
Vu, Quang, Colombo, Maurizio, Asal, Rasool, Sajjad, Ali, El-Moussa, Fadi
Ali and Dimitrakos, Theo (2015) Secure Cloud Storage: A Framework for
Data Protection as a Service in the Multi-cloud Environment. In: Communications
and Network Security (CNS), 2015 IEEE Conference on. . pp. 638-642.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/50845/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1109/CNS.2015.7346879

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/50845/
https://doi.org/10.1109/CNS.2015.7346879
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Secure Cloud Storage: A framework for Data
Protection as a Service in the multi-cloud

environment

Quang Hieu Vu∗, Maurizio Colombo∗, Rasool Asal∗‡, Ali Sajjad†‡, Fadi Ali El-Moussa‡ and Theo Dimitrakos‡
∗Etisalat BT Innovation Center (EBTIC)
Khalifa University, United Arab Emirates

Email: {quang.vu, maurizio.colombo}@kustar.ac.ae
†School of Computing, University of Kent

Email: a.sajjad@kent.ac.uk
‡British Telecom

Email: {rasool.asal, fadiali.el-moussa, theo.dimitrakos}
@bt.com

Abstract—This paper introduces Secure Cloud Storage
(SCS), a framework for Data Protection as a Service (DPaaS)
to cloud computing users. Compared to the existing Data
Encryption as a Service (DEaaS) such as those provided by
Amazon and Google, DPaaS provides more flexibility to protect
data in the cloud. In addition to supporting the basic data
encryption capability as DEaaS does, DPaaS allows users
to define fine-grained access control policies to protect their
data. Once data is put under an access control policy, it is
automatically encrypted and only if the policy is satisfied,
the data could be decrypted and accessed by either the data
owner or anyone else specified in the policy. The key idea
of the SCS framework is to separate data management from
security management in addition to defining a full cycle of
data security automation from encryption to decryption. As a
proof-of-concept for the design, we implemented a prototype of
the SCS framework that works with both BT Cloud Compute
platform and Amazon EC2. Experiments on the prototype have
proved the efficiency of the SCS framework.

Keywords—Cloud Computing; Data Security, Access Control;
Key Management;

I. INTRODUCTION

To address the security concern of cloud computing users,
a number of Data Encryption as a Services (DEaaS) have
been introduced by various cloud service providers [1], [2].
These services, however, have a couple of major limitations:
(1) they often suffer from the problem of ’vendor lock-in’,
i.e., the encryption service is bounded to a specific cloud
service provider or a cloud computing platform and (2) basic
security primitives such as access control policies are always
out of the their scope, and hence these services are not
flexible enough to support data sharing between users due to
the need of sharing encryption keys. These limitations force
the data owners to trust completely in their cloud service
providers and lose control over their data when relying on
the cloud for storing, sharing, or accessing it.

To tackle the limitations of the existing DEaaS, in this
paper we propose Secure Cloud Storage (SCS), a framework

providing Data Protection as a Service (DPaaS) to the
users that want to store and share data in a multi-cloud
environment. DPaaS is a result of on-going contributions to
the ESCUDO-CLOUD project [3] and is being realised as
a technical use-case of the project by BT. It aims towards
providing data security solutions that guarantee interoper-
ability and enforcement of access restrictions across multiple
cloud service providers. In particular, DPaaS provides cloud
computing users with not only the basic data encryption
capability that is supported by DEaaS but also the capability
to define fine-grained access control policies to protect their
data. In this way, once data is protected by an access control
policy, it is automatically encrypted and only if the policy is
satisfied, the data can be decrypted and accessed by either
the data owner or anyone else specified in the policy.

The SCS framework is designed to work with any cloud
platform and any security solution. Our basic idea is to sepa-
rate the management process from data encryption process in
which data encryption process is open-ended to work with
any encryption method and any Key Management Server.
For the management process, in addition to allowing users
to define access control policies for data, the framework
provides automatic provisioning of the protection service at
three different levels of granularity: cloud tenant account,
virtual machine (VM), and the file/disk inside the VMs. A
combination of these three levels provides a full cycle of
data security: from tenant account creation, VM provision
and data encryption to data decryption, VM de-provision and
account termination. Thus, the key challenge addressed by
SCS, especially in context of the ESCUDO-CLOUD project,
is to offer the key management feature and the policy-based
access control feature as a complete life-cycle service.

The rest of this paper is organized as follows. Section II
presents related work. Section III discusses requirements
and challenges of the framework. Section IV introduces the
design of our framework and explains all of its components
as well as functionalities in details. Section V shows our

proof-of-concept prototype implementation of the frame-
work. Finally, Section VI concludes the paper.

II. RELATED WORK

Data security in untrusted third parties in general and
in the cloud in particular is often provided through access
control policies and cryptographic methods [4]. As typical
examples, Yu et al. introduced a fine-grained access control
for data in untrusted cloud storage [5] based on a combina-
tion of attribute-based encryption, proxy re-encryption, and
lazy re-encryption whereas Yarlagadda et al. proposed an
encryption scheme [6] that integrates Playfair and Vigenere
ciphers with the structural aspects of DES and S-DES. To
further support data sharing, Kang et al. proposed an Identity-
Based Authentication scheme by which the owner can share
his encrypted data stored in the cloud [7] while Zhao at el. [8]
presented a progressive encryption system based on Elliptic
Curve Cryptography that allows the owner to share his
encrypted data with other consumers without revealing the
plaintext data. Additionally, to address the issue of key loss,
Huang et al. presented a key recovery scheme in YiCloud
[9]. On the other hand, considering public audit-ability, Wang
et al. presented a model on cloud storage for data integrity
verification based on Merkle hash tree [10] while Almualla
et al. designed a new security architecture with sharing keys
[11] that fulfils all security requirements in an environment
that supports lawful interception. Finally, Vimercati et al.
proposed an approach to address the integrity of join queries
in unreliable computational services [12].

The most popular data security service in the cloud is
Data Encryption as a Service (DEaaS), which has been
introduced in many cloud platforms from commercial ones
such as Amazon and Google to open-source ones such as
Swift in OpenStack and Cumulus in Nimbus [1], [2], [13].
Besides DEaaS, the authors of [14] introduced a Privacy as
a Service, which was implemented by a set of protocols to
ensure the security of data in cloud architecture. On the other
hand, authors of [15] proposed a Secret Storage as a Service
that is designed to securely storing, tracking, and controlling
access to digital secrets such as cryptographic keys and
hashed passwords. Our proposed framework is different from
these services in the sense that we provide a full life-cycle
of data security management and maximize the flexibility of
users in using the data encryption service. The closest works
to ours are [16] and [17]. Specifically, with respect to the
work in [16], our service is similar because both services
target multi-cloud environments and provide several options
for users to customize the services. The difference, however,
is that the security service in that work focuses on protecting
the VM with firewalls and security tools while our focus is
specifically on data encryption. On the other hand, while [17]
shares the ideas with our work in providing data encryption
as a service, the architecture and design principles of the two
works are very different.

III. REQUIREMENTS AND CHALLENGES OF THE
SECURE CLOUD STORAGE FRAMEWORK

A. Requirements

Given that Secure Cloud Storage is designed as a frame-
work providing Data Protection as a Service (DPaaS) to
cloud computing users, we first discuss requirements for
DPaaS. One requirement of our proposed DPaaS is to provide
flexibility to cloud computing users by allowing them to
define fine-grained access control policies for their data, in
addition to the basic data encryption capability. In general,
an access control policy provides information of who can
access, when to access and how to access data. Another
requirement of the DPaaS is to support the full life-cycle of
data encryption and decryption, i.e., we expect the DPaaS to
provide data decryption for users without any extra step when
they want to stop using the service. This feature provides
the usability to user and is different from existing DEaaS
which always require users to copy data out of the protected
zone to receive decrypted data. Finally, DPaaS is required
to offer fully automatic installation and configuration of
security management, independent of cloud environments
and security platforms. When a user wants to protect his
data in a particular cloud platform with a specific security
solution, all the user needs to do is to specify the cloud
platform and the security solution and afterwards everything
will be done automatically for the user.

Besides the requirements of DPaaS, there are a couple
of specific requirements that we need to address for the
framework itself. On the one hand, the framework should
work with different cloud platforms. In other words, the
framework is expected to provide DPaaS in a multi-cloud
environment where users can have accounts from different
cloud service providers. Given the popularity of cloud usage,
it is not surprised if a user has different cloud accounts
and depending on the data type, a specific account will be
selected to manage the data (or in the extreme cases, the data
can be stored across cloud platforms). On the other hand,
the framework should work with different security solutions.
Similar to the previous requirement, a user may prefer to
employ a specific security solution for a specific type of
data, but may use a different security solution for another
type of data. In this case, it is expected to support different
types of security solutions and provide options for users to
select the most suitable one.

In addition to these two separate sets of requirements, we
observe that when combining these requirements together,
they generate an extra requirement. Basically, in a multi-
cloud environment as described above, it is desirable that
users are able to employ the same access control poli-
cies while transferring the protected/encrypted data across
different cloud platforms or locations. It means that the
access control policies should be moved with the encrypted
data across different cloud service providers easily without
the need of re-defining the policies or decrypting and re-
encrypting the data. Note that these sets of requirements are
general for all types of data. The requirement deliverable of
the ESCUDO-CLOUD project [3] provides a more detailed
explanation of requirements for DPaaS based on a BT use-

��������	�
����
�	

���������

��������
��	������
��

��
��	�����
��

����	��������	�����	

���������	������

������	�����

�

��
��	�����
��	

���������

�
	����
�����

�����	

�� �������
�

���� 	�
���
�	

�
����	 ����������
�

���	

����� �

�
	

�����!

��
�

��
�

��
�

��
�

��
�

��
�

"�����	

����#� �

"�����	

����������
���
���	���� �����
�

�
	��
�� �
����

����	��������
�

����	��������
�

�
	��$��
�� �
����

���
���	���������
�

���� 	

�
���
�	

�
�����
�
����	

�!���

�����	

 ������
�

�����	

���
 ��
��

Fig. 1. Architecture of the Secure Cloud Storage framework

case, which is also greater is scope with respect to the
cloud storage services being supported by the DPaaS. Thus
it covers a superset of the functionalities mentioned here,
offering DPaaS for block storage, object storage, and Big
Data (HDFS clusters) etc. as well.

B. Challenges

Given the above mentioned requirements, we face three
main challenges in building the framework for DPaaS. First,
we need to consider differences between different cloud
platforms because each cloud platform has a separate way to
manage virtual machines as well as their associated resources
(e.g., memory, data volumes and network addresses). In par-
ticular, given that the platform is to provide service for data
protection, the focus is on the differences in virtual machine
and data volume management. Second, there is a challenge
in communications with outside security servers for policy
management and key management. While existing security
solutions often follow the Key Management Interoperability
Protocol for key exchange between the key management
server and the secure agent, there is no standard for policy
management, and hence we have to rely on APIs provided
by the security solutions. Finally, there is a challenge to
maintain the continuation of data access during encryption
and decryption. In particular, the challenge is how to avoid
data conflict or inconsistency of data during these processes.

IV. SECURE CLOUD STORAGE FRAMEWORK

The architecture of the Secure Cloud Storage framework
is shown in Figure 1. In subsequent parts of this section, we
will respectively discuss components and functionalities of
the framework.

A. Components

The Secure Cloud Storage framework consists of three
main components: Tenant Management (TM), Cloud Plat-
form Management (CPM) and Data Security Management
(DSM). TM is the core component of the framework, which
is in charge of managing users registering for using the data
protection service. In addition, it maintains information of the
user cloud platform and security solutions that can be em-
bedded in the data protection service. CPM is the component

providing an interface consisting APIs for communications
with cloud platforms. For each cloud platform the framework
supports, a cloud plug-in implementing APIs of the interface
is attached to the component. As shown in Figure 1, there
are three cloud plug-ins: CPX , CPY and CPZ . Among
APIs of the interface, some of them are mandatory while
others are optional for implementation. For example, it is
required to implement the APIs that connects to the cloud
platform for VM deployment and VM termination because
these operations involve in the security agent installation
and uninstallation actions. Similar to the CPM component,
DSM is the component providing an interface for commu-
nications with the security solution servers and for each
security solution the framework supports, a security plug-
in is needed. As shown in Figure 1, there are three security
solution plug-ins: SPA, SPB and SPC . Basic APIs of this
interface include access control policy definition and data
encryption/decryption requests.

In addition to the above components, there are three
databases supporting the framework: the tenant database, the
access control policies database, and the agent repository.
Among these three databases, only the first one, which is
the tenant database, is located inside the framework. The
other two databases are situated outside the framework and
have separate interfaces for policy managements. In this way,
fine-grained access control policies can be defined and users
can customize the policies via the external interfaces without
going through the framework. However, by having these two
databases outside the framework, we need to also define
interfaces to connect them with the DSM component. At
the moment, we simply employ a simple interface to set-up
default basic access control policies for users and leave users
the freedom to add-in or modify the policies later through
the external interfaces.

B. Functionalities

The framework allows user interaction via six basic
functions. These functions operate on three provisioning
levels of the framework: tenant account level, VM level and
data level. A brief description of these functions is as follows.

1. Tenant account registration: is used when a user in
interested in using the encryption service.

(a) Service subscription

(b) VM provisioning

(c) Data encryption request

Fig. 2. Screen-shots of our implemented prototype

2. VM provisioning: is used when the user wants to
launch a new VM or to deploy the security solution in an
existing VM. This function is executed to setup and configure
the security agent inside the VM.

3. Data encryption: is used when the user wants to
encrypt a specific file, folder, or even the whole data volume.

4. Data decryption: is the reverse process of data en-
cryption. This function is used when the user wants to
stop protecting the data (i.e., he does not want the data to
be encrypted any more). When this function is called, all
existing encrypted data will be decrypted.

5. VM de-provisioning: is the reverse process of VM
provisioning. When this function is called, security config-
uration of the VM is first removed. After that, all existing
encrypted data associated in this VM is decrypted. Finally,
the security agent is uninstalled from the VM.

6. Tenant account termination: is the reverse process of
tenant account registration. When this function is called, all
VMs that were provisioned for using data protection service
in this account will be de-provisioned.

V. PROOF-OF-CONCEPT PROTOTYPE

This section shows our proof-of-concept prototype for
the Secure Cloud Storage framework where we implemented
a Data Protection as a Service working in both BT Cloud

Compute platform and Amazon EC2 with choices of secu-
rity solutions coming from TrendMicro and Vormetric Data
Security. This prototype is integrated into a cloud service
store and market place that has been developed by BT in the
STRATEGIC CIP project1 building on Appcara AppStack
platform [19], which is a platform for fast deployment
of cloud computing services in multi-cloud environment.
Figure 2 shows main screen-shots of the data provisioning
service that include service subscription, VM provisioning
and data protection request. In the rest of this section, we will
respectively discuss the customer journey of these screen-
shots and the result underlining hidden activities inside the
framework, which was described earlier in Figure 1.

A. Service subscription

When a user wants to use the Data Protection as a Service
to protect their data in a cloud platform, he first needs to
subscribe for using the service as shown in the screen-shot
Figure 2(a). This request is then processed at the Tenant
Management component. To fulfil the request, the user needs
to set-up two profiles:

1. Cloud profile(s): for each of the cloud platforms that
the user has an account and want to have data protection
in that account, a cloud profile has to be created. The
cloud profile contains the user’s credentials that are used
to identify the user’s account for communications with the
cloud platform via APIs. As examples, an Amazon EC2
cloud profile needs the account number, access key and
secret key while a Windows Azure cloud profile requires
the subscription ID, client private key and client certificate.

2. Security profile(s): for each of the security solutions
the user wants to employ to protect his data, a security profile
is required. Similar to the cloud profile, the security profile
contains the user’s credentials that are used to communicate
with the security solution servers to manage access control
policy or with the key management server to request encryp-
tion or decryption keys.

The cloud and security profiles once created are stored
in the Tenant Database. In cases the user does not have any
existing cloud account or security account to create these
profiles, the framework will help the user to register with
cloud platforms or create accounts with security solutions.

B. VM provisioning

After having registered for using the Data Protection as
a Service, the user can provision any Virtual Machine (VM)
in registered cloud platforms for data protection. There are
basically two cases for VM provisioning: in a new VM
or in an existing VM. Figure 2(b) shows VM provisioning
in an existing VM. When a VM is chosen for provision-
ing, the Cloud Platform Management component updates
information of the VM (e.g., OS, ID, DNS) to the Tenant

1Please refer to the http://strategic-project.eu/
strategic public files/deliverables/STRATEGIC D4.1a
STRATEGIC cloud broker and marketplace v1.1.pdf file in the deliverable
section of [18] for more information about the architecture and capabilities
of the service store.

Database. After that, the Security Solution Management
creates a software update patch and pushes the patch to the
VM for downloading, installing and configuring the security
agent. As an example, in our framework, Puppet [20] was
employed to provide the automatic software update patch.

Basically, to provision a VM with respect to a security
solution chosen by the user, the update patch, which is a
Puppet recipe in our case, contains: (1) a download link
to a suitable security agent installer: this link is created
based on the information of the VM recorded earlier and
the information of the Agent Repository Database, where
security agent installers are stored and (2) information of the
security server and instructions on how the security agent
is installed and configured inside the VM. In addition to
create the update patch, based on the security profiles, the
Security Solution Management component also contacts the
key management server as well as any security server of the
security solution to confirm the installation and registration
of the security agent inside the VM.

C. Data protection request

Figure 2(c) shows that the user can specify any particular
folder or file in a VM that has been put in the service for
data protection. Additionally, the user can specify the access
control policy for the folder if he does not want to employ
the default policy.

When a data folder is selected for protection, similar
to the case of VM provisioning, both the Cloud Platform
Management and Security Solution Management components
are involved in processing the request. In particular, while
the Cloud Platform Management records the selected folder
in the Tenant Database, the Security Solution Management
creates a new software update patch (i.e., the Puppet recipe)
to send instructions to the security agent inside the VM.
Basically, this update patch only contains: (1) the selected
file or folder for protection and the access control policy for
that folder and (2) actions that need to be done inside the
VM. At the same time, the Security Solution Management
component also notifies the security server about the data
folder that needs protection as well as its access control
policy so that the information can be synchronized between
the security server and the security agent.

VI. CONCLUSION

In this paper, we presented a general framework for
providing Data Encryption as a Service supporting differ-
ent security solutions in a multi-cloud environment. Our
framework is flexible to support any security solution in any
cloud platform through the implementation of specific plug-
ins. It provides full automation of data encryption service to
users in a complete life-cycle from data encryption to data
decryption. A proof-of-concept prototype of the framework
was implemented aligned to a subset of the requirements
elicited by the BT use-case of ESCUDO-CLOUD project
and leveraging a cloud marketplace developed by BT in the
STRATEGIC to prove the practicability of our design.

ACKNOWLEDGEMENT

The work of some co-authors has been partly supported
by the European research and innovation projects STRATE-
GIC and ESCUDO-CLOUD. STRATEGIC has received
funding from the European Unions Competitiveness and
Innovation Framework Programme under grant agreement
No. 621009 and ESCUDO-CLOUD has received funding
from the European Unions Horizon 2020 Research and
Innovation Programme under grant agreement No. 644579.

REFERENCES

[1] “Amazon Encryption Service,” http://docs.aws.amazon.com/
AmazonS3/latest/dev/serv-side-encryption.html, accessed: 2015-
07-07.

[2] “Google Cloud Storage,” http://googlecloudplatform.blogspot.co.uk/
2013/08/google-cloud-storage-now-provides.html, accessed: 2015-
07-07.

[3] “ESCUDO-CLOUD,” http://www.escudocloud.eu/index.php.

[4] S. D. C. D. Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and
P. Samarati, “Encryption policies for regulating access to outsourced
data,” ACM Trans. Database Syst., vol. 35, no. 2, pp. 12:1–12:46,
May 2010.

[5] S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving Secure, Scalable,
and Fine-grained Data Access Control in Cloud Computing,” in
Proceedings of the IEEE INFOCOM, March 2010, pp. 1–9.

[6] V. K. Yarlagadda and S. Ramanujam, “Data Security in Cloud
Computing,” Journal of Computer and Mathematical Sciences, no. 1,
pp. 15–23, 2011.

[7] L. Kang and X. Zhang, “Identity-Based Authentication in Cloud
Storage Sharing,” in Proceedings of the International Conference on
Multimedia Information Networking and Security (MINES), Novem-
ber 2010, pp. 851–855.

[8] G. Zhao, C. Rong, J. Li, F. Zhang, and Y. Tang, “Trusted Data
Sharing over Untrusted Cloud Storage Providers,” in Proceedings of
the 2nd International Conference on Cloud Computing Technology
and Science (CloudCom), November 2010, pp. 97–103.

[9] Z. Huang, Q. Li, D. Zheng, K. Chen, and X. Li, “YI Cloud:
Improving user privacy with secret key recovery in cloud storage,” in
Proceedings of the 6th International Symposium on Service Oriented
System Engineering (SOSE), December 2011, pp. 268–272.

[10] Q. Wang, C. Wang, K. Ren, W. Lou, and J. Li, “Enabling public au-
ditability and data dynamics for storage security in cloud computing,”
IEEE Transactions on Parallel and Distributed System, pp. 847–859,
2011.

[11] S. A. Almulla and C. Y. Yeun, “New secure storage architecture for
cloud computing,” in Proceedings of the International Conference on
Future Information Technology (FutureTech), 2011, pp. 75–84.

[12] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi,
and P. Samarati, “Integrity for join queries in the cloud,” Cloud
Computing, IEEE Transactions on, vol. 1, no. 2, pp. 187–200, July
2013.

[13] S. Kang, B. Veeravalli, and K. M. M. Aung, “ESPRESSO: An
Encryption as a Service for Cloud Storage Systems,” in Proceed-
ings of the International Conference on Autonomous Infrastructure,
Management, and Security (AIMS), June 2014, pp. 15–28.

[14] W. Itani, A. Kayssi, and A. Chehab, “Privacy as a Service: Privacy-
Aware Data Storage and Processing in Cloud Computing Architec-
tures,” in Proceedings of the 8th IEEE International Conference on
Dependable, Autonomic and Secure Computing (DASC), December
2009, pp. 711–716.

[15] A. Sayler and D. Grunwald, “Custos: Increasing Security with Secret
Storage as a Service,” in Proceedings of the Conference on Timely
Results in Operating Systems (TRIOS), October 2014.

[16] J. Daniel, T. Dimitrakos, F. El-Moussa, G. Ducatel, P. Pawar, and
A. Sajjad, “Seamless Enablement of Intelligent Protection for En-
terprise Cloud Applications through Service Store,” in Proceedings
of the 6th IEEE International Conference on Cloud Computing
Technology and Science (CloudCom), December 2014, pp. 1021–
1026.

[17] P. S. Pawar, A. Sajjad, T. Dimitrakos, and D. W. Chadwick, “Security-
as-a-Service in Multi-cloud and Federated Cloud Environments,”
in Proceedings of the 9th IFIP International Conference on Trust
Management (IFIPTM), May 2015.

[18] “STRATEGIC CIP,” http://www.strategic-project.eu/.
[19] “Appcara,” http://www.appcara.com/.
[20] “Puppet,” https://puppetlabs.com/.

