected. Solution S1 is enacted as a

SOAP message [7] sent to the subject’s relevant identity provider (lgzIS) effector.

The effector accepts the request and removes emp0003’s SysAnalyst attribute.

The consequence of this adaptation is that emp0003 is no longer able to gain

future access to empDB, as the employee lacks the necessary access rights.

In steps 6 to 13, the contractor supervisor (con0002 ) and three other

contractors are detected at points C and D respectively, triggering violation

empDBShortRead. Detection results in a similar process to that of the first attack

by emp0003 (step 5), where each subject’s impact is recalculated and appropriate

solutions are identified and enacted. Eventually, each contractor’s relevant at-

tributes in accessing the empDB resource are identified and removed via a SOAP

message sent to the contractor’s identity provider (conIS) effector.

In the final step, emp0003 rapidly accesses the lgT resource, this time us-

ing their remaining attribute 〈permisRole, Staff 〉. This triggered the violation

lgTShortAccess, whereby the controller calculates the subject’s impact level as

0.8. Several solutions are now applicable given this impact weighting, including
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solutions that result in policy adaptation. However, as the subject has been iden-

tified as the source of two previous violations, but is the only subject that has

abused their permisRole attribute of SysAnalyst and Staff, solution S2 is enacted.

This results in the complete removal of access for subject emp0003.

As a result of subject adaptation, malicious subjects were mitigated given the

abuse of access rights. Moreover, subject adaptation ensured that non-malicious

subjects remained able to request and gain access to protected resources, as evi-

dent by the rate of access maintained for all.staff, as shown in Figure 5.8.

Exp: 3 & 4, Deactivated Contractor Identity Provider Effector

In experiments Exp3 and Exp4, the contractor’s identity provider effector was

disabled, and the controller was placed under normal and high loads, respectively.

Under either load the controller consistently identified violations, and performed

mitigation responses, in relation to 23 attack steps.

Figure 5.9 portrays the malicious changeload for Exp3 (i) and Exp4 (ii). Ta-

ble 5.2 details the attack steps and mitigation for Exp3, where steps 1 to 5 are

omitted as the same violations are previously described in Table 5.1. Exp4 can

be viewed in Appendix B.3.3 (Table B.6), and a break down of solution selection

is described in Appendix B.3.2. In both experiments there are three significant

turning points in relation to detection and mitigation of violations. These being:

1. The failure to mitigate initial violations due to lack of control (steps 6 to

17).

2. The escalation to considering a wider scope of solutions in response to per-

sistent violations (steps 11, 14, 17, 20, and 21).

3. The selection and enactment of successful policy adaptations to halt persis-

tent violations (steps 19 and 22).

Given the fact that the contractor identity provider is deactivated, solutions S1

and S2 (subject adaptation, see Section 5.5.1) are ineffective in mitigating mali-

cious behaviour by contractors. However, the controller persists in attempting this

solution until the malicious subject exhibits a greater impact to the organisation,

as seen in step 11.

Now that the subject exhibits a greater impact, a wider set of solutions to

mitigate the subject’s behaviour can be selected. However, as a result of the
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Figure 5.9: (i) Exp3 normal load, (ii) Exp4 high load

Step Subject Impact Violation Identified Selected React Adapt Result
Solutions Solution Time (ms) Time (ms)

(Avg, Std) (Avg, Std)

6 con02 0.07 empShortRead S0 S0 1.6, 0.5 N/A N/A
7 con02 0.27 empShortRead S1 S1 134, 47.4 129.2, 16.3 0
8 con03 0.07 empShortRead S0 S0 4.8, 3.1 N/A N/A
9 con04 0.07 empShortRead S0 S0 1.6, 0.5 N/A N/A
10 con02 0.6 empShortRead S2 S2 99.4, 24 124.2, 31.2 0
11 con02 1 empLongRead S2,S3,S4,S5 S2 405.2, 99.3 102.4, 14.3 0
12 con03 0.27 empShortRead S1 S1 82.2, 40.5 102.4, 31.7 0
13 con05 0.07 empShortRead S0 S0 1.8, 0.4 N/A N/A
14 con02 1 empShortRead S2,S3,S4,S5 S2 319.4, 24.1 99.8, 20.1 0
15 con04 0.27 empShortRead S1 S1 39.6, 10.6 89.9, 42.2 0
16 con03 0.6 empShortRead S2 S2 37.4, 5.6 72.6, 8.3 0
17 con02 1 empShortRead S2,S3,S4,S5 S2 153.6, 24.4 94.8, 44.2 0
18 con05 0.27 empShortRead S1 S1 33.8, 8.2 69.2, 6.7 0
19 con03 1 empLongRead S2,S3,S4,S5 S2(F),S3 154.6, 32.1 985.6, 60.5 1
20 con02 1 empShortRead S2,S3,S4,S5 S2 280.8, 58.1 104, 21 0
21 con02 1 empLongRead S2,S3,S4,S5 S2 196.8, 31 82.6, 7.7 0
22 con02 1 empShortRead S2,S3,S4,S5 S2(F),S4 185.6, 71.1 805.4, 36.4 1
23 emp03 0.8 lgTShortAccess S2,S3,S4,S5 S2 194.6, 47.8 143.4, 77.3 1

Table 5.2: Exp3: Adaptation with normal load (contractor IdP effector failure)

controller’s solution selection activity (see Appendix B.3.2) solution S2 is chosen.

This is because all other solutions exhibited a greater cost to the behaviour iden-

tified, meaning that only solution S2 could be considered as a candidate solution

(which ultimately fails).

It is only by step 19 that the controller identified that a policy adaptation

(solution S4, partial removal of trust in the contractor identity provider) exhibited

a lower cost over detected violations. In this step, S2 and S4 are ranked and

enacted in order of lowest cost. As such, the controller attempted to enact S2

first, in the form of a SOAP message to the contractor’s identity provider effector.

The solution ultimately failed, which resulted in the controller attempting to

enact the next ranked solution, S4. This resulted in a policy adaptation (point

E, Figure 5.9) where trust was removed from the contractor identity provider in
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issuing certain access rights.

Further violations are mitigated in a similar fashion (post step 19), where

the contractor supervisor con0002 is mitigated via a policy adaptation (point

G in Figure 5.9). The only exception being that the remaining attacker from

LGZLogistics (emp0003 ) is mitigated in exactly the same manner as Exp1 and

Exp2. This is due to the fact that whilst the contractor’s identity provider effector

was deactivated, LGZLogistic’s identity provider effector remained active, allowing

for successful subject adaptation of LGZLogistic subjects.

An important observation is the impact of policy adaptation, where a tempo-

rary sudden drop in access requests was observed (Figure 5.9). Policy adaptation

results in model transformation and serialisation of persistent policy documents,

which are activated via a restart of the PERMIS authorisation service. As a con-

sequence there is a short period of time in which no access can be processed whilst

the authorisation service restarts1.

5.5.4 Summary of Results

For each experiment, adaptation resulted in preventing the detected malicious

subject(s) from gaining further access. This was achieved through removing the

abused access right (assigned attribute), removing all of a subject’s access rights

at identity provider level, or removing varying degrees in trust of the contractor

identity provider.

In Exp1 and Exp2, no impact was made to authorisation services in terms of

the service being able to perform its duties. This reflects the fundamental design

of SAAF, which promotes separation of concerns between adaptation and autho-

risation. However, in Exp3 and Exp4, the availability of the authorisation service

was temporarily impacted on two occasions, as a result of policy adaptation. This

availability issue is a result of a limitation in the PERMIS standalone service,

whereby it cannot activate new policies without being restarted.

In both sets of experiments, the impact on identity provider services was neg-

ligible. There was no observable rise in latency in subject authentication and

attribute release as a result of identity provider adaptation. However, malicious

subjects were impacted at identity provider level, in terms of attribute removal,

yet this was the desired consequence of adaptation.

1To accommodate for this, upon encountering a failed connection to the authorisation service
all subject access requests were subject to a 3 minute pause, before changeload was resumed.
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Subject versus Policy Adaptation

The experiments portray two types of scenarios that exemplify subject and policy

adaptation. A scenario where a controller is capable of performing subject adap-

tation against all identity providers, and a scenario where the controller is limited

in performing subject adaptation (requiring policy adaptation).

Subject adaptation is seen as the economical choice, whereby malicious be-

haviour can be mitigated with no impact to non-malicious subjects. When subject

adaptation was possible, the malicious subjects’ behaviour was mitigated almost

immediately, preventing future violations. However, where subject adaptation

was not possible, subjects were capable in repeating violations until the controller

identified that the cost of unresolved violations warranted policy adaptation.

Policy adaptation has far greater consequence in comparison to subject adap-

tation, which is calculated (in part) by the number of non-malicious subjects that

will lose access to resources as a result of change. For example, Table 5.2, step

19, represents the tipping point between the impact of the contractors’ persistent

malicious behaviour, outweighing the impact in LGZLogistics removing the trust

in the contractor identity provider issuing the attribute 〈permisRole,Contractor〉.
Regardless of type, each adaptation results in a concrete change to the autho-

risation infrastructure. Changes ultimately control the outcome of future access

decisions, and whether or not subjects can be authorised in accessing resources.

Performance

Whilst benchmarking the performance is not an objective for this thesis, the

performance observed in the experiments requires some explanation. Of particular

interest is the performance of different types of adaptation. Performance is directly

related to the number of violations the controller can identify, the size of its

access control model, the number of previously identified violations, the number

of solutions applicable to an identified violation, and the type of adaptation to

be performed. For each experiment, these factors remained persistent, relative to

the given experiment step.

A concern was the high standard deviation observed (max 99ms) between

experiment runs for some adaptations, specifically in regards to the time it took

the controller to react and decide upon solutions. Steady state time was used

to place the controller in a warmed up state. However, due to a mix of factors

the standard deviation failed to improve. Some of these factors include network
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fluctuation between communication of the prototype controller and its effectors,

the triggering of Java garbage collection and Java’s code optimisation, and that

the controller prototype is yet to be optimised. To compensate for this, further

experiment runs are required, but were limited to 6 runs per experiment (due to

the hour long runtime of each run).

Focusing on experiment Exp3 (normal load), Table 5.2, the first time the con-

troller performs adaptation (step 5) took 329ms to react. However, the same

adaptation made against a different subject at step 7 is much faster (134ms),

and throughout remaining steps performance in similar adaptation improves con-

sistently throughout each run. This is due to Java optimising frequently used

code.

When the controller repeatedly processed multiple solutions, faster reaction

times (e.g., step 11 compared to step 5) were observed, and again follows similar

improvements in performance over the course of the run. Lastly, it was observed

that policy adaptation takes much longer to enact (step 19, 986ms) when com-

pared to subject adaptation (step 5, 164ms). This is due to execution of model

transformation programs, deployment of a policy on the authorisation service, and

the initial failure in carrying out a subject adaptation.

5.6 Experiment Discussion

The LGZLogistics case study has provided a scenario for demonstrating and eval-

uating the detection and mitigation of insider threat. Through execution of this

case study, this chapter has demonstrated the SAAF prototype’s capabilities in:

1. Realising self-adaptation within existing technologies;

2. Detecting malicious behaviour through the observation of access and re-

source change;

3. Consistently mitigating malicious behaviour through the automated adap-

tation of access rights and authorisation policies under varying operational

conditions.

Of note, self-adaptation has been achieved within a federated environment,

where challenges exist as a consequence of multiple management domains. Probes
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and effectors are shown to facilitate automated adaptation across these manage-

ment domains, where there is arguably a greater need for automation given the

fact that federations contain large and unknown user bases.

5.6.1 Evaluation Approach

The experiment was designed to demonstrate the robustness of the SAAF proto-

type in mitigating malicious behaviour under repeatable conditions. This required

simulating a known malicious changeload in which to trigger self-adaptation, and

capture responses from the SAAF prototype.

The simulation approach allowed for the evaluation of the SAAF prototype

within a large scale deployment, akin to a small to medium sized organisation.

This was critical to providing evidence of the prototype’s feasibility in operating

within the real world, and that the prototype would consistently mitigate viola-

tions in a robust manner. As such, it was observed that the prototype was capable

in mitigating violations when operating under high loads, and when faced with

non-cooperating management domains.

A clear advantage of the approach was to demonstrate the prototype’s ability

to select and enact appropriate solutions within a complex scenario. This was

demonstrated by the escalation to high severity solutions (i.e., removal of trust in

an identity provider organisation) when faced with persistent malicious behaviour

and the failure to mitigate by alternative means. This also had the benefit of

highlighting the consequences to an non-cooperating organisation, where they

risk losing access to a resource in its entirety.

The simulation approach does have several limitations, indicative of the nature

of simulation. Specifically, simulation presents a certain amount of bias whereby

the violations performed are known, and the prototype controller can be configured

in an optimum way to best handle such violations. Therefore, the simulation

approach can only be seen as a means to demonstrate the prototype’s robustness

in handling known violations. What it cannot evaluate is how the prototype will

handle unknown malicious behaviour, and in particular, unpredictable change

within its environment and system. This type of behaviour is challenging to

simulate, where it is necessary to evaluate the prototype in a live environment.



CHAPTER 5. SIMULATING INSIDER THREAT 156

5.6.2 Detection and Adaptation

The goal of this thesis is not to improve upon detection methods, rather, demon-

strate a new process in handling insider threat. With that said, detection within

the SAAF controller prototype is worth discussing. The SAAF prototype utilises

detectors to identify known types of attacks, typically focused on thresholds, which

is a common approach in detection of malicious behaviour [37, 144].

Adopting a threshold approach to detection has the advantage of clearly de-

tecting extremes in user behaviour, as it is assumed detection rules are formed by

experts certain in the perception of normal and abnormal behaviour. Therefore,

if user behaviour violates these rules, malicious behaviour is identified. However,

it does require experts to be absolute in their decision for malicious behaviour,

which could be seen as restrictive. In addition, if a rule is incorrect or inappro-

priate for the current state of the system, there is the potential for many false

positives. For example, a subject that conforms to current behaviour rules speci-

fied for their role may be assigned to a new project. As a result, their legitimate

behaviour may violate behaviour rules. Clearly a challenge for SAAF is to employ

detection techniques that can evolve and accommodate such legitimate changes

in behaviour.

Past approaches

In preliminary implementations of SAAF [5, 6], violations led to the immediate

decision to perform an adaptation. This is problematic, as different violations

may yield variable impact to an organisation (e.g., a subject abusing their access

rights on resource ‘X’ poses far greater impact over resource ‘Y’). Moreover, the

culmination of different behaviours may require a solution with a greater impact

(e.g., the complete removal of access of a subject) over one with a smaller impact

(e.g., warning the subject or removing a single access right).

Therefore, to enable appropriate selection of solutions, SAAF’s current ap-

proach utilises cost sensitive modelling [136] to assess subject impact and impact

of solutions. This approach has allowed the aggregation of multiple violations be-

fore enacting an appropriate solution. Multiple occurrences of violations arguably

strengthens the perception in the subject being malicious2, as well as judge the

extent of appropriate adaptation. Lastly, through this approach, the deploying

2One exception to this is if the behaviour rules specified are incorrect, which is addressed as
part of SAAF’s limitations.
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organisation has the ability to fine tune the enactment of solutions, through spec-

ification of cost of behaviour and solutions.

Triggering Adaptation from Observation of Access

In the experiments discussed, the SAAF prototype considers the metric of rate

of access requests as the primary environment property in identifying malicious

behaviour. Whilst using this metric has shown to be successful in identifying

attacks, for it to be efficient the level of access control must be fine grained. In

addition, a subject’s ability to access a resource should be determined by short

term (or one time use) credentials issued by their identity provider.

This presents two concerns. Firstly, if it is not possible to implement fine

grained access control, a greater emphasis must be placed on resource probes. For

example, a subject granted holistic ‘access’ to the empDB resource initiates an

authorised session in which the subject can ‘read’, ‘write’, ‘delete’, and ‘create’

multiple times. Utilising a probe on the authorisation service alone would simply

identify a single access request, foregoing a large amount of information that

could be used to detect attacks. In this instance, a resource probe is essential for

capturing the missing information3.

Secondly, if access is awarded based on long term credentials (e.g., a digital

certificate), the ability to stop a subject’s future access is delayed until the end of

a subject’s authenticated session (within their identity provider). Whilst the case

study does not demonstrate the use of long term credentials, it is an important

aspect to consider, as adaptation in this case requires actions (at effector level)

to revoke long term credentials (e.g., revocation of subject X.509 certificates, and

update to a revocation list). In effect, the action must result in a resource policy

enforcement point (PEP) requesting the release of a subject’s attributes (access

rights) as they are updated. This can be achieved through additional effectors

within the identity provider, yet would require the resource PEPs to make use of

such revocation lists.

Similarly, in these experiments the prototype controller only considers success-

ful access (i.e., permitted access) to identify malicious behaviour. This focuses on

the adaptation of subject access in accordance to the use of valid access rights

that subjects’ own. Multiple deny requests could indicate malicious behaviour

whereby a subject is trying to identify vulnerabilities in access, similar to a sub-

ject scanning a network for open ports [120].

3To strengthen this position, Chapter 6 demonstrates the necessity of resource probes.
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Selecting Solutions for Adaptation

The experiment demonstrated the selection and escalation of solutions in response

to detected violations. Whilst this was successful and ultimately viewed as en-

acting ‘appropriate’ solutions to violations, the cost sensitive modelling approach

employed has several limitations.

Notably, the approach relies upon weighting solutions by a perceived cost of

negative impact to an organisation, which is then compared to a perceived cost

of subject activity (as conveyed by Table B.4). Although not observed within

the experiment itself, there is potential for multiple solutions in conjunction with

observed behaviour to present identical costs (i.e., benefits) to an organisation.

In SAAF’s current form, no solution would be prioritised, and as a default the

last solution processed (of equal measure) is selected. This strengthens the need

to improve upon the cost sensitive modelling approach, where additional criteria

(beyond cost) is factored into solution selection.

Bottlenecks in Adaptation

One property not exemplified by the discussed experiments, is the presence of

bottlenecks. Given that this implementation of SAAF is a prototype, a notable

deficiency in its design is its inability to consider multiple violations during a single

iteration of its feedback loop. If violations are detected during the prototype’s

current analysis of behaviour, multiple violations are queued, analysed, planned

and executed in a sequential manner. The result of this is increased response

times in mitigating behaviour identified in the aforementioned manner, due to

failed or redundant adaptations if a previous adaptation has already resolved the

violation.

This is a general challenge facing self-adaptive systems, whereby a self-adaptive

system should address how to handle change whilst it is already responding to pre-

vious change. In regards to SAAF, it is necessary for future refinements to group

and analyse violations at every step within its feedback loop (as demonstrated

by the Rainbow Framework [53]), reviewing any updates to the state of access

and detected violations prior to mitigation. Adaptation time is still likely to in-

crease. However, this would allow SAAF to make more informed decisions and

avoid enacting redundant adaptations.
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5.6.3 Federation Challenges

Exp3 and Exp4 demonstrated the consequence of when a SAAF controller is limited

in performing subject adaptation. Whilst policy adaptation occurred at the point

where the impact of violations outweighed the impact of removing trust in the

contractor identity provider, Exp1 and Exp2 showed that the attacks could equally

be resolved more effectively on an individual scale. However, as demonstrated in

a previous paper [6], policy adaptation is necessary in regards to large numbers

of subjects committing malicious behaviour (i.e., when a service provider, de-

spite mitigating attacks from individuals, is seeing persistent attacks from a given

identity provider).

Associated with this is the reliance on an authorisation service’s ability to

validate subject credentials. Credential validation enables solutions that manage

the trust in identity providers. Without it, SAAF is limited in performing fine

grained adaptations against identity providers, resorting to policy adaptation that

may impact all subjects from all identity providers.

In regards to control over observation, in the LGZLogistics case study, there

are no probes deployed within the contractor identity provider. This highlights

the fact that many third party organisations may not provide a complete view of

subject attributes, in particular, the release of personal identifiable data. As a

result, the model of access generated is representative only of subjects that have

requested access, and what valid attributes (post validation) have been used.

Generating a model of access in this fashion is limited, as the model only con-

tains a view of active subjects, and does not present a complete view of access (i.e.,

subjects that have yet to request access will not be modelled). The repercussion

of this is that the calculation of impact of solutions against the current modelled

state of access may well be higher, due to an incomplete modelled state of access.

One potential solution that overcomes the problem of restricted observation

of subjects, is a probe at the identity provider that operates in a similar fashion

to SAAF’s SimpleSAMLphp effector [7] (see Appendix B.2). Applying the same

concepts to a probe, an identity provider could control what subject information

is released, how subjects are identified, and which subjects can be observed. This

would allow for synchronised models of access within federated environments.

However, a potential risk is if an identity provider is hijacked, information sent

via a identity provider managed probe could become unreliable.
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5.7 Summary

In summary, this chapter has presented an evaluation of the Self-Adaptive Au-

thorisation Framework (SAAF) through the simulation of a fictitious case study

of insider threat. As part of this evaluation, a malicious changeload has been for-

mally defined in the context of authorisation infrastructures in order to describe

scenarios of abuse in access control.

The malicious changeload, relevant to the case study, was then executed to

stimulate self-adaptation within a federated authorisation infrastructure. A de-

ployment of the SAAF prototype was then evaluated in mitigating the malicious

changeload under various operational conditions. These included changes to the

runtime load of the authorisation infrastructure and the SAAF autonomic con-

troller, along with restrictions in available probes and effectors (simulating the

presence of a non-cooperating contractor organisation).

The evaluation demonstrated the SAAF prototype’s robustness in handling

abuse of access under repeatable conditions, where the prototype was shown to

consistently mitigate abuse under normal and high loads. In addition, when faced

with limitations in enacting adaptation, the prototype was shown to escalate its

selection of policy adaptations in order to overcome failures in subject adapta-

tion. Whilst subject adaptation was shown to create minimal impact (in terms

of consequence to non-malicious subjects), it was in these conditions that pol-

icy adaptation becomes necessary in order to halt the abuse of access. Finally,

SAAF has been demonstrated in mitigating the abuse of access in federated envi-

ronments, where the use of a domain managed effector has been key to enabling

adaptation across multiple management domains.

A limitation in evaluating self-adaptive systems through simulation is the in-

ability of dealing with a wide range of changes that are representative of unex-

pected subject behaviour, and how subjects may react to adaptation. Whilst

case studies of insider threat can provide insight to attack scenarios, they do

not consider the runtime consequence of mitigation. To evaluate this, Chapter 6

defines a runtime experiment in which real users are invited to carry out mali-

cious behaviour against an organisational resource, protected by a self-adaptive

authorisation infrastructure.



Chapter 6

Evaluating SAAF through

Gamification

6.1 Introduction

The simulation of insider threat case studies is limited regarding the evaluation of

self-adaptive authorisation infrastructures. This is because they would not be able

to portray an accurate perception of reality. Simulation has demonstrated par-

tial feasibility of the Self-Adaptive Authorisation Framework (SAAF), including

how SAAF mitigates malicious behaviour under prescribed conditions. However,

simulation can only evaluate a fraction of the scope of change and types of abuse

representative of the real-world.

An important step in evaluating SAAF is demonstrating its ability to mitigate

abuse of access when faced with uncertainty. Moreover, it is necessary to evalu-

ate the consequence of self-adaptation in terms of how human users respond to

the presence of a feedback loop. In light of a feedback loop, users may change

their behaviour, for instance, to mask their malicious activity. Such change is

unpredictable, resultant of intelligent user interaction, and therefore challenging

to simulate.

Given SAAF’s experimental status, to consider deploying SAAF in a real or-

ganisation would be inherently risky. Therefore, this chapter presents an approach

whereby gamification [60] is used to emulate a real-world environment. Gamifica-

tion is the use of online games to solve complex problems and generate meaning-

ful data as a consequence of human player participation. It is a crowd sourcing

technique to capturing large volumes of data by using the premise of a game to

161
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motivate human participation.

For evaluating SAAF, gamification is used for generating diverse and unpre-

dictable data from real user activity. In particular, it enables the observation of

SAAF mitigating cases of abuse at runtime, and the observation of user activ-

ity post mitigation. As such, the success of mitigation can be validated, along

with evaluating the consequence of self-adaptation by analysing user response to

mitigation.

The contribution of this chapter is an approach to evaluating self-adaptive

systems through gamification [60]. A key feature of the approach is the ability to

observe user activity pre- and post-adaptation, in order to evaluate the runtime

consequences of self-adaptive systems. Gamification is demonstrated in evaluat-

ing the Self-Adaptive Authorisation Framework (SAAF) by way of deploying an

online game as a protected resource within an authorisation infrastructure. Hu-

man participants are assigned a set of access rights related to the authorisation

of actions within the game. Participants of the game are then invited to choose

to act honestly or dishonestly. Dishonest activity is viewed as synonymous to

malicious behaviour, requiring mitigation.

The rest of this chapter is structured as follows. In Section 6.2 the objectives

and scope of the online experiment are presented. Section 6.3 describes the design

of an online game, in which diverse and unpredictable behaviour can be observed.

Section 6.4 discusses the deployment of the game in a self-adaptive authorisation

infrastructure. Section 6.5 describes the phases and execution of the experiment

within the game environment. Section 6.6 discusses the results of the experiments.

Section 6.7 discusses the evaluation approaches presented in this thesis, identify-

ing limitations. In Section 6.8, a summary of the chapter is provided. Finally,

Appendix C contains additional results of the experiment.

6.2 Objective and Scope

The objective of this evaluation is twofold. The first is to demonstrate SAAF in a

live deployment, whereby the observations and actions performed by SAAF have

a real consequence to human users accessing a resource. The second objective is

to generate data that portrays the effectiveness of self-adaptation in mitigating

observed attacks, include data relating to the consequences of self-adaptation.

Such data is necessary since user behaviour is unpredictable, where simulation

alone only provides a constrained view to how users may react to adaptation.
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To fulfil these objectives, an experiment is conducted whereby human users

are invited to participate in an ethical game of hacking. Users are asked to play

an online game based on the classic board game of Snakes and Ladders [116].

The use of a game follows the concept of gamification [60], whereby games are

used to engage users in order to solve complex problems. For the purpose of the

experiment, the game is used as a platform to enable users to perform malicious

activity. Users are given the freedom to play the game and to choose to act

honestly or dishonestly, such as exploiting vulnerabilities in the game resource or

host server.

With this in mind, the experiment conducted within this chapter seeks to

answer the following research question: are self-adaptive authorisation infrastruc-

tures capable of mitigating acts of malicious behaviour, and what are the conse-

quences of self-adaptation? To reflect on this problem statement, the rest of this

section identifies a set of hypotheses, as well as the scope of the evaluation.

Hypotheses

(Main) 1. Self-adaptive authorisation will mitigate malicious activity, whilst

limiting future attacks.

(Subsidiary) 2. An experienced subject is capable of carrying out sophisticated

and complex attacks.

(Subsidiary) 3. The behaviour of a malicious subject will change in response to

adaptation, in order to circumvent future detection and mitigation.

Scope of Evaluation

This evaluation is specific to the mitigation of malicious subject activity related

to the abuse of access. The proposed experiment will seek to evaluate the effec-

tiveness of subject adaptation, in the context of an online game.

There are some limitations to this evaluation. Notably, human participants

are aware of the true nature of the experiment, and as such, it cannot be said that

a participant of the game is representative of a ‘true’ malicious insider. Basically,

participants are aware that they can be malicious to win the game. However, the

game as a whole is representative of the actions of a malicious insider.

A further limitation is that the proposed experiment is not positioned for
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the evaluation of policy adaptation. Whilst policy adaptation is likely to be

successful in mitigating abuse against the game resource, it limits the potential

for the amount of data generated. For example, adaptation of a policy may cut off

access to the game in its entirety once the game has suffered a certain amount of

abuse. In addition, policy adaptation is most effective within the context of a real

organisation, where users adhere to a specific role within that organisation. Given

the gamification approach and the reliance on anonymous human participants, it

would be challenging to verify that a player is indeed adhering to a particular role

within an organisation.

6.3 The Game of Snakes and Ladders

Snakes and Ladders is a classic board game which requires players to roll a dice

and move their player from a starting square to a finishing square. Players can

land on certain squares resulting in them being pushed ahead (i.e., travelling up

ladders), or moved backwards (i.e., falling down snakes). The first player to land

on the finishing square wins the game, which is purely based on chance.

Considering the objectives of the evaluation, the concept of Snakes and Ladders

was chosen for a variety of reasons. These include:

• Familiarity and ease of use;

• The ability to collect a wide range of data from player interaction;

• Contains a clear set of rules that honest players are expected to follow, which

can be used to verify the existence of malicious behaviour;

• Has a set of actions that can be protected by an authorisation infrastructure

(e.g., game start, roll, move, end).

It can be argued that a game of Snakes and Ladders is not a realistic portrayal

of real world resources. However, the game itself represents many of the processes

and concepts a real resource would exhibit. These include the ability for a subject

to authenticate and gain access to the resource, perform multiple tasks in light of

some goal, and have an impact against the resource itself.

The game is a mechanism to enable such concepts, likened to that of a workflow

within a resource. Honest players are expected to follow the workflow of the game,

and by doing so, the player is eventually able to finish the game. Player activity
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within the game generates data representative of the player’s behaviour. As such,

it can be used to capture a number of features of user activity, just as it would be

possible to observe in real world resources (e.g., activity within a database).

Whilst Snakes and Ladders presents a narrower scope in the type of changes

that can affect the game in comparison to a real world resource (e.g., a database),

the rules of the game act as requirements of the user. These requirements provide

a base to validate behaviour against. In addition, the game itself will appeal to

a wider audience, allowing for a range of attack profiles, including, non-technical

opportunist profiles, to technical and informed profiles of attack.

The rest of this section discusses the design of the Snakes and Ladders game as

a protected resource. In addition, vulnerabilities are discussed that are purposely

left within the game to enable dishonest play.

6.3.1 Game Design

The Snakes and Ladders game is designed in the form of a web application, hosted

on an Apache web server, and accessible via any modern web browser. It is built

using web based technologies, and has two purposes:

1. Enable participant sign up, whereby a participant becomes a subject of the

game’s organisation and is given a set of access rights to play the game.

2. Facilitate online play of a game instance of Snakes and Ladders, whilst

logging subject interaction with the game.

Figure 6.1 portrays the general activity flow of the web application. To simu-

late the notion of an ‘insider’, participants must create an account. Upon signup,

each subject is issued with the same level of access (in the form of an X.509

certificate) that initially provides the subject with full access to the game.

Once a participant has been provided subject status, they are capable of au-

thenticating, then requesting and playing instances of the game. Players request

access to start a game, in which a game instance is returned to their client. Game

logic is handled via both client side and server side processes. The game interface

(Figure 6.2) is dynamically updated in order to reflect the subject’s actions and

state within the game.

Subjects are capable of performing a set of protected actions within the game

resource. These actions are expected to be governed by an external ABAC autho-

risation service, which validates a subject’s level of access in relation to a requested
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Figure 6.1: Activity flow of the game resource

Figure 6.2: Screenshot of the implemented Snakes and Ladders game

action. An authorisation policy is expected to define the criteria of access, and

should protect access against the following actions:

• Start Game, the ability to request access to a game instance;

• Roll Dice, the ability to roll the dice, dictating the amount of squares a

player should move on the game board;

• Move Player, the ability to move the player within the game board;

• Use Ladder, the ability to travel up a ladder should the player land on a

square at the base of a ladder;
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• Use Bonus, the ability to use a bonus move which moves the player towards

the end of the game, only if the player lands on the bonus square;

• End Game, the ability to finish a game when landing on the ‘finish’ square.

Once access has been authorised for an action, the player is able to perform

the action within the game. The process of authentication and authorisation is

enforced by a policy enforcement point (PEP) built into the game resource. Each

action the player carries out is then logged (along with metadata) and interpreted

in a backend database, providing context to any authorisation request.

To enable competitive play, an online scoreboard is used to monitor the

achievements of players over the games they play. As a result, the core objec-

tive of the game is for players to attempt to beat the game in as few turns as

possible, whilst competing against each other.

6.3.2 Vulnerabilities

The game is designed to facilitate a range of malicious activities. Players are ca-

pable of performing malicious activities through exploiting known and unknown

vulnerabilities. The game itself is considered a honeypot [132], where a subject

that exploits known vulnerabilities within the game is likely to garner some ma-

licious intent (i.e., to complete the game unfairly). These ‘known’ vulnerabilities

exist at the level of the game resource (i.e., the game’s interface, the game’s code,

and the game sessions), and are further discussed as follows.

Game Interface Vulnerabilities

Game interface vulnerabilities symbolise the simplest form of attack, whereby

subjects identify bugs within the game logic simply through interaction with the

game itself. They showcase attacks to that of an opportunistic attacker, and are

easily identifiable through playing the game.

• The dice can be rolled multiple times between moves;

• A player can land on any square within the given dice roll range;

• A player can choose not to go up a ladder;

• A player can choose not go down the snake;

• If the player lands at the base of a snake, the player can travel up the snake.
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Code Injection Vulnerabilities

Code injection [72] depicts a more advanced class of attack, where players must

have an understanding of how a client operates with a server. Through code

injection, the player is capable of modifying the game logic in order to gain an

unfair advantage within the game.

To enable code injection exploits, participants must play the game in an en-

vironment where they have some access to the code. As a result, through use of

JavaScript and PHP, a game instance can be delivered to the participant’s client

web browser, whereby parts of the game rely on client-side execution. AJAX

routines are used to facilitate state changes in the game between the client and

the server. This enables the authorisation of subject actions, whereby an AJAX

routine communicates with the server, and the server forwards on relevant access

requests to an authorisation service.

With the appropriate tools a subject is capable of changing the game logic.

For instance, the subject could inject code in order to roll an impossible dice roll

value, change the player’s starting square position on the game board, move to

any square on the game board, or simply trigger the game end conditions.

Given the readability and nature of JavaScript, code injection would be a

relatively simple task. In order to ensure there is a reasonable challenge to par-

ticipants in injecting code, the JavaScript code is obfuscated [80], making it much

harder to interpret for a novice programmer.

Session Vulnerabilities

A final scope of vulnerabilities is session poisoning [108]. Session poisoning in-

volves attacks where a client injects data into a session held by a server. Such

injection will change the client user’s state between requests to the server, poten-

tially overriding the need for authentication and authorisation.

As players progress within the game, their activity is held within a server

side session. The session is essential to maintaining transitions of state between

a client’s HTTP requests to the server, and is required in order to log player

activity. Players can therefore perform session poisoning attacks to change the

state of play.

Session poisoning attacks are enabled through the exploitation of server side

scripts that handle policy enforcement and activity logging. These scripts expect

POST data to update player activity within the session. Through monitoring



CHAPTER 6. EVALUATING SAAF THROUGH GAMIFICATION 169

a game’s POST data requests, it is possible to identify how a session could be

manipulated.

Summary Attack Model

Given the described known vulnerabilities, abuse of access can be modelled as a

high level attack tree [91]. Listing 6.1 describes the attack tree of a player abusing

their access rights in order to win a game via malicious means. This model of

attack defines the scope of malicious behaviour to be mitigated in this evaluation.

1 Goal : Win a game through e x p l o i t a t i o n o f v u l n e r a b i l i t i e s

2 Precond i t i on : A t t a cke r i s an i n s i d e r h o l d i n g a game account

3 Attack :

4 AND : 1 . Au th en t i c a t e w i th i d e n t i t y s e r v i c e

5 2 . Gain a u t h o r i s a t i o n to s t a r t game

6 OR :

7 1 . E x p l o i t g l i t c h e s w i t h i n the game ’ s i n t e r f a c e

8 OR : 1 . R o l l more than 1 d i c e r o l l pe r tu rn

9 2 . I g n o r e snake s

10 3 . I g n o r e l a d d e r s

11 4 . T rav e l up a snake

12 5 . Land on any squa r e w i t h i n d i c e r o l l r ange

13 2 . I n j e c t code to change game behav i ou r

14 OR : 1 . Reduce s i z e o f game board

15 2 . I n j e c t i n v a l i d d i c e r o l l

16 3 . Perform an i n v a l i d move

17 4 . Prematu re l y t r i g g e r game end

18 3 . Po i son s e s s i o n to f a l s i f y game p l a y

19 OR : 1 . E x p l o i t AJAX endpo i n t s

20 2 . E x p l o i t s e s s i o n v a r i a b l e s i n HTTPS GET r e q u e s t s

21 OR : 1 . F a l s i f y r o l l a c t i o n

22 2 . F a l s i f y move a c t i o n

23 3 . F a l s i f y game end a c t i o n

24 Pos t cond i t i on : A t t a cke r f i n i s h e s game wi th u n f a i r advantage

Listing 6.1: High Level Attack Tree for Snakes and Ladders

It is recognised that attackers can perform other patterns of attack within

the game environment (including the entirety of the authorisation infrastructure).

For example, an attacker does not need to rely on their access rights alone to

attack the game resource. An attack tree could exist where an attacker bypasses

authentication via performing an SQL injection attack, potentially enabling the

attacker to falsify game records (i.e., create a fictitious game) or delete game

records entirely. Other forms of attack could be made against the infrastructure

itself, such as identifying the SAAF controller’s endpoints in order to perform a

denial of service attack (i.e., disrupt the controller’s ability to detect and adapt),

or falsify the controller’s input or output. These types of attacks, whilst worth
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investigating in future work, remain out of scope of this evaluation.

Limitations

Several trade-offs were made in order to enable malicious behaviour within the

game. In a real-world environment, developing a resource that has known vulner-

abilities is inherently insecure. In addition, executing code on the client machine

could be considered rare. However, for the purpose of the experiment it was nec-

essary to use client side technologies (i.e., JavaScript) to present an achievable

environment for subject’s to inject code.

An alternative approach considered was to deliver the game resource in a

compiled state (e.g., a Java application). However, this would reduce the scope of

players capable in injecting code (due to the technical knowledge required), and

ultimately reduce the amount of data generated within the experiment.

Lastly, the fact that subjects are capable of injecting code in the client means

that authorisation could be bypassed. A subject could manipulate the game logic

to prevent the AJAX routines initiating calls to the resource’s policy enforcement

point (PEP). As a result, any games that bypass authorisation are out of scope

of the evaluation. This is due to the fact that SAAF assumes that resources and

the authorisation infrastructure in place are operating in conformance to access

control.

6.4 Deployment

The game is deployed into the environment of a fictitious organisation, whereby it

is protected by an Attribute-Based Access Control (ABAC) authorisation infras-

tructure. The following describes the configuration of the authorisation infras-

tructure, configuration of a SAAF prototype controller, and data to be logged.

6.4.1 Self-Adaptive Authorisation Infrastructure

The infrastructure is comprised of three virtual machines (VMs), as shown in

Figure 6.3. Each VM is configured to run Ubuntu v12.04.5 TLS, with 1024MB

RAM, whereby a VM is configured to either serving the game resource, managing

subject identities, or providing authorisation.
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Figure 6.3: Game experiment authorisation infrastructure

Identity Server

The saaf-idp.kent.ac.uk VM hosts an openLDAP directory, and a bespoke

LDAP probe developed for SAAF. The LDAP directory maintains attribute cer-

tificates of each player account within the game. These represent a player’s access

rights in the form of a set of signed attributes. It is populated as and when

subjects create accounts via the Snakes and Ladders game interface. The LDAP

probe exists to monitor changes within the LDAP directory. Should a change be

identified, the probe notifies the SAAF controller in order to ensure a synchronised

model of access.

Authorisation Server

The saaf-auth.kent.ac.uk VM hosts an instance of the PERMIS standalone

authorisation service, a probe and effector to monitor and adapt PERMIS, and

the SAAF controller.

The PERMIS authorisation service is configured to operate in a ‘pull’ mode,

whereby it retrieves the requesting subject’s access rights directly from the identity

service, per request. A single PERMIS ABAC authorisation policy exists, which

defines a hierarchy of attributes. Each level of the hierarchy contains a scope

of access, which is relevant to the game. In practice, given a subject’s set of

attributes, the subject is capable of performing a prescribed set of actions within

the game, in conformance to the PERMIS policy.
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The SAAF controller is deployed on this server to observe and manage access to

the game. It observes data pushed from the resource probe, the LDAP probe, and

the PERMIS probe, in order to model access and subject behaviour at runtime.

Resource Server

The saaf-resource.kent.ac.uk VM hosts the web application that contains the

Snakes and Ladders game, an integral policy enforcement point (PEP), a probe,

and a backend database. The resource is served via an Apache web server over a

HTTPS connection to requesting client machines.

The probe is designed to identify malicious play interpreted within the game’s

backend database. The probe itself can be viewed upon as an external detector

that informs the SAAF controller of malicious activity. It utilises SQL-based

trigger rules to detect log entries that do not conform to the rules of the Snakes

and Ladders game, expanding upon SAAF’s own detection methods.

The saaf-resource.kent.ac.uk VM is the sole point of access for participants

that wish to play the game, whereby direct access to saaf-auth.kent.ac.uk and

saaf-idp.kent.ac.uk is prevented through firewall configurations. This means

that a player can only indirectly communicate with authentication and authori-

sation services, via interaction with the game resource itself.

6.4.2 SAAF Controller Configuration

The SAAF controller is configured to maintain (at runtime) a synchronised model

of access with the authorisation infrastructure (Figure 6.3). The controller is ex-

pected to detect and respond to violations of known malicious behaviour patterns,

with the aid of external detectors deployed within the game resource.

The deployed version of the SAAF controller is an earlier version to the one

evaluated in Chapter 5, due to the longevity of the game experiment. Notable

differences include incompatibility with federated deployments.

Monitoring

The controller observes environment and system changes via the three deployed

probes. All probes are configured to ‘push’ the following changes to the controller:

• Subject change: The LDAP probe notifies the creation of subjects, and any

changes to subject access rights;
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• Policy change and access change: The PERMIS probe notifies changes to

the PERMIS authorisation policy, as well as logged requests and decisions

in regards to authorisation;

• Resource change: The resource probe generates signature based patterns

that capture malicious activity within authorised sessions of the game.

Upon receipt of change, the SAAF controller either updates its model of ac-

cess (ABACM ) through the use of model transformation programs, or updates its

behaviour model to reflect player authorisation and resource activity.

Behaviour Policy

The controller’s behaviour policy is defined in accordance to known game

vulnerabilities. The trigger rules contained within the policy are characterised

with relation to malicious patterns of access, and malicious patterns of activity

within the game resource:

Access related

• rollMoveViolation - transaction / pattern based rule requiring that every request to roll

should be followed by a request to move, triggering once a subject breaks this transaction

more than 3 times within a short interval;

• fastRollViolation - pattern based rule that seeks to identify high frequency roll requests

beyond human ability (i.e., scripted activity);

• fastMoveViolation - pattern based rule that seeks to identify high frequency move

requests beyond human ability (i.e., scripted activity);

• fastStartsViolation - pattern based rule that seeks to identify a subject persistently

restarting a game, typical of a subject aborting games until they receive a beneficial

outcome.

Resource related

• illegalMoveViolation - signature based rule that triggers a violation if the resource

probe indicates a player did not land on a square in accordance to a given dice roll;

• ignSnakeViolation - signature based rule that triggers a violation if the resource probe

indicates a player ignoring the requirement to travel down a snake;

• upSnakeViolation - signature based rule that triggers a violation if the resource probe

indicates a player travelling up a snake;

• rollInjectionViolation - signature based rule that triggers a violation if the resource

probe indicates a player injecting code into the game client, in order to roll an unexpected

roll value (e.g., roll value 500);
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• moveInjectionViolation - signature based rule that triggers a violation if the resource

probe indicates a player injecting code into the game client, for moving in an unexpected

way (e.g., start square 1, end square 64);

• bypassAuthsViolation - signature based rule that triggers a violation if a subject at-

tempts to bypass authorisation within the game resource.

Solution Policy

The controller is deployed with a fixed solution policy, which remains constant

throughout the experiment. The tailorable solutions can be categorised by subject

adaptation, and policy adaptation. The available solutions are summarised below:

• S0: noAdaptation is the default solution for when all other solutions cause greater

impact over an observed behaviour;

• S1: warnSubject will notify a subject of their behaviour, typical for first offences trig-

gering low impact violations (subject change);

• S2: lowerSubjectAccess reduces the level of access a subject has in conformance to

the attribute hierarchy contained within the authorisation policy (subject change);

• S3: removeAllSubjectAttributes removes all attributes from a subject, typical for

when subjects are persistently abusing access (subject change);

• S4: removeAttributeAssignment removes trust in an identity provider in issuing a

valid attribute (policy change);

• S5: removeAllAttributeAssignments removes all trust in an identity provider in is-

suing valid attributes (policy change);

• S6: deactivatePolicy removes all access to all resources (policy change).

The solutions warnSubject and lowerSubjectAccess were introduced given the

context of the game resource, and the use of an attribute hierarchy within the

PERMIS policy. Given the extent of a subject’s activity in violating the behaviour

policy, it is expected that subjects are first warned of their behaviour, before being

subjected to increased punitive measures. For example, lowering a subject’s level

of access within the attribute hierarchy until it is necessary to remove all access.

In regards to policy adaptation, it is expected that should the SAAF controller

succeed in mitigating individual malicious subjects, no policy adaptation should

occur. However, policy actions are configured should subject mitigation fail (e.g.,

effector failure within the identity service).



CHAPTER 6. EVALUATING SAAF THROUGH GAMIFICATION 175

Execution

Lastly, once a solution has been selected, the controller mitigates malicious ac-

tivity via either the generation and deployment of X.509 certificates or PERMIS

authorisation policies.

• Subject adaptation: X.509 digital certificates are generated through a process

of model transformation and serialisation to define a subject’s new level

of access, which is then deployed via the LDAP client embedded in the

controller’s executor component;

• Policy adaptation: PERMIS authorisation policies are generated through

model transformation and serialisation to create a PERMIS policy docu-

ment, which is then deployed via a bespoke PERMIS effector.

6.4.3 Logs

Considering the deployment of the game within a self-adaptive authorisation in-

frastructure, data is logged in regards to the following perspectives.

Game

Player activity is logged by the game resource, which is interpreted within its back-

end database. This activity provides context to authentication and authorisation

requests, and stores the following information:

• Authentication requests via the resource and their corresponding success;

• Authorisation requests via the resource and their corresponding success;

• Roll activity (including contextual data, such as time, rate, roll value);

• Move activity (including starting position, end position, corresponding roll);

• Creation and completion of game sessions;

• An audit log of abnormal game behaviour, created via SQL triggers.

All player activity is linked to a player account (identified by their distinguished

name assigned in the LDAP identity service), an authorisation request, and the

player’s authenticated session. Players can hold multiple accounts (stored within
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the LDAP identity service), allowing for a player to create a new game account

when their current account has been adapted via self-adaptive authorisation.

In addition to the database, server logs are also maintained. Requests sent

between clients and the server that hosts the web application are logged via the

Apache server. SQL executed directly against the database is also logged, via

the game’s database server. These logs are necessary to validate that data logged

within the database has not been tampered with, as well as enabling the identifi-

cation of anomalous activity in regards to client / server requests.

Identity Management

The LDAP identity service logs all activity against the LDAP directory in the

form of server logs. This includes the retrieval of attribute certificates (as part

of PERMIS’s credential validation), changes to attributes within an LDAP entry

(due to adaptation by SAAF or human administration), the creation of new LDAP

entries (when a participant creates an account), and lastly, subject authentication.

Authorisation

From start to finish of a game instance, a player is required to request access to

perform specific actions. The PERMIS authorisation service logs all such requests,

along with corresponding decisions based on a player’s distinguished name within

an identity service. These logs contain the subject’s distinguished name (DN),

the resource they wish to access, and the actions to be carried out.

Adaptation

The SAAF controller maintains two separate log files, along with trace logs that

capture the state of access per each adaption made to its access control model.

The first log file contains detailed information per cycle of the feedback loop, por-

traying identification of violations, analysis, planning, and execution. The second

log file maintains information specific to the detection and mitigation of subject

violations. This includes the identification of subject’s that have committed vio-

lations, subject impact level at time of violation, the time at which the violation

was detected, the time at which the violation was responded to, and the enacted

solution.
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6.5 Experiments

This section describes the experiments performed within the game environment,

conveying data that demonstrates the SAAF controller monitoring and responding

to diverse and unpredictable change. In addition, an evaluation of the experiments

is given, structured according to the hypotheses previously presented (Section 6.2).

The evaluation conveys a detailed analysis of attack data, correlating player pre-

and post-behaviour with controller adaptation.

6.5.1 Experiment Execution

The experiment is executed over four phases, whereby human participants attempt

to beat the game of Snakes and Ladders in as few turns as possible:

• Control - The game is released to a closed set of participants to observe

honest play, for validation of detectors;

• Phase 1 - The game is released within the School of Computing, University

of Kent, requesting participants to play the game honestly or dishonestly;

• Phase 2 - The game is released externally, advertised via academic and

research community mailing lists, in addition to external Universities, re-

questing participants to play the game honestly or dishonestly;

• Phase 3 - The game is again released internally within the School of Com-

puting, University of Kent, requesting participants to play the game honestly

or dishonestly.

In each phase, participants are provided the same guidance (Appendix C.1) in

the form of a participant declaration that described the purpose of the experiment,

and a brief overview of how the game works. It is expected that participants would

interpret the rules of the game as conveyed by the game interface itself.

Each phase is run for a period of time in which the game is accessible to par-

ticipants. The length of time is dictated by player activity, whereby a phase is

complete once a player succeeds against the SAAF controller. Moreover, com-

pletion of a phase indicates that a player has been successful in performing an

unknown attack that the controller was not able to detect.

At the end of each phase, the SAAF controller is updated to account for

any unknown attacks that have been successful in beating the SAAF controller.
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This exemplifies SAAF’s ability to be extended in order to cope with previously

unknown attacks, as well as promote additional challenges for participants within

future phases.

Experiment Variables

Each phase is subject to a set of independent, dependent, and control variables.

Independent variables are indicative of environment change, and driven by human

participation. Dependent variables measure environment change, which refer to

the consequence of human participation. For example, the performance of SAAF,

violations detected, unknown attacks performed, the state of the access control,

and game usage statistics.

Control variables denote the configuration of the authorisation infrastructure

and the SAAF controller. These include the SAAF controller’s perception of

behaviour (behaviour policy), available solutions to the controller, the availability

of probes and effectors, and configuration of the game environment. Control

variables remain fixed throughout phases of the experiment. The only exception is

that once a phase has ended and an unknown attack has been identified, detectors

are updated in order to enable the SAAF controller to detect the unknown attack

as a violation in the next phase. Lastly, each phase of the experiment builds upon

its predecessor, meaning that the state of access at the end of phase 1 is the initial

state of access for phase 2. This is important as it portrays the SAAF controller

operating within a live and evolving environment.

Phase Progression

The experiments were conducted over a period of 7 months, as to obtain a wide

range of data. Over the course of each experiment phase, violations (known

attacks) were detected and mitigated, preventing malicious players from persisting

with dishonest play.

A small number of unknown attacks were successful in enabling a player to

beat the game in an unexpected way, resulting in the player obtaining what should

have been an impossible score (e.g., completing the game in 0 or 1 turns). Post-

phase analysis identified how the player was able beat the game without being

detected or mitigated by the controller.

• The control phase was conducted over a period of 1 week where ten players

were observed and asked to play a number of games in conformance to the
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rules of snakes and ladders. During this time, all players completed their

games within a legal number of turns per game (i.e., greater than the least

amount of turns possible when playing the game honestly). The SAAF con-

troller was configured to detect violations only, albeit no adaptation would

take place in order to identify the extent of unintended violations. As a

result, a number of low level violations were detected due to genuine player

mistakes.

• Phase 1 was conducted over a period of 1 month. It resulted in a single

player account successfully performing a code injection attack, in which the

game’s resource probe could not detect and notify the SAAF controller. The

player had changed their starting square within the game from square 1 to

square 63, allowing the player to finish in one turn after a single dice roll.

The resource probe failed to report this activity due to limitations in what

it could detect. As such, the trace log of the successful player’s activity was

analysed and used to create additional detectors within the resource probe.

• Phase 2 was conducted over a period of 5 months. It resulted in a single

player account successfully performing a code injection attack, which the

SAAF controller failed to detect. The code injection attack was similar to

that of the attack observed in phase 1. Despite the probe identifying and

logging the attack, two faults were identified through post-phase analysis.

This resulted in several false negatives, and ultimately had enabled the suc-

cessful malicious player to avoid mitigation.

The first fault identified that a mis-configuration between phase 1 and phase

2 had caused the controller to miss 13 potential violations, depicting similar

attacks to the one that was successful in phase 1. To prevent this from

occurring in the following phase, all known attacks were simulated within

phase 3’s production environment, prior to initiation, in order to confirm

correct configuration.

The second fault was associated to prolonged execution (in this case, 5

months), where the resource probe crashed as a result of a critical memory

error. This fault was overcome using microrebooting [25], whereby sub-

components of a system (e.g., the self-adaptive authorisation infrastructure)

were scheduled to restart periodically.

• Phase 3 was conducted over a period of 1 month. It resulted in two player
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accounts successfully performing a code injection that was not detected by

the game resource probe or by the SAAF controller. Post-phase analysis

identified that two player accounts beat the game in a single turn via iden-

tifying the endpoints of the AJAX routines that handled logging and policy

enforcement. Instead of playing the game, the player accounts had sent fal-

sified data directly to these endpoints to mimic player activity. In this case,

it was identified that both accounts had triggered a single move with no

associated dice roll. The resource probe contained no detectors to identify

such a scenario, and as such, could not inform the SAAF controller of the

behaviour. To prevent repetition of this type of attack, the resource probe

required additional detectors to identify similar trace behaviour.

6.5.2 Observed Environment Change

The following section discusses two aspects of the observed environment change,

namely game statistics and trends in player activity.

Game Statistics

Over the course of the experiment phases, 1455 games were played and 366 game

accounts were created (Table 6.1). Out of these 366 game accounts, it was observed

that account creations stemmed from 264 unique devices (based on a device’s IP

address). The number of devices provide some indication of the number par-

ticipants. However, due to restrictions on the collection of personal information

(Appendix C.1), a limitation in the game statistics is the inability to accurately

identify activity of one individual, as individuals could have used multiple devices

and accounts to game the system. As such, it was not possible to identify if par-

ticipants had created accounts across multiple devices. In addition, this meant

that only trends and patterns in the statistics of the game data could be observed.

Control P1 P2 P3 Total

Game accounts 20 62 195 89 366
Games played 269 168 692 326 1455
Unique devices 10 34 152 68 264
Unique games played 265 118 422 134 939
Unique turns 1482 329 1007 248 3066
Unique game actions 363 130 216 48 757

Table 6.1: High level statistics of game related data
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Of particular importance, was the observation of diverse player interaction. In

this instance, out of the 1455 games played, 939 games were unique. A unique

game indicates a signature set of actions (i.e, a hash of the game) from start to

end, where no other game is the same (excluding the concept of time, such as the

time it took to perform an action). In addition, out of all of the games played,

3066 unique game turns were observed, where a unique turn is a signature of a

player’s turn (e.g., turn number, roll, and move).

When not considering a player’s turn number within the game action’s sig-

nature, there can only be 384 legal move signatures (i.e., number of dice rolls

multiplied by the squares in which a player can land on). Despite this, 757 unique

game actions were observed. This indicates that there were a number of illegal

actions performed as a result of anomalous behaviour.

In addition to game data, a number of authentication and authorisation re-

quests were observed (Table 6.2). The high number of failed authentications is

largely due to a number of (unsuccessful) SQL injection attacks against the game’s

account login page. Whilst SQL injection attacks provide an additional perspec-

tive to the types of attacks targeted towards the game, these are viewed as external

attacks and therefore out of scope of SAAF.

Control P1 P2 P3 Total

Authentication requests 34 175 880 616 1705
Granted authentication 31 104 395 177 707
Failed authentication 3 71 485 439 998
Authorisation requests 6174 2430 9446 3485 21535
Granted access 6174 2262 9109 3292 20837
Denied access 0 168 337 193 698

Table 6.2: Authentication and authorisation statistics

Regarding authorisation, 21,535 requests were observed, evidential of the ex-

tent of player activity. A number of these authorisation requests were denied, rep-

resentative of the SAAF controller modifying subject access rights during game

play. Whilst 20,837 requests were granted by the PERMIS authorisation service,

the actual number of actions performed within the game are not one-to-one (see

Appendix C, Table C.1 and Table C.2). For example, in phase 1 a number of rolls

were performed within the game where no authorisation request had been made

or was granted. This is evidence of users bypassing authorisation within the game

resource.
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Player Behaviour

Whilst not a prominent focus of the evaluation, a high level analysis of player

behaviour is discussed in Appendix C.3. The analysis identified a number of

trends that reflect the controller’s perception of malicious behaviour. However, it

also demonstrated the challenges in defining malicious behaviour.

For example, comparing player activity from the control phase and other

phases demonstrated little correlation in terms of high level activity (e.g., time

to perform actions or finish a game, number of actions per game, etc.). Only by

observing particular contextual features of player behaviour (such as roll to move

ratio) demonstrated clear differences to malicious and non-malicious activity. This

emphasises the fact that observation of non-contextual activity (such as rate of

access) is limited in detecting wider scopes of malicious behaviour.

6.5.3 Detection and Mitigation

Over the course of experiment phases 1 to 3, 1246 violations were detected (Ta-

ble 6.3). Out of the violations detected, 1203 violations triggered a resultant

mitigation, whereby a solution was enacted by the SAAF controller.

P1 P2 P3 Total

Violations detected 228 738 280 1246
Violations mitigated 219 717 267 1203
Mitigation failures 9 21 13 43

Table 6.3: Violation statistics

The SAAF controller was shown to respond to 97% to the violations detected.

However, 43 mitigation responses had failed for a variety of reasons. The majority

of these failures were due to the SAAF controller identifying several violations in

a single adaptation cycle. A limitation in the SAAF prototype is that it handles

multiple violations in an sequential fashion, meaning that it mitigates the first

violation before mitigating the next. Should SAAF have already performed a

mitigative act (e.g., remove subject access) for the same subject, and attempted

to do so for the next detected violation, it would throw an exception (as access

had already been removed). This was the case for 20 of the failed mitigations.

The remaining 23 violations occurred in phase 2, where the resource probe failed

to report the malicious behaviour due to an error in its configuration.

There were also 50 violations caused by players within the control phase. These



CHAPTER 6. EVALUATING SAAF THROUGH GAMIFICATION 183

violations were representative of genuine player mistakes, and were associated

with low severity violations. Moreover, they were typical of early games that

control players had played. This identified that despite playing the game hon-

estly, some control players would perform genuine mistakes, and their resultant

behaviour would have triggered a mitigative response in a real deployment. The

fact that these violations occurred suggests that some of the deployed behaviour

rules should have been relaxed, or additional considerations made for essentially

‘untrained’ subjects.

Violations

Figure 6.4 conveys the percentage of violation types that were detected in phases

1 to 3. Violations rollMove and illegalMove represent the most common vio-

lations. These types of violations are considered to be the two easiest forms of

attack, as they require little technical ability, and are opportunistic to the point

that malicious subjects can perform the violation in every game turn.

Figure 6.4: Percentage of detected violations by type

Violations ignSnake and upSnake are not so obvious, but still require little

technical ability to perform. However, there was a greater percentage of ignSnake

violations which is assumed to be because the violation was more obvious to com-

mit (sharing similar characteristics to illegalMove). In addition, more sophis-

ticated violations, such as rollInjection and moveInjection were seen to be

rare. This indicated that fewer participants had the technical ability to perform

complex attacks, such as code injection or session poisoning.
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Lastly, a large proportion of detected violations stemmed from activity directly

from the resource. This highlights the fact that observation of access logs alone

from an authorisation service limits the detection of not only some of the more

severe violations, but reduces the scope of behaviour that can be analysed.

Mitigations

In regards to mitigation, it was expected that the SAAF controller would identify

and perform an appropriate adaptation in response to a malicious subject’s current

and past behaviour. For example, a subject who persistently performs low level

violations over time would gradually lose their access, and may be warned about

this prospect in the process. In contrast, a subject who performs a severe violation

(e.g., code injection) would immediately lose their access.

Figure 6.5: Breakdown of violations and mitigations

Figure 6.5 portrays a a complete percentage breakdown of mitigation strate-

gies enacted, and a breakdown of the most common strategies enacted against

a particular type of violation. The most common violations, such as rollMove,

illegalMove, and ignSnake were typically responded with solution S0, where

the decision to do nothing was chosen. This is due to the fact that many of these

violations were a malicious subject’s first time offence, and from the controller’s

perspective did not warrant adaptation. Mitigation of such violations were fol-

lowed up with enactment of solution S1, where the decision to warn the subject

was made, before lowering the malicious subject’s level of access. Lastly, the

majority of high severity violations, such as rollInjection and moveInjection
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were mitigated via an immediate removal of access, preventing malicious subjects

from completing a game.

Controller Performance

The performance of the controller was observed in each phase, recording the time

it took to decide and act on a detected violation. In addition, snapshots of the

ABACM access control model were also recorded, as to correlate size of the access

control model with the performance of adaptation.

Figure 6.6: Total mitigation time versus model size

Figure 6.6 portrays a snapshot of performance time in enacting solution S2

(lower subject access) against the size of the controller’s ABACM . Outliers be-

yond 200ms were removed, which were representative of the problems caused by

Java warmup, as discussed in Chapter 5’s experiments. However, there were still

fluctuations in response time, meaning that as the SAAF controller performed

adaptations in quick succession, the performance became more efficient.

Observing the linear interpolation of the results, where the size of the model is

1000 (including all elements and associations), performance is shown to be 89ms.

In regards to a model size of 3000, the linear interpolation shows performance

at 103ms. As a result, it can be said that as the size the controller’s ABACM

increased (due to new game accounts being created), the time to adapt increased

at a linear rate.
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6.6 Evaluation of Hypotheses

This section seeks to demonstrate the hypotheses proposed in Section 6.2, by

analysing a set of attacks, and discussing dependent variables relevant to each

hypothesis.

6.6.1 H1. Adaptation mitigates malicious subject activity

To demonstrate this hypothesis, the following exemplifies three different attack

profiles that were observed throughout the experiment phases. They demonstrate

how the SAAF controller mitigates malicious behaviour under differing circum-

stances, but also highlights some of the limitations that self-adaptive authorisation

is faced with.

Mitigation of persistent weak violations

Single instances of low level violations (i.e., rollMove, illegalMove, ignSnake) alone

do not necessarily warrant adaptation. This is a result of the SAAF controller

tolerating a threshold of low level violations before adaptation. However, subjects

who persist in committing such violations are faced with adaptation, as it is

considered that repeat violations increase the confidence in malicious intent.

Such a profile of activity was typical of malicious subjects committing the

simplest types of violations, and also the most prevalent form of activity observed

and mitigated by the SAAF controller. Taking a sample of games with more than

5 violations (characterising a persistent attack profile), 229 games were recorded,

whereby all players exhibited low level violations leading to the eventual loss of

access.

Figure 6.7 captures a game trace that fits this profile, in the form of number of

changes observed over time. It portrays the player’s changes in terms of requests

sent to the authorisation service and corresponding actions made in the game,

as well as adaptation as a result of the SAAF controller. Here, the player is

repeatedly committing the violation rollMove and ignSnake in order to beat the

game. The time at which these violations occurred and the SAAF controller’s

corresponding mitigation are shown in Table 6.4.

Note that at certain points in this game, the player had clicked on the dice

roll action rapidly. This triggered multiple requests to roll before the game had

even responded to the initial request. As a result, there are more roll requests
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Figure 6.7: Trace of a persistent weak violation profile against mitigation

Step Game Violation Enacted Solution Time
Time (s) (ms)

1 40 rollMove noAdaptation (S0) 53
2 67 rollMove warnSubject (S1) 51
3 88 ignSnake lowerSubjectAccess (S2) 152
4 92 rollMove lowerSubjectAccess (S2) 105
5 128 ignSnake lowerSubjectAccess (S2) 100
6 140 rollMove removeAllSubjectAttributes (S3) 216

Table 6.4: Adaptation trace of an persistent weak attack game

than actual rolls. A normal game would demonstrate a tight correlation between

authorisation requests and corresponding game actions.

After each violation, the SAAF controller performs a mitigative decision. Ini-

tially the decision to do nothing (S0) is chosen, indicative of low level violations as

a first offence. However, as the player persists in committing low level violations,

the controller opts to first warn the player (S1), followed by repeatedly lowering

the subject’s access (S2).

In terms of evidence of mitigation, at 92 seconds into the game, the player lost

access to use ladders, due to adaptation. When the player eventually landed at

the base of a ladder and requested access to use the ladder, the player’s access

was denied. In addition, at 140 seconds into the game, after observing 6 low level

violations, the SAAF controller removes all access from the subject (S3). As a

result, the player’s last action (a roll) is denied by the authorisation service, given

that the player no longer has the necessary access rights to access the game.
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Mitigation of immediate high severity violations

A more severe attack profile is one that contains single or multiple instances

of sophisticated violations (i.e., as a consequence of code injection). In these

instances, the SAAF controller must mitigate the subject immediately, as such

violations are viewed upon as clear evidence of malicious intent.

Throughout the course of phases 1 to 3, 43 games exhibited an attack profile of

a single sophisticated violation (whereby the game contained no other violation).

This is said to be the profile of a determined attacker, one who is aiming to beat

the game in a single turn or less, via the smallest set of changes.

Figure 6.8: Trace of an immediate high severity violation against mitigation

Step Game Violation Enacted Solution Time
Time (s) (ms)

1 29 rollInjection removeAllSubjectAttributes (S3) 128

Table 6.5: Adaptation trace of an immediate strong attack game

Figure 6.8 and Table 6.5 portray the trace of a game that fits this attack

profile. The player performed three authorised actions within the game, being a

sequence of ‘Start’, ‘Roll’, and ‘Roll’. In this instance, the second ‘Roll’ action was

in actual fact a code injection attack, where the player had superficially increased

the roll amount to 64 (beyond the legal range of 6). Consequently the illegal roll

was identified by the resource probe, and pushed as a signature type violation to

the SAAF controller. As a result, the SAAF controller removed all of the subject’s

access (S3), ensuring that future actions of the player are denied.
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An interesting observation of this attack, is that the player who requested (and

obtained) access to perform the roll, performed the action after a long delay (13s).

This is unusual as a normal game exhibits a near immediate change in response

to a granted authorisation request. This suggests the player was executing the

game via a debugging tool, where the client code could be paused, updated, and

executed, post-authorisation.

Mitigation of violations after game completion

A final attack profile is one considered where mitigation occurs, albeit the mali-

cious player is successful in completing the game. In this instance, a player may

be capable in performing a sophisticated attack at the point at which they re-

quest access to finish the game. As a result, the SAAF controller may detect and

mitigate the player’s access only after the game has been completed.

This type of attack profile would have enabled a player to beat the game in

zero turns, the lowest possible score. However, during the course of phases 1 to 3,

no such attack profile was observed, despite the successful unknown attacks that

had triggered the end of each phase.

In order to highlight this behaviour, the trace log conveyed in Figure 6.9

and Table 6.6 has been purposely executed in a controlled environment. In this

example trace, the attacker performs two actions, ‘Start’ and ‘End’. Here, a code

injection attack exploited a method call that prematurely ended the game before

any rolls or moves were made. The resource probe was able to notify the SAAF

controller of the behaviour, whereby the controller removed all of the player’s

access rights (S3), but only after authorisation to end the game had been given.

Step Game Violation Enacted Solution Time
Time (s) (ms)

1 64 moveInjection removeAllSubjectAttributes (S3) 180

Table 6.6: Adaptation trace of mitigation post game completion

In summary, the adaptation of subject access rights at runtime has shown to be

successful in mitigating malicious subject activity. Three different attack profiles

have been demonstrated, whereby the SAAF controller has mitigated attacks using

a variety of solutions in an appropriate manner. However, in regards to mitigation

of violations after game completion, there are some obvious limitations. Here it

was possible to demonstrate an attack that could complete a malicious game, prior

to detection and mitigation of the attack.
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Figure 6.9: Trace of a mitigated malicious player post game completion

This type of outcome is primarily a consequence of the workflow-like nature

of the game. However, it also highlights the fact that the SAAF controller can

only mitigate a subject’s behaviour post authorisation. Moreover, should a sub-

ject commit a violation once access has been granted, mitigation can only prevent

future access, rather than terminate a subject’s current resource session. To com-

pensate for this, it would be necessary for SAAF to view the resource as part of

the system as opposed to its environment. Here, a SAAF controller could exhibit

control over a resource, and potentially terminate a subject’s active session post

authorisation. However, this opens up a number of challenges in regards to the

integration and deployment of effectors within protected resources.

6.6.2 H2. Experience enables sophisticated attacks

A small percentage of violations detected were sophisticated attacks (Figure 6.4),

such as code injection attacks. It was hypothesised that experience enables par-

ticipants to perform sophisticated attacks within a game.

To demonstrate this, Figure 6.10 portrays statistics pertaining to malicious

players prior to the point at which an injection attack was detected and mitigated.

Here, the number of games played versus the number of violations detected are

shown as evidence of player experience. Each data point represents at least 1

or more players (detected in performing an injection attack) that have played x

amount of games, and committed y amount of violations.

Coupled with Table C.3 (Appendix C), only 11 participants (based on devices
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Figure 6.10: Violations and games played prior to injection attacks

used) were able to perform an injection attack within their first couple of games.

Four of these were identified as committing an injection attack as their first vi-

olation, where these participants are assumed to have prior experience in ethical

hacking. By contrast, the majority of participants had played at least 3 games

with 3 violations or more, before committing an injection attack.

As a result, some players were quick to perform a sophisticated attack, whereas

many players had gained experienced via games played, and were identified in

performing a number of simple violations beforehand. In addition, it was observed

that 30 of the participants (based on device) who had been identified had also

created multiple accounts as a direct result of adaptation (prior to committing

an injection attack). In a real deployment, these participants would have been

prevented in performing such violations by mitigation in response to previously

identified violations.

6.6.3 H3. Subject behaviour changes post adaptation

This hypothesis proposes that a player, aware of adaptation, will change their

behaviour as to avoid detection or mitigation. To demonstrate this, taking a

sample of players (identified by device), violations are analysed before and after

the point at which it becomes known to the player that adaptation has taken

place. It is considered that a player is aware of adaptation once they have either

been warned of their behaviour (i.e., the controller enacts solution S1), or have

been denied access to performing an action in a game.

Table 6.7 identifies four types of changes in behaviour observed after a player’s
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Behaviour changes Participants

Did not repeat previous violation types, but performed new violation types 37
Repeated previous violation types, but performed no new violation types 26
Repeated previous violation types, and performed new violation types 114
Neither repeated or performed new violation types 0

Table 6.7: Changes in participant behaviour post-warning

first warning in regards to their behaviour. A total of 177 players were identified

to have received a warning about their behaviour. It was identified that the

majority of these players (64%) went on to continue repeating the same types of

violations detected prior to warning, but also were detected as performing new

types of violations post warning. However, 21% chose not to repeat previous types

of violations, and instead solely performed new types of violations. Lastly, 17%

simply chose to persist in repeating the same violations they had previously been

warned about.

Behaviour changes Participants

Did not repeat previous violation types, but performed new violation types 10
Repeated previous violation types, but performed no new violation types 46
Repeated previous violation types, and performed new violation types 37
Neither repeated or performed new violation types 46

Table 6.8: Changes in participant behaviour post-deny of access

Table 6.8 addresses the same four types of change, albeit demonstrating change

after a player’s first denial of access (e.g., a roll, move, ladder or bonus square has

been denied). In this case, 139 players were identified as being aware of having

their access denied at some point in their game history. In contrast to receiving

a warning, 33% of players continued to persist in performing the same violations

that had led to a denial of access, whereas only 6% of players chose not to repeat

previous violations. A significant amount of players (33%) also chose to either

stop playing the game, or halted their malicious behaviour.

Considering the two perspectives, it can be said that the majority of partici-

pants persisted with the same types of violations (i.e., behaviour) post knowledge

of adaptation. However, there is evidence to suggest that a small proportion

of players had factored in knowledge of adaptation, prior to performing future

attacks (due to not repeating violations that lead to adaptation).

An additional viewpoint considers the potential for malicious players to use

knowledge of the controller’s operation to their advantage. Given that it is possible
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for a malicious player to finish a game with violations (due to SAAF’s tolerance

of low severity violations), a scenario exists that allows a malicious behaviour to

exploit these circumstances. For example, a player who is aware that a number

of rollMove violations would result in their access being removed, could tactfully

choose when to perform the violation, and gain a greater advantage in the game.

Figure 6.11: Number of detected violations versus number of turns to win a game

Figure 6.11 portrays the number of violations observed within malicious games,

against the number of turns it took to win the game. Malicious games that took

longer to win (i.e., with a high number of turns) contained a greater number of

violations. Whereas, all of the lowest scoring games (i.e., 6 turns of less) had a

single violation. In each of these games the player had sufficient experience in

terms of number of games played, and previous committed violations. This pro-

vides some evidence to suggest that participants tactfully chose when to commit

low level violations in order to gain a better advantage in the game, which was

indicative of the number of low scoring games with low level violations.

6.6.4 Summary Conclusion on Hypotheses

Each hypothesis set out to evaluate an aspect of the success and limitations of

self-adaptive authorisation in mitigating the abuse of access rights by real and

unpredictable users.

Hypothesis 1 (adaptation mitigates malicious subject activity) identified

that the SAAF controller was capable in mitigating various forms of malicious

behaviour, where users adopted different strategies to beat the game. This was

necessary to demonstrate the robustness of the SAAF controller in mitigating
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abuse by opportunistic low severity attackers, versus determined attackers, in re-

gards to escalating appropriate solutions. Given the fact that the experiment has

provided evidence that malicious subjects were no longer capable in gaining ac-

cess, this hypothesis is seen as justified. However, one exception is that adaptation

has only been shown to succeed when faced with known violations.

Hypothesis 2 (experience enables sophisticated attacks) analysed player vi-

olations over time. This provided insight into the prominence of high severity

violations within the game. Whilst players were aware they could carry out mali-

cious activity to beat the game, statistically, many players opted to attempt simple

attacks first before carrying more complex attacks (e.g., code injection). In a real

deployment, only a small percentage of players would have been capable of first

performing a high severity violation, where many players would have already lost

their access rights due to prior violations. This indicates that a SAAF deployment

is well suited to handling numerous low level attacks, and as a consequence, is

able to prevent malicious subjects from gaining enough experience to carry out

more complex forms of attack.

Hypothesis 3 (subject behaviour changes post adaptation) evaluated the

consequences of self-adaptation through observing change in participant behaviour

post adaptation. An important aspect of this hypothesis was to address the

deterministic nature of the SAAF controller, where users are capable of exploiting

the operation of the SAAF controller given past experiences of adaptation. Whilst

many players were statistically seen to persist with the same behaviour, despite

adaptation, some players reacted to adaptation (by no longer performing a certain

type of violation). Moreover, patterns identified suggested that games completed

by players subject to prior adaptation, had tactfully performed violations to a

point where they did not lose complete access.

It is worth noting that the evidence to demonstrate hypotheses 2 and hy-

potheses 3 is based on patterns observed within the statistics of the game. These

statistics provided evidence that on the whole, more experienced players carried

out complex violations, and that players changed their behaviour post adaptation

(i.e., in terms of exploiting adaptation, or no longer persisting with a given type

of violation). However, given the limitation that player activity was analysed by

device address, it is not possible to accurately identify the participants performing

violations. Therefore, evidence can only indicate the plausibility of these two hy-

potheses. To concretely justify these hypotheses, a further experiment is required

where specific participant behaviour is assessed under controlled conditions.
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6.7 Evaluating SAAF: Success and Limitations

This section discusses the success and limitations in the evaluations of SAAF. In

addition, the consequences of SAAF in mitigation at runtime are discussed.

6.7.1 Success and Limitations of Performed Experiments

The Self-Adaptive Authorisation Framework (SAAF) has been evaluated using

simulation techniques, as well as the execution of a live environment consisting of

real users. This section addresses the success and limitations of each approach.

Preliminary analysis of SAAF in RBAC Authorisations Infrastructures,

demonstrating Runtime Model Verification

Chapter 4 conveyed a preliminary experiment into the adaptation of subject access

rights and authorisation policies, via simulation. A key focus of this experiment

was to demonstrate the SAAF prototype controller managing a simple case of

insider threat in a single organisation deployment. Primarily, the experiment

showed adaptation in a scaled down RBAC authorisation infrastructure, in order

to demonstrate the core concepts of SAAF:

• Runtime modelling of access control in a homogeneous manner, transferable

to and from diverse implementations of access control, in order to integrate

with legacy based authorisation infrastructures;

• The role of model verification in providing assurances prior to enacting adap-

tation strategies;

• The mitigation of malicious behaviour via the runtime adaptation, transfor-

mation, and deployment of subject access rights and authorisation policies.

This evaluation should be viewed as an introduction to what SAAF can

achieve. It is built on simulating characteristics of a real historic case of insider

attack. However, there are some limitations. Specifically, self-adaptive authorisa-

tion introduces several new concepts that traditional deployments of authorisation

infrastructures do not consider. These include a definition of the perception of

malicious behaviour, as captured by the controller’s behaviour policy, and the

perception of adaptation constraints.
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Given the use of a historic insider attack, the perception of malicious behaviour

was assumed to be that of characteristics that led to the organisation uncovering

the attack. In reality the organisation’s perception of behaviour may have been

less tolerable. Additionally, whilst adaptation constraints are similar to a set of

security requirements an organisation may use to verify their access control model,

the use of such constraints at runtime is new. The organisation that fell victim

to the attack may have defined security requirements at design time, where the

requirements cease to be relevant for runtime. As a result, the constraints used

were defined in such a way to exemplify what can be verified as part of the

adaptation process.

Simulation of Insider Threat in Federated ABAC Authorisation Infras-

tructures

Chapter 5 furthered the preliminary experiment via the simulation of insider

threat, albeit at a larger scale and within a federated ABAC authorisation in-

frastructure. In this instance, the chapter defined a fictitious case study inspired

by historic cases of insider attacks. The case study was then presented as a formal

set of environment changes within a federated authorisation infrastructure. These

changes were then simulated to stimulate malicious behaviour within a runtime

deployment of SAAF. Specifically, the evaluation demonstrated:

• A method in which to formally define and simulate insider attacks in the

context of authorisation infrastructures;

• The mitigation of simulated attacks via adaptation of subject access rights

and authorisation policies in a federated deployment;

• The escalation of adaptation in light of non-cooperating trusted business

partners (i.e., trusted 3rd party identity providers).

The application of changeload [24] provided a formal means to define a trace of

malicious behaviour within a target system. The advantages of repeatedly using

the same trace of malicious behaviour during simulation has demonstrated the

consistency of the SAAF controller’s actions, and also what adaptation can be

expected after a sequence of change. However, a limitation is that such an ap-

proach cannot evaluate how a controller may respond to diverse and unpredictable

change. Therefore, as evident in this current chapter, it was necessary to place a

deployment of SAAF in a live environment with real users.
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Live deployment of SAAF in a real world ABAC Authorisation Infras-

tructure

In this chapter SAAF has been evaluated in handling the abuse of access within a

live and unpredictable environment. The approach was necessary in order demon-

strate the following:

• The ability to handle malicious behaviour in a live environment;

• To identify how malicious subjects may react to adaptation in a real deploy-

ment.

Gamification has enabled for a real-world like environment in which to capture

unpredictable change. This has been critical to evaluating SAAF in as close to a

real world deployment as possible. Gamification has many strengths, in particular

it presents an environment that participants have familiarity with and can easily

understand. In addition, it promotes competitive behaviour amongst participants,

and as such the experiment was able to capture a diverse range of data. Lastly,

gamification enabled the emulation of real-world resources, capturing concepts

that exist in any typical application an organisation aims to protect. For instance,

it was possible to emulate application work-flow in a resource (i.e., the game logic

and rules), govern access to functions and processes (i.e., actions within the game),

and enable participants to cause an impact on the resource (i.e., interaction with

the game’s leader board).

Of course there are several limitations that exist with this evaluation approach.

Firstly, whilst gamification has been shown to be an effective means of generating

data, symbolic of subject behaviour, it can only be seen as an emulation of a

real-world deployment. A more realistic experiment would have been to deploy

a virtual organisation with several resources, such as databases, and web servers,

etc. However, given the fact that the experiment relied on human participation,

it would have required participants to adhere to a specific role in the virtual

organisation. This limits not only the scope of participation, but opens up several

challenges in how to define the perception of malicious behaviour (whereas for a

real organisation, this perception may already exist).

Additionally, it was decided not to enable model verification at runtime for this

experiment, limiting the evaluation of model verification in a live environment.

This was due to the fact that participants had no awareness of their position in

the fictitious organisation (making adaptation constraints irrelevant). Second to
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this, was the costly performance times as a consequence of model verification,

making it ineffective for the timespan of a game.

6.7.2 Consequences of Self-Adaptive Authorisation

Self-adaptation has been shown to successfully mitigate the abuse of access

through the automated management of authorisation infrastructures. With this

in mind, it is important to address the side-effects and emergent vulnerabilities.

Subject response to adaptation

The gamification approach provided an interesting perspective into how human

subjects may respond to mitigation. It can be surmised that although adaptation

had the desired effect in mitigating violations, as a consequence it may spur more

severe violations, subject attempts at subterfuge, and exploitation of the controller

itself. Notably, the gamification experiment identified that some subjects changed

their behaviour post adaptation, and in some cases carried out more extreme forms

of attack. This was compounded by SAAF’s deterministic nature, demonstrating

to some extent that subjects were able to exploit mitigation.

As a result, it is necessary to not only consider the need for adaptation, but

also consider the timing of when to perform adaptation. Incorporating a notion

of time as part of SAAF’s planning mechanisms may enable more appropriate

decisions in mitigating abuse. For example, decisions that consider the need to

collect further evidence of abuse may well prevent a subject in performing future

attacks or exploiting the operation of the controller.

Wrongful adaptation

The SAAF prototype controller has been demonstrated in detecting malicious

behaviour using heuristic based rules. In all experiments these rules are assumed

to be reflective of an organisation’s legitimate perception of malicious behaviour.

Whilst this approach has been successful in demonstrating the closing of the

self-adaptive loop, the detection approach is considered limited. The approach is

limited as it is unable to identify unknown attacks, and has no ability to maintain

a fluid perception of malicious behaviour. Moreover, the perception of malicious

behaviour changes at runtime, creating potential scenarios where adaptation trig-

gered by a given state may no longer be appropriate in a similar future state.
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In addition, it was identified that during the control phase of the gamifica-

tion experiments, participants made genuine mistakes that triggered violations.

Therefore, considering additional context (e.g., if a subject is untrained) prior to

adaptation may become a necessity.

Vulnerabilities of self-adaptive control

Self-adaptation introduces additional vulnerabilities that build on those within

traditional systems. These vulnerabilities were initially identified in Chapter 3

(Figure 3.2), where attempts could be made to falsify subject behaviour, imitate

the controller to gain indirect control of authorisation, or disrupt the controller’s

operation through denial of service attacks.

Whilst measures are put in place to protect against some of these attacks

(such as through the use of mutual client authentication [7]), many of these areas

of vulnerabilities present future research challenges that must be addressed. For

example, had a participant within the gamification experiment uncovered the

controller’s service endpoints, an attacker could have performed a denial of service

attack against the controller in order to disrupt observation of their activity, or

disrupt adaptation from being performed. As such, a participant could have

bypassed mitigation to successfully perform (and continue to perform) known

violations to their advantage.

6.8 Summary

In summary, this chapter has demonstrated gamification as an approach for the

evaluation of self-adaptive software systems at runtime. Gamification is a tech-

nique in which online games are deployed to solve complex problems and generate

real meaningful data. It can enable the generation of diverse and unpredictable

change representative of intelligent user behaviour, pre- and post-adaptation.

This chapter has demonstrated gamification as a viable approach for the eval-

uation of self-adaptive software systems. Using gamification, the Self-Adaptive

Authorisation Framework (SAAF) was shown to be able to mitigate the abuse of

access rights in a diverse and live environment. This was achieved through the de-

ployment of an online game, protected by an authorisation infrastructure. A live

experiment captured a wide range of unpredictable change generated through the

online game, including malicious behaviour related to the exploitation of known

vulnerabilities. This demonstrated SAAF’s ability to handle malicious behaviour
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given the existence of real and intelligent users, in addition to capturing how users

responded to adaptation.

Through the live experiment, this chapter has identified some key outcomes

and future challenges applicable to self-adaptive authorisation. Notably, a small

number of unknown attacks during the live experiment were successful. As a re-

sult, additional detectors had to be manually configured in order to detect future

instances of the attacks. This is representative of the limitations in the SAAF pro-

totype’s current detection techniques, and enforces the need for future approaches

to evolve at runtime once an unknown attack has been successful.

In addition, it was observed that malicious subjects may change their be-

haviour upon awareness of adaptation. In some cases, subjects began committing

more sophisticated violations, or chose not to repeat previously detected types

of violations. To compound this, there was evidence to suggest that subjects

were tactfully choosing when to commit low level violations (to their advantage),

as a result of understanding the deterministic nature of the SAAF controller.

This poses a challenge that future approaches must consider, which is the fact

that self-adaptation could lead to malicious subjects attempting to subvert de-

tection, commit more damaging forms of attack, or exploit the very nature of

self-adaptation to their gain.



Chapter 7

Conclusions

This thesis has presented a framework in which self-adaptation is used to enable

the automated management of authorisation infrastructures. Through the instan-

tiation of the framework, it has been established that authorisation infrastructures

are able to observe, reason, and act at runtime on their configuration of access

control. This was achieved through the use of an autonomic controller that is

able to mitigate the abuse of access (i.e., insider attacks) through the runtime

modelling and adaptation of access control policies and user privileges.

In addition, a prototype implementation of the framework has demonstrated

that a self-adaptive authorisation infrastructure is able to detect, analyse, verify,

and enact appropriate solutions to mitigate abuse. To this end, the prototype

has been instantiated in two authorisation infrastructures, namely, a centralised

RBAC [97] deployment, and a federated [93] ABAC [58] deployment.

The framework has been evaluated from a number of perspectives. This in-

cludes the simulation of insider attacks in centralised and federated authorisation

infrastructures, as well as evaluating the framework in a live user experiment,

while mitigating diverse and unpredictable attacks by human participants.

The rest of this section is structured as follows. Section 7.1 provides an

overview of the thesis contributions. Section 7.2 provides a discussion of the ap-

proach, and its application. Section 7.3 identifies the limitations of the approach.

Lastly, Section 7.4 proposes future directions of research.

7.1 Thesis Contributions

The goal of this thesis was to design, and evaluate a framework for the runtime

management of access control. The following identifies the main contributions:

201



CHAPTER 7. CONCLUSIONS 202

1. A framework that enables the automated management of authorisation in-

frastructures through self-adaptation, where abuse of access is mitigated

through runtime adaptation of access control policies and user privileges.

2. An approach that has enabled, at runtime, the automated modelling of the

configuration of access control within distributed and complex systems.

3. The automated management of federated identity providers, enabling the

mitigation of abuse of access across multiple management domains.

4. The evaluation of self-adaptive software systems using gamification as an

approach since it is necessary to trigger self-adaptation under diverse and

unpredictable change.

7.2 Discussion

Through the design and evaluation of the Self-Adaptive Authorisation Frame-

work (SAAF), it has been shown that existing access control methodologies and

their implementing authorisation infrastructures can be made self-adaptable. By

observing and analysing unexpected environmental changes at runtime, it is pos-

sible to detect and mitigate malicious user behaviour. Here, the use of autonomic

controllers, probes, and effectors, has enabled the observation and control of au-

thorisation infrastructures. Punitive measures are automatically enacted in light

of malicious behaviour, whereby a malicious subject’s right to access is limited or

removed.

In addition, model driven engineering has been shown as an effective means to

develop models that provide a homogeneous perception of the runtime configura-

tion of access control. This has enabled autonomic controllers to obtain knowledge

of their target system in order to make informed decisions when identifying and

mitigating the abuse of access. It has also enabled the observation and adaptation

of diverse implementations of a given access control model (e.g., RBAC). Here,

autonomic controllers are able to transform between the modelled configuration

of access into implementation specific formats of access control policies and user

privileges.

To summarise, there are a number of advantages that warrant this framework

as an alternative to existing approaches, in management of access control, and

mitigation of abuse of access rights:
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Mitigates at the point at which access rights are assigned and assessed,

whereby abuse of access is mitigated in a persistent fashion via the adapta-

tion of access control policies and user privileges, preventing further abuse

of access from continuing in other systems and organisations.

Is reactive by preventing or limiting access once subjects are known to be ma-

licious, as opposed to transient approaches that temporarily restrict access

based on a perception of risk and usage, regardless if a subject is malicious

or not.

Promotes separation of concerns from the decision of awarding access, to the

decision of adapting the configuration of access. By doing so, the definition

of access control rules is not subject to the complexity of classifying a per-

ception of behaviour, which could result in errors and vulnerabilities.

Maintains and synchronises a model of the configuration of access

causally connected to an authorisation infrastructure’s runtime access

control rules and assignment of access, in a homogeneous model. This

enables adaptation to be relevant to the current state of access within an

organisation, whilst considering the impact of varying adaptations over

time, as new subjects and access rights are observed.

Provides assurances when mitigating the abuse of access through run-

time model verification prior to the enactment of adaptation, safeguarding

against inappropriate adaptations from taking place (i.e., adaptations that

conflict with an organisation’s security requirements).

Deployable in existing authorisation infrastructures thus enabling self-

adaptation of any legacy based implementation of access control. This avoids

the need to migrate to new authorisation infrastructures and access control

models in order to gain the benefits of dynamic access control.

7.3 Limitations

As part of the evaluations of the proposed Self-Adaptive Authorisation Framework

(SAAF), several limitations have already been identified. This section presents a

summary of some of its limitations.

Using a self-adaptive approach, one of the clear limitations is the introduction

of vulnerabilities [29] that a traditional system does not exhibit. Notably, the role
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of an autonomic controller in this work is to detect malicious behaviour and mit-

igate such behaviour through the control of authorisation infrastructures. Whilst

mutual client authentication can be used to assure the inputs and outputs of the

autonomic controller, these entry and exit points are vulnerable to attack. For

instance, a denial of service attack on the controller could prevent or limit probe

information from being received, therefore allowing abuse to go unnoticed.

A similar limitation concerns the need for probes and effectors. Whilst these

components may already exist, their development will become essential in enabling

observation and control [7]. If vulnerabilities exist in deployed probes and effec-

tors, it may allow an attacker to gain control of the authorisation infrastructure.

Another limitation is the assumption that an authorisation infrastructure’s

protected resources operate as intended with respect to access control. The effec-

tiveness of mitigation is dependent on how policy enforcement is achieved within

protected resources. For example, if a resource policy enforcement point does

not enforce a fine granularity of control (i.e., requesting access per operation the

subject is to perform), the extent of control in mitigating abuse is restricted.

Another limitation is that SAAF is unable to reflect on the success of adap-

tation. SAAF utilises static analysis to decide upon appropriate solutions to

malicious behaviour, whereas dynamic analysis would utilise feedback from the

success or failure of solutions as part of future mitigation. As such, it can be said

that SAAF may result in redundant attempts at adaptation. This was evident

within Chapter 5’s federated experiment, which demonstrated how SAAF handles

the failure of an identity service effector.

Lastly, there are some limitations in the manner that SAAF detects and mit-

igates malicious behaviour. Whilst SAAF’s reactive approach is viewed as a suc-

cessful means to mitigating malicious behaviour, it cannot predict and thus pro-

tect before an attack has begun. In addition, SAAF’s reactive approach strives

to mitigate malicious behaviour in a timely manner, whereby given an attack,

an appropriate solution is identified and enacted. However, mitigating attacks

immediately may not be preferable, when it may be necessary to collect further

evidence of abuse, before enacting a solution (as observed in Chapter 6).

The above has listed some limitations associated to SAAF. In the following, a

number of limitations are discussed related specifically with the SAAF prototype

that was built. One of these limitations is related to detection activities. Detection

was based on a classic intrusion detection technique [120], whereby heuristics are

used to define a fixed perception of malicious behaviour. For now, this technique
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served its purpose in providing a means to identify violations for a controller to

act on. However, in the real-world, the perception of malicious behaviour is rarely

fixed, requiring the controller to evolve its perception of malicious behaviour at

runtime. In addition, only ‘known’ violations can be detected, meaning malicious

behaviour that has not been identified within the controller’s behaviour policy

cannot be mitigated. This was evident by the success of some of the attacks

observed within Chapter 6’s gamification experiment.

Some limitations also exist within the prototype controller’s solution selection

activity. Whilst this was shown to work well in selecting appropriate solutions to

a given case of malicious behaviour, solutions selected are by no means optimal.

For instance, solutions are selected using a cost sensitive modelling approach in

calculating the trade-offs between enacting a solution and allowing a malicious

subject to continue their activity. As a consequence to this, only a small set of di-

mensions are considered in comparing such trade-offs. Additionally, the notion of

cost could be considered artificial, and in some cases difficult to quantify, limiting

its application to a diverse range of insider threat scenarios.

Lastly, it was also shown that the prototype’s deterministic nature in mitigat-

ing malicious behaviour can be exploited. For instance, in Chapter 6’s gamification

experiment, evidence suggested that players with experience of SAAF’s operation

were able to gain an advantage in beating the game (dishonestly). This highlights

limitations in SAAF’s solution selection activity, as well as the simplified planning

stage that was necessary to demonstrate closing of the feedback loop.

It is arguable that the risk of exploiting the prototype’s deterministic behaviour

is relatively low, given it is expected for the prototype to perform persistent adap-

tation (thus preventing a malicious subject from continuing to gain experience of

the controller, and carry out attacks). However, it must not be ruled out that

subject(s) may be working collaboratively, or have other access to other identities

in which to attack a protected resource with. This is especially significant to fed-

erated environments, where a user can maintain a digital identity with multiple

identity providers (e.g., Facebook, Twitter, and Google).

7.4 Future Work

Beyond addressing the identified limitations, the following presents future direc-

tions of research. Given that this thesis has presented the first steps towards
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self-adaptive authorisation, further work needs to be done. This entails improve-

ments to detection, solution selection and verification, and the identification of

vulnerabilities consequential of self-adaptive authorisation.

Detection of Malicious Behaviour

Mitigation of abuse of access rights has solely been demonstrated through the

use of detecting ‘known’ patterns of malicious behaviour. To expand on this, it

is important to adopt anomaly and learning based detection techniques [33] to

identify unknown attacks. However, this presents several challenges:

• Dynamic identification and observation of behavioural parameters to observe

and detect anomalies within a diverse and evolving environment;

• Evolve the perception of anomalous behaviour in order to maintain relevance

and accuracy in detection;

• Classification of impact of anomalous behaviour to enable the selection of

appropriate solutions.

Self-adaptive systems are particularly well placed to resolve some of these

challenges. For example, a self-adaptive system can observe its environment to

gain a clearer understanding of subject behaviour (e.g., monitoring context to

legitimise detected anomalies). In addition, dynamic analysis [134] can be used to

analyse feedback regarding the success of previous detections in mitigation, and

used to strengthen the confidence in reoccurring anomalies warranting adaptation.

Solution Selection and Planning

The experiments identified that the deterministic nature of the Self-Adaptive Au-

thorisation Framework (SAAF) could enable an attacker to exploit SAAF con-

trollers. To deal with this, an element of randomness is required.

For example, planning could consider incorporating random delays [39] before

enacting adaptation, as well as implementing a non-deterministic algorithm [52],

where no one violation is mitigated in the same way. This may require a move to

automating the generation of planning processes [40], whereby diverse alternative

plans can be produced to mitigate violations. However, a challenge in regards to

instilling non-deterministic self-adaptation concerns the provision of assurances.
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A non-deterministic approach risks jeopardising assurance where adaptation may

no longer be appropriate (e.g., a random delay prolongs ongoing abuse of access).

Lastly, future approaches in planning will require the use of utility based func-

tions [36] that can consider a wider range of dimensions when selecting solutions.

For example, solution selection should consider impact to individual subjects and

cost of enactment, but also factor in criticality of attacked resources, a perceived

level of threat to the organisation, and risk of failure in enacting adaptation.

Assurances over Adaptation

Verification of adapted models of access demonstrated assurances against inappro-

priate adaptation. The verification of access control models at runtime is a new

problem created by SAAF, where it was shown to be costly in performance. A

study of alternative approaches [59, 153] is required to identify a solution to these

performance issues, where timely verification of access control models at runtime

is essential. For example, impact change analysis [51] has the potential to improve

upon performance, whereby only a relevant scope of an adapted model is verified.

Lastly, a flexible approach to verification should be applied, as opposed to

the mandatory verification of all adaptation constraints. As such, it would be

necessary to incorporate a dynamic approach where requirements can evolve at

runtime to ensure relevant and appropriate adaptation [137].

Vulnerabilities as a result of Self-Adaptation

Another direction of research is to identify vulnerabilities that self-adaptive sys-

tems introduce. Whilst this thesis has described a high level attack model for

SAAF in Chapter 3, clearly the threat from attacks on the self-adaptive system

should be addressed further. This is compounded by the evidence of exploitation

of the SAAF autonomic controller within Chapter 6’s gamification experiment.

As such, there are two areas of future research to consider. The first is the

prospect of vulnerabilities introduced as a result of adaptation (e.g., adaptation

resulting in weaknesses in access control). The second is vulnerabilities that

arise as a result of the existence of self-adaptation (e.g., exploitation of probes,

effectors, and controllers). In regards to the former, this is closely related to

providing assurances over adaptation. However, the latter is rarely responded to

within the literature [150], and viewing self-adaptation as an active solution in

mitigating malicious behaviour, should address such vulnerabilities.



CHAPTER 7. CONCLUSIONS 208

In summary, this thesis concludes that self-adaptive authorisation has been

shown to be a critical step in enabling access control in handling dynamic risk

at runtime, given uncertainty in user behaviour. It has presented the first steps

to handling such risk, through the runtime self-adaptation of authorisation

infrastructures. As such, this thesis has demonstrated the feasibility of the

approach through simulation and live user experiments. In addition, a number

of future directions of research have been presented, whereby the emergent

challenges of self-adaptive authorisation should be addressed.

Going forward, further details about the research and future publications can be

found at https://saaf-resource.kent.ac.uk.
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SAAF Prototype

A.1 Prototype Code Base

The prototype was developed using a mixture of technologies, predominantly Java

1.7, PHP 5.5, XML, SQL, and ATL. It comprises a standalone autonomic con-

troller, an LDAP probe, a PERMIS probe, a generic resource probe, a SOAP

based SimpleSAMLphp identity provider effector, an attribute certificate effector,

LDAP client tools, and several model transformation programs. These compo-

nents have all been used in evaluations of SAAF, through Chatper’s 4 to 6.

Autonomic Controller

The autonomic controller was developed in Java 1.7 and is implemented across 11

packages.

• saaf.com.default (Main): This package essentially processed the initial

configuration parameters of the controller, and initiated the controller. It

provided a basic command line interface in order to process instructions

at run-time, such as halt adaptation, or restart the authorisation service.

These commands were predominantly used during testing.

• saaf.com.permisLauncher: Given the limitations of PERMIS, it was nec-

essary for the controller to be capable of restarting the PERMIS authori-

sation service. This was in order to activate recently adapted policies (as

PERMIS had no means to activate polices at runtime).

• saaf.com.permisClient: The permisClient is an in-built probe used to

detect policy changes and access events within a PERMIS authorisation

209
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service. It operated via the host operating system in order to detect system

and environment change exhibited by PERMIS. The package is executed in

terms of a ‘pull’ mode, where it constantly seeks to identify change.

• saaf.com.ldapClient: The ldapClient is an in-built probe and effector

used to directly observe changes in an LDAP directory as well as carry out

changes in an LDAP directory. The package is operated both in a ‘push’ (to

make changes to an LDAP directory) and ‘pull’ (to identify changegs in an

LDAP directory) mode.

• saaf.com.soapService: This package implements the prototype’s SOAP

web service. Upon initiation, the controller would deploy its SOAP service

and listen on a specific port so that it may receive data from external probes.

It implements a set of web service functions in order to receive different types

of changes within an authorisation infrastructure.

• saaf.com.abac: The abac package provides an implementation of the

ABAC metamodel, defined using Eclipse EMF. The package maintained

an ABAC model manager which facilitated the creation, interaction, and

identification of change with an ABAC model. This provided the prototype

the ability to generate and maintain a modelled state of access.

• saaf.com.behaviourModel: The behaviour model provides an implemen-

tation of the prototype’s behaviour metamodel. It implements a model

manager in which to capture behaviour, violations and statistics about sub-

jects derived from gauges. This is a bespoke package developed outside of

Eclipse EMF, but makes references to the types maintained in the proto-

type’s ABAC model.

• saaf.com.monitor: This package provides an implementation of the proto-

type’s monitoring stage. Specifically, its goal is to process detected changes,

either directly from the prototype’s internal LDAP and PERMIS client, or

via the prototype’s SOAP web service. The monitor aims to generate and

populate gauges, as well as parsing triggers in order to guide its processing

of detected events. In addition, the monitor executes model transformation

programs in order to build implementation specific models, and transform

them into the relevant ABAC model.
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• saaf.com.decisionEngine: The decision engine package provides an im-

plementation of both the Analyser and Planner components. Given the fact

that the planner component is a relatively simple implementation, it was

decided to combine this with the analyser package. The analyser performs

a cost sensitive calculation to determine the impact of detected violations,

as well as interacts with the behaviour model to maintain a view of subject

violations. The planning aspect implements a second cost sensitive calcula-

tion in which to identify an appropriate solution. Once completed, it builds

an executable plan (in terms of a Java Object) that can be executed by the

executor package.

• saaf.com.executor: The executor package implements a simple executor

which acts as an interface to effectors. It maintains the ability to execute

a plan object by transforming attributes of a plan into actions, such as the

generation and sending of XML SOAP messages. It maintains the ability

to identify the failure of a plan to execute, and can request additional plans

from the decisionEngine.

• saaf.com.utils: The utils package provides a set of classes to enable com-

mon functions within the prototype, such as initiating HTTPS connections,

logging mechanisms, and configuration parsers.

In total there are 58 classes across all packages, 654 methods, and 6581 lines

of code (not including model transformation programs, probes, effectors, and 3rd

party packages). In addition, besides the standard Java packages included in Java

1.7, the controller prototype made use of the following 3rd party Java packages:

• bcprov-jdk16-146 (BouncyCastle: for X.509 certificate generation)

• commons-codec-1.4 (Http Client)

• jnotify-0.94 (Integration with host file system)

• org.eclipse.core (Eclipse modelling framework)

• org.eclipse.emf (Eclipse modelling framework)

• org.eclipse.m2m.atl (ATL transformation language)

• org.eclipse.osgi (Eclipse implementation to generate dynamic component

models in Java)
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• org.eclipse.uml2 (Eclipse implementation of UML2)

• xom-1.0d8 (XOM XML implementation for Java)

Lastly, a standalone executable of rbacDSML was used in conjunction to the

prototype’s controller solution verification process. This was initiated via the

decisionEngine package.

Probes and Effectors

Besides the use of the host operating system, LDAP client tools, and internal

probes/effectors to the controller, the prototype controller made use of the follow-

ing external probes and effectors. In total these probes and effectors comprise of

1758 lines of code, developed across Java, and PHP.

1. LDAP Probe: The LDAP probe was designed to monitor changes to an

LDAP directory via direct observation of LDAP logs. It could be config-

ured to detect specific types of changes, and communicate these changes by

pushing change notifications to the prototype controller. This made use of

the prototype’s web service interface and used as part of the evaluation in

Chapter 5. The probe was developed in Java.

2. Generic Resource Probe: The Generic Resource Probe could be config-

ured to detect certain types of change events within a resource’s log files.

The probe is relatively primitive but was capable of instructing the proto-

type of changes detected in Chapter 6’s gamification experiment. The probe

was developed in Java and relied on SQL triggers to capture relevant change.

3. SimpleSAMLphp Effector: The SimpleSAMLphp effector enabled the

adaptation of a federated identity provider’s LDAP directory. It was neces-

sary to enable a federated identity provider to control the extent of adap-

tation from remote controllers. It offered two forms of functionality. One

was an automated means to prevent / accept adaptation from controllers.

The other was a semi-automated means that allowed the identity provider

to manually approve adaptation via the use of a human operator. Adap-

tation requests could be made via mutually authenticated SOAP messages

sent over HTTPS. The effector was developed in PHP and sqlLite, as well

as extending modules that already exist within SimpleSAMLphp.
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4. AttributeCertificate Effector (Effector): Enabled the generation, sign-

ing, and deployment of X.509 certificates via an LDAP directory, where a

subject’s signed access rights could be modified.

Models and Model Transformation Programs

Three Eclipse Modelling Framework metamodels were implemented to enable

transformation between the implementation specific (of LDAP and PERMIS),

to a generic ABAC model.

• saaf.emf.abac.metamodel (Defines what can exist in an ABAC model)

• saaf.emf.permis.metamodel (Defines what can exist in a PERMIS policy

model)

• saaf.emf.ldapIdentity.metamodel (Defines what can exist in terms of an

LDAP identity within an LDAP directory)

Alongside these metamodels were automatically generated (with some modifi-

cation) model management packages (to generate, interrogate, and detect change

of instantiated models). These packages were generated by the in-built function-

ality of Eclipse EMF.

Four model transformation programs were created. A transformation program

comprises an executable Java package generated by the ATL plugin creator. Each

executable contained a purpose built ATL mapping that describes the mapping

from a source metamodel to a target metamodel. In total the transformation

programs comprised of 1289 lines of code (not including automatically generated

code via the ATL plugin creator).

• saaf.emf.permis ldap2ABAC (Transforms a PERMIS policy model and

LDAP model into an ABAC model)

• saaf.emf.abac2PERMIS (Transforms and generates a PERMIS policy

from an ABAC model)

• saaf.emf.abac2LDAP (Transforms an ABAC model into a set of LDAP

identities and attributes)

• saaf.emf.abac2RBACDSML (Transforms an ABAC model into an

RBACDSML model, assuming the ABAC model conforms to RBAC)
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A.2 LDAP Metamodel

Figure A.1 depicts the metamodel used to describe the relevant contents of an

LDAP directory to modelling subject access rights. It describes an LDAP direc-

tory that contains a set of subject entries, a set of attributes, and subject attribute

assignments. The enumeration IdentifierType describes a set of LDAP attributes

that are used to uniquely identify a subject entry, such as a distinguished name,

a unique id (uid), a common name, or eMail address.

Figure A.1: LDAPIdentity metamodel defined in Ecore

A.3 PERMIS Metamodel

Figure A.2 presents a simplified version of PERMIS’s metamodel, described in

Ecore. The metamodel is in fact much more expansive, and is used to describe

the structure of a PERMIS policy, along with what must exist.
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Figure A.2: Simplified PERMIS Metamodel defined in Ecore
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A.4 Scope of Observation

The following describes message formats exemplified in XML for each of the

detectors applicable to the SAAF controller prototype. They define what is

expected by the prototype controller, to detect and understand change in the

target system, and its environment.

Access change: Describes a change in an authorisation service, stating a subject’s

access request and decision.

1 <accessChange>

2 <sub j e c t ID>cn=bob , ou=saa fOrgUn i t , o=saa fTa rge t , c=gb</sub j e c t ID>

3 < i s s u e r >ht tp : // i s s u e r . u r i </ i s s u e r >

4 <a t t r i b u t e s >

5 <a t t r i b u t e >

6 <a t t r i bu t eType>r o l e </a t t r i bu t eType>

7 <a t t r i b u t eVa l u e>s t a f f </a t t r i b u t eVa l u e>

8 </a t t r i b u t e >

9 </a t t r i b u t e s >

10 <r e s ou r c e>ht tp : // p r i n t e r . r e s o u r c e . u r i </r e s ou r c e>

11 <ac t i on>p r i n t </ac t i on>

12 <d e c i s i o n>grant</d e c i s i o n>

13 <t imestamp >1406800322123</ timestamp>

14 </accessChange>

Listing A.1: Access change event (Example)

Resource change: Describes a change in a resource, stating a given subject, at-

tribute type, value, and operation.

1 <re sourceChange>

2 <sub j e c t ID>cn=bob , ou=saa fOrgUn i t , o=saa fTa rge t , c=gb</sub j e c t ID>

3 <r e s ou r c e>ht tp : // p r i n t e r . r e s o u r c e . u r i </r e s ou r c e>

4 <a t t r i bu t eType>pr in tCount</a t t r i bu t eType>

5 <a t t r i b u t eVa l u e >1</a t t r i bu t eType>

6 <ope r a t i on>add</ope r a t i on>

7 <t imestamp >1406800323123</ timestamp>

8 </resourceChange>

Listing A.2: Resource change event (Example)

Policy change: Notifies when a policy has changed and the new contents of the

policy. Note that currently this detector can only handle policies from an autho-

risation service.

1 <po l i cyChange>

2 <au thSe r v i c e>h t t p s : //PERMIS . u r i </au thSe r v i c e>

3 < l o c a t i o n > . ./PERMIS/ p o l i c y . xml</ l o c a t i o n>

4 <po l i c y>

5 . . . // pe rmi s p o l i c y document ( i n XML)



APPENDIX A. SAAF PROTOTYPE 217

6 </po l i c y>

7 <t imestamp >1406800343123</ timestamp>

8 </po l i cyChange>

Listing A.3: Policy change event (Example)

Subject change: Notifies when a subject’s access rights have changed. Note in this

case it is implied the controller has access to the identity service.

1 <sub jec tChange>

2 <sub j e c t ID>cn=bob , ou=saa fOrgUn i t , o=saa fTa rge t , c=gb</sub j e c t ID>

3 <a t t r i bu t eType>r o l e </a t t r i bu t eType> // type o f a t t r i b u t e changed

4 <a t t r i b u t eVa l u e>s t a f f </a t t r i b u t eVa l u e>

5 <ope r a t i on>add</ope r a t i on> // im p l i e s r o l e=s t a f f has been added

6 <t imestamp >1406800353123</ timestamp>

7 </sub jec tChange>

Listing A.4: Subject change event (Example)

A.5 Scope of Control

The following describes the format of operator change types, relevant to effectors

of a target system. Each change type refers to a change on the target system,

containing the necessary information for an effector to act upon.

LDAPClient tools: Utilises common APIs in Java for modifying an LDAP direc-

tory. This has been included given the popularity of the LDAP protocol in storing

subject access rights.

1 <ldapModi fy>

2 <ldap>l d ap :// ldap . u r i </ldap>

3 <sub j e c t ID>cn=bob , ou=saa fOrgUn i t , o=saa fTa rge t , c=gb</sub j e c t ID>

4 <a t t r i bu t eType>r o l e </a t t r i bu t eType>

5 <a t t r i b u t eVa l u e>s t a f f </a t t r i b u t eVa l u e>

6 <ope r a t i on>remove</ope r a t i on>

7 </ldapModi fy>

Listing A.5: LDAPModify operation

SOAPSender (change access right): Sends a SOAP message to a given identity

service effector requesting the adaptation of a subject’s access rights.

1 <r eque s tAdap ta t i on>

2 <s e r v i c e P r o v i d e r >ht tp : // sp . u r i </ s e r v i c e P r o v i d e r > // f o r f e d e r a t e d use

3 <sub j e c t ID>cn=bob , ou=saa fOrgUn i t , o=saa fTa rge t , c=gb</sub j e c t ID>

4 <a t t r i bu t eType>r o l e </a t t r i bu t eType>

5 <a t t r i b u t eVa l u e>s t a f f </a t t r i b u t eVa l u e>

6 <ope r a t i on>remove</ope r a t i on>
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7 <reason>abused sp . u r i . P r i n t e r </reason> // f o r f e d e r a t e d use

8 </r eque s tAdap ta t i on>

Listing A.6: Subject Adaptation Request (SOAP)

SOAPSender (activate policy): Sends a SOAP message to a given authorisation

service effector, requesting change in policy.

1 <r eque s tAdap ta t i on>

2 <s e r v i c e P r o v i d e r >ht tp : // sp . u r i </ s e r v i c e P r o v i d e r > // f o r f e d e r a t e d use

3 < l o c a t i o n > . ./PERMIS/ p o l i c y . xml</ l o c a t i o n>

4 <po l i c y>

5 . . . // pe rmi s p o l i c y document ( i n XML)

6 </po l i c y>

7 <reason>mu l t i p l e a t t a c k s on sp . P r i n t e r </reason> // f o r f e d e r a t e d use

8 </r eque s tAdap ta t i on>

Listing A.7: Policy Adaptation Request (SOAP)

A.6 Behaviour Policy

Specification

1 <?xml v e r s i o n =”1.0” encod ing=”UTF−8”?>
2 <b e h a v i o u rPo l i c y i d=””>

3 <baseRu l e i d=””>

4 <aba cRe l a t i o n s h i p>

5 <s ub j e c t></sub j e c t>

6 < i s s u e r ></i s s u e r >

7 <a t t r i bu t eType></a t t r i bu t eType>

8 <a t t r i b u t eVa l u e ></a t t r i b u t eVa l u e>

9 <r e s ou r c e></r e s ou r c e>

10 <ac t i on></ac t i on>

11 </aba cRe l a t i o n s h i p>

12 <c o nd i t i o n s>

13 <c o n d i t i o n type=””></cond i t i o n>

14 </c ond i t i o n s>

15 <c o s t/>

16 </baseRule>

17 <compRule i d=””>

18 <baseRu le s>

19 <baseRule ID></baseRule ID>

20 </baseRu le s>

21 <c o nd i t i o n s>

22 <c o n d i t i o n type=””></cond i t i o n>

23 </c ond i t i o n s>

24 </compRule>

25 </b eha v i o u rPo l i c y>

Listing A.8: Behaviour Policy Specification
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Behaviour Rule Types

Detecting malicious behaviour follows an event-condition-action approach. Sys-

tem and environment changes (events) are observed, whereby if they meet the

conditions of a behaviour rule, behaviour analysis is triggered. When conditions

of a behaviour rule are met, a violation is identified. Given the limitations in the

detection approach, instantiations of these rules should express the extremes of

anomalous activity.

Implemented within the prototype are five types of conditions, which are used

to demonstrate the detection of malicious behaviour. Each condition type is

conveyed in Table A.1:

Type Description

Rate of Change Describes the rate of change over an interval of time
Required Transaction Defines a required sequence of change (e.g, for a

workflow)
Bad Transaction Defines a malicious sequence of change (e.g., repeating

a set of requests in a given sequence)
Deviation of Change Defines a threshold distance in comparison to past

behaviour by the defined ABAC relation
Signature of Change A single change that matches a signature (e.g., a

blacklisted IP address)

Table A.1: Prototype behaviour rule types

Behaviour Policy Example

1 <?xml v e r s i o n =”1.0” encod ing=”UTF−8”?>
2 <b e h a v i o u rPo l i c y i d=”saa f 1”>

3 <!−−
4 V i o l a t i o n i f any s u b j e c t a c c e s s e s employeeDB . read at a g r e a t e r r a t e o f 30

5 r e q u e s t s pe r minute , where r e q u e s t s ob s e r v ed between 8am and 6pm

6 −−>
7 <baseRu l e i d=”empDB fas t read 1 min”>

8 <aba cRe l a t i o n s h i p>

9 <s ub j e c t >∗</sub j e c t>

10 <r e s ou r c e>employeeDB</r e s ou r c e>

11 <ac t i on>read</ac t i on>

12 </aba cRe l a t i o n s h i p>

13 <c o nd i t i o n s>

14 <c o n d i t i o n type=”r a t e”>

15 <t h r e s h o l d >30</ t h r e s ho l d>

16 < i n t e r v a l >1</ i n t e r v a l >

17 <t imeSca l e>min</t imeSca l e>

18 </cond i t i o n>
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19 <c o n d i t i o n type=”s i g n a t u r e ”>

20 <t imeAf t e r >08:00</ t imeAf t e r>

21 <t imeBefo re >18:00</ t imeBefo re>

22 <source>∗</source>

23 </cond i t i o n>

24 </c ond i t i o n s>

25 <cos t >100</cost>

26 </baseRule>

27 <!−−
28 V i o l a t i o n i f any s u b j e c t from the c o n t r a c t o r i s s u e r matches the t r a n s a c t i o n

29 sequence o f ’ r ead+modify ’ o f the employeeDB re sou r c e , more than 20 t imes i n

30 a 10 minute i n t e r v a l .

31 −−>
32 <baseRu l e i d=”empDB read modi fy 10 min”>

33 <aba cRe l a t i o n s h i p>

34 <s ub j e c t >∗</sub j e c t>

35 < i s s u e r >con t rac to rOrg</ i s s u e r >

36 </aba cRe l a t i o n s h i p>

37 <c o nd i t i o n s>

38 <c o n d i t i o n type=”badTransac t i on”>

39 <change>

40 <r e s ou r c e>employeeDB</r e s ou r c e>

41 <ac t i on>read</ac t i on>

42 </change>

43 <change>

44 <r e s ou r c e>employeeDB</r e s ou r c e>

45 <ac t i on>modify</ac t i on>

46 </change>

47 </cond i t i o n>

48 <c o n d i t i o n type=”r a t e”>

49 <t h r e s h o l d >20</ t h r e s ho l d>

50 < i n t e r v a l >10</ i n t e r v a l >

51 <t imeSca l e>min</t imeSca l e>

52 </cond i t i o n>

53 </c ond i t i o n s>

54 <cos t >200</cost>

55 </baseRule>

56 <!−−
57 V i o l a t i o n i f a g i v en s u b j e c t has broken both base behav i ou r r u l e s

58 −−>
59 <compRule i d=” f a s t r e a d t r a n s a c t i o n ”>

60 <baseRu le s>

61 <baseRule ID>empDB fast read 1 min</baseRule ID>

62 <baseRule ID>empDB read modify 10 min</baseRule ID>

63 </baseRu le s>

64 <c o nd i t i o n s>

65 <c o n d i t i o n type=”s i g n a t u r e ”/>

66 </c ond i t i o n s>

67 <cos t >1000</cost>

68 </compRule>

69 </b eha v i o u rPo l i c y>

Listing A.9: Excerpt of a behaviour policy



APPENDIX A. SAAF PROTOTYPE 221

A.7 Solution Policy

Specification

Listing A.10 describes a general specification of a solution within the SAAF pro-

totype’s solution policy.

1 < s o l u t i o n P o l i c y i d=””>

2 <s o l u t i o n i d=””>

3 <minImpact></minImpact>

4 <ac t i on>

5 <ope r a t i on></ope r a t i on>

6 <cos t></cost>

7 </ac t i on>

8 . . .

9 <bRuleID></bRuleID>

10 </ s o l u t i o n>

11 . . .

12 </ s o l u t i o nP o l i c y >

Listing A.10: Solution policy specification

Solution Actions

Actions represent a change that can be performed against the target system (au-

thorisation infrastructure).

There are three types of actions: 1. Msg type, where technically no adaptation

is made but an action generates a message to a given target, 2. Sub type, where

adaptations are made against a subject (within an identity service), and 3. policy

type, where adaptations make changes at a policy level (within an authorisation

service). Table A.2 identifies the complete set of actions that can be utilised (in

a non-mutually exclusive manner) within solutions.

Solution Policy Example

The following listing describes a basic solution policy. It contains a single solution

made up of two parameterised actions. The solution is applicable to an identified

violation providing the subject that caused the violation exhibits an impact of 0.3

or greater (as calculated through behaviour analysis). Each parameterised action

has a weighting of cost, detailing the cost to the deploying organisation should the

action be executed. This cost is used as part of the prototype’s solution selection

process. Finally, a behaviour rule id is used to specify which particular behaviour

rules this solution can be applied to. In this example, the solution can be used in

any violation of a behaviour rule.
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Action Type Description

WarnSub Msg Warns subject of their behaviour
WarnIssuer Msg Warns an issuer of a subject’s behaviour
WarnSOA Msg Warns resource owner of behaviour
LowerSubAccess Sub Lowers a subject access by one in an

attribute hierarchy
RmvSubAttribute Sub Removes an enabling attribute from a

subject
RmvAllSubAttribute Sub Removes all enabling attributes from a

subject
RmvSubAccessToRsrc Sub Removes a subject’s access to a resource
RmvIdPValidAttr Policy Remove trusted attribute from issuer
RmvAllIdPValidAttr Policy Remove all trusted attributes from issuer
RmvAttrPerm Policy Remove a attribute permission assignment
RmvAllAttrPerms Policy Remove all of an attribute’s permission

assignments
RmvAccessToRsrc Policy Remove all access of all subjects to a

resource
DeactivatePolicy Policy Shut down all access to all resources

Table A.2: Prototype actions for ABAC authorisation infrastructures

1 < s o l u t i o n P o l i c y i d=”saa f1 ’>

2 <s o l u t i o n=”s1”>

3 <minImpact>0.3</minImpact>

4 <ac t i on>

5 <ope r a t i on>l owe rSub j e c tAcce s s </ope r a t i on>

6 <cos t>30</cost>

7 </ac t i on>

8 <ac t i on>

9 <ope r a t i on>warn I s s u e r </ope r a t i on>

10 <cos t>0</cost>

11 </ac t i on>

12 <bRuleID>∗</bRuleID>

13 </ s o l u t i o n>

14 </ s o l u t i o nP o l i c y >

Listing A.11: Excerpt of a solution policy
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A.8 Preliminary Analysis Results

This section briefly describes the escalation of decisions conveyed within Chapter

4’s preliminary analysis. These are included within the appendix in order to

provide evidence of the naive implementations of behaviour analysis and solution

selection, however, are not viewed as a critical part of the thesis’s contribution.

The simulation of the insider attack contained four attack stages, where the

escalation of abuse against the case study’s ElectronicLibrary can be observed.

Two behaviour rules were defined. A base behaviour rule bt1, which was assigned

a cost value of 50 if violated. And a composite behaviour rule ct1, which was

assigned a cost value of 150 if violated. bt1 expressed a condition which would

trigger a violation if a subject accessed the ElectronicLibrary greater than 48

times within a four hour interval. ct1 expressed a condition which would trigger a

violation if the total number of detected bt1 violations was greater than 2. Upon

each violation detected, a subject’s impact to the organisation was calculated.

Table A.3 describes the four stages of the experiment in relation to the impact

of each subject in causing violations. Subject impact (SImpact) was calculated in

terms of normalising the total cost of violations (
∑

vw) multiplied against the total

historical violations (Vcount) that the subject had caused, against a maximum and

minimum cost set by the organisation (500 and 0 respectively).

Stage User Violations
∑

vw Vcount SImpact

1 Anne bt1 50 1 0.1
2 John bt1 50 1 0.1
3 Mary bt1, ct1 200 2 0.8
4 Bob bt1, ct1 200 2 0.8

Table A.3: Calculated subject impact per stage of the simulated case study

Given the impact of each subject at each stage, a set of solutions were iden-

tified. A solution was deemed applicable if the subject’s impact level was greater

than the minimum required impact as defined per each solution. To mitigate

detected violations, five solutions (Table B.2) were deployed. Each solution con-

tained an aggregate cost (
∑

acost) in terms of executable actions against the target

system, and a minimum impact (MinImpact). If the subject impact was greater than

a given solution’s minimum impact, the solution was applicable to mitigating the

violation.

Table A.5 describes each stage’s applicable solutions, and how each solution’s
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Solution Description
∑

acost MinImpact

S1 Remove all roles from subject 50 0.1
S2 Remove permission from role 200 0.1
S3 Remove all acces to a resource 1000 0.7
S4 Remove all permissions from role 500 0.7
S5 Disable all access 5000 0.9

Table A.4: Solutions with cost and minimum impact

cost was calculated and ranked. Only solution S1, S2, S4 are explored, as solu-

tion verification identified that S3 and S5 invalidated the controller’s adaptation

constraints.

For each solution the number of malicious SMal and non-malicious SNonMal

subjects impacted were calculated. This depends on the current state of SAAF’s

behaviour model and ABACM at time of adaptation, and what adaptation is to be

performed. The number of non-malicious subjects reflect the number of malicious

subjects that lose access as a result of a given solution. In regards to the number

of malicious subjects, this is configurable within SAAF. A malicious subject is

identified as either a subject who has committed a malicious act within the past,

or is a subject who has performed a violation, but is yet to be mitigated (e.g.,

due to failed adaptations). For this preliminary analysis, the number of malicious

subjects was calculated as the number of subjects identified in causing a violation

within the last 30 days.

User Impact sl
∑

acost slimpact slgoodness SMal SNonMal slcost Rank

Anne 0.1 S1 50 0 50 1 0 0 1
John 0.1 S1 50 0 50 1 0 0 1
Mary 0.8 S1 50 0 50 1 0 0 1

S2 200 200 300 3 4 100 N/A
S4 500 200 300 3 4 400 N/A

Bob 0.8 S2 200 150 500 4 3 -150 1
S1 50 0 50 1 0 0 2
S4 500 150 500 4 3 150 N/A

Table A.5: Solution selection and ranking

The
∑

acost indicates the aggregate cost of the solution sl in terms of its

executable actions. The slimpact indicates the impact of the solution to non-

malicious subjects SNonMal , identifying the cost implied in removing all access

to non-malicious subjects. This is essentially the minimum cost in removing a
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subject’s access (synonymous to S1, i.e., 50) multiplied by SNonMal . The slgoodness

indicates the aggregate cost of violations against the abused resource, identified

for all subjects in SMal . The slcost is calculated as
∑

acost plus slimpact minus the

slgoodness . If the slcost is greater than 0, this indicates that the solution is less eco-

nomical than allowing the detected behaviour to continue. Otherwise, the solution

is ranked by lowest slcost .



Appendix B

Simulating Malicious Changeload

B.1 Change Instantiations

The following details example change instantiations of the defined change types

within Chapter 5. These are categorised by environment and system change,

denoting a progression of events that enables a subject to request and obtain

access.

Environment Change

In this example, the environment change types, provided in Example 7 (Chapter

5), are instantiated into actual changes relevant to the LGZLogistics case study.

(i) Authentication request change defines the attributes received as part of

a request for authentication within identity provider lgzIS.

emp0003 auth request = (auth request type, lgzIS ,

〈authRequest(emp0003, password)〉,
〈event〉, 1373463234, 0)

(ii) Attribute release request change could be requested by a resource’s policy

enforcement point at the time of authentication. However, it is also used by

authorisation services as part of a credential validation request (depending

on its configuration). The request states a set of identity attribute types

(i.e., attribute types that can exist with an identity, such as e-mail), and

an identity. The identity, shown as a set of numerical and alphabetical

characters, is a privacy protected persistent id (PID), however, equally could

denote a non-privacy protected identifier (e.g., an e-mail address).

226
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emp0003 permisRole request =

(attr release request type, lgzIS ,

〈attrRequest(〈pid , bxu915810faa4910〉,
〈permisRole〉, empDB)〉,

〈event〉, 1373463236, 0)

(iii) Credential validation request

emp0003 cred validation request =

(cred validation request type, as ,

〈valRequest(〈PID , bxu915810faa4910〉, lgzIS ,

〈〈notOnOrBefore, 1373462240〉,
〈notOnOrAfter , 1373473240〉〉,
〈〈permisRole, SysAnalyst〉〉)〉,

〈event〉, 1373463240, 0)

This change portrays a credential validation request being received in au-

thorisation service as. A privacy protected identity is provided, along with

the authenticating identity service (lgzIS), in order for the authorisation ser-

vice as to validate the subject’s released attribute 〈permisRole, SysAnalyst〉.
The two conditions (notOnOrBefore, notOnOrAfter) state the validity of

the released attribute.

(iv) Access request change captures the subject emp0003, with assigned iden-

tity PID: bxu915810faa4910 and attribute 〈permisRole, SysAnalyst〉, re-

questing to execute ‘read’ action on the resource empDB (Payroll service).

The change is observed as the receipt of request within the authorisation

service as.

emp0003 empDB request =

(access request type, as ,

〈accessRequest(〈〈permisRole, SysAnalyst〉〉, empDB ,

read , 〈NULL〉,
〈pid , bxu915810faa4910〉)〉,

〈event〉, 1373463245, 0)

(v) Resource action step is a change that increments the total bandwidth

the subject emp0003 has used within an active session, specifically, to the
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empDB resource. This change indicates a step change to the attribute ac-

tiveSessions[emp0003].bandwidth, which contains the subject’s current used

bandwidth for their active session; the change increases 200kb bandwidth to

800kb.

incr emp0003 empDB bandwitdh =

(resource action step type, empDB ,

〈200kb〉,
〈θempDB(t) = activeSessions [emp0003].bandwidth + 600kb〉,
1373465245, 0)

System Change

This example provides instantiations of the system change types identified in

Example 8. An instantiation of a change type is defined as (change type, srcinst,

VA, VB , time, duration).

(i) Authentication decision change indicates the subject emp0003 authenti-

cating themselves against the identity service lgzIS, which is classified by an

event. The change is coupled with the attributes of the request, in order to

provide the decision. The decision generates a grant and the generation of

a new session for the subject within the lgzIS identity service.

emp0003 auth = (auth decision type, is ,

〈authDecision(emp0003 auth request)〉,
〈event〉,
1373463235, 0)

authDecision(emp0003 auth request) = success

(ii) Attribute release change indicates a change observed at the lgzIS iden-

tity service, where a resource empDB has requested the attribute release of

attribute type ’permisRole’ of the subject emp0003. Identity service lgzIS

releases a tuple of attributes that match the request from the resource for

the required subject. In this case, it releases 〈permisRole, SysAnalyst〉. The

time indicates the time and date of the attribute release, and as this is not

associated to any session, the duration is instant (0).
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emp0003 permisRole release =

(attr release type, is ,

〈attrReleasee(emp0003 permisRole request)〉,
〈event〉,
1373463239, 0)

attrRelease(emp0003 permisRole request) =

〈〈permisRole, SysAnalyst〉〉

(iii) Credential validation change indicates a change observed within the au-

thorisation service as, being a credential validation. Credential validation ei-

ther validates the provided attributes in the request, or pulls the subject’s at-

tributes from the identity provider. In this example, the authorisation service

has validated the pushed attributes, asserting that 〈permisRole, SysAnalyst〉
is valid.

emp0003 cred validation =

(cred validation type, as ,

〈valCredentials(emp0003 cred validation request)〉,
〈event〉,
1373463240, 0)

valCredentials(emp0003 cred validation request) =

〈〈permisRole, SysAnalyst〉〉

(iv) Access decision change indicates the authorisation servic as receiving a

request and generating an authorisation decision based on the attributes of

the request. The authorisation service has granted the request. The change

is instant and is only relevant for the specific request, therefore there is no

duration.

emp0003 empDB grant = (access decision type, as ,

〈accessDecision(emp0003 empDB request)〉,
〈event〉,
1373463245, 0)

accessDecision(emp0003 empDB request) = permit
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B.2 Federated Adaptation

This section identifies several challenges to enabling self-adaptation in federated

environments. Specifically, it discusses the problems that exist when enabling

adaptation across multiple management domains, and provides a solution via the

use of domain managed effectors [7].

B.2.1 Automating the Management of Identity Providers

The ability to manage identity providers relies specifically on the trust that an

identity provider has in the (SAAF controller of the) requesting service provider.

For example, a service provider identifies malicious behaviour associated with a

subject belonging to an identity provider. The service provider might request

the identity provider to remove the subject’s identity attribute(s) which grant the

subject access rights at the service provider. However, these identity attributes

may give the subject access rights at many service providers, and not only at the

abused service provider. In the latter case the identity provider might easily decide

to grant the removal request. In the former case the decision is more difficult

and hinges partially on whether the identity provider is more concerned about

upsetting its subjects or the many service providers that it has trust relationships

with (and which their subject might similarly be abusing). If the request is refused

the service provider is left with several options:

• allow the malicious activity to continue (for example, when alternative op-

tions have a greater cost when compared to malicious activity), or

• ask the identity provider to alter its attribute release / issuing policy so that

it does not issue attribute assertions for this subject, or

• remove access rights from this specific subject (challenging, as it depends

on how subjects are identified, i.e., through persistent or transient IDs) or

• remove access rights from all subjects who share the same set of identity

attributes with the abusive subject, or

• remove all trust from this particular identity provider (for example, the

identity provider has refused numerous adaptation requests despite contin-

ued abuse exhibited by its subjects).
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To avoid the last option being taken, it is in an identity provider’s interest to

comply with requests for management changes in relation to either its attribute

release policy or one of its subject’s identity attributes, otherwise service providers

may associate too much risk in using the identity provider. It is for these complex

reasons that the autonomic management of identity providers is about the identity

provider’s output i.e., its assertions about a subject’s attributes, so that it is

independent of the actual internal mechanisms employed by the identity provider

to achieve this. The SAAF controller only depends on the final outcome, which

is to control the attributes that the identity provider will assert for a particular

subject in the future.

The following discusses the enabling of automated management of federated

identity providers, including the assumptions on the identity provider domain,

service provider domain, and the role of an identity provider effector.

Identity Provider Domain

It is assumed the identity provider is capable of authenticating a user as being

one of its subjects, and of providing attribute assertions about an authenticated

subject to service providers. The identity provider is capable of utilising sup-

porting technologies that facilitate the storage and access of subject credentials

/ privilege attributes (identity services), for example, the use of an LDAP direc-

tory. These attributes are assumed to be cryptographically secured and provided

to trusted service providers as security assertions, following a standard proto-

col, such as SAML [99]. It is also assumed that identity providers are able to

log and audit security assertion assignments, as well as the authentications made

through the identity provider authentication services and any random, transient

or session identifiers that are assigned to the subjects in the security assertions.

Without these auditing capabilities, identity providers are unable to map session

usage to actual subjects, in case they need to identify subjects when responding

to notifications of malicious activity.

SAAF Controller and Service Provider Domain

In the case of managing identity providers, the SAAF controller is deployed

within the service provider domain. The SAAF controller is placed in the ser-

vice provider domain, as it is intrinsic to identification of malicious behaviour
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attributed through the subject’s direct actions against the service provider’s re-

sources and authorisation services. The controller’s behaviour policy is defined

at deployment by sources of authority within the service provider domain, and

relevant to the service provider’s environment (e.g., academic / government).

The automated adaptation of the identity provider’s domain (specifically, the

adaptation of subject attribute assignments) is similar to a non-federated autho-

risation infrastructure. However, adaptation differs in federated environments,

whereby: adaptation is not guaranteed, the identity provider has greater con-

trol over how to realise an adaptation, and adaptation may not be immediate.

Adaptation is not guaranteed due to an identity provider’s ownership over the

authorisation assets a SAAF controller aims to adapt. The identity provider de-

cides how adaptation requests are realised based on the interpretation of a SAAF

controller’s adaptation request. Lastly, adaptation may not be immediate as an

identity provider may decide to manually review adaptation requests before per-

forming the adaptation (referred to as semi-automated adaptation).

Identity Provider Effector

The identity provider’s effector is under full control of the identity provider and

enables the processing of adaptations requested by a service provider’s SAAF

controller, either synchronously, or asynchronously (with human review). Com-

munication flows between the identity provider’s effector and identity provider

software are made internally and rely on a host’s operating system to ensure se-

curity. Communication between a SAAF controller and an identity provider’s

effector are executed via secure communication, such as TLS / SSL, and require

mutual authentication.

The effector requires access to issuing policies, attribute repositories and audit

logs, within the identity provider. Access to issuing policies is required in order to

adapt the policy controlling the subjects’ privilege attributes the identity provider

is able to assert. Access to logs is required to map between an identifier (persistent

or transient) that the service provider has received, and the internal identifier

of the subject. Access to attribute repositories is needed to modify a subject’s

attributes.

The effector supports a set of abstract adaptations that are necessary when

managing an identity provider, as described by the prototype SAAF controller’s

operator change types (Appendix A.5). It is expected to translate these abstract
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adaptations into concrete adaptions that are supported by the underlying technol-

ogy. For example, remove subject’s attribute may be translated into the relevant

LDAP modify command in order to be executed against the LDAP directory, or

into the appropriate Shibboleth attribute release policy to prevent a SAML at-

tribute assertion being created. This refers to an identity provider’s ability to

control how an adaptation request should be realised. In addition to controlling

how an adaptation request should be realised, the identity provider can decide

which adaptations to allow. To enable this, the effector utilises an authorisation

service to determine which operations to allow and which to deny, prior to deciding

how to implement accepted adaptations.

B.2.2 SimpleSAMLphp Identity Provider Effector

SimpleSAMLphp is the underlying technology utilised in the defined federated au-

thorisation infrastructure (Chapter 5), to enable communication between identity

providers and service providers. As an example of a complex effector, the follow-

ing describes an effector for a SimpleSAMLphp identity provider. The effector is

capable of acting on adaptation requests (from the SAAF controller prototype), as

well as controlling the extent of adaptation against an identity provider’s autho-

risation assets. In addition, an extension to SimpleSAMLphp is discussed, which

is required for the mapping of persistent and transient IDs to a subject’s actual

entry within the identity provider’s LDAP director.

Extending SimpleSAMLphp

To facilitate operations by the identity provider’s effector, simpleSAMLphp’s log-

ging capabilities are extended. This is to ensure the correct retrieval of a subject’s

LDAP distinguished name against persistent and transient IDs supplied to ser-

vice providers. SimpleSAMLphp stores its log information in a relational database

(SQLite). In its original configuration, SimpleSAMLphp was only capable of map-

ping persistent IDs to subject attribute values. Additional information, such as

attribute type, LDAP host, and LDAP search base is needed in order to locate the

actual subjects’ LDAP entries for both transient and persistent IDs. Whilst some

of this information (e.g. LDAP host names) is available in the SimpleSAMLphp

configuration file, it is not persistent to configuration changes. For this reason

it was decided to record this additional information in a database log, so that
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any SimpleSAMLphp effector is capable of identify the abusive subject’s distin-

guished name. This was achieved through implementing an additional module to

SimpleSAMLphp, which extended the current logging module’s functionality.

SimpleSAMLphp Effector

The SimpleSAMLphp effector, shown in Figure B.1. It is a PHP web service

hosted alongside the SimpleSAMLphp identity provider service. It has access to

the log database stored within the SimpleSAMLphp directory, which enables it

to map between persistent and transient IDs and a subject’s distinguished name.

Web service clients, such as the SAAF controller, can access the effector providing

they have been issued with a trusted client X.509 certificate. Mutual SSL / TLS

authentication is required and the client’s certificate distinguished name is used

to identify the requesting client.

Figure B.1: SimpleSAMLphp Identity Provider Effector

Although the effector component conforms to the conceptual design described

in Section B.2.1, it is somewhat restricted due to the limited capabilities of Simple-

SAMLphp. SimpleSAMLphp relies upon an attribute repository, such as LDAP,

along with an attribute release policy which is represented by a PHP configuration

file. The attribute release policy is constrained to stating only which attributes

can be released to which service providers, regardless of the individual subject.

As a result, the effector adapts subject attributes held in the LDAP repository in

order to achieve the per subject granularity.

When operating synchronously, the effector utilises the LDAP access control

lists in order to authorise the subject level adaptation requests, notifying request-

ing clients of failure in case the client is unauthorised. When operating asyn-

chronously, meaning manual review is required, the effector queues requests and
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notifies administrators via email when new requests are received. Human admin-

istrators then review the queued requests before allowing the effector to execute

an adaptation and inform the client of success or failure. The effector is initialised

once it receives a SOAP message request from a client. From here, SOAP requests

are processed in the following manner:

1. Mutually authenticate the requesting client over SSL and obtain the requestor’s distin-

guished name (DN) from its certificate.

2. Verify the requested operation is valid.

3. Retrieve the target subject’s unique attribute mapping from the persistent / transient ID

stored in the SimpleSAMLphp audit log database.

4. Retrieve the subjects’ DN(s) using the relevant LDAP host name and search base;

5. Translate the requested operation into LDAP executable operations.

6. Bind the requestor’s DN to the relevant LDAP server.

7. Execute the update operation against LDAP, providing the access control list allows it.

8. Respond to the client with confirmation of the state changes.

B.3 Simulation Experiments

The following section provides supplementary information and data with respect

to Chapter 5’s simulation experiment. It details the controller’s configuration in

terms of the behaviour policy and solution policy, along with a break down of

solution selection in regards to Exp1 and Exp3. Finally, a high level overview of

Exp2 and Exp4 is provided, demonstrating evidence of adaptation under high load.

B.3.1 Controller Configuration

The SAAF controller prototype was configured with a set of behaviour rules and

solutions. Behaviour rules denoted the conditions for a violation, where each in-

stance of a violation implied a cost to LGZLogistics. With respect to a subject’s

impact derived from the cost of committing a violation, a maximum and mini-

mum cost of 1500 and 0 are defined for LGZLogistics respectively. This provides

the upper and lower bounds of subject behaviour. Table B.1 describes the set

of behaviour rules as violations, along with the conditions of the violation, and

implied cost.

The solutions deployed within the SAAF controller prototype seek to con-

strain the scope of access in terms of subject adaptation and policy adaptation.
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Violation Description
∑

acost

empDBShortRead Rate of reads to empDB >20 per min 100
empDBLongRead Rate of reads to empDB >70/10min 100
empDBShortModify Rate of modify to empDB >25 per min 150
empDBLongModify Rate of modify to empDB >50/10min 150
empDBShortDelete Rate of delete to empDB >5 per min 200
lgtShortAccess Rate of access to lgT >30 times per min 100
empDBTransaction Rate of read & modify to empDB >20/10min 200
dueRedundancy Subject labelled for redundancy in empDB 100

Table B.1: Behaviour rules (violation types)

Table B.2 describes the set of solutions applicable to the simulation experiment.

Each solution is defined by a solution ID, description of the actions to be taken,

an aggregate cost to LGZLogistics as a consequence of enacting the solution, and

a minimum subject impact.

Solution Description
∑

acost MinImpact

S1 Remove a subject’s attribute 50 0.25
S2 Remove all of a subject’s attributes 150 0.5
S3 Remove trust in an IdP issuing an attribute 800 0.7
S4 Remove all trust in an IdP 1500 0.7
S5 Disable all access 5000 0.7

Table B.2: Solutions with cost and minimum impact

Lastly, the controller was configured to perceive malicious subjects in terms

of subjects yet to be successfully mitigated. For example, if a subject commits

a violation and mitigation is successful, the subject is no longer deemed to be

malicious. However, if mitigation fails or if the subject commits another violation,

the controller considers this subject as malicious, which is necessary to identify an

appropriate solution in solution selection. This differs from previous experiments

as conveyed in Chapter 4, where the controller’s perception of malicious subjects

was constrained to all subjects who had committed a violation within the last 30

days.

B.3.2 Adaptation under Normal Load: Solution Selection

To provide evidence of solution ranking, the following describes how solutions

were identified, ranked, and selected, with respect to Exp1 and Exp3. Exp2 and
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Exp4 are not discussed as they convey the same adaptation scenarios as Exp1 and

Exp3, yet under high load.

Exp1 Solution Selection

Table B.3 describes the solution selection and ranking for each stage of simulation

within Exp1. It reflects adaptation under normal load where the SAAF controller

prototype has full control over the authorisation service as and identity provider’s

lgzIS and conIS. In this scenario no policy adaptation was observed due to the

way in which the controller’s perception of malicious subjects was configured (i.e.,

subjects are only considered malicious if previous mitigation attempts have failed).

Note that the calculated SMal and SNonMal reflect the current state of the ABACM

and BhvM , and the cost of removing a single non-malicious subject’s access is

synonymous with solution S2 (i.e., 150).

User Impact sl
∑

acost slimpact slgoodness SMal SNonMal slcost Rank

1 emp3 0.07 S0 - - - - - - -
2 emp4 0.07 S0 - - - - - - -
3 emp5 0.07 S0 - - - - - - -
4 emp6 0.07 S0 - - - - - - -
5 emp3 0.4 S1 50 0 300 1 0 -250 1
6 con2 0.07 S0 - - - - - - -
7 con2 0.27 S1 50 0 200 1 0 -150 1
8 con3 0.07 S0 - - - - - - -
9 con4 0.07 S0 - - - - - - -
10 con3 0.27 S1 50 0 200 1 0 -150 1
11 con5 0.07 S0 - - - - - - -
12 con4 0.27 S1 50 0 200 1 0 -150 1
13 con5 0.27 S1 50 0 200 1 0 -150 1
14 emp3 0.8 S2 150 0 400 1 0 -250 1

S3 800 149850 400 1 999 150250 N/A
S4 1500 149400 700 4 996 150200 N/A
S5 5000 149550 1500 8 997 153050 N/A

Table B.3: Exp1: Solution selection and ranking

Exp3 Solution Selection

Table B.4 describes the solution selection and ranking for each stage of simulation

within Exp3. It differs from Exp1 due to the fact that the contractor’s identity

provider effector was disabled. This prevented adaptation at a subject level from

subjects within the contractor’s management domain. As a result, subjects from
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the contractor organisation were able to persist in violations requiring the con-

troller to consider and enact policy adaptation.

A key outcome of this experiment’s solution selection is the fact that a so-

lution’s goodness (slgoodness) increases as subjects persist in performing malicious

behaviour. This persistence of malicious behaviour occurs due to prior failures in

subject adaptation. As a result, when multiple subjects perform violations, the so-

lution goodness increases. Note that if a solution is capable in mitigating historic

violations where mitigation failed in the past, such as with subject adaptation,

solution goodness encompasses the cost of these violations as well. This enables

the controller to enact solutions with a greater consequence to the organisation.

Note that the calculated SMal and SNonMal reflect the current state of the

ABACM and BhvM , and that these are dependent on how a solution will adapt

the state of access. For example, if a solution removes all access for subjects with

the role of ContractorSupervisor, SMal and SNonMal reflect the number of malicious

contractor supervisors, and non-malicious contractor supervisors. Lastly, the cost

of removing a single non-malicious subject’s access is synonymous with solution

S2 (i.e., 150).

B.3.3 Adaptation under High Load: Summary of Results

Table B.5 describes the attack steps of Exp2 performed as part of Chapter 5’s

simulation experiment. It details the persistence of malicious subject behaviour

and the SAAF autonomic controller prototype mitigating malicious behaviour

under a high load. Malicious behaviour is successfully mitigated through subject

adaptation, whereby adaptation requests are sent to identity provider effectors,

detailing the removal of subject access.

Table B.6 describes the attack steps of Exp4 performed as part of Chapter 5’s

simulation experiment. It details the persistence of malicious subject behaviour

and the SAAF autonomic controller prototype mitigating malicious behaviour

under a high load. Malicious behaviour is successfully mitigated through pol-

icy adaptation, whereby access control policies are generated from an adapted

modelled state of access, and deployed within an authorisation service. Subject

adaptation is shown to fail, whereby the deactivation of the contractor identity

provider effector prevented success. This demonstrates the consequences to a

non-cooperating trusted business partner.
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User Impact sl
∑

acost slimpact slgoodness SMal SNonMal slcost Rank

1 emp3 0.07 S0 - - - - - - -
2 emp4 0.07 S0 - - - - - - -
3 emp5 0.07 S0 - - - - - - -
4 emp6 0.07 S0 - - - - - - -
5 emp3 0.4 S1 50 0 300 1 0 -250 1
6 con2 0.07 S0 - - - - - - -
7 con2 0.27 S1 50 0 200 1 0 -150 1
8 con3 0.07 S0 - - - - - - -
9 con4 0.07 S0 - - - - - - -
10 con2 0.6 S2 50 0 200 1 0 -150 1
11 con2 1 S2 150 0 400 1 0 -250 1

S3 800 150 400 1 1 550 N/A
S4 1500 300 600 3 2 1200 N/A
S5 5000 149700 1200 7 998 153500 N/A

12 con3 0.27 S1 150 0 200 1 0 -150 1
13 con5 0.07 S0 - - - - - - -
14 con2 1 S2 150 0 500 1 0 -350 1

S3 800 150 500 1 1 450 N/A
S4 1500 150 900 4 1 750 N/A
S5 5000 149550 1500 8 997 1530350 N/A

15 con4 0.27 S1 50 0 200 1 0 -150 1
16 con3 0.6 S2 150 0 300 1 0 -150 1
17 con2 1 S2 150 0 600 1 0 -450 1

S3 800 150 600 1 1 350 N/A
S4 1500 150 1200 4 1 450 N/A
S5 5000 149550 1800 8 997 152750 N/A

18 con5 0.27 S1 50 0 200 1 0 -150 1
19 con3 1 S2 150 0 400 1 0 -250 1

S3 800 0 800 3 0 0 2
S4 1500 150 1400 4 1 250 N/A
S5 5000 149550 2000 8 997 152550 N/A

20 con2 1 S2 150 0 700 1 0 -550 1
S3 800 150 700 1 1 250 N/A
S4 1500 150 1500 4 1 150 N/A
S5 5000 149550 2100 8 997 152450 N/A

21 con2 1 S2 150 0 800 1 0 -650 A
S3 800 150 800 1 1 150 N/A
S4 1500 150 1600 4 1 50 N/A
S5 5000 149550 2200 8 997 152350 N/A

22 con2 1 S2 150 0 900 1 0 -750 1
S3 800 150 900 1 1 50 N/A
S4 1500 150 1700 4 1 -50 2
S5 5000 149550 2300 8 997 152250 N/A

23 emp3 0.8 S2 150 0 400 1 0 -250 1
S3 800 149850 400 1 999 150250 N/A
S4 1500 149400 700 4 996 150200 N/A
S5 5000 149550 2400 8 997 152150 N/A

Table B.4: Exp3: Solution selection and ranking
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Step Subject Impact Violation Identified Selected React Adapt Result
Solutions Solution Time (ms) Time (ms)

(Avg, Std) (Avg, Std)

1 emp03 0.07 dueRedundancy S0 S0 4.8, 0.5 N/A N/A
2 emp04 0.07 dueRedundancy S0 S0 1.6, 0.5 N/A N/A
3 emp05 0.07 dueRedundancy S0 S0 1.6, 0.5 N/A N/A
4 emp06 0.07 dueRedundancy S0 S0 2, 0 N/A N/A
5 emp03 0.4 empDBTransaction S1 S1 289.8, 45.9 156, 37.9 1
6 con02 0.07 empShortRead S0 S0 1.8, 0.4 N/A N/A
7 con02 0.27 empShortRead S1 S1 102.4, 25.4 139.4, 20.4 1
8 con03 0.07 empShortRead S0 S0 5.4, 3.2 N/A N/A
9 con04 0.07 empShortRead S0 S0 1.6, 0.5 N/A N/A
10 con03 0.27 empShortRead S1 S1 97, 46.5 132.8, 18.9 1
11 con05 0.07 empShortRead S0 S0 1.8, 0.4 N/A N/A
12 con04 0.27 empShortRead S1 S1 127.4, 62.4 152.4, 18.9 1
13 con05 0.27 empShortRead S1 S1 86, 37.6 114.4, 16.7 1
14 emp03 0.8 lgTShortAccess S2,S3,S4,S5 S2 273, 80.9 187.8, 93.9 1

Table B.5: Exp2: Adaptation under high load

Step Subject Impact Violation Identified Selected React Adapt Result
Solutions Solution Time (ms) Time (ms)

(Avg, Std) (Avg, Std)

1 emp03 0.07 dueRedundancy S0 S0 4.6, 0.5 N/A N/A
2 emp04 0.07 dueRedundancy S0 S0 1.8, 0.4 N/A N/A
3 emp05 0.07 dueRedundancy S0 S0 2, 0.7 N/A N/A
4 emp06 0.07 dueRedundancy S0 S0 2.2, 0.4 N/A N/A
5 emp03 0.4 empDBTransaction S1 S1 294, 63.8 204.2, 24.8 1
6 con02 0.07 empShortRead S0 S0 1.6, 0.5 N/A N/A
7 con02 0.27 empShortRead S1 S1 147.2, 88.6 129.2, 37.8 0
8 con03 0.07 empShortRead S0 S0 6, 3.2 N/A N/A
9 con04 0.07 empShortRead S0 S0 1.6, 0.5 N/A N/A
10 con02 0.6 empShortRead S2 S2 101.2, 35.6 11.8, 48.4 0
11 con02 1 empLongRead S2,S3,S4,S5 S2 387.8, 80.9 133.8, 54.1 0
12 con03 0.27 empShortRead S1 S1 86.2, 45.8 110.6, 40.7 0
13 con05 0.07 empShortRead S0 S0 1.6, 0.5 N/A N/A
14 con02 1 empShortRead S2,S3,S4,S5 S2 235, 39.1 119.4, 50.6 0
15 con04 0.27 empShortRead S1 S1 39.2, 7.5 97.4, 40.8 0
16 con03 0.6 empShortRead S2 S2 43.8, 19.2 101.2, 53.5 0
17 con02 1 empShortRead S2,S3,S4,S5 S2 159.8, 13.8 100, 36 0
18 con05 0.27 empShortRead S1 S1 33.6, 4.4 136, 37.9 0
19 con03 1 empLongRead S2,S3,S4,S5 S2(F),S3 137.6, 34.1 1003.8, 34.3 1
20 con02 1 empShortRead S2,S3,S4,S5 S2 293, 72.6 97.6, 25.2 0
21 con02 1 empLongRead S2,S3,S4,S5 S2 233.4, 75.7 94.2, 35.5 0
22 con02 1 empShortRead S2,S3,S4,S5 S2(F),S4 169.8, 57.2 834.4, 34.3 1
23 emp03 0.8 lgTShortAccess S2,S3,S4,S5 S2 168.8, 39.3 150.6, 50.9 1

Table B.6: Exp4: Adaptation under high load (contractor IdP effector failure)



Appendix C

Gamification Analysis

C.1 Guidance to Players

Participants of the game experiment were provided with the following information

(conveyed in Figure C.1 and Figure C.2) in order to have a clear understanding

of the experiment, and data collected.

Figure C.1: Player participation declaration

241
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Figure C.2: Advice to participants

In addition, the only instruction provided to players on how to play the game is

conveyed in Figure C.3. This was provided to the player within the game interface.
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Figure C.3: Games Instructions

C.2 Game Data

This section presents a set of tables reflecting certain aspects of data generated

through the gamification experiment.

Table C.1 details the number of granted authorisation requests made per each

phase of the gamification experiment. Authorisation requests are categorised in

terms of the protected actions within the game (e.g., start, end, roll, etc.). Phase

2, being the longest phase generated the largest amount of authorisation requests,

where roll and move actions are seen to be the most common actions requested.

Table C.2 details the number of observed and recorded actions within the

game, in order to compare to the number of authorisation requests made. As

such, it was noted that there was evidence of attempts to falsify authorisation

requests (with no corresponding action), and evidence where users had bypassed

authorisation. In addition some users were found to be bypassing authorisation,

where actions were observed with no authorisation request.
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Permitted Authorisations Phase 1 Phase 2 Phase 3 Total

Start 168 692 326 1186
End 58 250 98 406
Roll 1165 4412 1582 7159
Move 755 3233 1079 5067
Ladder 87 371 145 603
Bonus 30 151 62 242

Table C.1: Permitted game authorisation requests

Performed Actions Phase 1 Phase 2 Phase 3 Total

Start 168 692 326 1186
End 58 250 98 406
Roll 1219 4356 1535 7110
Move 757 3235 1081 5073
Ladder 87 371 145 603
Bonus 30 151 62 242

Table C.2: Observed game actions

Table C.3 describes the number of previous games a malicious player has played

prior to the SAAF controller detecting the player in performing an injection at-

tack (either a change to the game code resulting in unexpected behaviour, or a

change to the game’s session). This provides evidence of player experience prior

to performing a sophisticated attack.
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Games Violations Players Games Violations Players

1 1 3 8 4 1
1 2 2 8 9 1
1 4 1 8 11 2
1 5 1 9 8 1
2 1 2 9 11 2
2 3 1 9 22 1
2 4 1 10 4 1
3 3 1 10 6 1
3 5 3 11 8 1
3 10 1 11 22 1
4 6 1 12 16 1
4 8 1 16 13 1
4 12 1 21 13 1
4 14 1 27 32 1
5 2 1 32 21 1
5 7 1 50 11 2
5 8 1 62 22 1
5 9 1 72 29 1

Table C.3: Number of players detected of injection attacks versus number of
previous games played and detected violations

C.3 Player Behaviour

Figure C.4 presents a set of charts that measure aspects of behaviour from differing

perspectives. These charts compare games played in the control phase, to non-

malicious and malicious games played throughout phases 1 to 3.

In chart (a), the average time for a game action to be completed is compared,

including the time it took for a game to be won, lost, and a turn (i.e., roll then

move) to be achieved1. Whilst a malicious game is shown to take longer to com-

plete, possibly due to a malicious action requiring more thought than playing the

game legitimately, time cannot be considered as a factor in determining malicious

behaviour. This is justified by the control games played, where there is little

margin of difference.

In regards to chart’s (c) and (d), the average number of actions are observed

within winning games. Considering rolls and moves alone, the average count

shares a similar margin. However, given that the game is based on chance, this

1Outliers beyond 60s for time to win and lose, and 20s between turns, were removed to avoid
extremities.
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(a) Avg. time per game actions (b) Avg. rolls and moves per winning game
type

(c) Avg. ladders, snakes, and bonus
squares per winning game type

(d) Avg. ratio of games won, lost, and
aborted, per player type

(e) Roll features per player type (f) Move features per player type

Figure C.4: Trends in game and player behaviour
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is not a useful indication of malicious behaviour. Of particular interest is the

average number of snakes that were used throughout a winning game. Control

games exhibited a higher average of snakes in comparison to that of malicious

games won in phases 1 to 3. This is thought to be a result of malicious games

purposely ignoring snakes within the game.

The low number of snakes within non malicious games is significant to the

fact that many players from phases 1 to 3 had a greater percentage of aborted

games, as shown by chart (d). Observing behaviour from a player perspective,

control players aborted an average of 9% of their games, increasing the likelihood

of playing a game all the way through and encountering snakes. It is suggested

players from phase 1 to 3 simply chose to abort rather than encounter a snake

and finish a game.

One can assume that a player who frequently aborts a game is attempting to

identify an ideal game of chance, rather than play a game all the way through,

and is therefore malicious. However, to follow the view that malicious players are

less likely to land on a snake in a game is considered purely circumstantial (as

legitimate games can be completed without encountering any snakes).

In order to capture clearer indications of malicious behaviour it is necessary

to observe particular features of actions within a game. Chart (e) portrays a set

of contextual features related to roll actions (comparing types of player), such as,

the ratio of rolls to move, the range of dice rolls, and average number of rolls that

were unauthorised. Chart (f) portrays a set of contextual features related to move

actions, such as, the average number of moves without a corresponding roll, the

distance from the expected target of a move (i.e., where the player should have

landed), and average number of moves unauthorised.

These features present a much clearer indication of malicious behaviour. For

example, considering the legal roll range of 1 to 6, control players never performed

a dice roll beyond 6. However, malicious players from phase 1 to 3 had a far higher

average of 18. This was largely increased by a small number of malicious players

who rolled high dice values, evidential by a high standard deviation (62.71).

Similarly, considering the average distance from a move’s required target, ma-

licious players exhibited a much higher average. Here, an average closer to zero

indicates players that landed close to a move’s target square. As with the range

of rolls, a high standard deviation was observed (9.73), where the average was in-

creased by a small number of malicious players landing on a square with a greater

distance from their required target.
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Lastly, in chart (f), it was observed that there was a higher average of moves

without rolls for non-malicious players in phases 1 to 3. The high standard de-

viation (1.44) is a result of only a few non-malicious accounts performing moves

without a roll. This particular behaviour is significant of the number of unknown

attacks that were successful in phases 1 to 3, where the resource game’s detectors

had not been configured to report such activity.
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(2010). Security-driven model-based dynamic adaptation. In Proceedings of the

IEEE/ACM International Conference on Automated Software Engineering, New

York, NY, USA: ACM, ASE ’10, pp. 205–214.

[95] Moskewicz, M. W., Madigan, C. F., Zhao, Y., Zhang, L. and Malik, S. (2001).

Chaff: Engineering an efficient SAT solver. In Proceedings of the 38th annual

Design Automation Conference, ACM, pp. 530–535.

[96] Mu, C. and Li, Y. (2010). An intrusion response decision-making model based on

hierarchical task network planning. Expert systems with applications, 37(3), pp.

2465–2472.

[97] NIST (2004). INCITS 359-2004 - Role Based Access Control.

[98] Nurse, J. R., Buckley, O., Legg, P. A., Goldsmith, M., Creese, S., Wright, G. R.

and Whitty, M. (2014). Understanding insider threat: A framework for charac-

terising attacks. In Workshop on Research for Insider Threat (WRIT) held as

part of the IEEE Computer Society Security and Privacy Workshops (SPW14),

in conjunction with the IEEE Symposium on Security and Privacy (SP), IEEE,

pp. 214–228.

[99] OASIS (2005). Security Assertion Markup Language (SAML) Version 2.0.

[100] OASIS (2011). XACML v3.0 Core and Hierarchical Role Based Access Control

(RBAC) Profile. Tech. rep., OASIS.

[101] OASIS (2013). eXtensible Access Control Markup Language (XACML) v3.0.

[102] O’Conner, A. C. and Loomis, R. J. (2010). 2010 economic analysis of role-based

access control. Tech. rep., RTI International, NIST.



BIBLIOGRAPHY 259

[103] Ogata, K. (1990). Modern Control Engineering. Upper Saddle River, NJ, USA:

Prentice Hall PTR, 2nd edn.

[104] Oltsik, J. (2013). The 2013 Vormetric insider threat report [Online].

Available from: http://www.vormetric.com/sites/default/files/vormetric-insider-

threat-report-oct-2013.pdf [Accessed 12 June 2014].

[105] OMG (2006). Meta Object Facility (MOF) 2.0.

[106] OMG (2010). Unified Modeling Language (UML) 2.3.

[107] Oreizy, P., Gorlick, M. M., Taylor, R. N., Heimbigner, D., Johnson, G., Medvi-

dovic, N., Quilici, A., Rosenblum, D. S. and Wolf, A. L. (1999). An architecture-

based approach to self-adaptive software. IEEE Intelligent Systems, 14(3), pp.

54–62.

[108] Palomo, I. (2001). Serious security hole in Mambo site server version 3.0.X [On-

line]. Available from: http://seclists.org/bugtraq/2001/Jul/569 [Accessed 17 June

2014].

[109] Park, J. and Sandhu, R. (2004). The UCONABC usage control model. ACM Trans

Inf Syst Secur, 7(1), pp. 128–174.

[110] Pashalidis, A. and Mitchell, C. J. (2003). A taxonomy of single sign-on systems.

In Proceedings of the 8th Australasian Conference on Information Security and

Privacy, Berlin, Heidelberg: Springer-Verlag, ACISP’03, pp. 249–264.

[111] Pasquale, L., Menghi, C., Salehie, M., Cavallaro, L., Omoronyia, I. and Nuseibeh,

B. (2012). Securitas: A tool for engineering adaptive security. In Proceedings of the

ACM SIGSOFT 20th International Symposium on the Foundations of Software

Engineering, New York, NY, USA: ACM, FSE ’12, pp. 19:1–19:4.

[112] Pearlman, L., Welch, V., Foster, I., Kesselman, C. and Tuecke, S. (2002). A

community authorization service for group collaboration. In Proceedings of the

3rd International Workshop on Policies for Distributed Systems and Networks

(POLICY’02), Washington, DC, USA: IEEE Computer Society, POLICY ’02,

pp. 50–59.

[113] Perkins, J. H., Kim, S., Larsen, S., Amarasinghe, S., Bachrach, J., Carbin, M.,

Pacheco, C., Sherwood, F., Sidiroglou, S., Sullivan, G., Wong, W.-F., Zibin, Y.,

Ernst, M. D. and Rinard, M. (2009). Automatically patching errors in deployed

software. In Proceedings of the ACM SIGOPS 22Nd Symposium on Operating

Systems Principles, New York, NY, USA: ACM, SOSP ’09, pp. 87–102.



BIBLIOGRAPHY 260

[114] PERMIS Standalone Authorisation Server (n.d.). [Online]. Available from:

http://sec.cs.kent.ac.uk/permis/ [Accessed 5 January 2014].

[115] Perrin, C. (2008). The CIA triad. Available from:

http://www.techrepublic.com/blog/security/the-cia-triad/488 [Accessed 03

Sep 2015.

[116] Pritchard, D. B. (1994). ‘Snakes and Ladders’, The Family Book of Games. Brock-

hampton Press, 1st edn.

[117] Ratha, N. K., Bolle, R. M., Pandit, V. D. and Vaish, V. (2000). Robust finger-

print authentication using local structural similarity. In Applications of Computer

Vision, 2000, Fifth IEEE Workshop on., IEEE, pp. 29–34.

[118] Ray, I. and Poolsapassit, N. (2005). Using attack trees to identify malicious at-

tacks from authorized insiders. In Proceedings of the 10th European Conference

on Research in Computer Security, Lecture Notes in Computer Science, vol. 3679,

Berlin, Heidelberg: Springer-Verlag, pp. 231–246.

[119] Robertson, P. and Laddaga, R. (2005). Model based diagnosis and contexts in

self adaptive software. In Self-star Properties in Complex Information Systems,

Lecture Notes in Computer Science, vol. 3460, Springer, pp. 112–127.

[120] Roesch, M. et al. (1999). Snort: Lightweight intrusion detection for networks. In

LISA, vol. 99, pp. 229–238.

[121] Salehie, M. and Tahvildari, L. (2009). Self-adaptive software: Landscape and

research challenges. ACM Trans Auton Adapt Syst, 4(2), pp. 14:1–14:42.

[122] Sandhu, R. (2012). The authorization leap from rights to attributes: maturation

or chaos? In Proceedings of the 17th ACM symposium on Access Control Models

and Technologies, ACM, SACMAT ’12, pp. 69–70.

[123] Sandhu, R. S., Coyne, E. J., Feinstein, H. L. and Youman, C. E. (1996). Role-

based access control models. Computer, 29(2), pp. 38–47.

[124] Schneider, F. B. (2000). Enforceable security policies. ACM Trans Inf Syst Secur,

3(1), pp. 30–50.

[125] Seidewitz, E. (2003). What models mean. IEEE Software, 20(5), pp. 26–32.

[126] Sendall, S. and Kozaczynski, W. (2003). Model transformation: The heart and

soul of model-driven software development. IEEE Software, 20(5), pp. 42–45.



BIBLIOGRAPHY 261

[127] Serrano, M., Meer, S., Strassner, J., Paoli, S., Kerr, A. and Storni, C. (2009).

Trust and reputation policy-based mechanisms for self-protection in autonomic

communications. In Proceedings of the 6th International Conference on Autonomic

and Trusted Computing, Berlin, Heidelberg: Springer-Verlag, ATC ’09, pp. 249–

267.

[128] Sharma, A., Kalbarczyk, Z., Iyer, R. and Barlow, J. (2010). Analysis of credential

stealing attacks in an open networked environment. In Proceedings of the 2010

Fourth International Conference on Network and System Security, Washington,

DC, USA: IEEE Computer Society, NSS ’10, pp. 144–151.

[129] Shi, L. and Chadwick, D. W. (2011). A controlled natural language interface for

authoring access control policies. In Proceedings of the 2011 ACM Symposium on

Applied Computing, New York, NY, USA: ACM, SAC ’11, pp. 1524–1530.

[130] Shirey, R. (2007). Internet RFC 4949.

[131] SimpleSAMLphp (n.d.). [Online]. Available from: http://simplesamlphp.org/ [Ac-

cessed 5 January 2014].

[132] Spitzner, L. (2003). Honeypots: Catching the insider threat. In Proceedings of the

19th Annual Computer Security Applications Conference, IEEE, pp. 170–179.

[133] Spivey, J. M. (1989). The Z Notation: A Reference Manual. Upper Saddle River,

NJ, USA: Prentice-Hall, Inc.

[134] Stakhanova, N., Basu, S. and Wong, J. (2007). A cost-sensitive model for preemp-

tive intrusion response systems. In AINA, vol. 7, pp. 428–435.

[135] Stakhanova, N., Basu, S. and Wong, J. (2007). A taxonomy of intrusion response

systems. Int J Inf Comput Secur, 1(1/2), pp. 169–184.

[136] Strasburg, C., Stakhanova, N., Basu, S. and Wong, J. S. (2009). A framework for

cost sensitive assessment of intrusion response selection. In Proceedings of the 2009

33rd Annual IEEE International Computer Software and Applications Conference

- Volume 01, Washington, DC, USA: IEEE Computer Society, COMPSAC ’09,

pp. 355–360.

[137] Tamura, G., Villegas, N. M., Müller, H. A., Duchien, L. and Seinturier, L.

(2013). Improving context-awareness in self-adaptation using the dynamico refer-

ence model. In Proceedings of the 8th International Symposium on Software En-

gineering for Adaptive and Self-Managing Systems, Piscataway, NJ, USA: IEEE

Press, SEAMS ’13, pp. 153–162.



BIBLIOGRAPHY 262

[138] Team, T. C. I. T. (2013). Unintentional insider threats: A foundational study.

Software Engineering Institute Technical Report.

[139] Thompson, M., Johnston, W., Mudumbai, S., Hoo, G., Jackson, K. and Essiari,

A. (1999). Certificate-based access control for widely distributed resources. In

Proceedings of the 8th Conference on USENIX Security Symposium, Berkeley,

CA, USA: USENIX Association, SSYM’99, pp. 17–30.

[140] UK Access Management Federation (n.d.). [Online]. Available from:

http://www.ukfederation.org.uk/ [Accessed 17 January 2014].

[141] Vijayan, J. (2009). Former DuPont researcher hit with

federal data theft charges [Online]. Available from:

http://www.computerworld.com/s/article/9139014/Former DuPont researcher

hit with federal data theft charges [Accessed 10 May 2014].

[142] Villegas, N. M., Müller, H. A., Tamura, G., Duchien, L. and Casallas, R. (2011).

A framework for evaluating quality-driven self-adaptive software systems. In Pro-

ceedings of the 6th International Symposium on Software Engineering for Adaptive

and Self-Managing Systems, New York, NY, USA: ACM, SEAMS ’11, pp. 80–89.

[143] Walsh, C. (2006). New data theft scandal rocks

subcontinent’s call centres [Online]. Available from:

http://www.theguardian.com/money/2006/sep/03/business.india [Accessed

5 January 2014].

[144] Wang, K. and Stolfo, S. (2004). Anomalous payload-based network intrusion de-

tection. In E. Jonsson, A. Valdes and M. Almgren, eds., Recent Advances in In-

trusion Detection, Lecture Notes in Computer Science, vol. 3224, Springer Berlin

Heidelberg, pp. 203–222.

[145] Warmer, J. B. and Kleppe, A. G. (2003). The object constraint language: getting

your models ready for MDA. Addison-Wesley Professional.

[146] Weyns, D., Malek, S. and Andersson, J. (2010). Forms: A formal reference model

for self-adaptation. In Proceedings of the 7th International Conference on Auto-

nomic Computing, New York, NY, USA: ACM, ICAC ’10, pp. 205–214.

[147] Weyns, D., Malek, S. and Andersson, J. (2012). Forms: Unifying reference model

for formal specification of distributed self-adaptive systems. ACM Trans Auton

Adapt Syst, 7(1), pp. 8:1–8:61.



BIBLIOGRAPHY 263

[148] XACMLight (n.d.). [Online]. Available from: http://xacmllight.sourceforge.net/

[Accessed 17 January 2014].

[149] Yuan, E., Esfahani, N. and Malek, S. (2014). A systematic survey of self-protecting

software systems. ACM Trans Auton Adapt Syst, 8(4), pp. 17:1–17:41.

[150] Yuan, E. and Malek, S. (2012). A taxonomy and survey of self-protecting soft-

ware systems. In Software Engineering for Adaptive and Self-Managing Systems

(SEAMS), 2012 ICSE Workshop on, IEEE, pp. 109–118.

[151] Yuan, E., Malek, S., Schmerl, B., Garlan, D. and Gennari, J. (2013). Architecture-

based self-protecting software systems. In Proceedings of the 9th international

ACM Sigsoft conference on Quality of software architectures, ACM, pp. 33–42.

[152] Yuan, E. and Tong, J. (2005). Attributed based access control (ABAC) for web

services. In Proceedings of the IEEE International Conference on Web Services,

Washington, DC, USA: IEEE Computer Society, ICWS ’05, pp. 561–569.

[153] Zhang, N., Ryan, M. and Guelev, D. P. (2008). Synthesising verified access control

systems through model checking. J Comput Secur, 16(1), pp. 1–61.


	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	List of Publications
	Introduction
	Research Problem
	Research Approach
	Thesis Contributions
	Thesis Structure

	Literature Review
	Introduction
	Access Control
	Role Based Access Control
	Attribute Based Access Control
	Extensible Access Control Markup Language
	Authorisation Infrastructures
	Federated Identity Management

	Insider Threat
	Classifying and Characterising Insider Threat
	Methods of Insider Threat
	Detection and Mitigation
	Mitigating Insider Threat through Access Control

	Self-Adaptation
	Reference Models for Self-Adaptive Systems
	Classifying Self-Adaptive Systems
	Triggering Adaptation
	Decision Theory
	Rainbow Framework

	Self-Protection
	Intrusion Response
	Architectural-Based Self-Protection
	Self-Protection in Access Control

	Summary

	Self-Adaptive Authorisation Framework
	Introduction
	Self-Adaptive Authorisation Framework
	Objectives
	Motivation for Self-Adaptation
	SAAF Conceptual Design
	Scope of Attacks

	Target System and Environment
	Adaptation Process
	Models (Knowledge)
	Monitoring
	Analysis
	Planning
	Execution

	Classifying SAAF
	Approach Position
	Approach Characterisation

	Evaluating SAAF
	Related Work
	Summary

	Model Driven Self-Adaptive Authorisation
	Introduction
	Background
	Model Driven Engineering
	rbacDSML: RBAC Verification Tool

	SAAF Controller: Prototype
	Controller Architecture
	Scope of Observation and Control
	Modelling the State of Access Control (Monitoring)
	Detecting Malicious Behaviour (Monitoring)
	Analysing Behaviour and Solutions (Analysis)
	Mitigating Behaviour (Planning and Execution)

	Authorisation Infrastructure Integration
	Preliminary Analysis of SAAF
	Chemical Researcher Insider Attack
	Adaptation Scenario
	Adaptation Results
	Scalability of Verification
	Prototype Discussion

	Summary

	Simulating Insider Threat
	Introduction
	Case Study: LGZLogistics
	Context and Architecture
	Access Control Model
	Subject Behaviour

	Defining Malicious Changeload
	System and Environment Models
	System and Environment State
	Operational Profiles
	Change Types and Changes
	Scenarios and Changeload

	Case Study: Changeload
	Violations
	Identifying Change Types and Change
	Malicious Changeload

	Experiments
	Deploying the SAAF Controller
	Executing LGZLogistics Changeload
	Experiments Execution
	Summary of Results

	Experiment Discussion
	Evaluation Approach
	Detection and Adaptation
	Federation Challenges

	Summary

	Evaluating SAAF through Gamification
	Introduction
	Objective and Scope
	The Game of Snakes and Ladders
	Game Design
	Vulnerabilities

	Deployment
	Self-Adaptive Authorisation Infrastructure
	SAAF Controller Configuration
	Logs

	Experiments
	Experiment Execution
	Observed Environment Change
	Detection and Mitigation

	Evaluation of Hypotheses
	H1. Adaptation mitigates malicious subject activity
	H2. Experience enables sophisticated attacks
	H3. Subject behaviour changes post adaptation
	Summary Conclusion on Hypotheses

	Evaluating SAAF: Success and Limitations
	Success and Limitations of Performed Experiments
	Consequences of Self-Adaptive Authorisation

	Summary

	Conclusions
	Thesis Contributions
	Discussion
	Limitations
	Future Work

	SAAF Prototype
	Prototype Code Base
	LDAP Metamodel
	PERMIS Metamodel
	Scope of Observation
	Scope of Control
	Behaviour Policy
	Solution Policy
	Preliminary Analysis Results

	Simulating Malicious Changeload
	Change Instantiations
	Federated Adaptation
	Automating the Management of Identity Providers
	SimpleSAMLphp Identity Provider Effector

	Simulation Experiments
	Controller Configuration
	Adaptation under Normal Load: Solution Selection
	Adaptation under High Load: Summary of Results


	Gamification Analysis
	Guidance to Players
	Game Data
	Player Behaviour

	Bibliography

