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Abstract

Mixture models have been widely used to model heterogeneity. In this thesis,

we focus on the use of mixture models in capture–recapture, for both closed

populations and open populations. We provide both practical and theoretical

investigations. A new model is proposed for closed populations and the prac-

tical difficulties of model fitting for mixture models are demonstrated for open

populations. As the number of model parameters can increase with the number

of mixture components, whether we can estimate all of the parameters using

the method of maximum likelihood is an important issue. We explore this

using formal methods and develop general rules to ensure that all parameters

are estimable.
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Chapter 1

Background and Introduction

1.1 Statistical Ecology & Capture–Recapture

In this thesis we focus on statistical models in ecology. We are interested in

knowing the population size of species of interest, the survival probabilities

of individuals, and so on. Ecologists take regular samples, which are often

annual, to collect data from populations. The sampling method of interest to

us is called capture–recapture.

In capture–recapture, individuals are marked, released, and recaptured,

or recovered, typically at equal time intervals. Usually each individual has a

unique tag for identification. After initial capture, if an individual is seen again

alive, this is a recapture. If an individual is found again dead, this is a recovery.

By taking repeated samples, we build up a capture history for each individual

in the population, except for those we never observe again of following initial

capture and marking.

1



1.2. RELEVANT HISTORY OF CAPTURE–RECAPTURE MODELS
AND PARAMETER REDUNDANCY 2

1.2 Relevant History of Capture–Recapture Mod-

els and Parameter Redundancy

First of all, consider a closed population, where no birth, no death and no

migration occur over the sampling period. The Lincoln–Petersen (Lincoln,

1930; Petersen, 1896) estimate, which assumes a closed population, is obtained

when there are just two samples, and estimates the population size N using

the equation below

n1

N
=
m2

n2

,

in which n1 denotes the size of the first sample all of which were marked, and

n2 denotes the size of the second sample, of which m2 were marked. The closed

population means we assume the totol population does not change between the

two visits when the samples are taken.

By taking repeated samples of a closed population, the data we collected

form what is called a Schnabel census (Sutherland, 1996). Assuming an equal

capture probability for all individuals on each occasion give us the simplest

M0. When we have the capture histories for each individual, we can allow

individuals to have different capture probabilities and we denote the resulting

heterogeneity model Mh. If we allow temporal variation of capture proba-

bilities, then we denote the model as Mt. If we allow individuals to have a

different capture probability after initial capture, we have a behaviour–related

model, denoted by Mb. This might be appropriate if animals are trap–happy

or trap–shy, following first capture.

We can also allow both time variation and heterogeneity in the model de-

noted by Mth. Many other closed population models can also be considered,

see Otis et al. (1978). For example, we can introduce both the time effect and

the behavioural effect, denoted by Mtb. The full model, Mtbh, allows for time,
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behavioural and heterogeneous effects on the capture probability. If we allow

individuals to have different capture–recapture probabilities and/or survival

probabilities, we can have mixture models. Mixture versions of such models

are considered in Pledger (2000). Pledger (2000) also considers models with

interactions between the effects, with the full model denoted by Mt×b×h. This

model has time, behavioural and heterogeneous effects, as well as interactions

between time and behavioural, time and heterogeneity, and behavioural and

heterogeneity effects. When a model contains mixture components, we have

to consider whether all model parameters are estimable: the issue has been

discussed in Link (2003) and Holzmann et al. (2006).

When the individual capture histories are not accessible to us, instead we

only have the numbers of animals that were captured j times, denoted by fj,

for j = 1, 2, . . . , K, where K is the length of the capture–recapture study. We

can assume that all individuals have the same recapture probabilities, so that

for each fj, pj describes the probability of fj. This will allow us to form a

multinomial distribution on {fj} and we can model heterogeneity of recapture

probabilities through the use of different distributions. For example, we can

model {pj} using a logistic normal binomial distribution or a beta–binomial

distribution. Further, we can consider mixtures of distributions, see Morgan

and Ridout (2008). For example, a mixture of a binomial distribution and a

beta–binomial distribution has been used.

In contrast, in open populations we allow individuals to enter the popu-

lation through birth and leave the population through death and in addition

there may be migration. Again, our focus is to model heterogeneity if it is

present through the repeated samples collected. We allow individuals to vary

from each other, by assuming there are a number of groups each with con-

stant parameters but with variation between groups. Mathematically, this is
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modelled by having mixture components. We denote the length of the capture–

recapture study by K, and the number of mixture components by C.

Pledger (2000) discussed the use of mixture models in closed populations

and noted that it might not be possible to estimate all model parameters

given the data collected. Holzmann et al. (2006) have done a further study to

prove that a necessary condition to be able to estimate all model parameters is

K ≥ 2C for the types of closed population mixture models in Pledger (2000).

Although open population mixture models have been used widely (Pledger

et al., 2010, 2003; Pledger and Schwarz, 2002), whether we can estimate all

model parameters in these mixture models has not been formally studied. The

general rule to ensure that models are identifiable and that all parameters in

the closed–population are estimable was derived in Holzmann et al. (2006),

but no previous work has formally explored the rules of mixture models in

open–populations. It was noted by the authors in Pledger et al. (2010) that

Finding exact rules for these more complex open–population mod-

els would be a difficult and time–consuming exercise, and the rules

are unlikely to be simple.

This motivates the main part of this thesis in Chapter 4 and Chapter 5. Here

we will be focusing on finding rules for open–population capture–recapture

mixture models.

A formal definition of model identification can be found in Silvey (1975).

The problem of whether we are able to estimate all model parameters is known

as parameter redundancy. There are two types. If the problem occurs due to

the inherited model structure, this is called intrinsic parameter redundancy,

while if the problem occurs due to a particular dataset, this is called extrinsic

parameter redundancy ; see Hubbard (2014). In this thesis, we only consider the
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former case, and investigate parameter redundancy resulting from the model

structure.

Methods of using symbolic algebra for detecting parameter redundancy in-

clude Catchpole et al. (1998, 2002) and Catchpole and Morgan (1997, 2001).

The quantity that uniquely determines the model structure is a set of param-

eters called an exhaustive summary. We focus on methods that are based on

exhaustive summaries, see Cole et al. (2010), which has developed the theory

based on previous work. These methods have been used for many non–mixture

models. For example, see Hubbard (2014); Cole et al. (2012); Hubbard et al.

(2014) for mark–recovery models, Cole and Morgan (2010a) for tag return

models, and Cole (2012) for multi–state capture–recapture models.

When the models are too complex for the symbolic method we shall employ,

it is also possible to use a numerical approach to detect parameter redundancy

(Viallefont et al., 1998). For example see Jiang et al. (2007) for tag return

models and Hunter et al. (2009) for multi–state mark–recapture models. We

can also use a hybrid symbolic–numerical (SN) method; see Choquet and Cole

(2012).

Not only do we discuss theoretical parameter redundancy results, but we

also discuss the practical model fitting of these open–population capture–

recapture mixture models. For capture–recapture, such models have been

fitted in Pledger et al. (2010, 2003) and for capture–recovery, the models have

been fitted in Pledger and Schwarz (2002). We compare our results to pub-

lished results and by determining how many mixture components we can have,

we also fit more plausible models. Sometimes we are able to find a simpler

model.
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1.3 Structure of Thesis

The main content of this thesis consists of five chapters, from Chapter 2 to

Chapter 6. We give brief introductions to each of these chapters below.

In Chapter 2, we start by looking at the performance of a variety of mixture

models in the closed–population scenario. We give the assumptions of the

closed–population in a statistical ecology environment and explain how the

data are collected. By setting up a multinomial model we can estimate the

size of the population.

The probabilities in the multinomial model are modelled through different

mixtures of probability distributions. Link (2003) discussed the use of the lo-

gistic normal binomial model as well as the log–gamma model. Morgan and

Ridout (2008) explore the behaviour of certain mixture binomial models: the

beta binomial model, and a mixture of a binomial and a beta binomial model.

We introduce a new mixture, the binomial–logistic normal binomial model.

The performance of this new model is compared with the previous models

given above.

The remaining part of the thesis focuses on parameter–redundancy in open

capture–recapture models. Chapter 3 introduces the models and gives exam-

ples of the numbers of parameters considered in such models. Chapter 4 gives

a definition of parameter–redundancy and describes the methods that we use

to detect the parameter–redundancy, and how we proceed when it is present,

based on the use of exhaustive summaries. Chapter 5 gives examples of how

we can simplify the problem by introducing what are known as simpler ex-

haustive summaries. Chapter 6 demonstrates the practical difficulty of fitting

open capture–recapture mixture models.
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Chapter 3 lists all the open capture–recapture mixture models we consider

in this thesis. Models of interest are capture–recapture models (Pledger et al.,

2003, 2010), capture recovery models (also known as tag–return, band–recovery

or mark recovery) (Pledger and Schwarz, 2002) and capture–recapture recov-

ery models. For each model, we give a gentle introduction, followed by an

illustration of the data being described. We then give the expressions of the

different mixture models.

Chapter 4 discusses the problem of parameter–redundancy in open capture–

recapture mixture models. We list the tools for detecting the problem. Meth-

ods include symbolic approaches developed in Catchpole and Morgan (1997);

Catchpole et al. (1998) and Cole et al. (2010), and the symbolic–numerical

hybrid method in Choquet and Cole (2012). For the first time, results of

parameter–redundancy are given for small values of K and C for some mixture

models as examples, where as mentioned earlier, K is the length of the capture–

recapture study and C is the number of mixture components. We present

theorems and a general framework to approach the problem of parameter–

redundancy based on the use of exhaustive summaries.

Chapter 5 consists of various examples of what are known as simpler ex-

haustive summaries for open capture–recapture mixture models. We provide

examples using both the linear link function and the logistic link function. We

discuss the use of simpler exhaustive summaries and how we can use them to

simplify the problem of detecting and proving parameter–redundancy results.

The chapter involves heavy algebraic manipulations and some mathematical

expressions have been omitted. We use symbolic computer packages to do

most calculations and all relevant code is included in the supplementary CD.

Brief guides on the packages written for the thesis are given in Appendix A

for the computer codes in Maple R© and Appendix B for the computer codes in
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Mathematica R© .

Chapter 6 shows the fitted results for open capture–recapture mixture mod-

els. We use examples to demonstrate the difficulty of fitting these models. We

compare our fitted results to the results in Pledger et al. (2003). We further

discuss how to select the best model(s). We also compare the fitted results

from using different link functions, such as the linear link function and the

logistic link function. Models with interactions are also discussed. We find

better and simpler models than those published.

Chapter 7 summarises the thesis and discusses further work that needs to

be done.

1.4 Use of Computer Packages

Statistics is just like any other science: the research typically relies on using

a computer. In this thesis, complex mixture models are considered, where

most of the models are not readily available in any of the current computer

packages, so coding cannot be avoided.

Throughout the thesis, we provide computer codes where necessary. For

example, see Code 1.4.1.

Code 1.4.1. This is an example of a coding environment, where a certain

code of a computer package is provided below.
filename.mpl

1 # some code here
2 # some other lines of code
3

4 # A lot more omitted
5 # See actual file for full code

All relevant code to this thesis is included on the supplementary CD, under

the same Chapter headings where they appear in the thesis itself.
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In this thesis, the computer packages used are Matlab R© , Maple R© ,

Mathematica R© and R. Different packages have their own advantages and some

are more suitable for a specific task than others. For example, both Maple R© and

Mathematica R© are used for symbolic computation, while Matlab R© is better

for numerical computation. R is particularly popular for statisticians as it

has lots of statistical functionality and it is a free package. We note that

Mathematica R© also has the ability to interact with R through its RLink pack-

age from verison 9, but Maple R© does not have this feature yet.

The machine specifications used for computations are given below:

Laptop:
Model: Alienware M15X CPU: i7 940X
OS: Windows 7 SP1 X64 RAM: 4GB

SMSAS Server: (Emmy)
Model: N/A CPU: Xeon E5540
OS: Red Hat 6.5 X64 RAM: 64GB

Computer packages:
Maple 18.01 X64
Mathematica 10.0.1 X64
R 3.1.1 X64
Matlab R2014b X64

The two main computer packages used for the thesis are Mathematica R© and

Maple R© . Source codes and relevant worksheets are attached electronically in

the supplementary CD. We will discuss briefly below some advantages of each

packages.

Mathematica R© is a commercial package and is capable of doing both sym-

bolic and numerical calculations. We used Mathematica R© in all chapters.

Mathematica R© ’s built–in parallel feature is more powerful than Maple R© and

it also has four built–in global optimization algorithms. For example, we can

utilize all 32 available cores on the server Emmy to speed up calculations using

syntax Parallelize. The global optimization algorithms available are Nelder–

Mead (Nelder and Mead, 1965), differential evolution (Storn and Price, 1995),
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simulated annealing (Kirkpatrick et al., 1983) and random search (Zhigljavsky,

1991).

Maple R© is another commercial package and is also capable of doing both

symbolic and numerical calculations. The PLUR matrix decomposition (Cor-

less and Jeffrey, 1997) which we use extensively is conveniently available in

Maple R© but is not available in Mathematica R© . Maple R© is also able to repa-

rameterise complicated expressions such as non–rational terms involving ex-

ponentials. However, Maple R© does not come with any built–in global opti-

mization functions and these have to be purchased as an additional addon

package. Parallelisation is also available but one has to rewrite most of the

code and the set up of parallel computing is not an easy task. Maple R© may

give the wrong rank of a symbolic matrix when some entries are non–rational,

see Example 4.2.3.



Chapter 2

Mixture Models in Closed

Populations

In this chapter, we focus on the estimation of the size of closed populations.

We give a definition of what it is meant by “closed” in Section 2.1, and we

describe the sampling method of capture–recapture. In Section 2.2 we pro-

vide illustrative closed population real data sets. We also discuss the mixture

models that have been used and introduce our new mixture model, which is

a mixture of the binomial distribution and the logistic normal binomial dis-

tribution. Methods for model fitting are given in Section 2.3 and we present

the fitted results in Section 2.4. We conclude this chapter in Section 2.5 and

present a list of computer files used in Section 2.6.

2.1 What is a Closed Population?

In ecology, a closed system assumes that there is no birth, no death, and no

migrations. These assumptions enable us to estimate the total population size

of the animals under the study.

Ecologists often take regular samples from the same area at different sam-

11
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pling occasions; typically populations are sampled on a yearly basis. The cap-

tured individuals are marked with a unique tag for identification and released

back into the population. This is known as capture–recapture.

2.2 Data and Models

Let K be the total number of sampling occasions. We denote by fj the number

of animals that have been captured j times for j = 0, . . . , K. Table 2.1 presents

18 real datasets summarized in Morgan and Ridout (2008) and Morgan and

Ridout (2009). We also consider some larger datasets appearing in Dorazio

and Royle (2003), for the North American Breeding Bird Survey (BBS) in

Table 2.2, where the length of studies is K = 50 for all years from 1997 to

2001. More details on the implementation of the BBS survey are described in

Robbins et al. (1986) and Boulinier et al. (1998).

Having seen the form of the data, we now describe how we use statistical

models to model the data and therefore estimate the population size of interest.

Consider a study of K = 8 sampling occasions. Figure 2.1 illustrates how we

set up the closed population model. For each record fj, denotes the number

# of animals captured j times, fj f1 f2 f3 f4 f5 f6 f7 f8

Cell probabilities pj p1 p2 p3 p4 p5 p6 p7 p8

Figure 2.1: An illustration of the setup of the closed population model

of animals captured j times in the whole study period K, correspondingly pj

denotes the probability associated with fj. Note that in fact we do not observe

all individuals in the population. If we let f0 be the number of individuals that

are not seen during the study, then p0 is the probability that an animal is not

seen in the whole period of the study. It follows that
∑K

j=0 pj = 1 is a natural

constraint. We model {fj, j = 0, . . . , K} as a multinomial distribution. The
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fj B1997 B1998 B1999 B2000 B2001

1 14 14 11 14 15
2 10 9 12 7 7
3 6 7 10 5 5
4 3 4 4 5 2
5 3 2 4 5 5
6 6 4 1 4 6
7 2 4 4 3 3
8 3 0 2 4 2
9 2 4 3 1 1
10 1 2 3 1 2
11 1 0 0 2 4
12 1 1 2 1 4
13 0 0 4 1 0
14 3 3 1 3 1
15 2 0 1 3 0
16 0 3 0 1 2
17 3 1 1 1 3
18 1 0 1 0 1
19 1 0 1 2 1
20 1 1 2 0 1
21 0 1 0 0 1
22 0 0 1 0 0
23 1 1 0 1 0
24 2 1 0 0 0
25 0 2 0 1 1
26 0 0 0 1 1
27 1 1 0 0 0
28 0 0 0 1 1
29 0 1 0 0 0
30 0 1 1 0 1
31 0 0 3 1 0
32 0 0 0 0 0
33 0 0 0 0 0
34 0 0 0 0 0
35 0 0 0 1 0
36 0 0 0 0 1

Table 2.2: North American Breeding Bird Survey (BBS) data for year 1997,
1998, 1999, 2000 and 2001. For all datasets, we have K = 50 and fj = 0, j ≥
37.
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full likelihood is given by

L(θ, N ;fj) = N !
K∏
j=0

pj(θ)fj

fj!
, (2.1)

where θ denotes the model parameters and N = f0 + f1 + · · · + fK , is the

unknown population size.

We model the capture probabilities pj via different probability distribu-

tions. Morgan and Ridout (2008) presented a mixture model of a binomial and

a beta–binomial distribution, and compared the performance of this model to

the performances of a single binomial distribution, a mixture of two binomial

distributions and a beta–binomial distribution. The paper also considers a

standard logistic–normal binomial distribution (Coull and Agresti, 1999). Link

(2003) also used a log–gamma distribution to model the capture probabilities.

In this chapter, we introduce a mixture of a binomial and a logistic–normal

binomial model. We will discuss each of these models below.

Mixture of binomial distributions: The model was considered in Morgan

and Ridout (2008) and the capture probabilities {pj}s are given by

pj =

(
K

j

) C∑
c=1

wcφ
j
c(1− φc)K−j, (2.2)

for j = 0, . . . , K, where φc is the constant recapture probability from

the cth component, C is the number of mixture components and wc is

the weight of the cth component. We require that
∑C

c=1wc = 1. For

example, the capture probabilities from a single binomial distribution

are

pj =

(
K

j

)
φj(1− φ)K−j, (2.3)
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or a mixture of two binomial distributions gives

pj =

(
K

j

){
w1φ

j
1(1− φ1)

K−j + (1− w1)φ
j
2(1− φ2)

K−j} . (2.4)

Beta–Binomial distribution: This was proposed by Burnham (1972) for

use in this context. The capture probabilities are given by

pj =

(
K

j

)
B(α + j, β − j +K)

B(α, β)
, (2.5)

where B denotes the beta function, also known as the beta integral

(Whittaker and Watson, 1990),

B(α, β) =

∫ 1

0

tα−1(1− t)β−1 dt (2.6)

with α > 0, β > 0. Alternative reparameterisations of the Beta function

are given in Read et al. (2006),

B(α, β) =
(α− 1)!(β − 1)!

(α + β − 1)!
if α, β are integers, (2.7a)

=
Γ(α)Γ(β)

Γ(α + β)
(2.7b)

=
∞∑
n=0

(
n− β
n

)
1

(α + n)
. (2.7c)

Note that if we reparameterise using µ = α/(α + β), θ = 1/(α + β), we

get the capture probabilities as

pj =

(
K

j

)∏j−1
r=0(µ+ rθ)

∏K−j−1
r=0 (1− µ+ rθ)∏K−1

r=0 (1 + rθ)
, for 0 < µ < 1, θ > 0,

(2.8)

as given in Morgan and Ridout (2008). In the above, when θ → 0, we get

the binomial distribution back. So this model is a compound distribution

of the binomial distribution with the probability parameter following a



2.2. DATA AND MODELS 17

beta–binomial distribution.

Binomial Beta–Binomial distribution: This is the new model proposed

in Morgan and Ridout (2008). The capture probabilities are

given by

pj =

(
K

j

){
wφj(1− φ)K−j + (1− w)

B(α + j, β − j +K)

B(α, β)

}
, (2.9)

where φ is the constant recapture probability from the binomial mixture

component. This model is a mixture of a binomial distribution with a

beta–binomial distribution.

Log–Gamma distribution: The capture probabilities are given by

pj =

(
K

j

)∫ ∞
0

{
exp(−x)

}j{
1− exp(−x)

}K−j
f(x) dx, (2.10)

for j = 0, . . . , K, where f(x) is a gamma density function,

f(x) =
βα

Γ(α)
xα−1 exp(−βx), for x ≥ 0, (2.11)

with shape parameter α > 0 and rate parameter β > 0. This model is a

compound distribution of the binomial distribution with the logarithm

of the probability parameter following a gamma distribution.

Logistic–Normal Binomial distribution: (Coull and Agresti, 1999) The

capture probabilities are given by

pj =

(
K

j

)∫ ∞
−∞

{
1

1 + exp(−x)

}j {
1− 1

1 + exp(−x)

}K−j
f(x) dx, (2.12)

for j = 0, . . . , K, where f(x) is a normal density function,

f(x) =
1

σ
√

2π
exp

{
− 1

2σ2
(x− µ)2

}
, (2.13)

with mean µ and variance σ2 > 0.
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Binomial Logistic–Normal Binomial distribution: The capture proba-

bilities are given by

pj =

(
K

j

)[
wφj(1− φ)K−j + (1− w)pjLNB

]
, (2.14)

where pjLNB are the capture probabilities from the logistic normal bino-

mial distribution.

We will focus on the performance of the new model, the binomial logistic–

normal binomial model, and compare the fitted result with the existing models.

2.3 Model Fitting

Table 2.3 summarises the numbers of model parameters and gives short ab-

breviations for all models considered in previous section. In this section, we

will discuss the fitting of these mixture models.

Model Parameters No. Parameters Abbreviation

Binomial f0, φ 2 Bin

Two Binomial f0, φ1, φ2, w 4 TwoBin

Beta Binomial f0, α, β 3 BetaBin

Binomial Beta Binomial f0, φ, α, β, w 5 BBB

Log Gamma f0, α, β 3 LogGamma

Logistic Normal Binomial f0, µ, σ 3 LNB

Binomial Logistic Normal Binomial f0, φ, µ, σ, w 5 BinLNB

Table 2.3: Summary of closed population models

The fitting of models Bin and TwoBin is straightforward for most com-

puter programs. Models BetaBin and BBB may be difficult to fit due to the

presence of the beta function. Sometimes the beta function can cause over-

flow/underflow, which means that the values are too big/small for a computer

to cope with. This could be fixed by choosing an appropriate reparameterisa-

tion in the formulation of the model. These four models can be fitted using
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R package estimateN.R, which was developed in Ridout (2007) and was also

used in Morgan and Ridout (2009).

Models such as LogGamma, LNB and BinLNB are the most difficult models

amongst those considered to fit due to the presence of the integrals. Link

(2003) has fitted the models LogGamma and LNB. A possible solution is to use

numerical approximation methods, such as the Gaussian quadrature (Ander-

son, 1965).

Table 2.4 summarises a list of numerical integration methods using Gaus-

sian quadrature. We will only focus on the Gauss–Hermite quadrature for

Table 2.4: Rules of Gaussian Quadrature (Stroud and Secrest, 1966)

∫ b

a

w(x)f(x) dx ≈
n∑
i=1

wif(xi)

Quadrature Interval Weights Polynomial

Legendre [−1, 1] 1 Pn(x)
Chebyshev (1st) (−1, 1) 1√

1−x2 Tn(x)

Chebyshev (2nd) [−1, 1]
√

1− x2 Un(x)
Laguerre [0,∞) xαe−x Lαn(x)

Hermite (−∞,∞) e−x
2

Hn(x)
Jacobi (−1, 1) (1− x)α(1 + x)β Jα,βn (x)

Lobatto [−1, 1] 1 P ′n−1(x)
Kronrod [−1, 1] 1 Pn(x)

the integrand in the logistic normal binomial model and the Gauss–Laguerre

quadrature for the integrand in the log gamma model here. Details on the

orthogonal polynomials can be found in Davis and Rabinowitz (1984).



2.3. MODEL FITTING 20

Consider the integrand in Equation (2.12) from the model LNB,

g(x) =

{
1

1 + exp(−x)

}j {
1− 1

1 + exp(−x)

}K−j
1

σ
√

2π
exp

{
− 1

2σ2
(x− µ)2

}
∝
{

1

1 + exp(−x)

}j {
1− 1

1 + exp(−x)

}K−j
exp

{
− 1

2σ2
(x− µ)2

}
.

(2.15)

By comparing the form of g(x) with the “Weights” column and the limits of

the integration in Table 2.4, we found that g(x) can be estimated using the

Gauss–Hermite quadrature (Liu and Pierce, 1994) through Equation (2.16)

∫ ∞
−∞

h(x) exp(−x2) dx ≈
n∑
i=1

wih(xi), (2.16)

with h(x) to be determined, In Equation (2.16), the xi are the zeros of the nth

order Hermite polynomial Hn(x),

Hn(x) = n!

n/2∑
k=0

(−1)n/2−k

(2k)!(n/2− k)!
(2x)2k, (2.17)

with corresponding weights defined as

wi =
2n−1n!

√
π

n2
[
Hn−1(xi)

]2 , (2.18)

see Greenwood and Miller (1984). Abramowitz and Stegun (1964) gives a table

of the first 20 sets of (xi, wi), compiled from Salzer et al. (1952). A more gen-

eral Gaussian Hermite method is discussed in Shao et al. (1964). Quadrature

points for the normal distribution can also be obtained from the R package

npmlreg.

To find h(x) in Equation (2.16), we substitute y = (x− µ)/σ into g(x) to
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give

g(y) ∝
{

1

1 + exp(−µ− yσ)

}j {
1− 1

1 + exp(−µ− yσ)

}K−j
e−y

2/2. (2.19)

We then substitute y2/2 with x2 to get,

g(x) ∝
{

1

1 + exp(−µ− x
√

2σ)

}j {
1− 1

1 + exp(−µ− x
√

2σ)

}K−j
e−x

2

,

(2.20)

which is of the form h(x) exp(−x2). Now we can estimate Equation (2.12) by

pj ≈
1√
π

(
K

j

) n∑
i=1

wih(xi), (2.21)

where

h(xi) =

{
1

1 + exp(−µ− xi
√

2σ)

}j {
1− 1

1 + exp(−µ− xi
√

2σ)

}K−j
.

(2.22)

Alternative methods for numerical integration for the logistic–normal mod-

els are discussed in Crouch and Spiegelman (1990) and González et al. (2006).

For the log–gamma model, the limits of the integration are different from

the limits of the integration in the logistic normal model. We therefore use a

different type of Gaussian quadrature, the Gauss Laguerre quadrature (Salzer

and Zucker, 1949), to estimate the probabilities in Equation (2.10) using

pj ≈
(
K
j

)
Γ(α)

n∑
i=1

wi

[{
exp

(−xi
β

)}j {
1− exp

(−xi
β

)}K−j
xα−1

]
, (2.23)

with xis from the Laguerre polynomial

Ln(x) =
n∑
k=0

(−1)k

k!

(
n

k

)
xk, (2.24)
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and their corresponding weights wis given by

wi =
xi

(n+ 1)2{Ln+1(xi)}2
. (2.25)

Mathar (2013) tabulates more values of both Gaussian Hermite and Gauss

Laguerre weights {wi} and their nodes {xi} up to the 128th order (n = 128).

2.4 Results

The maximized log likelihood values ` are given in Table 2.5 for data sets given

in Table 2.1 and Table 2.2. We note that for the North American Breeding

Bird Survey datasets (B1997 – B2001), the best models selected based on

maximized log likelihood values are the binomial beta–binomial model (BBB)

and the binomial logistic normal binomial model (BinLNB).

We observe that based on the maximum–likelihood, we would select the

models BBB and BinLNB except for the datasets link1 and voles2, although

for the taxicabsA and taxicabsB data sets, the best models selected are mod-

els TwoBin and BinLNB. The maximum–likelihood values from the two models

agree up to 15 decimal places for these two data sets. However, if we look at

the maximum likelihood values, the values from the model TwoBin and model

BinLNB are identical up to four decimal places. The maximized likelihood val-

ues from the model BBB and the model BinLNB are very close too. The model

BinLNB brings in a mixture of a discrete distribution and a continuous distri-

bution.

We can compute the Akaike information criterion (Akaike, 1974) using

AIC = 2× Number of parameters− 2`. (2.26)

The AIC values give us a model selection criterion, choosing the model with
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Table 2.5: Maximized log likelihood for closed population datasets. All values
are rounded to 4 decimal places. The bold numbers are the largest maximum
log likelihood values for each data set.
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the lowest AIC. Table 2.6 gives the AIC values for each dataset. The smallest
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Table 2.6: AIC values for closed population data sets. All values are rounded
to 4 decimal places. The bold numbers are the smallest for each data sets.

AIC value in each row is given in bold.

For the link3 dataset, we show the plot of the densities of the capture

probabilities in Figure 2.2. As a comparison, we have an extra curve describ-

ing the capture probability from the model BinLNB compared with Figure 1
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from Morgan and Ridout (2009). The authors noted that the heterogeneity of

BetaBin

Bin BetaBin

LNB

BinLNB

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
0

2

4

6

8

10

p

f(
p)

Figure 2.2: A comparison of model fits for the link3 dataset. Here we show
how the four models describe the capture probability near zero.

the capture probability near the origin is handled differently by the different

models. The continuous distribution always has density zero at the origin and

this is a severe restriction. For the link3 dataset, the model BBB is a com-

promise between the model BetaBin and the model LNB. We observe that due

to the normal distribution component in the new model, BinLNB shifts more

away from zero compared with the other models.

2.5 Conclusion

We have seen that for a closed–population, if we assume all individuals have

the same recapture probability, we can model the population through a multi-

nomial distribution. By having different probability distributions for the {fj}s,

we obtain different models.

We presented the data and a range of mixture models. We have shown

how we estimate the integrals of the logistic–normal distribution and the log–

gamma distribution using different Gauss Quadratures. We have presented

our fitted results and compared the performance of the model BinLNB with the

rest of the models.
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To summarise, the new model BinLNB performs equally well compared to

the model BBB and has the potential to be extended to include behavioural

effects as well as individuals random effects using the logistic link. In order

to fit the new model to individual data, to consider the possible value of

time and behaviour effects, it was necessary to develop an individual–based

likelihood. Checks of this, not shown here, were satisfied when it was possible

also to compare with likelihoods when the time and behavioural effects were

not present.

2.6 Code & List of files

Table 2.7 gives a list of supplementary files for this chapter on the CD.

File Name Description

chap2.pdf Mathematica R© file used for this chap-
ter.

maxlltab.pdf Table 2.5 with the maximum likelihood
values in bold and red.

AICtable.pdf Table 2.6 with the minimum AIC val-
ues in bold and red.

mletable.pdf Maximum likelihood estimates ob-
tained from the optimization.

chap2_data_ms_2000.xlxs All results in Excel sheet, which can be
imported to Mathematica R© .

Table 2.7: List of files on Chapter 2



Chapter 3

Mixture Models in Open

Populations

3.1 Introduction

We have seen in Chapter 2 that for closed populations, we do not allow indi-

viduals to enter or leave the population. In contrast, we now consider open

populations where individuals are allowed to enter and leave the population

as well as migrate. For example, individuals can enter the population through

birth and leave the population through death.

In the sections below, we discuss the mixture structures for the following

three types of models, the capture–recapture model in Section 3.2, the capture–

recovery model in Section 3.3 and the capture–recapture–recovery model in

Section 3.4. For each of the three models, we explain the form of the data and

the model setup using examples. This chapter sets the background for all the

models we consider in later chapters.

27
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3.2 capture–recapture

3.2.1 Background

In this section, we focus on two types of models for describing capture–recapture

data, namely the Cormack–Jolly–Seber Model (CJS), see Lebreton et al. (1992),

and the Jolly–Seber Model (JS), after Jolly (1965) and Seber (1965). The CJS

model first appeared in Cormack (1964), and only allows time–varying esti-

mates of survival probabilities and recapture probabilities. The JS model is

more general so that it also allows the estimation of population size and the

number of new individuals entering the population (White et al., 1982).

We will first explain how capture–recapture data are collected and what

the data look like, in Section 3.2.2. We will then focus on the CJS model in

Section 3.2.3 and the JS model in Section 3.2.4.

3.2.2 Data

In Chapter 2, our interest is on the population size, we do not model any

individual effects, therefore, the summarised data on the frequencies being

recaptured are sufficient. In open population, we are more interested in in-

dividuals. To allow for groups of individuals, we need to have the individual

capture histories.

In a capture–recapture study of lengthK, the animals are captured, marked

and released at every sampling occasion j = 1, . . . , K, typically measured in

years. For an animal i that was captured or recaptured at time j, we record its

capture history CHi with entries xij = 1 for a capture, or xij = 0 otherwise.

These records form a capture history matrix CH. The dimension of this

matrix is given by n×K, where n is the number of distinct animals recorded

during the study. The ith row of CH represents the complete capture history
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of individual i, denoted by CHi. We define fi to be the first capture time and

`i to be the last capture time of animal i.

For example, suppose we have the capture history for an individual i,

CHi =

[
0 1 0 1 1 1 0

]
. (3.1)

The length of CHi is 7, so the length of the study is K = 7. The animal was

first caught at time fi = 2 and last seen at time `i = 6. It was not seen at

time j = 3, but was recaptured at times j = 4, 5 and j = 6. It was not seen

at the last sampling occasion j = 7, when the study ends.

Example 3.2.1 (Capture–recapture data in m–array format). Sometimes we

also present the data in a more compact way as an m–array. Consider the

European Dipper (Cinclus cinclus) dataset from Lebreton et al. (1992), the

individual capture histories are given below

111 100 111 110

110 110 100 110

111 100 111 100

110 100 100 101

100 110 100 110

101 100

The length of study is K = 3. There are 22 capture histories. We can sum-

maries them as given in Table 3.1. Among the 22 dippers, 11 were recaptured

Year Number First recapture
Released Released Year 2 Year 3 Never recaptured

1 22 11 (11-) 2 (101) 9 (100)

2 11 4 (111) 7 (110)

3 6 6 (--0)

Table 3.1: Capture–recapture data in an m–array form. European Dipper
dataset from Lebreton et al. (1992), with capture histories in the brackets.
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in the second year with capture history ‘11–’, with ‘–’ indicating either a ‘0’

or a ‘1’. Among these 11 dippers, 4 were recaptured in the third year with

capture history ‘111’. In the third year of study, year 3, we have released 6

dippers with capture history ‘– – 1’, with ‘–’ indicating either a ‘0’ or a ‘1’.

The detailed algorithm to obtain the m–array format from the capture–

history matrix CH can be found in Lebreton et al. (1992). It is also available

in the R package Rcapture using the function descriptive, which is discussed

in Baillargeon and Rivest (2007).

3.2.3 Cormack–Jolly–Seber Model

We start by considering the basic Cormack–Jolly–Seber (CJS) model, where

both the survival probabilities and recapture probabilities vary with time.

Let φj denote the probability of survival between times j and j+1, and let

pj denote the probability of recapture at time j. For a capture history with

K = 7, we would have the following setup:

1
φ1−→ 2

p2

φ2−→ 3
p3

φ3−→ 4
p4

φ4−→ 5
p5

φ5−→ 6
p6

φ6−→ 7
p7
.

Numbers 1 to 7 denote the sampling occasions. In this example, we can think

of them as being j = 1, 2, . . . , 7. The survival probabilities {φj}61 are labelled

above the arrow as each φj is defined to be the survival probability between

times j and j + 1. Beneath each j, we have pj, which is defined as the proba-

bility of recapture at time j.

Using the capture history from Equation (3.1), we have

0 −→ 1
φ2−→ 0

1−p3

φ3−→ 1
p4

φ4−→ 1
p5

φ5−→ 1
p6
−→ 0.

We replace j with the capture history at time j and change the labels of φj and
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pj accordingly. For example, the individual was not captured at time j = 3,

and so we change the label beneath position 3 from p3 to 1−p3. The individual

was last seen at time j = 6, since at position 7 we have a record of 0. So we

no longer have φ6 between position 6 and 7. It follows that the probability of

this capture history Pr(CHi) is given by

φ2(1− p3)φ3p4φ4p5φ5p6(1− φ6) + φ2(1− p3)φ3p4φ4p5φ5p6φ6(1− p7). (3.2)

As the fate of the animal is not known after occasion 6, the first term of the

above probability represents the probability that the animal did not survive

after time 6, and the second term represents the probability that the animal

had survived after time 6, but it was not recaptured at time 7.

The probability of a capture history from the CJS model can be written in

the following form (Pledger et al., 2003),

Pr (CHi) =
K∑
d=`i

{(
d−1∏
j=fi

φj

)
(1− φd)

(
d∏

j=fi+1

p
xij
j (1− pj)1−xij

)}
. (3.3)

Note. We define the empty products
∏d−1

j=fi
and

∏d
j=fi+1 to be 1 when fi > d−1

and fi + 1 > d respectively. We also set φK = 0 since we do not have any

information on survival after the study between times K and K+1, and p1 = 1

as recapture can only start from time 2. There are K−1 survival probabilities

and K − 1 recapture probabilities. The CJS model has a total of 2K − 2

parameters.

Example 3.2.2 (CJS Model). Consider a study with length K = 3. For

completeness, we consider all 23 − 1 = 7 observable capture histories. Using
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Equation (3.3), we then obtain the following probabilities,



Pr(001)

Pr(010)

Pr(011)

Pr(100)

Pr(101)

Pr(110)

Pr(111)



=



1

1− φ2 + φ2(1− p3)

φ2p3

1− φ1 + (1− φ2)φ1(1− p2) + φ1(1− p2)φ2(1− p3)

φ1(1− p2)φ2p3

(1− φ2)φ1p2 + φ1p2φ2(1− p3)

φ1p2φ2p3



. (3.4)

We do not consider the probability Pr(000) in the CJS model as we do

not observe it. The CJS model is constructed to be conditional on the first

capture.

Among the 7 probabilities above, we observe that

Pr(001) = 1 (3.5a)

Pr(010) + Pr(011) = 1 (3.5b)

Pr(100) + Pr(101) + Pr(110) + Pr(111) = 1. (3.5c)

It follows that there are only four independent capture histories (with associ-

ated probabilities). This means that we only have four pieces of usable infor-

mation from K = 3 years of data. In practice, if there are missing capture

histories, we could have less usable information.

Figure 3.1 shows a tree diagram of the CJS capture histories. At each sam-

pling occasion, there are 2j−1 terms that correspond to animals which were

first caught in the same year j, j = 1, . . . , K and the probabilities of those

capture history terms sum to 1. In general for a K–year study, we have 2K−1

observable capture histories. But only 2K −K − 1 independent capture histo-

ries can be used to estimate the parameters. This can be interpreted as there
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being 2K ways of arranging 0s and 1s less K constraints and less 1 invalid way

of arrange them (the one correspond to a string of 0s). In other words, among

the 2K − 1 observable histories, there are K constraints, one for each year of

first capture. Hence, there are only 2K −K − 1 independent capture histories.

The CJS model assumes that all animals have the same {φj} and {pj}. We

can relax this assumption by introducing different groups of animals. Within

each group, the animals share the same survival and recapture probabilities.

Pledger (2000) noted that it is not necessary to assume animals have actual

different groups. Often the groups are essentially an artefact to detect hetero-

geneity in the data if it is present.

To describe heterogeneity of both capture and survival, it is assumed that

there are C classes with probabilities {wc} of an animal being in class c. Each

animal in class c has survival probability {φjc} and capture probability {pjc}

for c = 1, . . . , C and j = 1, . . . , K. The mixture version of Equation (3.3) was

derived in Pledger et al. (2003) to give the following probability of a capture

history

Pr(CHi) =
K∑
d=`i

C∑
c=1

{
wc

(
d−1∏
j=fi

φjc

)
(1− φdc)

(
d∏

j=fi+1

p
xij
jc (1− pjc)1−xij

)}
,

(3.6)

where
∑C

c=1wc = 1 is a proper constraint. For example, we choose to set

wC = 1−∑C−1
c=1 wc.

When heterogeneity is present, we model {φjc} and {pjc} through different

link functions g(φjc) (and/or g(pjc)), using the notations defined in Nota-

tion 3.2.1.

Notation 3.2.1. For the survival probabilities {φjc}, we use µφ as baseline

from group 1, τφj as a time component and ηφc as a heterogeneous component.

Since we have µφ describing the baseline from group 1, we set up constraints
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τφ1 = 0 and ηφ1 = 0. So that τφj are the differences in the time component

between the baseline and time component at j; ηφc are the differences in the

heterogeneous component between the baseline and group c.

Similarly for the capture probabilities {pjc}, we use µp as baseline from

group 1, τpj as a time component and ηpc as a heterogeneous component, with

constraints τp2 = 0 (since the recapture probability starts from time j = 2)

and ηp1 = 0. By convention, we set φKc = 0 and p1c = 1 for all c. That

is, the survival probability after the length of study K is 0 and the capture

probability at time 1 is 1 for all groups.

For K = 4, C = 3, for example, we can model φjc using a linear link

function,

φjc = µφ + τφj + ηφc (3.7a)

[φjc] =



µφ µφ + ηφ2 µφ + ηφ3

µφ + τφ2 µφ + τφ2 + ηφ2 µφ + τφ2 + ηφ3

µφ + τφ3 µφ + τφ3 + ηφ2 µφ + τφ3 + ηφ3

0 0 0


, (3.7b)
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or using a logistic link function,

log

(
φjc

1− φjc

)
= µφ + τφj + ηφc (3.8a)

[φjc] =



1

1 + e−(µφ)
1

1 + e−(µφ+ηφ2)
1

1 + e−(µφ+ηφ3)

1

1 + e−(µφ+τφ2)
1

1 + e−(µφ+τφ2+ηφ2)
1

1 + e−(µφ+τφ2+ηφ3)

1

1 + e−(µφ+τφ3)
1

1 + e−(µφ+τφ3+ηφ2)
1

1 + e−(µφ+τφ3+ηφ3)

0 0 0



.

(3.8b)

In the matrix [φjc], each row describes the time effect and each column de-

scribes the heterogeneous effect.

It is also possible to include interactions between the time component and

the heterogeneous component in the model by setting

φjc = µφ + τφj + ηφc + (τη)φjc, (3.9)

where the matrix (τη)φ takes the following form

(τη)φ =



τηφ11 τηφ12 · · · τηφ1C

τηφ21 τηφ22 · · · τηφ2C
... · · · . . .

...

τηφK1 τηφK2 · · · τηφKC


. (3.10)

Extra constraints are needed on (τη)φ, such as requiring each row and column

to sum to zero. For simplicity, we set the first column and last row of (τη)φ to
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zero as constraints. Note that using different constraints can result in different

point estimates (for example each entry in the matrix φjc). Models with in-

teractions are often more complicated than they should be and have too many

parameters for successful model fitting (Pledger et al., 2010). We will discuss

this feature at more length in Section 6.4. A similar setup can be used for pjc.

Often we model probabilities using the logistic link function, so that the

point estimates are between 0 and 1. When different link functions are used,

we have different point estimates of the parameters. In particular, when using

the method of maximum–likelihood estimation, we will get different results

from using different link functions. The effect of using different link functions

will be discussed in more detail in Section 6.3.

Note. Depending on the values taken by K and C, models can have different

numbers of parameters. Table 3.2 summarises the numbers of model parame-

ters of the 25 models given in Pledger et al. (2003). We use ‘·’ for a constant

parameter, ‘t’ for a time varying parameter, ‘hC ’ for a heterogeneous parameter

with C classes and ‘×’ for a parameter with interactions.

The square brackets indicate that both parameters are heterogeneous but

they share the same {wc}s; see Pledger et al. (2003).

The authors give the total number of estimable parameters in the last

column of Table 1 in Pledger et al. (2003) as the column ‘Total’. In our

table, we present the column ‘Total’ as the total number of parameters in the

model. We will discuss the problem of ‘estimable parameters’ in Chapter 4

when considering parameter redundancy.

3.2.4 Jolly–Seber Model

Pledger et al. (2010) considers a full likelihood–based version of the JS model
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Model wc φ p Total

{φ(·), p(·)} 0 1 1 2

{φ(·), p(t)} 0 1 K − 1 K

{φ(·), p(hC)} C − 1 1 C 2C

{φ(·), p(t+ hC)} C − 1 1 K + C − 2 K + 2C − 2

{φ(·), p(t× hC)} C − 1 1 (K − 1)C KC

{φ(t), p(·)} 0 K − 1 1 K

{φ(t), p(t)} 0 K − 1 K − 1 2K − 2

{φ(t), p(hC)} C − 1 K − 1 C K + 2C − 2

{φ(t), p(t+ hC)} C − 1 K − 1 K + C − 2 2K + 2C − 4

{φ(t), p(t× hC)} C − 1 K − 1 (K − 1)C KC +K − 2

{φ(hC), p(·)} C − 1 C 1 2C

{φ(hC), p(t)} C − 1 C K − 1 K + 2C − 2

{[φ(h), p(h)]C} C − 1 C C 3C − 1

{[φ(h), p(t+ h)]C} C − 1 C K + C − 2 K + 3C − 3

{[φ(h), p(t× h)]C} C − 1 C (K − 1)C KC + C − 1

{φ(t+ hC), p(·)} C − 1 K + C − 2 1 K + 2C − 2

{φ(t+ hC), p(t)} C − 1 K + C − 2 K − 1 2K + 2C − 4

{[φ(t+ h), p(h)]C} C − 1 K + C − 2 C K + 3C − 3

{[φ(t+ h), p(t+ h)]C} C − 1 K + C − 2 K + C − 2 2K + 3C − 5

{[φ(t+ h), p(t× h)]C} C − 1 K + C − 2 (K − 1)C KC +K + C − 3

{φ(t× hC), p(·)} C − 1 (K − 1)C 1 KC

{φ(t× hC), p(t)} C − 1 (K − 1)C K − 1 KC +K − 2

{[φ(t× h), p(h)]C} C − 1 (K − 1)C C KC + C − 1

{[φ(t× h), p(t+ h)]C} C − 1 (K − 1)C K + C − 2 KC +K + C − 3

{[φ(t× h), p(t× h)]C} C − 1 (K − 1)C (K − 1)C 2KC − C − 1

Table 3.2: Numbers of model parameters with K samples and C classes for
CJS mixture models. For model notations see text or Pledger et al. (2003).
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from Schwarz and Arnason (1996), based on the idea of an entry parameter

developed in Crosbie and Manly (1985). In comparison to the CJS model,

which only focuses on survival {φj} and recapture probabilities {pj}, the JS

model allows the estimation of population size N as well as the numbers of

new individuals entering the population at different times.

Schwarz and Arnason (1996) suggested a super–population of N individ-

uals, in which each animal is available for capture at least once during the

whole study of length K. We use β0, β1, . . . , βK−1 to denote the proportions

of the N animals which enter the population and become available for capture

at sampling times j = 1, 2, . . . , K respectively. We require that
∑K−1

0 βj = 1.

Unlike the CJS model, which conditions on first capture, the JS model can

use a capture history CH0 = 0 for an animal that was never caught or seen in

the whole study period, with its corresponding probability given by

Pr(CH0) =
K∑
b=1

K∑
d=b

C∑
c=1

{
wcβb−1

(
d−1∏
j=b

φjc

)
(1− φdc)

(
d∏
j=b

(1− pjc)
)}

.
(3.11)

For an animal i that was seen at least once, the probability of such a capture

history is given by

Pr(CHi) =
fi∑
b=1

K∑
d=`i

C∑
c=1

{
wcβb−1

(
d−1∏
j=b

φjc

)
(1− φdc)

(
d∏
j=b

p
xij
jc (1− pjc)1−xij

)}
.

(3.12)

Both expressions for Pr(CH0) and Pr(CHi) are given in Pledger et al. (2010).

Example 3.2.3 (JS model). Consider a study with length K = 3. The unique
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capture histories give the following probabilities,



Pr(000)

Pr(001)

Pr(010)

Pr(011)

Pr(100)

Pr(101)

Pr(110)

Pr(111)



=



β1φ̄2p̄2 + β1φ2p̄2p̄3 + (1− β0 − β1)p̄3
β1φ2p̄2p3 + (1− β0 − β1)p3

β1φ̄2p2 + β1φ2p2p̄3

β1φ2p2p3

β0φ̄1 + β0φ1φ̄2p̄2 + β0φ1φ2p̄2p̄3

β0φ1φ2p̄2p3

β0φ1φ̄2p2 + β0φ1φ2p2p̄3

β0φ1φ2p2p3



, (3.13)

where θ̄ = 1− θ.

Note. As with the CJS model, depending on different values taken by K and

C, the JS models can also have different numbers of parameters. Table 3.3

summarises the numbers of model parameters given in Pledger et al. (2010).

The only difference in the number of parameters between a CJS model and

its corresponding JS model is given by the parameters {βj}, which are K − 1

in number, and the parameter for the total population size N . The same

notations for models have been used as in Table 3.2.

3.3 Capture–Recovery

3.3.1 Background

The data in capture–recovery studies are different from those in capture–

recapture investigations, as animals are never recaptured alive but instead

may be recovered dead.

Finite mixture models can be applied in the same way as for capture–

recapture models. Pledger and Schwarz (2002) discussed such models in great

detail and fitted models to both real and simulated data.
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Table 3.3: Numbers of model parameters with K samples and C classes for JS
mixture models
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3.3.2 Data

Data are collected over K regular intervals. A new animal i is marked at time

j and in the capture history matrix CH we represent this as CHij = 1, then

the animal is released back into the population. We then only record death at

time k > j for the same animal as CHik = 2.

Example 3.3.1. Consider a K = 4–year study of capture–recovery: we list

all possible records in a capture–recovery matrix as

CH =



0 0 1 2

0 1 0 2

0 1 2 0

1 0 0 2

1 0 2 0

1 2 0 0


. (3.14)

For example, CH32 = 1 indicates that the animal was marked at sampling

occasion j = 2 and CH33 = 2 tells us the same animal was found and recorded

dead at the next sampling occasion j = 3.

For a study of length K, assuming no animals are recovered beyond the

end of time K, we have K(K − 1)/2 unique capture–recovery histories. This

is because for individuals captured in year K, there are K − 1 years for them

to be recaptured either alive or dead. Since in capture–recovery we are only

recording dead individuals, there are K(K − 1)/2 histories.

3.3.3 Model

Let φj denote the survival probability between time j and time j + 1 and let

λj denote the recovery or reporting probability at time j; it follows that the
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capture–recovery probabilities are given by

Pr(CHi) =

(
`i−1∏

j=fi+1

φj−1

)
(1− φ`i−1)λ`i−1. (3.15)

Example 3.3.2. Applying Equation (3.15) to the data of (3.14), we obtain



Pr(0012)

Pr(0102)

Pr(0120)

Pr(1002)

Pr(1020)

Pr(1200)


=



(1− φ3)λ3

φ2(1− φ3)λ3

(1− φ2)λ2

φ1φ2(1− φ3)λ3

φ1(1− φ2)λ2

(1− φ1)λ1


. (3.16)

A mixture version of Equation (3.15) is given by

Pr(CHi) =
C∑
c=1

wc

{(
`i−1∏

j=fi+1

φj−1,c

)
(1− φ`i−1,c)λ`i−1,c

}
, (3.17)

where we assume there are C different groups and the probabilities {wc} of

being in group c. We also set wC = 1−∑C−1
c=1 wc.

3.4 Capture–Recapture–Recovery

3.4.1 Background

In a capture–recapture–recovery study, we are interested in the survival prob-

abilities {φj}, the recapture probabilities {pj} and the recovery probabilities

{λj}, where all parameters are time dependent for example.
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3.4.2 Data

Different from capture–recapture and capture–recovery, capture–recapture–

recovery studies keep records of individuals that are resighted both alive or

dead. Animals are marked and released back into the population after initial

capture. Then for a live recapture at time of study j for an individual i, we

record CHij = 1, or for a dead recovery, we record CHij = 2.

Consider a full capture–recapture–recovery history from a study with length

K = 3, providing the following capture–recapture–recovery history matrix,

CH =



0 0 1

0 1 0

0 1 1

0 1 2

1 0 0

1 0 1

1 0 2

1 1 0

1 1 1

1 1 2

1 2 0



. (3.18)

Consider the history CH10j = [1, 1, 2]T , which we have not encountered

before in capture–recapture or in capture–recovery. We can set up the diagram

below for this particular history,

1
φ1−→ 1

p2

1−φ2−−−→ 2
λ2
.

Recall that we define the survival probability φj between time j and j + 1.



3.4. CAPTURE–RECAPTURE–RECOVERY 45

Therefore we label φ1 between the history entries 1 and 1 as it survived and

1−φ2 between the history entries 1 and 2 as it was recovered dead. We use p2

to denote it was recaptured at time 2 and λ2 to denote it was dead between

time 2 and time 3 (it did not survive to time 3). We then multiply the terms

to get the probability for this history as φ1p2(1− φ2)λ2.

We will now consider a longer history from K = 7 for example. The

diagram for the capture history

[
1 0 0 1 0 0 2

]

can be expressed by

1
φ1−→ 0

1−p2

φ2−→ 0
1−p3

φ3−→ 1
p4

φ4−→ 0
1−p5

φ5−→ 0
1−p6

1−φ6−−−→ 2
λ6
,

it follows that its probability is

φ1(1− p2)φ2(1− p3)φ3p4φ4(1− p5)φ5(1− p6)(1− φ6)λ6.

For any capture–recapture–recovery history, the diagram can be set up by

writing φj if it survived between time j and time j + 1 and 1 − φj between

time j and time j + 1 if it was recovered at time j + 1. We write pj under

each CHij = 1 and 1 − pj under each CHij = 0. We write λj under each

recovery record where CHij = 2. Then we multiply each of these terms to

get the corresponding probability. Using such a system, we can determine the

probabilities graphically. A general expression for the model probabilities is

given in the next section.
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3.4.3 Model

The probability Pr(CHi) from a capture–recapture–recovery history is then

given by



K∑
d=`i

{(
d∏

j=fi+1

φj−1p
xij
j (1− pj)1−xij

)
(1− φd)(1− λd)

}
, xi`i = 1;

{
`i−1∏

j=fi+1

φj−1p
xij
j (1− pj)1−xij

}
(1− φ`i−1)λ`i−1, xi`i = 2.

(3.19)

We use `i to denote the last time the individual i was seen (either alive or

dead). If an animal i was last seen alive, then we have xi`i = 1, or if it was

last seen dead, then we have xi`i = 2.

Example 3.4.1. For a non–mixture version, a study with K = 3 will give



Pr(001)

Pr(010)

Pr(011)

Pr(012)

Pr(100)

Pr(101)

Pr(102)

Pr(110)

Pr(111)

Pr(112)

Pr(120)



=



1

φ̄2λ̄2 + φ2p̄3

φ2p3

φ̄2λ2

φ̄1λ̄1 + φ1p̄2φ̄2λ̄2 + φ1p̄2φ2p̄3

φ1p̄2φ2p3

φ1p̄2φ̄2λ2

φ1p2φ̄2λ̄2 + φ1p2φ2p̄3

φ1p2φ2p3

φ1p2φ̄2λ2

φ̄1λ1



, (3.20)

where θ̄ = 1− θ.

For a mixture version of this, let {φjc}, {pjc} and {λjc} be the survival

probabilities, recapture probabilities and reporting probabilities respectively
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from group c, Pr(CHi) is then given by



C∑
c=1

K∑
d=`i

[{
wc

d∏
j=fi+1

φj−1,cp
xij
jc (1− pjc)1−xij

}
(1− φdc)(1− λdc)

]
, xi`i = 1;

C∑
c=1

wc

[{
`i−1∏

j=fi+1

φj−1,cp
xij
jc (1− pjc)1−xij

}
(1− φ`i−1,c)λ`i−1,c

]
, xi`i = 2.

(3.21)

We require that wC = 1−∑C−1
c=1 wc.

Parameter counting is not given here since we can make any one of the

recapture probability, survival probability and/or the recovery probability het-

erogeneous, time–varying and/or with interactions between the two effects. We

will only give a couple of these examples later in Chapter 5 as an illustration

of the complexity of parameter redundancy problems.

3.5 Code & List of files

In this section, we list all relevant files on the supplementary CD in Table 3.4.

Details on using the Maple R© package MixtureModelforCaptureRecapture.mla

are given in Appendix A and details on using the Mathematica R© package

MixtureModelforCaptureRecapture.m are given in Appendix B.

File Name Description

Chapter_3.r R script file for Example 3.2.1
Chapter_3.mw Maple R© worksheet
Chapter_3.nb Mathematica R© notebook

Chapter_3_R.pdf PDF copy of R script
Chapter_3_Maple.pdf PDF copy of Maple R© worksheet
Chapter_3_Mathematica.pdf PDF copy of Mathematica R© notebook

Table 3.4: List of files on Chapter 3

Code 3.5.1. Here we give the R code that was used in Example 3.2.1 for

obtaining the m–array.
Chapter 3.r

1 # Example 3.2.1
2 # R code for Chapter 3
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3 # Last Updated: 08 March 2015
4

5 # Need to install the package ’Rcapture’:
6 install.packages("Rcapture",dep=TRUE)
7

8 # load the library
9 library(Rcapture)

10

11 # input dipper data
12 dipper <- matrix(
13 c(
14 1,1,1, 1,0,0, 1,1,1, 1,1,0,
15 1,1,0, 1,1,0, 1,0,0, 1,1,0,
16 1,1,1, 1,0,0, 1,1,1, 1,0,0,
17 1,1,0, 1,0,0, 1,0,0, 1,0,1,
18 1,0,0, 1,1,0, 1,0,0, 1,1,0,
19 1,0,1, 1,0,0
20 ),
21 nrow = 22,
22 ncol = 3,
23 byrow = TRUE
24 )
25

26 # obtain a summary of dipper data
27 summ <- descriptive(dipper)
28 summ
29

30 # obtain the m-array
31 summ$m
32

For more details on this package, see Baillargeon and Rivest (2007).

Code 3.5.2. This section gives the Maple R© code used in this Chapter.

Chapter 3.mw
1 # Example 3.2.2
2 myCHcc(3,M); # returns capture histories
3 mykappa(3,1,CC,tvarphi,tvarp); # returns probabilities
4 mykappa(3,1,tvarphi,tvarp); # ’CC’ (CJS) is by default,
5 # so can be omitted
6 # Example 3.2.3
7 myCHcc(3,M); # returns capture histories
8 mykappa(3,1,JS,tvarphi,tvarp); # returns probabilities
9

10 # Example 3.3.2
11 myCHcr(4,M); # returns capture histories
12 mykappa(4,1,CR,tvarphi,tvarlambda); # returns probabilities
13

14 # Example 3.4.1
15 myCHcrr(3,M);
16 mykappa(3,1,CRR,tvarphi,tvarp,tvarlambda);

Code 3.5.3. This section gives the Mathematica R© code used in this Chapter.

Chapter 3.nb
1 Example 3.2.2
2 (* Get Capture Histories *)
3 MatrixForm@(CH = myCH["CJS"][3])
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4 (* Obtain Probabilities *)
5 MatrixForm@(
6 mykappa[3, 1, CH, tvarphi -> True,
7 tvarp -> True, logit -> False]
8 )
9

10 Example 3.2.3
11 (* Get Capture Histories *)
12 MatrixForm@(CH = myCH["JS"][3])
13 (* Obtain Probabilities *)
14 MatrixForm@(
15 mykappa[3, 1, CH, tvarphi -> True,
16 tvarp -> True, logit -> False]
17 )
18

19 Example 3.3.2
20 (* Get Capture Histories *)
21 MatrixForm@(CH = myCH["CR"][4])
22 (* Get Capture Histories *)
23 MatrixForm@(
24 mykappa[4, 1, CH, tvarphi -> True,
25 tvarlambda -> True, logit -> False]
26 )
27

28 Example 3.4.1
29 (* Get Capture Histories *)
30 MatrixForm@(CH = myCH["CRR"][3])
31 (* Obtain Probabilities *)
32 MatrixForm@(
33 mykappa[3, 1, CH, tvarphi -> True, tvarp -> True,
34 tvarlambda -> True, logit -> False]
35 )



Chapter 4

Parameter–Redundancy in

Open Mixture Models For

capture–recapture

In Chapter 3, we have seen that mixture models can have many model pa-

rameters. Of interest is whether we can estimate all model parameters given a

specific number of years of data, and the choice of number of mixture compo-

nents to have in the model. Pledger (2000) explored closed population mixture

models and a simple rule has been developed in Holzmann et al. (2006) to de-

termine whether or not it is possible to distinguish between different models

for closed populations. Whether we can apply the same rule to the parameter–

redundancy of open population mixture models is explored in this chapter.

We present a motivating example in Section 4.1 to introduce the concept

of parameter–redundancy. Then we discuss existing methods of detecting

parameter–redundancy and their limitations in Section 4.2. We introduce

the term exhaustive summary which uniquely determines model structure,

and show how it can be used to determine the parameter–redundancy re-

sults. We review the symbolic method (Cole et al., 2010) and the hybrid

50
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symbolic–numerical (SN) method (Choquet and Cole, 2012). We compare how

the symbolic method can be executed in different computer packages such as

Maple R© and Mathematica R© .

We present our findings of parameter–redundancy results for small values

of K and C using the SN method in Section 4.3. Here K is length of the

open population study and C is the number of mixture components we want

to include in the model. To explore relationships further in order to develop

the rules for mixture models in open populations, we need a simple exhaustive

summary, which is simpler than the original exhaustive summary but carries

the same information. The simpler exhaustive summary can either have fewer

terms or a simpler structure than the original exhaustive summary. We give the

theorems that are needed to develop and prove results for simpler exhaustive

summaries for the next chapter in Section 4.4. We give a conclusion of the

work of this chapter in Section 4.5 and list the computer codes used for this

chapter in Section 4.6.

4.1 What is parameter–redundancy?

In simple words, this is a question of whether we can estimate all of the parame-

ters in a particular model using the method of maximum likelihood estimation.

To get a better idea of what parameter–redundancy is, we will start by looking

at a simple example below.

Example 4.1.1 (CJS model continued). Recall Example 3.2.2, the right hand

side of Equation (3.4) can be simplified to obtain the following expression for
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the capture history probabilities,



1

1− φ2p3

φ2p3

1− φ1p2 − φ1φ2p3 + φ1φ2p2p3

φ1φ2p3(1− p2)

φ1p2 − φ1φ2p2p3

φ1φ2p2p3



. (4.1)

By inspection, we cannot separate parameters φ2 and p3. These two pa-

rameters always appear in the model as a single product. This tells us that we

cannot estimate either one of them individually, but in fact we can estimate

their product.

One way to get around this problem is to reparameterise the product as

a single parameter, for example letting x0 = φ2p3. In practice, it is more

common to set one of them equal to 1. For instance, we set p3 = 1, so that

the interpretation of the estimate of φ2 is no longer the survival probability at

time 2, but the product of φ2 and p3. Both methods allow the estimation of

the product, but effectively we now have one fewer parameter in the model.

For any model M with parameters θ in the parameter space Ω, then the

model is parameter redundant if M(θ) can be written in terms of the el-

ements of the function f(θ) ∈ Ωβ, in which Ωβ has dimension dim(β) <

dim(θ), see Catchpole and Morgan (1997). In Example 4.1.1, the model

M (θ) with θ = [φ1, φ2, p2, p3]
T is parameter redundant, while the model with

β = [φ1, p2, φ2p3]
T is not parameter redundant.

Holzmann et al. (2006) have shown that for closed population mixture
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models, see Pledger (2000) for example, it is necessary to have K ≥ 2C to

ensure that we can distinguish between different models in a specified family,

where K is the number of samples and C is the number of mixture components

in the model. In the web supplementary material of Pledger et al. (2010), the

authors noted that

Finding exact rules for these more complex open–population mod-

els would be a difficult and time–consuming exercise, and the rules

are unlikely to be simple.

This is precisely the focus of this chapter and the next chapter, from the

prospective of parameter–redundancy. We shall come back to this later.

4.2 Methods for Detecting parameter–redundancy

4.2.1 Background

The main approach we discuss here was developed in Catchpole and Mor-

gan (1997) and Catchpole et al. (1998). The method requires the calculation

of a derivative matrix symbolically, and its symbolic rank. A comprehensive

symbolic approach to determining the parametric structure of models was pre-

sented in Cole et al. (2010), followed by a hybrid symbolic–numerical method

detailed in Choquet and Cole (2012).

4.2.2 Notation

The quantity that uniquely determines the parametric structure of a model is

called an exhaustive summary, usually denoted by κ. In all of our open popu-

lation models, the exhaustive summary is formed from the set of probabilities

of each capture history. For example, the expression in (4.1) is an exhaustive

summary for the CJS model when K = 3. Methods for detecting parameter–
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redundancy based on exhaustive summaries have been developed in Cole et al.

(2010).

Notation 4.2.1. We define the following notation.

θ is the original model parameter vector.

s(θ) is a reparameterisation in terms of the original model parameters. Typ-

ically, the reparameterisation has fewer terms than the set of original

model parameters, so that it is simpler. For instance, see Example 4.1.1.

The original model parameters are θ = [φ1, φ2, p2, p3]
T and the reparam-

eterisation is s(θ) = [φ1, p2, φ2p3]
T .

nθ is the number of original parameters: nθ = Dimension(θ).

ns is the number of parameters in the reparameterisation: ns = Dimension(s).

κ is an exhaustive summary:

κ(θ) is the original exhaustive summary in terms of θ.

κ(s) is the exhaustive summary in terms of the reparameterisation s.

D is a derivative matrix.

D(θ) is the derivative matrix obtained by differentiating κ(θ) with re-

spect to θ, i.e. D(θ) = ∂κ(θ)/∂θ. If the dimension of κ(θ) is nκ,

then the dimension of D(θ) is given by nθ × nκ.

D(s) is the derivative matrix obtained by differentiating κ(s) with re-

spect to s, i.e. D(s) = ∂κ(s)/∂s.

r is the rank of a matrix.

rθ is the rank of D(θ).

rs is the rank of D(s).
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4.2.3 Symbolic Method

For the symbolic method, we introduce the following theorem from Cole et al.

(2010).

Theorem 4.2.1 (Testing parameter–redundancy). If rθ = nθ, the model is

full rank and not parameter–redundant. We can estimate all model parameters.

If rθ < nθ, the model is not full rank and parameter–redundant. There are rθ

estimable parameters. We define the deficiency of the model as dθ = nθ − rθ.

For parameter–redundant models, the estimable parameters can be obtained

by solving α(θ)TD(f(θ)) = 0, with D(f(θ)) being the matrix of derivatives

from differentiating the arbitrary function f(θ) with respect to each of the terms

in θ and α(θ) determining the nullspace of D(θ). This forms a linear system

of first–order partial differential equations (PDEs), which has the number of

solutions equal to model rank rθ.

For proof see Theorem 2 in Cole et al. (2010).

Typically, the steps for the symbolic method for determining parameter–

redundancy are carried out as follows:

Step 1. List all possible histories CHi from the model.

Step 2. Find the probabilities of each history. These probabilities Pr(CHi)

form the original exhaustive summary κ(θ).

Step 3. Obtain the derivative matrix D(θ) and calculate the rank rθ.

We then determine the parameter–redundancy result of the model, based

on the values of rθ and nθ using Theorem 4.2.1. We will illustrate this using

the example below.

Example 4.2.1 (CJS model continued). This example illustrates the symbolic

method of testing parameter–redundancy on the CJS model. Consider the
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original exhaustive summary in Example 4.1.1, we have

κ(θ) =



1

1− φ2p3

φ2p3

1− φ1p2 − φ1φ2p3 + φ1φ2p2p3

φ1φ2p3(1− p2)

φ1p2 − φ1φ2p2p3

φ1φ2p2p3



. (4.2)

We differentiate each of the terms with respect to the elements in the

parameter vector θ = [p2, p3, φ1, φ2]
T in turn to obtain

D(θ)T =



0 0 0 0

0 −φ2 0 −p3
0 φ2 0 p3

−φ1φ̄2 − φ1φ2p̄3 −φ1p̄2φ2 −1 + p̄2φ̄2 + p̄2φ2p̄3 −φ1p̄2 + φ1p̄2p̄3

−p3φ1φ2 φ1p̄2φ2 p̄2φ2p3 φ1p̄2p3

φ1φ̄2 + φ1φ2p̄3 −φ1p2φ2 p2φ̄2 + p2φ2p̄3 −φ1p2 + φ1p2p̄3

p3φ1φ2 φ1p2φ2 p2φ2p3 p2p3φ1



, (4.3)

with rank rθ = 3 using symbolic computer packages like Maple R© or Mathematica R© .

Here again, we have used θ̄ = 1− θ for shorthand. We have rθ = 3 < nθ = 4,

so that the model is parameter–redundant with deficiency dθ = 4− 3 = 1. To

find the estimable combinations, we need the nullspace of D(θ). We obtain

the single solution

α(θ)T =

[
0 −p3

φ2

0 1

]
. (4.4)

Together with

D(f(θ)) =



∂f(p2, p3, φ1, φ2)

∂p2
∂f(p2, p3, φ1, φ2)

∂p3
∂f(p2, p3, φ1, φ2)

∂φ1
∂f(p2, p3, φ1, φ2)

∂φ2


, (4.5)
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we obtain a single partial differential equation to solve,

− p3
φ2

∂f(p2, p3, φ1, φ2)

∂p3
+
∂f(p2, p3, φ1, φ2)

∂φ2

= 0. (4.6)

We find that a possible solution to this system is F (φ1, p2, φ2p3) from using

Maple R© , where F is also an arbitrary function. Therefore we conclude that

we can estimate φ1, p2 separately and the product φ2p3. The result agrees with

what we observed in Example 4.1.1.

We note that the PDE in Equation (4.6) is simple and can be solved using

the method of auxiliary equations, see Myint-U and Debnath (2007). When

mixture components are introduced in the model, the system of PDEs are more

complicated. We shall see this in the example below.

Example 4.2.2 (Estimable parameters from a mixture model). We will now

show an example from a mixture model where the deficiency is more than 1.

Consider the model {φ(t + hC), p(·)} for K = 3, C = 3. Using the linear link

function, the survival probabilities are modelled by

φjc = µφ + τφj + ηφc, (4.7)

where µφ is the baseline from group 1, {τφj} are the time components and

{ηφc} are the heterogeneous components. Model parameters are given by

θ = [p, ηφ2, ηφ3, µφ, τφ2, w1, w2]
T .

The derivative matrix D(θ) has rank 4. So the model is parameter–redundant

with deficiency 3.
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We obtain the null space of D(θ) using Maple R© , and it is given by

α(θ) =



0 0 0

ηφ3 − ηφ2
2w2

η2φ3
2w2(ηφ3 − ηφ2)

ηφ2w2 − ηφ3w1 − ηφ3w2

w2(ηφ3 − ηφ2)
ηφ3 − ηφ2

2w3

ηφ3(ηφ3 − 2ηφ2)

2w3(ηφ3 − ηφ2)
ηφ2w3 + ηφ3w3 − ηφ2
−w3(ηφ3 − ηφ2)

0 0 1

0 0 0

0 1 0

1 0 0



, (4.8)

where w3 = 1 − w1 − w2. We now consider the derivative of an arbitrary

function f(θ),

D(f(θ))T =

[
∂f(θ)

∂p

∂f(θ)

∂ηφ2

∂f(θ)

∂ηφ3

∂f(θ)

∂µφ

∂f(θ)

∂τφ2

∂f(θ)

∂w1

∂f(θ)

∂w2

]
.

(4.9)

Therefore to find the estimable parameters, we need to solve the following

system of PDEs



ηφ3 − ηφ2
2w2

∂f

∂ηφ2
+

ηφ3 − ηφ2
2w3

∂f

∂ηφ3
+

∂f

∂w2

η2φ3
2w2(ηφ3 − ηφ2)

∂f

∂ηφ2
+

ηφ3(ηφ3 − 2ηφ2)

2w3(ηφ3 − ηφ2)
∂f

∂ηφ3
+

∂f

∂w1

ηφ2w2 − ηφ3w1 − ηφ3w2

w2(ηφ3 − ηφ2)
∂f

∂ηφ2
+

ηφ2w3 + ηφ3w3 − ηφ2
−w3(ηφ3 − ηφ2)

∂f

∂ηφ3
+

∂f

∂µφ

 = 0.

(4.10)

Here we have used f = f(θ) for shorthand. Solving the system with Maple R© ,

we obtain the solution as the following:

F (p, τφ2,−w3ηφ3 − w2ηφ2 − µφ, w3η
2
φ3 + 2µφw3ηφ3 + 2ηφ2µφw2 + η2φ2w2 + µ2

φ),

(4.11)

after some algebraic rearrangement. Here we have again used w3 = 1−w1−w2

for shorthand. This implies that we can only estimate parameters p and τφ2
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separately but not the rest of the parameters.

We can further rearrange the above to obtain the estimable parameters as

a set given by

{
p, τφ2,−

3∑
c=1

wc(µφ + ηφc),
3∑
c=1

wc(µφ + ηφc)
2

}
, (4.12)

where w3 = 1 − w1 − w2 and ηφ1 = 0. Being able to rewrite in the form

of (4.12) is essential in determining the general parameter–redundancy result.

See Section 5.1.1 for more detailed use.

In theory, the parametric structure of a model can always be determined

using the symbolic method. But in practice, this method relies on the ability

to determine the rank of a symbolic matrix and where necessary the ability to

solve systems of PDEs.

Table 4.1 gives the dimensions of the matrix D(θ) for five different mixture

models.

Model Dimension of D(θ)

{φ(t), p(hC)} (2K − 1)× (K + 2C − 2)
{φ(t), p(t+ hC)} (2K − 1)× (2K + 2C − 4)
{φ(t), p(t× hC)} (2K − 1)× (KC +K − 2)
{[φ(t+ h), p(h)]C} (2K − 1)× (K + 3C − 3)
{[φ(t+ h), p(t+ h)]C} (2K − 1)× (2K + 3C − 5)

Table 4.1: The dimensions of the derivative matrices

The dimension of the derivative matrix is determined by the number of

terms in the exhaustive summary (length of κ(θ)) and the number of parame-

ters nθ. As we increase K and/or C, we increase the dimension of the symbolic

derivative matrix. Both the dimension of the matrix and the structure of the

matrix can make it difficult or impossible to calculate the symbolic rank, even

with the aid of a computer package, such as Maple R© or Mathematica R© .
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In the worst scenario, an incorrect rank may be produced (Gimenez et al.,

2003, p. 715). This was noticed later in Choquet and Cole (2012). Similar

cases were found in Cole and Morgan (2010b). A PLUR decomposition (also

known as the Turing decomposition) is needed to double check the result.

Corless and Jeffrey (1997) have shown that for any rectangular matrix D,

we can write D = PLUR, where P is a permutation matrix, L is a lower

triangular matrix, U is an upper triangular matrix and R is a matrix in re-

duced row echelon form. This decomposition is conveniently available through

Maple R© using LUDecomposition(D,output=[’P’,’L’,’U1’,’R’]). It is not

available in Mathematica R© . As long as the matrices L,U and R are defined,

if the determinant of U is always 0, then the matrix D cannot be full rank

(Cole et al., 2010). This case is discussed below in Example 4.2.3.

Example 4.2.3 (Failure of Symbolic Computer Packages). Figure 4.1 shows

the derivative matrix A(θ) with model parameters

θ = [φ1, φ2, φ3, φ4, a2, a3, a4, a5,m]T ,

as given in Gimenez et al. (2003). Here we use the same notation as given in

Gimenez et al. (2003) for the derivative matrix A(θ) instead of our notation

D(θ).

The authors determined the rank ofA(θ) is 9 using Maple R© syntax Rank(A)

in Maple R© 6 and concluded that the model is full rank since nθ = 9.

Choquet and Cole (2012) noted that earlier versions of Maple R© can give

incorrect ranks due to the fact that they cannot simplify 1/(1+ex)+1/(1+e−x)

to 1. They further noted that more recent versions of Maple R© have this sim-

plification build in and are able to return the correct rank of 8, in the above

example.

However, we note that the rank of this matrix from Maple R© 18.01 (the most
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recent version at the time of writing) is still 9 if we evaluate the rank directly

using Rank(A), see Figure 4.2. We note that if we use Rank(expand~(A)), we

then get the correct rank of 8, see Figure 4.3. The Maple R© function expand()

expands the expressions of the form ea+b to eaeb and expands the expressions

of the form ea−b to ea/eb. This “simplification” is in general needed in order

to get a correct rank of the models involving exponential functions. Another

possible workaround is to reparameterise ex as a single parameter, for example

using ex = y. An explanation of such behaviour is given on the MaplePrime

discussion forum. We also note that Mathematica R© 10.0.2 (the most recent

version at the time of writing) can give the correct rank using its function

MatrixRank without any simplification or tricks, see Figure 4.4.

So when using Maple R© to work out the rank of a derivative matrix DD1,

where there are non–rational entries, we should double check the result using

both Rank(DD1) and Rank(expand~(DD1)). To note that D in Maple R© is a

built–in function as a Differential operator. So in all our Maple R© worksheets,

we use DD1 to represent a derivative matrix.

To show that the matrix A(θ) cannot be full rank, we do a PLUR decom-

position of this matrix, and find that the determinant of the upper triangular

matrix U is always 0. This contradicts the definition of a PLUR decomposition

(Corless and Jeffrey, 1997, Theorem 1).

The symbolic method can also fail to calculate a rank when the model is

too complex or runs out of memory when the dimension of the matrix is too

large; see Hunter et al. (2009) and Jiang et al. (2007). In the next section,

we consider a method that can be used to overcome these problems to some

extent.
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Figure 4.2: An example of Maple R© giving the wrong rank.
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Figure 4.3: An example of Maple R© giving the correct rank, after some neces-
sary simplification.
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In[1]:= $Version

Out[1]= 10.0 for Microsoft Windows (64-bit) (December 4, 2014)

In[2]:= A = 

1  ϕ1, 1  ϕ1, 1  ϕ1, 1  ϕ1, 0, 0, 0, 0, 0, 0,

0, 1  ϕ2, 1  ϕ2, 1  ϕ2, 1  ϕ2, 1  ϕ2, 1  ϕ2, 0, 0, 0,

0, 0, 1  ϕ3, 1  ϕ3, 0, 1  ϕ3, 1  ϕ3, 1  ϕ3, 1  ϕ3, 0,

0, 0, 0, 1  ϕ4, 0, 0, 1  ϕ4, 0, 1  ϕ4, 1  ϕ4,

1  1 + Exp[a2 + m], -1  1 + Exp-a2 + m,

-1  1 + Exp-a2 + m, -1  1 + Exp-a2 + m, 0, 0, 0, 0, 0, 0,

0, 1  1 + Exp[a3], -1  1 + Exp[-a3], -1  1 + Exp[-a3], 1  1 + Exp[a3 + m],

-1  1 + Exp-a3 + m, -1  1 + Exp-a3 + m, 0, 0, 0,

0, 0, 1  1 + Exp[a4], -1  1 + Exp[-a4], 0, 1  1 + Exp[a4],

-1  1 + Exp[-a4], 1  1 + Exp[a4 + m], -1  1 + Exp[-(a4 + m)], 0,

0, 0, 0, 1  1 + Exp[a5], 0, 0, 1  1 + Exp[a5], 0,

1  1 + Exp[a5], 1  1 + Exp[a5 + m],

1  1 + Exp[a2 + m], -1  1 + Exp-a2 + m, -1  1 + Exp-a2 + m,

-1  1 + Exp-a2 + m, 1  1 + Exp[a3 + m],

-1  1 + Exp-a3 + m, -1  1 + Exp-a3 + m,

1  1 + Exp[a4 + m], -1  1 + Exp[-(a4 + m)], 1  1 + Exp[a5 + m]

 // MatrixForm

Out[2]//MatrixForm=
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In[3]:= MatrixRank[A]

Out[3]= 8

Figure 4.4: An example of Mathematica R© giving the correct rank without any
simplification.
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4.2.4 Hybrid Symbolic–Numerical (SN) Method

An alternative to the symbolic method is to use a numerical approach. Rothen-

berg (1971) has shown that the Fisher information matrix can be used. Since

the Fisher information matrix is the negative of the second derivative of the

log–likelihood, we can alternatively make use of the Hessian matrix. Vialle-

font et al. (1998) considers using the Hessian matrix and its rank to deter-

mine parameter–redundancy. This numerical approach requires fitting of the

model before we can determine whether we can estimate all model parameters.

Gimenez et al. (2004) has given an example of the using the Hessian matrix

when a real dataset is being fitted to the CJS model. The mixture models are

particularly difficult to fit as we shall see Chapter 6. We will not discuss this

in much detail here.

Instead, Choquet and Cole (2012) consider a hybrid symbolic–numerical

method, where the derivative matrix is calculated symbolically, but the rank

is evaluated numerically. The hybrid symbolic–numerical method is denoted

as the SN method. We implement the SN method using the steps below:

Step 1. List all possible histories CHi from the model.

Step 2. Find the probabilities of each history. These probabilities form the

original exhaustive summary κ(θ).

Step 3. Work out the derivative matrix D(θ).

Step 4. Simulate parameter values for each parameter in θ and work out the

rank numerically.

Choquet and Cole (2012) had shown that five random points in the param-

eter space are sufficient to determine the model rank using the SN method.

The model rank is then taken as the maximum of the five ranks obtained.
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For parameter–redundant models, the SN method can also identify individ-

ual parameters that can in theory be estimated. We shall see this through

Example 4.2.4.

Example 4.2.4 (Finding estimable parameters using the SN method). This

example shows how to use hybrid symbolic–numerical method to find which

parameters can be estimated separately from the others. Recall that in Ex-

ample 4.2.1, we obtained the derivative matrix symbolically as

D(θ) =



0 0 0 0

0 −φ2 0 −p3
0 φ2 0 p3

−φ1φ̄2 − φ1φ2p̄3 −φ1p̄2φ2 −1 + p̄2φ̄2 + p̄2φ2p̄3 −φ1p̄2 + φ1p̄2p̄3

−p3φ1φ2 φ1p̄2φ2 p̄2φ2p3 φ1p̄2p3

φ1φ̄2 + φ1φ2p̄3 −φ1p2φ2 p2φ̄2 + p2φ2p̄3 −φ1p2 + φ1p2p̄3

p3φ1φ2 φ1p2φ2 p2φ2p3 p2p3φ1



. (4.13)

We simulate a set of random values for θ (using the Mathematica R© function

RandomReal[1, 4]), for example

θ̃ =



p2 = 0.767829

p3 = 0.855950

φ1 = 0.875648

φ2 = 0.587508

,

and substitute this set of parameter values into D(θ) to obtain

D(θ̃) =



0 0 0 0

0 −0.587508 0 −0.85595

0 0.587508 0 0.85595

−0.435304 −0.11944 −0.884583 −0.174015

−0.440344 0.11944 0.116754 0.174015

0.435304 −0.39501 0.381705 −0.575497

0.440344 0.39501 0.386124 0.575497



.
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The rank of this derivative matrix is 3. We find that the nullspace of D(θ̃) is

given by the single solution

α(θ̃) =



6.82887× 10−17

−0.824472

−8.53956× 10−17

0.565902


≈



0

−0.824472

0

0.565902


.

Recall that the derivative matrix D(θ) was obtained by differentiating κ(θ)

with respect to the elements of the parameter vector θ = [p2, p3, φ1, φ2]
T in

order. The positions of the zeros (the first and the third) in α(θ̃) indicate that

parameters p2 and φ1 can be estimated but parameters p3 and φ2 cannot be

estimated separately.

This hybrid approach is useful when the partial differential equation sys-

tems are difficult or impossible to solve. However, for parameter–redundant

models, it can only identify which parameters can be estimated separately,

and it cannot give the combinations of parameters which can be estimated.

To obtain the full set of estimable parameters in such a case, we still require

solving the PDEs.

4.3 Results Using the SN Method

Using the SN method, we can determine the model ranks for any values of K

and C for mixture models much faster than using the symbolic method. For

different dimensions of K and C, we can produce tables of model ranks and

therefore model deficiencies as shown in Table 4.2 and Table 4.3 for those small

values of K and C shown. Ranks from models with larger values of K and C

can be obtained in the same way. See the files listed in Section 4.6 for all tables.

Recall that at the beginning of this chapter we have seen that Holzmann
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et al. (2006) developed a rule of K ≥ 2C, to ensure closed population mixture

models are identifiable. We will present this discriminatory rule as a dashed

line at K = 2C where appropriate in all tables for comparison.

Table 4.2 shows the parameter–redundancy result for the capture–recapture

model {[φ(h), p(h)]C} for K = 3, 4, . . . , 10 and C = 2, 3, . . . , 10. In this model,

we consider heterogeneity in both the survival and the recapture probabilities.

In the table, the solid line divides the table into two parts. To the left of the

solid line, the model is parameter redundant and to the right of the solid line,

the model is full rank.

In Table 4.2(a), the model ranks are given. The ranks are the numbers of

parameters that can be estimated. For the parameter–redundant region (to

the left of the solid line), the sequence 3,6,10,15,21,28 follows the expression

K(K − 1)/2 and for the full rank region (to the right of the solid line), the

sequence 5,8,11,. . . ,29 follows the expression 3C − 1, which is the number of

model parameters. An informed guess for this model to be full rank is therefore

K(K − 1)/2 ≥ 3C − 1.

For this model in particular, using the ruleK ≥ 2C given in Holzmann et al.

(2006) for closed population mixture models, we will consider all models to the

left of the dashed to be parameter redundant (unidentifiable). But in fact, the

models between the solid line and the dashed line in the table are also full

rank. For example, at K = 8, C = 6, the using rule of K ≥ 2C determines the

model to be parameter redundant but using the rule of K(K− 1)/2 ≥ 3C− 1,

the model will be full rank.

Table 4.3 shows the parameter–redundancy result for the model {φ(t), p(t×

hC)} for K = 3, 4, . . . , 10 and C = 2, 3, . . . , 10. In this model, both the survival

and the recapture probabilities are time varying. The capture probabilities pjc

also have interaction terms between time and heterogeneous groups.
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(a) Model ranks based on the linear link. The same result is obtained using
the logistic link function.

K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10

C = 2 3 5 5 5 5 5 5 5

C = 3 3 6 8 8 8 8 8 8

C = 4 3 6 10 11 11 11 11 11

C = 5 3 6 10 14 14 14 14 14

C = 6 3 6 10 15 17 17 17 17

C = 7 3 6 10 15 20 20 20 20

C = 8 3 6 10 15 21 23 23 23

C = 9 3 6 10 15 21 26 26 26

C = 10 3 6 10 15 21 28 29 29

(b) Model deficiencies

K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10

C = 2 2 0 0 0 0 0 0 0

C = 3 5 2 0 0 0 0 0 0

C = 4 8 5 1 0 0 0 0 0

C = 5 11 8 4 0 0 0 0 0

C = 6 14 11 7 2 0 0 0 0

C = 7 17 14 10 5 0 0 0 0

C = 8 20 17 13 8 2 0 0 0

C = 9 23 20 16 11 5 0 0 0

C = 10 26 23 19 14 8 1 0 0

Table 4.2: Model ranks obtained from using the SN method for model
{[φ(h), p(h)]C} for different dimensions of K and C shown. To the left of the
solid line, models are parameter–redundant and to the right of the solid line,
models are not parameter–redundant. The dashed lines divides the models
according to the rule of K ≥ 2C.
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(a) Model ranks based on the linear link. The same result is obtained using
the logistic link function.

K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10

C = 2 4 9 12 15 18 21 24 27

C = 3 4 9 16 21 25 29 33 37

C = 4 4 9 18 27 32 37 42 47

C = 5 4 9 18 33 39 45 51 57

C = 6 4 9 18 35 46 53 60 67

C = 7 4 9 18 35 53 61 69 77

C = 8 4 9 18 35 60 69 78 87

C = 9 4 9 18 35 67 77 87 97

C = 10 4 9 18 35 68 85 96 107

(b) Model deficiencies

K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10

C = 2 3 1 1 1 1 1 1 1

C = 3 6 5 2 1 1 1 1 1

C = 4 9 9 5 1 1 1 1 1

C = 5 12 13 10 1 1 1 1 1

C = 6 15 17 15 5 1 1 1 1

C = 7 18 21 20 11 1 1 1 1

C = 8 21 25 25 17 1 1 1 1

C = 9 24 29 30 23 1 1 1 1

C = 10 27 33 35 29 7 1 1 1

Table 4.3: Model ranks obtained from using the SN method for model
{φ(t), p(t × hC)} for different dimensions of K and C shown. To the left of
the solid line, models are parameter–redundant due to both lack of data and
the model structure, and to the right of the solid line, models are parameter–
redundant due to the model structure only. The dashed lines divides the
models according to the rule of K ≥ 2C.
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We note that the model has a deficiency ≥ 1 for all dimensions of K and

C given. The model is always parameter redundant. The solid line divides the

table. To the right of the line, the model is parameter redundant due to the

model structure itself. To the left of the line, the model is parameter redundant

due to both the limited information we have and the model structure itself.

That is, to the right of the solid line, the model is parameter–redundant

due to its construction. No matter how many years of data we collect, the

model is always parameter–redundant and we need to put extra constraints to

estimate the parameters. To the left of the solid line, the model is parameter–

redundant due to the fact there are not enough capture histories as well as the

construction of the model.

We note that in Pledger et al. (2003), the authors have got most of the

estimable parameters correct as given in Table 1 of their paper. The only

differences are: for the model {[φ(t+h), p(t×h)]C}, we find the same number

of estimable parameters as KC + K + C − 4, but note there is a deficiency

of 1; for the model {[φ(t × h), p(t + h)]C}, we find the number of estimable

parameters as KC + C + K − 4, but note there is also a deficiency of 1;

Both differences might due to typo errors. This can occur as they give the

total number of estimable parameters for the model {φ(t + hC), p(t)} to be

2K2C − 4, whereas it should be 2K + 2C − 4.

Finally, we note that the number of independent estimable parameters given

in Table 1 by Pledger et al. (2003) are correct only if certain conditions are

met. For example in Table 4.3, we can deduce that the number of estimable

parameters is KC +K − 3. Pledger et al. (2003) have found the same result.

But this is only valid to the right of the solid line in the table. What they have

not found, are the values to the left of the solid lines. We will discuss how to

find the exact rule and general conditions in Chapter 5.
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We have found that with the exception of the models {[φ(h), p(t + h)]C}

and {[φ(t + h), p(h)]C} among those CJS mixture models in Table 3.2, the

same model ranks (and deficiencies) will be obtained from using the linear link

function and using the logistic link function. Table 4.4 shows a different case,

where using different link functions can result in different model structures,

and therefore different parameter–redundancy results.

In Table 4.4, for the model {[φ(h), p(t+h)]C}, the ranks agree for C = 2, 3,

but start to disagree from C = 4 and K = 4. Using the linear link function,

the model has rank 10 while using the logistic link function, the model has

rank 11 for K = 4, C = 4. For the model {[φ(t+h), p(t)]C}, model ranks start

to disagree from K = 4, C = 3.

We observe that for the model {[φ(h), p(t + h)]C}, the model ranks are

smaller using the linear link function than using the logistic link function

whenever they disagree. For the model {[φ(t + h), p(t)]C}, the model ranks

are larger using the linear link function than using the logistic link function

whenever they disagree. This is because that there is no one–to–one relation-

ship between the two link functions for both models. We will provide more

details later in Example 5.2.1 on one–to–one transformation between the two

link functions.

For ease of coding purposes, we have used the same link functions in the

same model. That is, we have not looked at the case where one parameter

uses the linear link function while the other uses the logistic link function.

But it could be interesting to do so and investigate. Not that the aim is to

find whether the original model (when the logistic link is used) is full rank.

So in practise, we prefer to use the logistic link function for both parameters

when probabilities are involved.
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(a) Model {[φ(h), p(t+ h)]C}: ranks based on the linear link

K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10

C = 2 4 7 8 9 10 11 12 13

C = 3 4 10 11 12 13 14 15 16

C = 4 4 10 14 15 16 17 18 19

C = 5 4 10 16 18 19 20 21 22

C = 6 4 10 16 21 22 23 24 25

C = 7 4 10 16 23 25 26 27 28

C = 8 4 10 16 23 28 29 30 31

C = 9 4 10 16 23 31 32 33 34

C = 10 4 10 16 23 31 35 36 37

(b) Model {[φ(h), p(t+ h)]C}: ranks based on the logistic link

K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10

C = 2 4 7 8 9 10 11 12 13

C = 3 4 10 11 12 13 14 15 16

C = 4 4 11 14 15 16 17 18 19

C = 5 4 11 17 18 19 20 21 22

C = 6 4 11 19 21 22 23 24 25

C = 7 4 11 19 24 25 26 27 28

C = 8 4 11 19 27 28 29 30 31

C = 9 4 11 19 29 31 32 33 34

C = 10 4 11 19 29 34 35 36 37

(c) Model {[φ(t+ h), p(t)]C}: ranks based on the linear link

K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10

C = 2 4 7 8 9 10 11 12 13

C = 3 4 10 11 12 13 14 15 16

C = 4 4 10 14 15 16 17 18 19

C = 5 4 10 17 18 19 20 21 22

C = 6 4 10 17 21 22 23 24 25

C = 7 4 10 17 24 25 26 27 28

C = 8 4 10 17 25 28 29 30 31

C = 9 4 10 17 25 31 32 33 34

C = 10 4 10 17 25 34 35 36 37

(c) Model {[φ(t+ h), p(t)]C}: ranks based on the logistic link

K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10

C = 2 4 7 8 9 10 11 12 13

C = 3 4 8 11 12 13 14 15 16

C = 4 4 8 13 15 16 17 18 19

C = 5 4 8 13 18 19 20 21 22

C = 6 4 8 13 19 22 23 24 25

C = 7 4 8 13 19 25 26 27 28

C = 8 4 8 13 19 26 29 30 31

C = 9 4 8 13 19 26 32 33 34

C = 10 4 8 13 19 26 34 36 37

Table 4.4: Different model ranks obtained from using the linear link function
and the logistic link function using the SN method for K and C shown.



4.4. THEOREMS NEEDED FOR FORMAL PROOF 75

4.4 Theorems Needed for Formal Proof

The parameter–redundancy results from using the SN method are only valid

for values of K and C given in the tables, and cannot be used as a proof for

a general rule to detect parameter–redundancy. To develop a general rule for

the results of parameter–redundancy, we need simpler exhaustive summaries

and that is the topic to be discussed in Chapter 5.

A general framework on using an exhaustive summary to determine features

of parameter–redundancy is illustrated in Figure 4.5, adapted and edited from

Cole et al. (2010). By extending K and/or C, we extend the exhaustive sum-

maries too. Consider an exhaustive summary κ1(θ1) with derivative matrix

D1(θ1). We extend the model to κ(θ′) = [κ1(θ1),κ2(θ
′)]T where θ′ = [θ1,θ2],

by introducing new parameters θ2. The derivative matrix of the new model is

then

D =

∂κ1(θ1)

∂θ1

∂κ2(θ1,θ2)

∂θ1
∂κ1(θ1)

∂θ2

∂κ2(θ1,θ2)

∂θ2

 =

D1 D2,1

0 D2

 .
Theorem 4.4.1 (Extension Theorem). If the matrix D1 is full rank and D2

is also full rank, then D is full rank. It follows that the extended model is full

rank.

The extension theorem was developed by Catchpole and Morgan (1997).

What we have presented here is Theorem 3 in Cole et al. (2010) in a gener-

alised form. Using the extension theorem we can extend the model in both K

and C.

As have seen in Example 4.2.3, a PLUR decomposition can be used to

check whether a matrix is full rank: we here give the following theorem.

Theorem 4.4.2. For any full rank model with derivative matrix D, the model

is parameter redundant at θ if and only if the determinant of U is 0 at θ,
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Figure 4.5: A general framework for detecting parameter–redundancy using
exhaustive summaries. Adapted and edited from Cole et al. (2010).
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where U is the upper triangular matrix from the PLUR decomposition of D.

The above theorem is Theorem 4 in Cole et al. (2010).

If we write D1 = P1L1U1R1 and D2 = P2L2U2R2, then we have the follow-

ing theorem.

Theorem 4.4.3. If Det(U1) = 0 or Det(U2) = 0 at a point θ, then the

extended model is parameter redundant at θ.

The above theorem is Theorem 6 in Cole et al. (2010). This is useful when

we extend the model using the extension theorem.

Definition 4.4.1. We define a reduced–form exhaustive summary to be a repa-

rameterisation s(θ) such D(s) = ∂s(θ)/∂θ is full rank.

For example, the reparameterisation s(θ) = [φ1, p2, φ2p3]
T in Example 4.1.1

is a reduced–form exhaustive summary.

Theorem 4.4.4 (Reparameterisation Theorem). If rs = ns, s(θ) is a reduced–

form exhaustive summary. If rs < ns, a reduced–form exhaustive summary can

be found by solving α(s)TD(f(s)) = 0. If rank (∂s/∂θ) = ns, there are rs

estimable parameters. If rs = nθ, the model M(θ) is full rank. If rs < nθ, the

model M(θ) is parameter redundant.

The above theorem is Theorem 8 in Cole et al. (2010). A reduced–form

exhaustive summary is an exhaustive summary that can no longer be reduced

in dimension. It is the smallest exhaustive summary and also provides the es-

timable parameters. We shall discuss more details on reduced–form exhaustive

summaries in Section 5.3.

To summarise, for the open population mixture models, we will start by

considering the smallest K and C.
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Step 1. Start by finding a reparameterisation s(θ).

Step 2. Show that s(θ) is a (reduced–form) exhaustive summary using Theo-

rem 4.4.4.

Step 3. We extend both K and C by 1, and show that s(θ) is a (reduced–

form) exhaustive summary using Theorem 4.4.1. It follows that s(θ)

is a (reduced–form) exhaustive summary.

This gives us a simpler exhaustive summary. We can then use s(θ) to

determine the parameter–redundancy result. We give examples of simpler

exhaustive summaries in Chapter 5.

4.5 Conclusion

To conclude, parameter–redundancy arises when we cannot estimate all model

parameters. For open population mixture models, the number of model pa-

rameters can increase with K and C, where K is the number of samples and C

is the number of mixture components. Identifying the parameter–redundancy

problem is typically not as easy as the example seen in Example 4.1.1.

Symbolic methods have been developed to detect such problems. Even

with the aid of a computer package such as Maple R© or Mathematica R© , the

model rank could be wrongly obtained without a further check, using a PLUR

decomposition for example. The symbolic method relies on the ability to

calculate the symbolic rank of a derivative matrix. This is not always possible

and can fail due to the lack of computer memory and the complicated structure

of the derivative matrix.

The hybrid symbolic–numerical (SN) method is developed so that we can

determine model ranks more quickly and easily than using the symbolic method.

This is because computer packages can calculate the rank of a matrix numer-
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ically quicker than the rank of a symbolic matrix. Using the SN method, we

can determine model ranks for any given K and C. We examined tables of

model ranks (and deficiencies) to discover a pattern between K and C and the

parameter–redundancy results.

Both the symbolic method and the SN method can determine which pa-

rameters are estimable but only the symbolic method can identify how the

non–estimable parameters are combined together to give the estimable combi-

nations.

As given in Holzmann et al. (2006), in a slightly different context, the rule

of K ≥ 2C is suggested to ensure that models are identifiable for mixture

models in closed populations. From the results using the SN method, we have

seen that this rule can be applied for open population mixture models if only

one of {φjc} or {pjc} is heterogeneous. General rules for these models are the

topic of the next chapter and the theorems involved are listed in Section 4.4.

4.6 Code & List of files

In this section, we list all relevant files on the supplementary CD in Table 4.5.

Details on using the Maple R© package MixtureModelforCaptureRecapture.mla

are given in Appendix A and details on using the Mathematica R© package

MixtureModelforCaptureRecapture.m are given in Appendix B.

For Example 4.2.3, we review the code that was originally used in Gimenez

et al. (2003) and tried the same code in Maple R© 6. We verified that the

wrong rank 9 was given. After using map(expand,matrixA), we were able to

get a correct rank: see file Maple_V6.pdf. This is still the case as shown

in the example: see file Maple_V18.pdf. For comparison, the same ma-

trix rank was calculated in Mathematica R© with a correct rank 8: see file

Mathematica_MatrixRank.pdf.
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File Name Description

Gimenez et al. (2003) The folder contains all source files from
Gimenez et al. (2003)

Maple_V6.pdf Rank of matrix A(θ) from using
Maple R© 6.

Maple_V18.pdf Rank of matrix A(θ) from using
Maple R© 18.

Mathematica_MatrixRank.pdf Rank of matrix A(θ) from using
Mathematica R© 10.

Rank.mw Maple R© worksheet for calculating the
rank of matrix A(θ).

MatrixRank.nb Mathematica R© notebook for calculat-
ing the rank of matrix A(θ).

Chapter_4.pdf Examples in this chapter using
Mathematica R© .

model_ranks_linear.pdf Results of parameter–redundancy for
CJS mixture models using the SN
method when the linear link function
is used.

model_ranks_logit.pdf Results of parameter–redundancy for
CJS mixture models using the SN
method when the logistic link function
is used.

model_ranks_linear_JS.pdf Results of parameter–redundancy for
JS mixture models using the SN
method when the linear link function
is used.

model_ranks_logit_JS.pdf Results of parameter–redundancy for
JS mixture models using the SN
method when the logistic link function
is used.

Table 4.5: List of files on Chapter 4



4.6. CODE & LIST OF FILES 81

To utilize all 32 available cores on the school server Emmy, Mathematica R© 10

was used. All notebooks (the Mathematica R© file) are timed for completing the

whole job. See individual files for more details. We note that it takes 769.18

minutes to finish for all 25 JS mixture models using the SN method when the

logistic link function is used. This is nearly 13 hours. However we note that

there were other jobs running on the server at the same time.



Chapter 5

Simpler Exhaustive Summaries

In Chapter 3 we have seen that open population mixture models can have

many parameters and in Chapter 4 we showed that we cannot always estimate

all model parameters and that this is the problem of parameter redundancy.

We have seen how we can detect parameter redundancy using both the sym-

bolic method and the hybrid symbolic–numerical (SN) method. Using the SN

method, we can efficiently determine the parameter redundancy result for any

given K and C, however it cannot be used to find general results.

In Chapter 4, we have also seen that the standard symbolic method fails

in calculating the rank of the symbolic derivative matrix for large values of

K and C. The main reason is that the exhaustive summaries are structurally

too complex. To be able to use the symbolic method, we need to develop sim-

pler exhaustive summaries. The simpler exhaustive summaries are exhaustive

summaries which carry the same information as the original exhaustive sum-

maries, but are either simpler in structure, or have fewer terms to consider. In

this chapter, we provide some examples of simpler exhaustive summaries for

various models discussed in Chapter 3.

In Section 5.1, we will start with examples using the linear link function

and consider a range of open capture–recapture mixture models, starting with

82
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relatively simple cases and then progressing to more complex ones. Models

using the linear link function are structurally simpler and in many cases, where

there is a one–to–one transformation, the parameter redundancy results are

identical to the same models using a logistic link function; see Section 5.2.1.

Using examples from the CJS mixture models, we first describe how to

find a reparameterisation that is useful in developing a simpler exhaustive

summary in Section 5.1.1 using the model {φ(t+hC), p(·)}. We then show the

full proof of a simpler exhaustive summary for the model the {φ(t), p(t+hC)}

and all of its sub–models in Section 5.1.2. We show how the simpler exhaus-

tive summary can be used to determine the parameter redundancy results for

the model {φ(t), p(t + hC)} and all of its sub–models in Section 5.1.3. We

show the simpler exhaustive summary for a more complicated example where

heterogeneity exists in both the survival probabilities and the recapture prob-

abilities in Section 5.1.4 for the model {[φ(h), p(h)]C}. We further show what

happens to the exhaustive summary when we introduce a time component in

the model {[φ(h), p(t+ h)]C} in Section 5.1.5.

An example of a simpler exhaustive summary for the capture recovery

model {φ(hC), λ(t)} is given in Section 5.1.6. We show how the simpler ex-

haustive summary can be extended when we introduce covariates into the

model by looking at the model {φ(hC + a), λ(t)} in Section 5.1.7.

As the models get more complicated, the H(x, y, z) function will be intro-

duced as a convenient short–hand in Section 5.1.8 and we show how it is used in

Section 5.1.9, through an example from the capture–recapture–recovery model

{φ(hC), p(hC), λ(hC)}.

Moving on to Section 5.2, we will provide some examples of simpler ex-

haustive summaries for models using the logistic link function, which are more

complicated than using the linear link function. In Section 5.2.1, we show

the link between the linear link function and the logistic link function. We
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demonstrate that if there is a one–to–one transformation, the parameter re-

dundancy result will be the same. In Section 5.2.2, we prove the simpler

exhaustive summary for the model {φ(·), p(t+hC)}, for which there is no one–

to–one transformation between the linear link function and the logistic link

function. We further explore the more complicated model {φ(t), p(t+ hC)} in

Section 5.2.3.

Section 5.3 discusses how the simpler exhaustive summaries can be used

to help us determine parameter redundancy results and Section 5.4 concludes

the findings in this chapter.

5.1 Using the Linear Link Function

In this section, we will provide some examples of simpler exhaustive summaries

from using the linear link function. Examples will range from relatively simple

open population mixture models, to more complex models, including models

with covariates.

5.1.1 How to find a reparameterisation?

In this section, we will provide an example to show how to find a reparam-

eterisation that can be used to find a simpler exhaustive summary for the

model {φ(t+ hC), p(·)}. The model is constant in recapture probabilities and

time–varying and heterogeneous in survival probabilities. We use the linear

link function to motivate the example as it is simpler than the logistic link

function. When the linear link function is used, the heterogeneous survival

probabilities are as follows

φjc = µφ + τφj + ηφc,
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where µφ is the baseline from group 1, {τφj} are the time–varying components

and {ηφc} are the heterogeneous components.

Using Theorem 4.4.4 we find the estimable parameters by solving the sys-

tem of partial differential equations (PDEs) as have seen in Example 4.2.1.

Using Maple R© to solve the PDE system we found that the estimable parame-

ters for K = 3, C = 2 are given by



p

τφ2

ηφ2
√
w1(w1 − 1)

µφ + ηφ2 − w1ηφ2

.

This is a reparameterisation. We note that the ηφ2
√
w1(w1 − 1) is going to

produce a complex number since the expression in the square root will be

negative for any sensible values of w1. But this is a perfectly valid symbolic

solutions for the PDE system. This raises a question of whether we can always

make sense of the reparameterisation.

The single set shown above does not help us much in determining a general

reparameterisation as we do not observe a general pattern. We can find the

estimable parameters using Maple R© for alternative values of K and C, for

example, for K = 3, C = 3, the estimable parameters are



p

τφ2

(−1 + w1 + w2)ηφ3 − w2ηφ2 − µφ

(1− w1 − w2)η
2
φ3 − 2µφ(−1 + w1 + w2)ηφ3 + 2ηφ2µφw2 + η2φ2w2 + µ2

φ

,
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which can be rearranged to obtain



p

τφ2

−w3ηφ3 − w2ηφ2 − µφ

w3(µφ + ηφ3)
2 + w2(µφ + ηφ2)

2 + w1µ
2
φ

.

For K = 3, C = 4 the estimable parameters can be rearranged to give



p

τφ2

−w4ηφ4 − w3ηφ3 − w2ηφ2 − µφ

w4(µφ + ηφ4)
2 + w3(µφ + ηφ3)

2 + w2(µφ + ηφ2)
2 + w1µ

2
φ

.

We can now observe a general pattern when C increases, except the case

when C = 2. But we will show later that the general pattern will work when

C = 2 (and for C = 1) too. It is just a different reparemeterisation than

the one found by solving the PDE system. So now we explore the pattern by

extending to K = 4. The model is full rank when K = 4, C = 2, so that all

parameters can be estimated in this case. We find that Maple R© fails to solve

the PDE system for K = 4, C = 3 and returns with a warning:

Warning: Incomplete separation.
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We continue to try for K = 4, C = 4 and obtain the estimable parameters



p

τφ2

τφ3

−w4ηφ4 − w3ηφ3 − w2ηφ2 − µφ

w4(µφ + ηφ4)
2 + w3(µφ + ηφ3)

2 + w2(µφ + ηφ2)
2 + w1µ

2
φ

w4(µφ + ηφ4)
3 + w3(µφ + ηφ3)

3 + w2(µφ + ηφ2)
3 + w1µ

3
φ

,

after rearranging. We can try a few more sets of values for K and C and in-

vestigate the estimable parameters. By rearranging the estimable parameters

and simplifying terms, we can deduce a pattern and find that a possible repa-

rameterisation for the model {φ(t+ hC), p(·)} when the linear link function is

used is given by 

p

τφ2
...

τφK−1∑C
c=1wc(µφ + ηφc)

...∑C
c=1wc(µφ + ηφc)

K−1



. (5.1)

To verify this, we consider the heterogeneous survival probabilities {φjc}
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at each time occasion j, which are determined by

φj =
C∑
c=1

wcφjc (5.2a)

=
C∑
c=1

wc (µφ + τφj + ηφc) (5.2b)

=
C∑
c=1

{
wcτφj + wc (µφ + ηφc)

}
(5.2c)

= τφj +
C∑
c=1

wc (µφ + ηφc) , (5.2d)

as
∑C

c=1wc = 1. Recall that we set wC = 1 −∑C−1
c=1 wc and ηφ1 = 0 as con-

straints in this model.

We will now show that the reparameterisation given in (5.1) is a simpler

exhaustive summary for the model {φ(t+ hC), p(·)} using the extension theo-

rem, Theorem 4.4.1. We start by considering the original exhaustive summary

for K = 3, C = 1: we have

κ(θ) =



1

1− µφ − τφ2 + (µφ + τφ2)p

(µφ + τφ2)p

1− µφ + µφp̄(1− µφ − τφ2) + µφp
2(µφ + τφ2)

µφp̄(µφ + τφ2)p

µφp(1− µφ − τφ2) + µφp̄(µφ + τφ2)p

µφp
2(µφ + τφ2)



, (5.3)

where as previously, θ = 1 − θ for any parameter θ. This reparameterisation



5.1. USING THE LINEAR LINK FUNCTION 89

is given by

s(θ) =



p

τφ2

µφ

µ2
φ


. (5.4)

The reparameterisation has more terms than necessary, but we will use this as

an illustration. Now we rewrite the original exhaustive summary κ(θ) using

s(θ) to obtain

κ(s) =



1

−(s2 + s3)s1 + 1

(s2 + s3)s1

(s2s3 + s4)s
2
1 + (−s2s3 − s3 − s4)s1 + 1

(−s2s2 − s4)s21 + (s2s3 + s4)s1

(−s2s2 − s4)s21 + s3s1

(s2s3 + s4)s
2
1



. (5.5)

Then we differentiate the κ(s) with respect to s, to obtain the derivative

matrix

D(s) =



0 0 0 0

−s2 − s3 −s1 −s1 0

s2 + s3 s1 s1 0

...
...

2(s2s3 + s4)s1 s3s
2
1 s2s

2
1 s21


. (5.6)

We find using Maple R© that the derivative matrix D(s) has rank rs = 4.

The reparameterisation s(θ) has dimension ns = 4. So the reparameterisa-

tion s(θ) is a simpler exhaustive summary for K = 3, C = 1 for the model

{φ(t+ hC), p(·)}, using Theorem 4.4.4.

We now keep K = 3 and extend to C = 2. The original exhaustive sum-
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mary is given by

κ(θ) =



1

...

w1(µφ + τφ2)p+ (1− w1)(µφ + τφ2 + ηφ2)p

...

w1µφp
2(µφ + τφ2) + (1− w1)µφp

2(µφ + τφ2 + ηφ2)


. (5.7)

The reparameterisation is

s(θ) =



p

τφ2

w1µφ + (1− w1)(µφ + ηφ2)

w1µ
2
φ + (1− w1)(µφ + ηφ2)

2


. (5.8)

Rewriting κ(θ) using s(θ) we obtain

κ(s) =



1

−(s2 + s3)s1 + 1

(s2 + s3)s1

(s2s3 + s4)s
2
1 + (−s2s3 − s3 − s4)s1 + 1

(−s2s2 − s4)s21 + (s2s3 + s4)s1

(−s2s2 − s4)s21 + s3s1

(s2s3 + s4)s
2
1



. (5.9)

We note that this is identical to the previous κ(s) for K = 3, C = 1. It follows

that D(s) is full rank with rs = 4. Since rs = ns = 4, the reparameterisa-

tion s(θ) is a simpler exhaustive summary for K = 3, C = 2 for the model

{φ(t + hC), p(·)}, using Theorem 4.4.4. We conclude that the reparameteri-

sation in (5.1) is a simpler exhaustive summary for K = 3 and C ≥ 1 using

Theorem 4.4.1.
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We will now show that we can extend the simpler exhaustive summary for

K. We keep C = 1 and extend to K = 4. The original exhaustive summary is

κ(θ) =



1

...

(µφ + τφ3)p

...

µφp
3(µφ + τφ2)(µφ + τφ3)


. (5.10)

The reparameterisation is given by

s(θ) =



p

τφ2

τφ3

µφ

µ2
φ

µ3
φ


. (5.11)

The reparameterisation has more terms than necessary by construction, but

we will use this as an illustration. Now we rewrite the original exhaustive

summary κ(θ) using s(θ) to obtain

κ(s) =



1

−(s3 + s4)s1 + 1

(s3 + s4)s1
...

(s2s3s4 + s2s5 + s3s5 + s6)s
3
1


. (5.12)

We differentiate κ(s) with respect to the elements of s to obtain the derivative
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matrix

D(s) =



0 0 0 0 0 0

−(s3 + s4) 0 −s1 −s1 0 0

... · · · · · · · · · · · · ...

...
. . . . . . . . . . . .

...

· · · · · · · · · · · · · · · s31


. (5.13)

We found using Maple R© that the derivative matrix D(s) has rank rs = 6.

Since the dimension of s(θ) is ns = 6, so that rs = ns, we deduce that s(θ)

is a simpler exhaustive summary for K = 4, C = 1. Using the extension

theorem, Theorem 4.4.1, the reparameterisation in Equation (5.1) is a simpler

exhaustive summary for the model {φ(t+ hC), p(·)} for K ≥ 3, C ≥ 1.

5.1.2 Model: {φ(t), p(t+ hC)}

In this model, the survival probabilities are time–varying, denoted by {φj}.

The capture probabilities are time–varying and heterogeneous, denoted by

pjc = µp + τpc + ηpc,

where a linear link function has been used. Here, µp is the baseline from group

1, τpc is the time component and ηpc is the heterogeneous component, both for

class c.

We first examine parameter redundancy using the hybrid symbolic–numerical

(SN) method described in Section 4.2.4. We obtain the table of model ranks

and deficiencies as given in Table 5.1.

We note in the table that from K = 4, the model ranks 8, 11, 14, . . . , 26

form an arithmetic sequence with a difference of 3. So we will show in the

example below, that from K ≥ 4 and C ≥ 2, a simpler exhaustive summary

can be derived using the extension theorem given in Theorem 4.4.1.
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(a) Model ranks based on the linear link (same result using the logistic link)

K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10

C = 2 4 8 10 12 14 16 18 20

C = 3 4 8 11 14 16 18 20 22

C = 4 4 8 11 14 17 20 22 24

C = 5 4 8 11 14 17 20 23 26

C = 6 4 8 11 14 17 20 23 26

C = 7 4 8 11 14 17 20 23 26

C = 8 4 8 11 14 17 20 23 26

C = 9 4 8 11 14 17 20 23 26

C = 10 4 8 11 14 17 20 23 26

(b) Model deficiencies

K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10

C = 2 2 0 0 0 0 0 0 0

C = 3 4 2 1 0 0 0 0 0

C = 4 6 4 3 2 1 0 0 0

C = 5 8 6 5 4 3 2 1 0

C = 6 10 8 7 6 5 4 3 2

C = 7 12 10 9 8 7 6 5 4

C = 8 14 12 11 10 9 8 7 6

C = 9 16 14 13 12 11 10 9 8

C = 10 18 16 15 14 13 12 11 10

Table 5.1: Model ranks obtained from using the SN method for model
{φ(t), p(t + hC)} for different dimensions of K and C shown. Models above
the dashed line satisfying the inequality K ≥ 2C and models below the dashed
line satisfying the inequality K < 2C.
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Example 5.1.1. A possible reparameterisation for this model is

s(θ) =



φ1

...

φK−1

τp3
...

τpK∑C
c=1wc(µp + ηpc)

...∑C
c=1wc(µp + ηpc)

K−1



. (5.14)

We will show that s(θ) is a simpler exhaustive summary for K = 4, C = 2

and can be extended to K = 4, C = 3 and K = 5, C = 2. Hence using Theo-

rem 4.4.1 (the extension theorem), s(θ) is a simpler exhaustive summary for

this model for K ≥ 4 and C ≥ 2.

Let us start with K = 4, C = 2. In this case, the reparameterisation is

given by

s(θ) =



s1

s2

s3

s4

s5

s6

s7

s8



=



φ1

φ2

φ3

τp3

τp4

w1µp + (1− w1)(µp + ηp2)

w1µ
2
p + (1− w1)(µp + ηp2)

2

w1µ
3
p + (1− w1)(µp + ηp2)

3



. (5.15)

The original exhaustive summary κ(θ) is too large to display on paper, so

we will omit it here. However it is available in the relevant computer supple-
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mentary files as a Maple R© worksheet. We can rewrite the original exhaustive

summary κ(θ) in terms of s(θ) to obtain κ(s):

1

−s3s5 − s3s6 + 1

s3s5 + s3s6

s2s3s4s5 + s2s3s4s6 + s2s3s5s6 − s2s3s5 − s2s3s6 + s2s3s7 − s2s4 − s2s6 + 1

−s2s3s4s5 − s2s3s4s6 − s2s3s5s6 + s2s3s5 + s2s3s6 − s2s3s7
−s2s3s4s5 − s2s3s4s6 − s2s3s5s6 − s2s3s7 + s2s4 + s2s6

s2s3s4s5 + s2s3s4s6 + s2s3s5s6 + s2s3s7
...

...

(−s2s3s4s5s6 − s2s3s4s7 + s2s3s5s6 − s2s3s5s7 + s2s3s7 − s2s3s8)s1

(−s2s3s4s5s6 − s2s3s4s7 − s2s3s5s7 − s2s3s8 + s2s4s6 + s2s7)s1

(s2s3s4s5s6 + s2s3s4s7 + s2s3s5s7 + s2s3s8)s1



. (5.16)

We calculate the derivative matrix D(s) and find its rank is rs = 8. Since

ns = 8, we have that rs = ns. We conclude that s(θ) in Equation (5.15) is an

exhaustive summary for K = 4, C = 2 for the model {φ(·), p(t + hC)} using

Theorem 4.4.4.

Since the model is full rank in terms of the reparameterisation s(θ), we

can also check for its sub–models using Theorem 4.4.2. We now do a PLUR

(Corless and Jeffrey, 1997) decomposition of the derivative matrix D(s) using
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Maple R© to obtain

P =



0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1





5.1. USING THE LINEAR LINK FUNCTION 97

and

R =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


We omit the matrices L and U due to the fact that they are too complicated

and large to display on paper, see supplementary Maple R© worksheet for full

versions.

Of interest here is that the determinant of the matrix U is given by

− (s46 + s5s
2
6 − 2s26s7 − s5s7 − s6s7 + s27)s

3
1s

5
2s

4
3(s5 + s6). (5.17)

We need to check that the conditions to obtain the sub–models do not result

in the expression above being 0. For example, the sub–model {φ(·), p(t+hC)}

is equivalent to having s1 = s2 = s3. This condition does not make the deter-

minant of the matrix U equal to 0. Therefore, the sub–model {φ(·), p(t+hC)}

in terms of s(θ) is also full rank using Theorem 4.4.2. It follows that s(θ) is a
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simpler exhaustive summary for the model {φ(·), p(t+ hC)} for K = 4, C = 2

using Theorem 4.4.4.

We check all the sub–models using the following conditions:

• {φ(·), p(·)} : s1 = s2 = s3, s4 = s5 = 0, s6 = s7 = s8

• {φ(·), p(t)} : s1 = s2 = s3, s6 = s7 = s8

• {φ(·), p(hC)} : s1 = s2 = s3, s4 = s5 = 0

• {φ(·), p(t+ hC)} : s1 = s2 = s3

• {φ(t), p(·)} : s4 = s5 = 0, s4 = s5 = 0, s6 = s7 = s8

• {φ(t), p(t)} : s6 = s7 = s8

• {φ(t), p(hC)} : s4 = s5 = 0

None of the conditions makes the determinant of U equal to 0. Therefore, all

sub–models of the model {φ(t), p(t + hC)} in terms of the reparameterisation

s(θ) in Equation (5.15) is full rank. It follows that s(θ) in Equation (5.15) is

an exhaustive summary for K = 4, C = 2 for all sub–models of {φ(t), p(t+hC)}

using Theorem 4.4.4.

We now extend the model to C = 3, keeping K = 4. The reparameterisa-
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tion is

s(θ) =



s1

s2

s3

s4

s5

s6

s7

s8



=



φ1

φ2

φ3

τp3

τp4

w1µp + w2(µp + ηp2) + (1− w1 − w2)(µp + ηp3)

w1µ
2
p + w2(µp + ηp2)

2 + (1− w1 − w2)(µp + ηp3)
2

w1µ
3
p + w2(µp + ηp2)

3 + (1− w1 − w2)(µp + ηp3)
3



. (5.18)

We note that κ(s) is identical to the one in Equation (5.16). This is due to the

fact that the new parameters {w2, ηp3} are absorbed in the {s6, s7, s8} by the

construction of the reparameterisation. It follows that the derivative matrix

D(s) is also of rank rs = 8. Therefore s(θ) in Equation (5.18) is an exhaustive

summary for K = 4, C = 3 for the model {φ(t), p(t+hC)} using Theorem 4.4.4.

To check its sub–models, we need the PLUR decomposition of D(s). Since

κ(s) is identical to the one in Equation (5.16), it follows that D(s) is also

identical to the derivative matrix we obtained from K = 4, C = 2. Hence,

we can conclude that s(θ) in Equation (5.18) is an exhaustive summary for

K = 4, C = 3 for all sub–models of {φ(t), p(t+ hC)} using Theorem 4.4.2.

We also extend the model to K = 5, keeping C = 2. The reparameterisa-
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tion is given by

s(θ) =



s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11



=



φ1

φ2

φ3

φ4

τp3

τp4

τp5

w1µp + (1− w1)(µp + ηp2)

w1µ
2
p + (1− w1)(µp + ηp2)

2

w1µ
3
p + (1− w1)(µp + ηp2)

3

w1µ
4
p + (1− w1)(µp + ηp2)

4



. (5.19)

The new exhaustive summary κ(s) is given by

1

−s4s7 − s4s8 + 1

s4s7 + s4s8

s3s4s6s7 + s3s4s6s8 + s3s4s7s8 − s3s4s7 − s3s4s8 + s3s4s9 − s3s6 − s3s8 + 1

−s3s4s6s7 − s3s4s6s8 − s3s4s7s8 + s3s4s7 + s3s4s8 − s3s4s9
−s3s4s6s7 − s3s4s6s8 − s3s4s7s8 − s3s4s9 + s3s6 + s3s8

s3s4s6s7 + s3s4s6s8 + s3s4s7s8 + s3s4s9
...

...



. (5.20)

We observe that the first seven terms are of similar structure as κ(s) in
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Equation (5.16), subject to relabelling. We therefore relabel as

s(θ) =



s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11



=



φ2

φ3

φ4

τp4

τp5

w1µp + (1− w1)(µp + ηp2)

w1µ
2
p + (1− w1)(µp + ηp2)

2

w1µ
3
p + (1− w1)(µp + ηp2)

3

φ1

τp3

w1µ
4
p + (1− w1)(µp + ηp2)

4



. (5.21)

We obtain the updated κ(s) as

1

−s3s5 − s3s6 + 1

s3s5 + s3s6

s2s3s4s5 + s2s3s4s6 + s2s3s5s6 − s2s3s5 − s2s3s6 + s2s3s7 − s2s4 − s2s6 + 1

−s2s3s4s5 − s2s3s4s6 − s2s3s5s6 + s2s3s5 + s2s3s6 − s2s3s7
−s2s3s4s5 − s2s3s4s6 − s2s3s5s6 − s2s3s7 + s2s4 + s2s6

s2s3s4s5 + s2s3s4s6 + s2s3s5s6 + s2s3s7
...

...



. (5.22)

We observe that now we can partition κ(s) into κ1(θ1) = κ(s)j, j =

1, . . . , 7 and κ2(θ1,θ2) = κ(s)j, j = 8, . . . , 31, where

θ1 = [s1, s2, s4, s6, s7, s8, s9, s10]
T

and

θ2 = [s3, s5, s11]
T .
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As we have seen before that the derivative matrix D1 is full rank, we check

D2 and find that D2 is full rank with rank 3. Therefore D(s) is full rank

by Theorem 4.4.1. We conclude that the reparameterisation s(θ) in Equa-

tion (5.21) is a simpler exhaustive summary for the model {φ(t), p(t+hC)} for

K = 5, C = 2 using Theorem 4.4.4.

For all its sub–models, we consider the determinant of the matrix U from

the PLUR decomposition of the derivative matrix D2, which is given by

s31s
3
2s

2
3s9(s

2
6s

2
10−2s26s10+s6s7s10−s7s210+s26−s6s7−s6s8+s27+2s7s10−s8s10−s7+s8).

We check all the sub–models using the following conditions (using the repa-

rameterisation s(θ) in Equation (5.21) ):

• {φ(·), p(·)} : s9 = s1 = s2 = s3, s10 = s4 = s5 = 0, s11 = s6 = s7 = s8

• {φ(·), p(t)} : s9 = s1 = s2 = s3, s11 = s6 = s7 = s8

• {φ(·), p(hC)} : s9 = s1 = s2 = s3, s10 = s4 = s5 = 0

• {φ(·), p(t+ hC)} : s9 = s1 = s2 = s3

• {φ(t), p(·)} : s10 = s4 = s5 = 0, s11 = s6 = s7 = s8

• {φ(t), p(t)} : s11 = s6 = s7 = s8

• {φ(t), p(hC)} : s10 = s4 = s5 = 0

None of the conditions makes the determinant of U equal to 0. Therefore, all

sub–models of the model {φ(t), p(t + hC)} in terms of the reparameterisation

s(θ) in Equation (5.21) are full rank. It follows that s(θ) in Equation (5.21) is

an exhaustive summary for K = 5, C = 2 for all sub–models of {φ(·), p(t+hC)}

using Theorem 4.4.4.
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Therefore we conclude that s(θ) in Equation (5.14) is a simpler exhaustive

summary for model {φ(t), p(t + hC)} for K ≥ 4, C ≥ 2 using the extension

theorem, Theorem 4.4.1 and the same is true of all of its sub–models for

K ≥ 4, C ≥ 2 using the Theorem 4.4.2.

5.1.3 Sub–Models of the model {φ(t), p(t+ hC)}

Example 5.1.2. We can now use s(θ) in Equation (5.14) as an exhaustive

summary for the model {φ(t), p(t + hC)} and all of its sub–models for K ≥

4, C ≥ 2. This is simpler in both structure and length than the original

exhaustive summary. We start with K = 4, C = 2. The new exhaustive

summary is given by

κ(θ) =



φ1

φ2

φ3

τp3

τp4

w1µp + (1− w1)(µp + ηp2)

w1µ
2
p + (1− w1)(µp + ηp2)

2

w1µ
3
p + (1− w1)(µp + ηp2)

3



. (5.23)

The derivative matrix D(θ) has rank rθ = 8. Since rθ = nθ = 8, the model is

full rank. To check for its sub–models, we do a PLUR decomposition of D(θ)
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using Maple R© , and obtain a permutation matrix

P =



0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1



, (5.24)

a lower triangular matrix

L =



1 0 0 0 0 0 0 0

2µp + 2ηp2 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

3(µp + ηp2)
2 3

2
ηp2 + 3µp 0 0 0 0 0 1



, (5.25)
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a square upper triangular matrix

U =



1− w1 1 0 0 0 0 0 −ηp2
0 −2w1ηp2 0 0 0 0 0 ηp2

2

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1
2
ηp2

3



, (5.26)

and a reduced row–echelon form matrix

R =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1



. (5.27)

We observe that R is an identity matrix, and hence is always defined and

the determinant of U is

det(U) = −(1− w1)w1η
4
p2. (5.28)

Recall that ηp2 is the heterogeneous component of the recapture probability

p of group 2. So the solutions that make det(U)=0 are w1 = 0, w1 = 1 or

ηp2 = 0. These are only valid when there is only a single group, viz C = 1.

This is when we have the sub–model {φ(t), p(t)} (the CJS model).
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Hence, we conclude that the model {φ(t), p(t + hC)} and all of its sub–

models except the model {φ(t), p(t)} are full rank when K = 4, C = 2 using

Theorem 4.4.2. This is expected as we know that for the model {φ(t), p(t)}

(CJS), we cannot estimate the parameters φK−1 and pK separately, but only

as a product.

Remark 5.1.1. We can apply the same algebra to derive a simpler exhaustive

summary for the model {φ(t + hC), p(t)} for K ≥ 4, C ≥ 2 and for all of its

sub–models.

Further, we note that the simpler exhaustive summaries for JS mixture

models have the same structure as the CJS mixture models, with extra terms

of {βj, j = 0, . . . , K − 1} in the simpler exhaustive summaries.

We give examples for the models {φ(t+hC), p(t)} and {β(t), φ(t+hC), p(t)}

in the relevant Maple R© worksheet.

5.1.4 Model: {[φ(h), p(h)]C}

We now consider the case that both the capture probabilities and the survival

probabilities are heterogeneous with C groups. Using the linear link, for group

c at time j, we have φjc = µφ + τφj + ηφc and pjc = µp + τpj + ηpc, where µ

describes the baseline from group 1, τ describes the time effect and η describes

the heterogeneity effect.
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Example 5.1.3. A possible reparameterisation for this model is given by

s(θ) =



∑C
c=1wc(µφ + ηφc)(µp + ηpc)∑C
c=1wc(µφ + ηφc)

2(µp + ηpc)∑C
c=1wc(µφ + ηφc)

2(µp + ηpc)
2

...

...∑C
c=1wc(µφ + ηφc)

K−1(µp + ηpc)
K−1


. (5.29)

Consider K = 3, C = 1, the original exhaustive summary is given by

κ(θ) =



1

1− µφ + µφ (1− µp)

µφµp

1− µφ + µφ (1− µp) (1− µφ) + µφ
2 (1− µp)2

µφ
2 (1− µp)µp

µφµp (1− µφ) + µφ
2 (1− µp)µp

µφ
2µp

2



. (5.30)

The reparameterisation is

s(θ) =


s1

s2

s3

 =


µφµp

µ2
φµp

µ2
φµ

2
p

 . (5.31)

The reparameterisation is more complicated than it needs to be by construction

in this simple case. However, this is only used as an illustration and we will

extend the model to more complicated cases, for example C = 2.
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Rewriting κ(θ) using s(θ), we obtain

κ(s) =



1

1− s1
s1

−s2 + s3 + 1− s1
−s3 + s2

−s3 + s1

s3



. (5.32)

We find D(s) and its rank rs = 3. Since we have ns = rs, we conclude that

s(θ) in Equation (5.31) is a simpler exhaustive summary using Theorem 4.4.4.

Extending to C = 2 and keeping K = 3, the reparameterisation is

s(θ) =


w1µφµp + (1− w1)(µφ + ηφ2)(µp + ηp2)

w1µ
2
φµp + (1− w1)(µφ + ηφ2)

2(µp + ηp2)

w1µ
2
φµ

2
p + (1− w1)(µφ + ηφ2)

2(µp + ηp2)
2

 . (5.33)

Rewriting κ(θ) using s(θ), we note that κ(s) is identical to the one in

Equation (5.32). It follows that s(θ) in Equation (5.33) is a simpler exhaus-

tive summary using Theorem 4.4.4.

Extending to K = 4 and keeping C = 1, the reparameterisation is

s(θ) =



s1

s2

s3

s4

s5

s6


=



µφµp

µ2
φµp

µ2
φµ

2
p

µ3
φµp

µ3
φµ

2
p

µ3
φµ

3
p


. (5.34)
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We obtain κ(s) = [κ1(s1),κ2(s2)]
T , where

κ1(s1) =



1

1− s1
s1

−s2 + s3 + 1− s1
−s3 + s2

−s3 + s1

s3



, (5.35)

with s1 = [s1, s2, s3]
T and

κ2(s2) =



−s2 + s3 − s4 + 2s5 − s6 + 1− s1
−2s5 + s6 + s4

−s3 − s5 + s6 + s2

−s6 + s5

−s3 − s5 + s6 + s1

−s6 + s5

−s6 + s3

s6



, (5.36)

with s2 = [s1, s2, s3, s4, s5, s6]
T .

As we have seen before that D1 is full rank, we find the derivative matrix

D2 has full rank 6. It follows that the model is full rank using Theorem 4.4.1.

We therefore conclude that s(θ) in Equation (5.34) is a simpler exhaustive

summary using Theorem 4.4.4. Also we conclude that s(θ) in Equation (5.29)

is a simpler exhaustive summary for the model {[φ(h), p(h)]C} for K ≥ 3 and

C ≥ 1 using Theorem 4.4.1.
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5.1.5 Model: {[φ(h), p(t+ h)]C}

We now consider the model {[φ(h), p(t + h)]C}. This is the previous model

with a time varying component on the capture probabilities described by τpj.

Example 5.1.4. A possible reparameterisation is given by

s(θ) =



τp3
...

τpK∑C
c=1wc(µφ + ηφc)∑C

c=1wc(µφ + ηφc)(µp + ηpc)∑C
c=1wc(µφ + ηφc)

2∑C
c=1wc(µφ + ηφc)

2(µp + ηpc)∑C
c=1wc(µφ + ηφc)

2(µp + ηpc)
2

...

...∑C
c=1wc(µφ + ηφc)

K−1

...∑C
c=1wc(µφ + ηφc)

K−1(µp + ηpc)
K−1



. (5.37)

Table 5.2 summarises the estimable parameter combinations for K = 3 to

K = 6 for any C ≥ 1. We again note that κ(s) does not change with C as the

reparameterisation s(θ) absorbs the heterogeneous parameters. Therefore, for

any C ≥ 1, we have the same derivative matrix D(s) and hence the same rank

rs. We note that for K ≥ 4, there is a pattern.

By matching the {si}s with each of their definitions at different values of

K and C, we try the new reparameterisation s(θ) given by (5.38).
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ns rs Estimable parameters

K = 3 6 4 s3

s1s2
s1s4 + s5
s1s5 + s6

K = 4 11 10 s1, . . . , s7

s2s8 + s9
−s22s8 + s10
s32s8 + s11

K = 5 17 16 s1, . . . , s12

s3s13 + s14
−s23s13 + s15
s33s13 + s16
−s43s13 + s17

K = 6 24 23 s1, . . . , s18

s4s19 + s20
−s24s19 + s21
s34s19 + s22
−s44s19 + s23
s54s19 + s24

Table 5.2: Summary of estimable parameters in terms of s(θ) for K = 3, 4, 5, 6
for the model {[φ(h), p(t+ h)]C} for any C ≥ 1.



τp3
...

τpK∑C
c=1wc(µφ + ηφc)∑C

c=1wc(µφ + ηφc)(µp + ηpc)∑C
c=1wc(µφ + ηφc)

2∑C
c=1wc(µφ + ηφc)

2(µp + ηpc)∑C
c=1wc(µφ + ηφc)

2(µp + ηpc)
2

...

...∑C
c=1wc(µφ + ηφc)

K−2(µp + ηpc)
K−2

τpK
∑C

c=1wc(µφ + ηφc)
K−1 +

∑C
c=1wc(µφ + ηφc)

K−1(µp + ηpc)

...

(−1)KτK−1pK

∑C
c=1wc(µφ + ηφc)

K−1 +
∑C

c=1wc(µφ + ηφc)
K−1(µp + ηpc)

K−1



.

(5.38)
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We further prove that this is a simpler exhaustive summary for the model

{[φ(h), p(t + h)]C} for K ≥ 4 and C ≥ 1. For full details, see the relevant

Maple R© supplementary materials.

5.1.6 Model: {φ(hC), λ(t)}

We now consider a capture–recovery model {φ(hC), λ(t)}. The survival prob-

abilities are heterogeneous and modelled using the linear link function with

φjc = µφ + ηφc, where µφ is the baseline from group 1 and ηφc is the hetero-

geneous component. The recovery probabilities are time varying, denoted by

λ(t).

Example 5.1.5. A possible reparameterisation is given by

s(θ) =



λ1
...

λK−1∑C
c=1wc(µφ + ηφc)

...∑C
c=1wc(µφ + ηφc)

K−1


. (5.39)

Table 5.3 shows the capture histories, the probabilities of each history and

the estimable parameter combinations for each K = 2, . . . , 5.
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K = 2 K = 3 K = 4 K = 5

Histories

12 012 0012 00012
102 0102 00102
120 0120 00120

1002 01002
1200 01020

01200
10002
10020
10200
12000

Probabilities

s1 − s1s2 s2 − s2s3 s3 − s3s4 s4 − s4s5
s2s3 − s2s4 s3s4 − s3s5 s4s5 − s4s6
s1 − s1s3 s2 − s2s4 s3 − s3s5

s3s5 − s3s6 s4s6 − s4s7
s2s4 − s2s5 s3s5 − s3s6
s1 − s1s4 s2 − s2s5

s4s7 − s4s8
s3s6 − s3s7
s2s5 − s2s6
s1 − s1s5

Estimable parameter combinations

s2/s1 s2/s1 s2/s1
s3/s1 s3/s4

s4/s1
(s2 − 1)s1 (s4 − 1)s1 (s6 − 1)s1 (s8 − 1)s1

(s3 − 1)s1 (s5 − 1)s1 (s7 − 1)s1
(s4 − 1)s1 (s6 − 1)s1

(s5 − 1)s1

Table 5.3: Summary for K = 2, . . . , 5 for model {φ(hC), λ(t)} for any C ≥ 1.
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It is sensible to try a new reparameterisation given by

s(θ) =



λ2/λ1
...

λK−1/λ1

λ1

(
−1 +

∑C
c=1wc(µφ + ηφc)

)
...

λ1

(
−1 +

∑C
c=1wc(µφ + ηφc)

K−1
)


. (5.40)

Further we can prove that reparameterisation in Equation (5.40) is a sim-

pler exhaustive summary for the model {φ(hC), λ(t)} for K ≥ 2 and C ≥ 1,

see Maple R© worksheet.

5.1.7 Model: {φ(hC + a), λ(t)} (with covariates)

As discussed in Pledger and Schwarz (2002), we can introduce a covariate into

the survival probabilities via the linear link function φjc = µφ + αa + ηφc.

We allow a potentially lower survival probability in the first year after initial

capture, by setting a = 1 for the first year, a = 2 for the following years and

a constraint α1 = 0.

This model might be appropriate for when animals are marked shortly after

birth and there is higher mortality in the first year of life, compared with later

years.
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Example 5.1.6. A possible reparameterisation is given by

s(θ) =



α2

λ1
...

λK−1∑C
c=1wc(µφ + ηφc)

...∑C
c=1wc(µφ + ηφc)

K−1



. (5.41)

Note that there is only one extra term α2 by itself, compared to the repa-

rameterisation in Equation (5.39) when there is no covariate considered in the

model.

Table 5.4 shows the κ(s) for each K = 2, . . . , 5. For each of these κ(s),

we can determine the estimable parameter combinations by solving systems

of partial differential equations. By considering the estimable parameter com-

binations in terms of s(θ), we can derive a new reparameterisation as given

below

u(θ) =



λ2/λ1
...

λK−1/λ1

λ1

[
−1 +

∑1
j=1

(
1
j−1

)
α1−j
2

{∑C
c=1wc(µφ + ηφc)

j
}]

...

λ1

[
−1 +

∑K−1
j=1

(
K−1
j−1

)
αK−1−j2

{∑C
c=1wc(µφ + ηφc)

j
}]


. (5.42)

Table 5.5 shows the estimable parameter combinations (left column) and

the new exhaustive summary (right column) in terms of the new reparameteri-

sation given in Equation (5.42). We can further show that the reparameterisa-
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K = 2

s2 − s2s3
K = 3

s3 − s3s4
s3s4 − s1s3s4 − s3s5

s2 − s2s4
K = 4

s4 − s4s5
s4s5 − s1s4s5 − s4s6

s3 − s3s5
s1s4s5 − s21s4s5 + s4s6 − 2s1s4s6 − s4s7

s3s5 − s1s3s5 − s3s6
s2 − s2s5
K = 5

s5 − s5s6
s5s6 − s1s5s6 − s5s7

s4 − s4s6
s1s5s6 − s21s5s6 + s5s7 − 2s1s5s7 − s5s8

s4s6 − s1s4s6 − s4s7
s3 − s3s6

s21s5s6 − s31s5s6 + 2s1s5s7 − 3s21s5s7 + s5s8 − 3s1s5s8 − s5s9
s1s4s6 − s21s4s6 + s4s7 − 2s1s4s7 − s4s8

s3s6 − s1s3s6 − s3s7
s2 − s2s6

Table 5.4: The elements of κ(s) for K = 2, . . . , 5, for model {φ(hC + a), λ(t)}
for any C ≥ 1.
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tion in (5.42) is a simpler exhaustive summary for this model {φ(hC +a), λ(t)}

for K ≥ 2, C ≥ 2; see the Maple R© worksheet.

Estimable parameter combinations κ(u)

K = 2

s2(s3 − 1) −u1
K = 3

s3/s2 −u1u2
s2(s4 − 1) u1u2 − u1u3

s2(s4s1 + s5 − 1) −u2
K = 4

s3/s2, s4/s2 −u2u3
s2(s5 − 1) u2u3 − u2u4

s2(s5s1 + s6 − 1) −u1u3
s2(s5s

2
1 + 2s1s6 + s7 − 1) u2u4 − u2u5

u1u3 − u1u4
−u3

K = 5

s3/s2, s4/s2, s5/s2 −u3u4
s2(s6 − 1) u3u4 − u3u5

s2(s6s1 + s7 − 1) −u2u4
s2(s6s

2
1 + 2s1s7 + s8 − 1) u3u5 − u3u6

s2(s6s
3
1 + 3s1s7 + 3s1s8 + s9 − 1) u2u4 − u2u5

−u1u4
u3u6 − u3u7
u2u5 − u2u6
u1u4 − u1u5
−u4

Table 5.5: Estimable parameter combinations and simpler exhaustive sum-
maries for K = 2, . . . , 5 for model {φ(hC + a), λ(t)} for any C ≥ 1.

5.1.8 Introducing the H(x, y, z) function

As models get more complicated, we define

H(x, y, z) =
C∑
c=1

wc(µφ + ηφc)
x(µp + ηpc)

y(µλ + ηλc)
z, (5.43)
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as a convenient shorthand. Recall that for a heterogeneous parameter δ, µδ

describes the baseline from group 1 and ηδ describes the heterogeneous effect.

Constraints are ηφ1 = ηp2 = ηλ1 = 0 and wC = 1 −∑C−1
c=1 wc. We will see the

use of this shorthand in later sections.

5.1.9 Model: {φ(hC), p(hC), λ(hC)}

In this section, we consider an example from capture–recapture and recovery.

The model is constant in time and heterogeneous in all parameters.

Example 5.1.7. By trial and error, and rearranging algebraic expressions,

detailed study showed that a possible reparameterisation is given by

H(x, y, z), for y = (1− z), . . . , x, x = (1− z), . . . , (K − 1), z = 0, 1,

excluding the last term H(K − 1, K − 1, 1).

For each K, we have K(K − 1)/2 estimable {si}s, K − 1 terms of the form

X − s1 and (K − 1)(K − 2)/2 terms of the form sm − sn. Table 5.6 shows

the terms which cannot be estimated separately, with Table 5.7 showing the

same summary in terms of H(x, y, z). From this table, we can derive a simpler

exhaustive summary given by


H(x, y, 0) y = 1, . . . , x, x = 1, . . . , K − 1

H(x, 0, 1)−H(0, 0, 1) x = 1, . . . , K − 1

H(x, y, 1)−H(y, y, 1) y = 1, . . . , x− 1, x = 2, . . . , K − 1.

For detailed algebraic calculations, see the Maple R© worksheet.
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K = 2 K = 3 K = 4 K = 5 K = 6

s2 − s1 s2 − s1 s2 − s1 s2 − s1 s2 − s1
s4 − s1 s4 − s1 s4 − s1 s4 − s1

s7 − s1 s7 − s1 s7 − s1
s11 − s1 s11 − s1

s16 − s1
s8 − s7 s15 − s13 s24 − s21 s35 − s31

s12 − s11 s20 − s18 s30 − s27
s14 − s11 s23 − s18 s34 − s27

s17 − s16 s26 − s24
s19 − s16 s29 − s24
s22 − s16 s33 − s24

s23 − s22
s25 − s22
s28 − s22
s32 − s22

Table 5.6: Terms that cannot be estimated separately from the model
{φ(hC), p(hC), λ(hC)} for K = 2, . . . , 6
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K
=

2
K

=
3

K
=

4
K

=
5

K
=

6

H
(1
,0
,1

)
−
H

(0
,0
,1

)
H

(1
,0
,1

)
−
H

(0
,0
,1

)
H

(1
,0
,1

)
−
H

(0
,0
,1

)
H

(1
,0
,1

)
−
H

(0
,0
,1

)
H

(1
,0
,1

)
−
H

(0
,0
,1

)
H

(2
,0
,1

)
−
H

(0
,0
,1

)
H

(2
,0
,1

)
−
H

(0
,0
,1

)
H

(2
,0
,1

)
−
H

(0
,0
,1

)
H

(2
,0
,1

)
−
H

(0
,0
,1

)
H

(3
,0
,1

)
−
H

(0
,0
,1

)
H

(3
,0
,1

)
−
H

(0
,0
,1

)
H
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5.2 Logistic Link

5.2.1 One–to–one transformations between the linear

link function and the logistic link function

If there is a one–to–one transformation between the linear link function and

the logistic link function, it follows from Theorem 4.4.4 (the reparameterisa-

tion theorem) that they have the same model rank, and therefore the same

parameter redundancy result. We find that if only one of the parameters in

the model is either heterogeneous or time–varying, then there exists a one–

to–one transformation between the two link functions. We will illustrate this

through Example 5.2.1.

Example 5.2.1 (One–to–one transformation). Consider a model parameter

Z that is only time varying. Using the linear link function, we have

Zj = µ+ τj,

with appropriate constraints such as µ = 0 or τ1 = 0. For convenience, we set

µ = 0. Using the logistic function, we have

log

(
Zj

1− Zj

)
= µ′ + τ ′j =⇒ Zj =

1

1 + exp(−µ′ − τ ′j)
,

with appropriate constraints such as µ′ = 0 or τ ′1 = 0. For convenience, we set

µ′ = 0.

If there is a one–to–one relationship between the two link functions, we

require that

1

1 + exp(−τ ′j)
= τj,

for all j. The system always has a unique solution. It follows that this is a

one–to–one transformation between τj and τ ′j.
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We now consider a model parameter Z that is only heterogeneous. Using

the linear link function, we have

Zc = µ+ ηc,

with appropriate constraints such as µ = 0 or η1 = 0. For convenience, we set

µ = 0. Using the logistic link function, we have

log

(
Zc

1− Zc

)
= µ′ + η′c =⇒ Zc =

1

1 + exp(−µ′ − η′c)
,

with appropriate constraints such as µ′ = 0 or η′1 = 0. For convenience, we

set µ′ = 0. For there to be a one–to–one relationship between the two link

functions, we require that

1

1 + exp(−η′c)
= ηc,

for all c. The system always has a unique solution. It follows that this is a

one–to–one transformation between ηc and η′c.

The terms in the reparameterisation and the simpler exhaustive summaries

for the models using the logistic link are more complex than those using the lin-

ear link function. We will start by showing an example of a reparameterisation

for a model which uses the logistic link function below.

Example 5.2.2 (Reparameterisation using the logistic link function). We

start by considering a reparameterisation for the model {φ(·), p(t+ hC)}. The

capture probability φ is constant and the survival probabilities {pjc} are time

varying and heterogeneous. Using the logistic link function, the {pjc} are given

by

log

(
pjc

1− pjc

)
= µp + τpj + ηpc, (5.44)
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where µp is the baseline from group 1, {τpj} are the time components and {ηpc}

are the heterogeneous components.

By trial and error, we find a possible reparameterisation is given by carrying

out the following steps:

Step 1 Define a set Sp = {pjc, j = 2, . . . , K}.

Step 2 We find the set S∗p = 2Sp \ ∅, where 2Sp is the power set of Sp and

∅ is the empty set. The number of elements in the set S∗p is given by∣∣S∗p∣∣ = 2|Sp| − 1 = 2K−1 − 1.

Step 3 Now we define the set

S∗∗p =

{
x

∣∣∣∣∣x = wc
∏
y∈z

y,∀z ∈ S∗p

}
.

The set is formed by taking the products of each of the elements in the

set S∗p , and multiplying the products by wc.

Step 4 The reparameterisation is given by terms in the set S, where

S = {φ} ∪
{
x

∣∣∣∣∣x =
C∑
c=1

y, y ∈ S∗∗p

}
.

Note that Sp, S
∗
p , S

∗∗
p all depends on c for c = 1, . . . , C.

For K = 3, C = 2 for an example:

Sp = {p2c, p3c}

S∗p = {{p2c}, {p3c}, {p2c, p3c}}

S∗∗p = {wcp2c, wcp3c, wcp2cp3c}

S =

{
φ,

2∑
c=1

wcp2c,

2∑
c=1

wcp3c,

2∑
c=1

wcp2cp3c

}
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The final reparameterisation is given by

{
φ,

2∑
c=1

wc
1 + exp {−(µp + τp2 + ηpc)}

,

2∑
c=1

wc
1 + exp {−(µp + τp3 + ηpc)}

,

2∑
c=1

wc
[1 + exp {−(µp + τp2 + ηpc)}] [1 + exp {−(µp + τp3 + ηpc)}]

}
.

Note that we have constraints τp2 = 0, ηp1 = 0 and wC = 1 − ∑C−1
c=1 wc.

Therefore we can rewrite the reparameterisation in a more conventional form

as a vector

s(θ) =



φ

w1

1+e−µp
+ 1−w1

1+e−(µp+ηp2)

w1

1+e−(µp+τp3)
+ 1−w1

1+e−(µp+τp3+ηp2)

w1

(1+e−µp )(1+e−(µp+τp3))
+ 1−w1

{1+e−(µp+ηp2)}{1+e−(µp+τp3+ηp2)}


.

Recall that for the capture probabilities, µp describes the baseline from group

1, τpj describes the time effect and ηpc describes the heterogeneous effect.

5.2.2 Model: {φ(·), p(t+ hC)}

Example 5.2.3. We now consider finding a simpler exhaustive summary for

the model {φ(·), p(t + hC)}. The survival probabilities are constant and the

recapture probabilities are time varying and heterogeneous. We start with

K = 3, C = 2, the original exhaustive summary is given by
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κ(θ) =



1
2∑
c=1

wc

{
1− φ+ φ

(
1− 1

1+e−(µp+τp3+ηpc)

)}
2∑
c=1

wc
φ

1+e−(µp+τp3+ηpc)

...
2∑
c=1

wc

[
φ(1−φ)

1+e−(µp+ηpc)
+ φ2

1+e−(µp+ηpc)

{
1− 1

1+e−(µp+τp3+ηpc)

}]
2∑
c=1

wc
φ2

{1+e−(µp+ηpc)}{1+e−(µp+τp3+ηpc)}



. (5.45)

Recall that for the recapture probabilities, µp is the baseline from group 1,

τpj are the time components and ηpc are the heterogeneous components. We

reparameterise using

s(θ) =



φ

w1

1+e−µp
+ 1−w1

1+e−(µp+ηp2)

w1

1+e−(µp+τp3)
+ 1−w1

1+e−(µp+τp3+ηp2)

w1

(1+e−µp )(1+e−(µp+τp3))
+ 1−w1

{1+e−(µp+ηp2)}{1+e−(µp+τp3+ηp2)}


, (5.46)

to obtain the new exhaustive summary

κ(s) =



1

−s1s3 + 1

s1s3

1 + (s4 − s3)s21 − s2s1
−(s4 − s3)s21
−s21s4 + s1s2

s4s
2
1



. (5.47)

We find that D(s) is full rank with rs = 4. We note that the dimension
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of s(θ) is ns = 4. It follows that s(θ) is a simpler exhaustive summary using

Theorem 4.4.4.

For K = 3 and any C ≥ 2, we have the same κ(s). Therefore the derivative

matrix D(s) is always full rank. We now consider K = 4, C = 2. The new

reparameterisation is s(θ) is given by



φ

w1

1+e−µp
+ 1−w1

1+e−(µp+ηp2)

w1

1+e−(µp+τp3)
+ 1−w1

1+e−(µp+τp3+ηp2)

w1

1+e−(µp+τp4)
+ 1−w1

1+e−(µp+τp4+ηp2)

w1

(1+e−µp )(1+e−(µp+τp3))
+ 1−w1

{1+e−(µp+ηp2)}{1+e−(µp+τp3+ηp2)}
w1

(1+e−µp )(1+e−(µp+τp4))
+ 1−w1

{1+e−(µp+ηp2)}{1+e−(µp+τp4+ηp2)}
w1

(1+e−(µp+τp3))(1+e−(µp+τp4))
+ 1−w1

{1+e−(µp+τp3+ηp2)}{1+e−(µp+τp4+ηp2)}
w1

(1+e−µp )(1+e−(µp+τp3))(1+e−(µp+τp4))
+ 1−w1

{1+e−µp}{1+e−(µp+τp3+ηp2)}{1+e−(µp+τp4+ηp2)}



.

(5.48)

By rewriting κ(θ) using s(θ), we obtain
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κ(s) =



1

−s1s4 + 1

s1s4

1 + (s7 − s4)s21 − s3s1
−(s7 − s4)s21
−s21s7 + s1s3

s7s
2
1

1 + (−s4 + s6 + s7 − s8)s31 + (s5 − s3)s21 − s2s1
(s4 + s8 − s6 − s7)s31

(s8 − s7)s31 + (s3 − s5)s21
(s7 − s8)s31

(s8 − s6)s31 − s5s21 + s2s1

(s6 − s8)s31
−s31s8 + s21s5

s8s
3
1



. (5.49)

We find that the derivative matrix D(s) is full rank with rs = 8. We

note that the dimension of s(θ) is nbs = 8. It follows that s(θ) is a simpler

exhaustive summary using Theorem 4.4.4.

Hence by the extension Theorem 4.4.1, the reparameterisation in Exam-

ple 5.2.2 is a simpler exhaustive summary for the model {φ(·), p(t + hC)} for

K ≥ 3, C ≥ 2.

5.2.3 Model: {φ(t), p(t+ hC)}

We now consider a model where both the capture probabilities and the sur-

vival probabilities are time varying with the survival probabilities also being

heterogeneous.
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Reparameterisation

The reparameterisation s(θ) is given by the set S, where

Sp = {pjc, j = 2, . . . , K},

S∗p = 2Sp \∅,

S∗∗p =
{
x
∣∣∣x = wc

∏
y∈z y,∀z ∈ S∗p

}
,

S = {φj, j = 1, . . . , K − 1} ∪
{
x
∣∣∣x =

∑C
c=1 y, y ∈ S∗∗p

}
.

(5.50)

Note that if we have constant capture probability φ, this is then identical to

the reparameterisation for the model {φ(·), p(t+hC)} as given in the previous

section. As before, Sp, S
∗
p , S

∗∗
p all depends on c for c = 1, . . . , C.

Simpler exhaustive summary

For K = 3, C = 2, the reparameterisation is

s(θ) =



φ1

φ2

w1

1+e−µp
+ 1−w1

1+e−(µp+ηp2)

w1

1+e−(µp+τp3)
+ 1−w1

1+e−(µp+τp3+ηp2)

w1

(1+e−µp )(1+e−(µp+τp3))
+ 1−w1

{1+e−(µp+ηp2)}{1+e−(µp+τp3+ηp2)}


.

We obtain

κ(s) =



1

−s2s4 + 1

s2s4

1− s3s1 + (s5 − s4)s2s1
−(s5 − s4)s2s1
−s1s2s5 + s1s3

s1s2s5



.



5.2. LOGISTIC LINK 129

We find the derivative matrix is not full rank with rs = 4. The estimable

parameter combinations are

{s1, s3, s2s4, s2s5} .

We note that this is the case for any C ≥ 2 given K = 3. We now consider

K = 4, C = 2. The reparameterisation s(θ) is given by



φ1

φ2

φ3

w1

1+e−µp
+ 1−w1

1+e−(µp+ηp2)

w1

1+e−(µp+τp3)
+ 1−w1

1+e−(µp+τp3+ηp2)

w1

1+e−(µp+τp4)
+ 1−w1

1+e−(µp+τp4+ηp2)

w1

(1+e−µp )(1+e−(µp+τp3))
+ 1−w1

{1+e−(µp+ηp2)}{1+e−(µp+τp3+ηp2)}
w1

(1+e−µp )(1+e−(µp+τp4))
+ 1−w1

{1+e−(µp+ηp2)}{1+e−(µp+τp4+ηp2)}
w1

(1+e−(µp+τp3))(1+e−(µp+τp4))
+ 1−w1

{1+e−(µp+τp3+ηp2)}{1+e−(µp+τp4+ηp2)}
w1

(1+e−µp )(1+e−(µp+τp3))(1+e−(µp+τp4))
+ 1−w1

{1+e−µp}{1+e−(µp+τp3+ηp2)}{1+e−(µp+τp4+ηp2)}



.
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We now obtain

κ(s) =



1

−s3s6 + 1

s3s6

1− s2s5 + (s9 − s6)s3s2
(s6 − s9)s3s2
−s2s3s9 + s2s5

s2s3s9

1− s4s1 + (−s6 + s8 + s9 − s10)s3s2s1 + (s7 − s5)s2s1
(s6 + s10 − s8 − s9)s3s2s1

(s10 − s9)s3s2s1 + (s5 − s7)s2s1
(s9 − s10)s3s2s1

s4s1 + (s10 − s8)s3s2s1 − s7s2s1
(s8 − s10)s3s2s1
−s1s2s3s10 + s1s2s7

s1s2s3s10



.

We find that the derivative matrix is not full rank with rs = 9. The estimable

parameter combinations are given as

{s1, s2, s4, s5, s7, s3s6, s3s8, s3s9, s3s10} .

We can further find that the derivative matrix for K = 5, C = 2 has rank 18

and the estimable parameter combinations are as given below,

{s1, s2, s3, s5, s6, s7, s9, s10, s12, s15, s4s8, s4s11, s4s13, s4s14, s4s16, s4s17, s4s18, s4s19} .
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5.3 Relationship to Parameter Redundancy

This section summarises all the simpler exhaustive summaries we have found

on both the linear link and the logistic link. We then discuss their relationship

to the results of parameter redundancy.

5.3.1 Tables of Simpler Exhaustive Summaries

We present the simpler exhaustive summaries based on models using the linear

link function in Table 5.8. Tabulated are eight Cormack–Jolly–Seber (CJS)

mixture models of which only one of the two sets of parameters are heteroge-

neous. The model is either heterogeneous in the survival probabilities φjc or

heterogeneous in the recapture probabilities pjc. The notation {g(j)}nm is used

to describe the set

{g(m), g(m+ 1), . . . , g(n)}

as a shorthand.

We observe that apart from the set of parameters that is heterogeneous, the

other set of non–heterogeneous parameters can be separated from the simpler

exhaustive summaries. It follows that the non–heterogeneous parameters can

always be estimated separately provided there is no missing data.

These simpler exhaustive summaries can be extended to the Jolly–Seber

(JS) mixture models. Since the parameters {βj} are not heterogeneous and

they appear in the model by multiplying identical terms from the CJS model,

{βj} can be factorised out.

For example, the simpler exhaustive summary for the CJS mixture model

{φ(·), p(hC)} is

φ,

{
C∑
c=1

wc(µp + ηpc)
j

}K−1

1

,
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for C ≥ 1, K ≥ 3. The simpler exhaustive summary for the corresponding JS

mixture model {β(t), φ(·), p(hC)} is given by

{βj}K−20 , φ,

{
C∑
c=1

wc(µp + ηpc)
j

}K−1

1

,

for C ≥ 1, K ≥ 3. In fact, we can show that for {β(t), φ(·), p(hC)}, the simpler

exhaustive summary is valid for C ≥ 1, K ≥ 2.

5.3.2 Tables of Parameter Redundancy Results

We will use an example to see how we can use simpler exhaustive summaries

to determine parameter redundancy.

Example 5.3.1. Recall the simpler exhaustive summary for the CJS mixture

model {φ(·), p(hC)} is

φ,

{
C∑
c=1

wc(µp + ηpc)
j

}K−1

1

.

The model is constant in the survival probability φ and heterogeneous in the

recapture probability pC with C mixtures. There is a single parameter φ for

survival, C parameters for recapture and C− 1 parameters for the weights wc.

There are 2C parameters in total. The simpler exhaustive summary has

length K. Since there are only K pieces of information from a K–year study

and we need to estimate 2C parameters, it follows that a necessary condition

for the model to be full rank is K ≥ 2C.

Example 5.3.2. Let us now consider another example. The JS mixture model

{β(t), φ(·), p(t + hC)} has 2K + 2C − 3 parameters. The simpler exhaustive

summary is given by

{βj}K−20 , φ, {τpj}K3 ,
{

C∑
c=1

wc(µp + ηpc)
j

}K−1

1

,
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which has 3K − 3 terms. As there are 3K − 3 equations (from the simpler

exhaustive summary) and 2K + 2C − 3 parameters, a necessary condition for

the model to be full rank is therefore 3K − 3 ≥ 2K + 2C − 3, or equivalently

K ≥ 2C.

Note. In fact, as long as heterogeneity only occur in one of the survival,

recapture, or recovery probabilities, we only have to consider the parameters

that are heterogeneous. For example, if a model is only heterogeneous in

the survival probabilities (such as models {φ(hC), p(·)}, {φ(hC), p(t)}, {φ(t +

hC), p(·)}, {φ(t+ hC), p(t)}, {φ(hC), p(·), λ(t)} ect.), the term of interest is

{
C∑
c=1

wc(µφ + ηφc)
j

}K−1

1

.

It has length K − 1 and 2C − 1 model parameters. That is, we have K − 1

equations with 2C − 1 unknowns. It follows that a necessary condition for

the system to be solvable is K − 1 ≥ 2C − 1, or equivalently K ≥ 2C. For

models that are only heterogeneous in the recapture probabilities, the same

result follows.

Table 5.9 and Table 5.10 show just this result. When K ≥ 2C, models are

full rank and are not parameter redundant. When K < 2C, models are not

full rank and are parameter redundant with deficiency 2C −K.

We note that when the models are parameter redundant, s(θ) are in

fact reduced–form exhaustive summaries. That is, when K ≥ 2C, we have

D(s) = ∂s(θ)/∂θ being full rank. It follows that s(θ) are estimable parame-

ters when the models are parameter redundant.

The simpler exhaustive summaries for the models when the logistic link

function is used are slightly more complicated than those models using the

linear link function. For example in Section 5.1.2 we have shown that for

the model {φ(·), p(t+ hC)}, when the linear link function is used, the simpler
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Table 5.9: Parameter redundancy results (CJS mixture models with linear link
function): heterogeneity exists only in φ or p
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Table 5.10: Parameter redundancy results (JS mixture models with linear link
function): heterogeneity exists only in φ or p



5.4. CONCLUSION 137

exhaustive summary is given by the terms in the second row of Table 5.8.

However, when the logistic link function is used, we found that the simpler

exhaustive summary is given by the steps listed in Example 5.2.2 and proof

to follow in Section 5.2.2. The simpler exhaustive summary is still simpler

than the original exhaustive summary, but it is more complicated to describe

mathematically or to write using a set of expressions. The same complications

apply to the model {φ(t), p(t+ hC)} when the logistic link function is used in

Section 5.2.3. Because of this reason, we do not provide table of exhaustive

summaries for models when the logistic link function is used. This is part of

the future work to come.

5.4 Conclusion

Using the symbolic method we discussed in Chapter 4, we have seen that it

is possible to find the estimable parameters for parameter redundant models

for small values of K and C by solving the systems of partial differential

equations (PDEs). The solutions we find can be used to suggest a possible

reparameterisation s(θ), with appropriate algebraic rearrangement.

If the reparameterisation s(θ) is a simpler exhaustive summary, we can

then use s(θ) to determine the results of parameter redundancy, by compar-

ing the number of terms in s(θ) and the number of model parameters. If the

reparameterisation s(θ) is not a simpler exhaustive summary, we can find a

simpler exhaustive summary by solving the appropriate PDEs.

Models using the linear link function are simpler in structure than models

using the logistic link function. We find that the simpler exhaustive summaries

from using the linear link function are simpler than those from using the lo-

gistic link function.
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Models with interaction terms between the time effect and the heteroge-

neous effect are far more complex than any of their sub–models. Deriving

simple exhaustive summaries for such models is challenging and is part of the

work to be done, in the future, as described in Chapter 7.

5.5 List of files

In this section, we list all relevant files on the supplementary CD in Table 5.11.

Details on using the Maple R© package MixtureModelforCaptureRecapture.mla

are given in Appendix A and details on using the Mathematica R© package

MixtureModelforCaptureRecapture.m are given in Appendix B.

File Name Description

MixtureModelforCaptureRecapture.mla The Maple R© package
Chapter_5.1_linear.mw Worksheet for Section 5.1.
Chapter_5.2_logistic.mw Worksheet for Section 5.2.

Table 5.11: List of files on Chapter 5



Chapter 6

Fitting Mixture Models to

Open Population Data

In Chapter 4, using the SN method, we have checked the parameter redun-

dancy result for both CJS and JS mixture models for 3 ≤ K ≤ 10 and

2 ≤ C ≤ 10. We note that the rule of K ≥ 2C can ensure all parameters

are estimable. But this is too restrictive for some models, for example, the

model {[φ(h), p(h)]C}. In Chapter 5, by developing simpler exhaustive sum-

maries, we formally checked that the rule of K ≥ 2C is an exact rule for some

models, but it is not an exact rule for all models to ensure that all parameters

are estimable.

However, the rule of K ≥ 2C can guarantee that all model parameters are

estimable. Without knowing the rule, we risk fitting too many mixture compo-

nents and not being able to estimate the model parameters, or fearing having

too many components and not fitting a plausible model. In this chapter, we

will fit mixture models to real open population data with all plausible models,

compare our results with the published results and demonstrate the difficulty

of fitting open population mixture models.

Section 6.1 uses real datasets from Pledger et al. (2003). We find different

139
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fitted results and select some models to use as examples to demonstrate the

difficulty of fitting open population mixture models. We show that our fitted

results are better than the results from Pledger et al. (2003) by comparing

the maximized log–likelihood values, checking the gradient at the maximum–

likelihood estimates as well as using profile likelihood (Pawitan, 2001; Royston,

2007) plots.

Section 6.2 shows we have fitted all possible models, excluding those models

with interactions between time and heterogeneous components. We also state

the method of model selection and show that we have found a structurally

simpler model than the best models given in Pledger et al. (2003), by allowing

up to four mixture components, while Pledger et al. (2003) have only fitted

models with two mixture components.

The use of different link functions is discussed again in Section 6.3. We fo-

cus on the effect of model fitting rather than the parameter redundancy result

as discussed in Chapter 4. We note again that different parameter redundancy

results can be obtained from using the linear link function and the logistic link

function if there is not a one–to–one transformation.

Models with interactions between the time and heterogeneous components

are discussed in Section 6.4. We note that by having different constraints on

the interaction matrices, the point estimates are different. Hence, a different

likelihood can be obtained. It is then obvious that if we do not know what

constraints have been used when we consider a model with interactions, it will

be difficult to reproduce the same result. We give two examples of the fitted

result of the same model by putting different constraints on the interaction

matrix as a comparison.
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Lastly we conclude the chapter in Section 6.5 and list all computer code

used in Section 6.6.

6.1 Fitting Real Datasets

We find that open population capture–recapture mixture models are difficult

to fit in general. Even with two mixture components, optimization could stop

at a wrong place, see Section 6.1.3 for example. In this chapter, we will use

examples to illustrate the difficulty of fitting mixture models. We refer to the

paper by Pledger et al. (2003) using PPN2003. The authors of this paper fitted

11 models to the possum dataset, which is described below. We will compare

our fitted results with the results from PPN2003.

6.1.1 Brushtail Possum (Trichosurus vulpecula) Data

Capture–recapture data on the Australian brushtail possum (Trichosurus vulpec-

ula) have been provided by the first author in PPN2003, together with details

of their model fitting results. This is a nine–year study of data collected from

the Orongorongo Valley near Wellington, New Zealand, involving marking 175

female individuals and 273 male individuals. There are 57 distinct female cap-

ture histories and 58 distinct male capture histories. Overall there is a total

of 448 sampled possums with 86 unique capture histories. All 9 samples are

taken in February from 1980 to 1988.

6.1.2 Optimization Routines

Pledger et al. (2003) used the computer package R for all the model fitting.

We have fitted the same data initially using Maple R© . Since Maple R© does

not have a built–in global optimization routine, we have used an add–on

package called DirectSearch, which uses a direct search algorithm (Moiseev,
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2011). The Maple R© code runs very slowly so we explored a different com-

puter package Mathematica R© . The reason for switching to Mathematica R© is

that it is capable of doing symbolic algebra as well as numerical optimiza-

tion. Mathematica R© offers four numerical global optimization routines, namely

Nelder–Mead (Nelder and Mead, 1965), differential evolution (Storn and Price,

1995), simulated annealing (Kirkpatrick et al., 1983) and random search (Zhigl-

javsky, 1991).

We note that the symbolic packages Maple R© and Mathematica R© have been

used extensively for Chapters 3,4 and 5. We will keep using symbolic pack-

age in this chapter. The main reason is that before we fit the model, we

still need to check that the model is not parameter redundant due to imper-

fect data. Recall that in Section 1.2 we discussed the two types of parameter

redundancy, intrinsic parameter redundancy and extrinsic parameter redun-

dancy (Hubbard, 2014). Our main focus is to determine the former, where

parameter redundancy only occurs due to the model structure. The general

condition K ≥ 2C can ensure that the model is not parameter redundant due

to its model structure but it is only a guideline when fitting real datasets. It is

important that we check whether the model is parameter redundant before we

fit it. For this reason, we still need to compute the symbolic derivative matrix

and calculate the symbolic rank or the numeric rank using the SN method

where appropriate.

We focus on the method of random search as it searches the parameter space

more thoroughly by using more starting points from the Mathematica R© func-

tion RandomReal. For example, for each model, we have used 4000 starting

points (see CJSfit_Linear_Link.pdf) when the linear link function is used

and 500 starting points

(see CJSfit_Logistic_Link.pdf) when the logistic link function is used. We

have allowed 500 iterations for all optimization. For some simple models, like

{φ(·), p(hC)}, 100 starting point may suffices. For more complicated models,
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like {[φ(t + h), p(t + h)]C}, we need 200 start points or more to ensure that

we have a global maximum. The main reason for that many starting points

is to ensure for all models that we can find a global maximum. When the

linear link function is used, some starting points do not satisfy the constraint

which ensures that all point estimates are between 0 and 1. Therefore, we

need far more starting points for the linear link function than the logistic link

function. However, there is no guarantee. We check by comparing the maxi-

mized likelihood values, so that the bigger model always performs as well as

all its sub–models. By default, Mathematica R© stops the optimization if the

difference between two successive likelihood values is less than 10−8 on 64–bit

operating systems. Full code and output has been attached to the supplemen-

tary CD. For description of files, see Section 6.6.

We note that PPN2003 uses the optimization method L-BFGS-B (Byrd

et al., 1995) available in R, which limits the memory usage as well as the

boundaries of the parameter space. This could stop the optimization from

getting a global maximum, see the example in the next section for instance.

PPN2003 used 5 iterations with each of a 100 cyclic fixing. The stopping cri-

terion is that if two successive values of maximum–likelihood values are within

0.000001 of each other, the iteration stops. There is therefore no check on the

gradient vectors. For more details, see supplementary file hcjsRun, lines 65–94.

Next, for illustration we give one example each from the fitted results on

the combined data, female data and the male data. These fitted results are

then compared with the results from PPN2003.



6.1. FITTING REAL DATASETS 144

6.1.3 Example: {φ(t), p(t+ h2)}

In model {φ(t), p(t+ h2)}, the survival probabilities are time–varying and the

recapture probabilities are time–varying and heterogeneous with two groups.

That is, the recapture probabilities are modelled by

log

(
pjc

1− ppj

)
= µp + τpj + ηpc,

for j = 2, 3, . . . , 9 and c = 1, 2.

The following is an extract of the fitted results to the combined brushtail

possum data provided by the first author in PPN2003.
possfeb.out

1 $phit.pth2me:
2 $phit.pth2me$info:
3 Max.ll RD rawAIC Npar K Pi-hat Pi-hat
4 -848.3808 1696.762 1732.762 18 9 0.3039709 0.6960291
5

6 $phit.pth2me$details:
7 Sample p-hat p-hat mean.p phi-hat ann.phi
8 [1,] 1 NA NA NA 0.6096223 0.6096223
9 [2,] 2 0.9420076 0.9979831 0.9809681 0.7068549 0.7068549

10 [3,] 3 0.6985363 0.9860302 0.8986404 0.8264058 0.8264058
11 [4,] 4 0.3964154 0.9523944 0.7833930 0.7946019 0.7946019
12 [5,] 5 0.4683808 0.9640774 0.8134001 0.7630867 0.7630867
13 [6,] 6 0.3644067 0.9458417 0.7691023 0.8256249 0.8256249
14 [7,] 7 0.2378723 0.9048291 0.7020936 0.7864057 0.7864057
15 [8,] 8 0.2726637 0.9194800 0.7228667 0.8171094 0.8171094
16 [9,] 9 0.1667687 0.8590895 0.6486441 NA NA

For this particular model, the authors constrained all model parameters on the

logistic scale to be between −20 and 20.

Line 4 of the above extract gives the maximized log–likelihood value of

−848.3808 with an AIC value of 1732.762. It also gives the estimate ŵ1 =

0.3039709 or equivalently ŵ1 = 0.6960291. Lines 6–16 give the point estimates

of the two groups of capture probabilities and the survival probabilities on the

natural scale.

As the recapture probabilities {pjc} are heterogeneous and given, we can

use this information to work out which link function PPN2003 has used. Using
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the point estimates, we find that


p̂22 − p̂21 = 0.9979831− 0.9420076 = 0.055976

p̂32 − p̂31 = 0.9860302− 0.6985363 = 0.287494

,

and 
log
(

p̂22
1−p̂22

)
− log

(
p̂21

1−p̂21

)
= 3.4164

log
(

p̂32
1−p̂32

)
− log

(
p̂31

1−p̂31

)
= 3.4164

.

Since using the logistic link function, the differences between the first and sec-

ond group are the same, we deduce that the logistic link function has been

used. We further deduce that the heterogeneous component for the recapture

probability is given by η̂p = −3.4164.

To find the maximum–likelihood estimates of the survival probabilities

φj, j = 1, . . . , 8, on the logistic scale, we solve the system of equations,



1
1+exp(−φ1)

1
1+exp(−φ2)

1
1+exp(−φ3)

1
1+exp(−φ4)

1
1+exp(−φ5)

1
1+exp(−φ6)

1
1+exp(−φ7)

1
1+exp(−φ8)



=



0.6096223

0.7068549

0.8264058

0.7946019

0.7630867

0.8256249

0.7864057

0.8171094



.
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Similarly, for the recapture probabilities we solve



1
1+exp(−µp)

1
1+exp(−µp−τ3)

1
1+exp(−µp−τ4)

1
1+exp(−µp−τ5)

1
1+exp(−µp−τ6)

1
1+exp(−µp−τ7)

1
1+exp(−µp−τ8)

1
1+exp(−µp−τ9)



=



0.9420076

0.6985363

0.3964154

0.4683808

0.3644067

0.2378723

0.2726637

0.1667687



.

There are 18 model parameters. We use Mathematica R© with the optimiza-

tion method of RandomSearch with 200 starting points to find the maximum–

likelihood estimates. A summary of our maximum–likelihood estimates and

the estimates derived from the point estimates above are given in Table 6.1.

We obtain two different sets of the maximum–likelihood estimates giving the

same maximized log–likelihood value since we can relabel the groups. In terms

of optimization, we can easily achieve this by constraining 0 ≤ w ≤ 0.5 or

0.5 ≤ w ≤ 1 on the natural scale, or equivalently constraining w ≤ 0 or w ≥ 0

on the logistic scale. Our two identical maximum log–likelihood values give

−842.34, compared to −848.38 from PPN2003.

As a check that our estimates are indeed the global optimum, we produce

a profile likelihood plot (Stafford and Andrews, 1993) for each of the 18 model

parameters in Figure 6.1 and Figure 6.2. All model parameters except w are

on the logistic scale. The solid dots indicate the values we have calculated to

draw the curve.

The horizontal dashed lines indicate the position of the maximized log–

likelihood values. For graphs with two horizontal dashed lines, the higher one
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Figure 6.1: Profile plots of φj, j = 1, . . . , 8 for model {φ(t), p(t + h2)}. The
vertical dotted lines indicate the positions of the maximum–likelihood esti-
mates. The horizontal dashed lines indicate the position of the maximized
log–likelihood values. Our vertical lines always meet the horizontal line on the
profile curve at the point which gives the maximum log–likelihood value.
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Figure 6.2: Profile plots of µp, ηp, w and τj, j = 3, . . . , 9 for model {φ(t), p(t+
h2)}. The vertical dotted lines indicate the positions of the maximum–
likelihood estimates. The horizontal dashed lines indicate the position of the
maximized log–likelihood values. For graphs with two horizontal dashed lines,
the higher one represents our maximized log–likelihood value and the lower
one represents the maximized log–likelihood from PPN2003.
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Our result PPN2003
Parameter MLE1 MLE2 Gradient MLE Gradient

w 0.302 0.698 0.000 0.304 2.805
ηp 5.752 −5.752 0.000 3.417 −1.882
µp −0.158 5.594 0.000 2.788 −4.283
τ3 −2.602 −2.602 0.000 −1.947 −0.233
τ4 −3.732 −3.732 0.000 −3.208 −0.745
τ5 −3.220 −3.220 0.000 −2.914 −0.352
τ6 −3.611 −3.611 0.000 −3.344 −0.554
τ7 −3.970 −3.970 0.000 −3.952 −0.902
τ8 −3.389 −3.389 0.000 −3.769 −0.629
τ9 −4.783 −4.783 0.000 −4.396 −0.721
φ1 0.890 0.890 0.000 0.446 0.043
φ2 1.837 1.837 0.000 0.880 0.541
φ3 1.969 1.969 0.000 1.560 0.573
φ4 1.481 1.481 0.000 1.353 0.791
φ5 1.236 1.236 0.000 1.170 0.209
φ6 1.470 1.470 0.000 1.555 0.086
φ7 1.384 1.384 0.000 1.303 0.417
φ8 18.802 14.718 0.000 1.497 0.596

Table 6.1: Estimated parameters for model {φ(t), p(t + h2)}. All estimates
except w are on the logistic scale. All values are rounded to 4 decimal places.

indicates the position of our maximized log–likelihood value and the lower one

indicates the position of the maximized log–likelihood value from PPN2003.

For example, see the profile plots of ηp and w. For graphs with only one

horizontal dashed line, the line always indicates our maximized log–likelihood

value.

The vertical dashed lines indicate the positions of the maximum–likelihood

estimates. We note that there are clear differences between our estimates and

the PPN2003 estimates. From the profile plots, our estimates give a verti-

cal line at the maximum point of each profile curve while the estimates from

PPN2003 do not.

We observe that φ8 is estimated on a boundary. So our estimates of

φ̂8 = 18.8023 and φ̂8 = 14.7183 are suggesting the same information. That is,

the survival probability φ8 on the natural scale is very close to 1. The profile
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plots for µp, ηp and w have two maxima as we would expect.

Table 6.2 shows the point estimates of this model. There is a clear difference

between our average recapture rates and the results from PPN2003. Our pjs

are lower at each j. We have a much bigger difference between the groups in

the recapture probabilities than in the results from PPN2003.

Our PPN2003

φ1 0.709 0.610
φ2 0.863 0.707
φ3 0.878 0.826
φ4 0.815 0.795
φ5 0.775 0.763
φ6 0.813 0.826
φ7 0.800 0.786
φ8 1.000 0.817

(a) Probability of survival

Our Group 1 Group 2 Average

p2 0.461 0.996 0.835
p3 0.060 0.952 0.683
p4 0.020 0.866 0.610
p5 0.033 0.915 0.649
p6 0.023 0.879 0.620
p7 0.016 0.835 0.588
p8 0.028 0.901 0.637
p9 0.007 0.692 0.485

PPN2003 Group 1 Group 2 Average

p2 0.942 0.998 0.981
p3 0.699 0.986 0.899
p4 0.396 0.952 0.783
p5 0.468 0.964 0.813
p6 0.364 0.946 0.769
p7 0.238 0.905 0.702
p8 0.273 0.919 0.723
p9 0.167 0.859 0.649

(b) Probability of recapture

Table 6.2: Point estimates for model {φ(t), p(t+ h2)}. All probabilities are on
natural scale and between 0 and 1.
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6.1.4 Example: {[φ(t+h), p(t+h)]2} (Similar & Opposite)

In this model, both the survival {φjc} and recapture {pjc} probabilities are

time–varying and heterogeneous with two groups. The square brackets indicate

that {φjc} and {pjc} share the same {wc}. For both the survival and the

recapture probabilities, we consider a group with higher values and denote

these with a subscript ‘H’ and another group with lower values and denote

these with a subscript ‘L’. This leads to the concept of a “similar” model and

an “opposite” model, see Figure 6.3.

Similar Opposite

w1 {φH, pH} or {φL, pL} {φH, pL} or {φL, pH}
1− w1 {φL, pL} or {φH, pH} {φL, pH} or {φH, pL}

Figure 6.3: Illustration of the “similar” model and the “opposite” model.

Using the logistic link function, we model the survival probabilities through

log

(
φjc

1− φjc

)
= µφ + τφj + ηφc, (6.1)

for j = 1, 2, . . . , 8 and c = 1, 2, where µφ describes the baseline from group 1,

τφj describes the time effect and ηφc describes the heterogeneous effect. The

recapture probabilities are given by

log

(
pjc

1− pjc

)
= µp + τpj + ηpc, (6.2)

for j = 2, 3, . . . , 9 and c = 1, 2, where µp describes the baseline from group 1,

τpj describes the time effect and ηpc describes the heterogeneous effect. Recall

that ηφ1 = ηp1 = 0.

For the “similar” model, we require that ηp2 · ηφ2 > 0. That is, ηp2 and ηφ2

have the same sign. For the “opposite” model, we require that ηp2 · ηφ2 < 0.

That is ηp2 and ηφ2 have opposite sign. For example for the “similar model”,

both the survival probabilities and the recapture probabilities in group 1, they
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are either both lower than those in group 2, or they are both higher than those

in group 2. But the probabilities cannot have pj1 > pj2 in one of the two

groups and φj1 < φj2 in the other group, or pj1 < pj2 in one of the two group

and φj1 > φj2 in the other group for all j.

We present the results of this model fitted to the female possum data as

an example. Table 6.3 shows our maximized log–likelihood values (`max) and

maximum–likelihood estimates, compared with those from PPN2003. By com-

paring the maximised log–likelihood values, we have obtained a larger maxi-

mum likelihood. Our results show that the “similar” model fits slightly better

than the “opposite” model in terms of the likelihood.

We note that some maximum–likelihood estimates are large, but this is

not a problem since they are on the logistic scale. Table 6.4 gives the point

estimates for both the “similar” model and the “opposite” model.

We also note that in our “opposite” model, the gradient of the model pa-

rameter ηφ2 is 1.3856. We give the profile plot of ηφ2 in Figure 6.4. The plot

shows clearly that the likelihood value at η̂φ2 = −0.000 is smaller than the

likelihood value at η̂φ2 = 0.7514. By constraining on ηp2ηφ2 < 0, the optimiza-

tion has stopped at a boundary for ηφ2.

We suggest that there is no need to sub–divide the model {[φ(t+ h), p(t+

h)]2} into a “similar” and an “opposite” model. If we do not add any con-

straints on ηp2 and ηφ2, the optimization will identify the better model of the

two.
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Figure 6.4: Profile plot of ηφ2 for model {[φ(t+h), p(t+h)]2}. The left vertical
dashed line indicates the maximum–likelihood estimate from the “opposite”
model and the right vertical dashed line indicates the maximum–likelihood
estimate from the “similar” model. By constraining on ηφ2ηp2 < 0, the opti-
mization stopped at a boundary.

6.1.5 Example: {φ(t + h2), p(t + h2)} Four–class cross–

classified model

In this model, both the survival {φjc} and recapture {pjc} probabilities are

time–varying and heterogeneous with two groups. Unlike the previous model,

{[φ(t+h), p(t+h)]2}, which shares the same {wc}, the four–class cross–classified

model {φ(t+h2), p(t+h2)} has separate {wc}s for each possible group as shown

in Figure 6.5. We use ‘L’ for the group with lower probabilities and ‘H’ for the

group with higher probabilities. We set w4 = 1− w1 − w2 − w3.

φjc pjc

w1 L L
w2 L H
w3 H L
w4 H H

Figure 6.5: Illustration of the four–class cross–classified model {φ(t+h2), p(t+
h2)} .
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We show the results of fitting this model to the male possum data as an

example. Table 6.5a compares our maximum–likelihood estimates and gradi-

ents at the estimates with the results from PPN2003. We note that the results

from PPN2003 did not find the global optimum. Using the same logistic link

function as given in Equations (6.1) and (6.2), we obtain the point estimates

in Table 6.5b.

We note that our estimated recapture probabilities pj2 are close to 1 and

the survival probabilities φj1 are close to 0. Both are estimated on boundaries.

Together with the estimate of ŵ3 = 0.000, this is not surprising. Recall in

Figure 6.5, the combination of φj1 and pj2 are the third group. This extreme

case has a probability of being close to 0, therefore the weight that is estimated

is close to 0 as well.

6.2 Model Selection

As already observed, the Brushtail Possum data is a K = 9 year study. Follow-

ing the rule of K ≥ 2C, we fit all possible 39 CJS mixture models, excluding

those with interactions. The fitted results are given in Table 6.6 for the female

possum data, Table 6.7 is for the male possum data and Table 6.8 is for the

combined possum data.

In the three tables we give the maximized log–likelihood values, the AIC

values, the relative AIC values (∆AIC) and the order of the relative AIC val-

ues. We subtract the smallest AIC value from the original AIC to give ∆AIC.

Then each of the 39 models are ordered according to their ∆AICs. The small-

est ∆AIC has order 1 and the biggest ∆AIC has order 39. All values are

rounded to 2 decimals where appropriate.
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Table 6.5: Comparison of results for model {φ(t+ h2), p(t+ h2)}
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Model `max AIC ∆AIC Order

{φ(·), p(·)} −380.53 765.06 13.72 28

{φ(·), p(t)} −374.53 767.06 15.72 35

{φ(·), p(h2)} −372.75 753.51 2.16 6

{φ(·), p(h3)} −370.48 752.96 1.62 2

{φ(·), p(h4)} −370.43 756.86 5.51 12

{φ(·), p(t+ h2)} −365.58 753.15 1.81 4

{φ(·), p(t+ h3)} −362.67 751.34 0.00 1

{φ(·), p(t+ h4)} −362.60 755.20 3.86 8

{φ(t), p(·)} −373.87 765.74 14.40 30

{φ(t), p(h2)} −371.81 765.61 14.27 29

{φ(t), p(h3)} −368.38 762.75 11.41 24

{φ(t), p(h4)} −368.33 766.66 15.32 33

{φ(t), p(t+ h2)} −362.87 761.74 10.40 19

{φ(t), p(t+ h3)} −360.13 760.27 8.92 15

{φ(t), p(t+ h4)} −360.06 764.11 12.77 25

{φ(h2), p(·)} −372.75 753.51 2.16 5

{φ(h3), p(·)} −372.75 757.51 6.16 14

{φ(h4), p(·)} −372.75 761.51 10.16 18

{φ(h2), p(t)} −365.58 753.15 1.81 3

{φ(h3), p(t)} −365.58 757.15 5.81 13

{φ(h4), p(t)} −365.58 761.15 9.81 17

{[φ(h), p(h)]2} −372.75 755.51 4.16 10

{[φ(h), p(h)]3} −370.28 756.56 5.22 11

{[φ(h), p(h)]4} −370.22 762.44 11.10 20

{[φ(h), p(t+ h)]2} −365.58 755.15 3.81 7

{[φ(h), p(t+ h)]3} −362.67 755.34 4.00 9

{[φ(h), p(t+ h)]4} −362.56 761.13 9.79 16

{φ(t+ h2), p(·)} −370.36 762.72 11.38 23

{φ(t+ h3), p(·)} −370.36 766.72 15.38 34

{φ(t+ h4), p(·)} −370.36 770.72 19.38 38

{φ(t+ h2), p(t)} −363.28 762.56 11.21 21

{φ(t+ h3), p(t)} −363.28 766.56 15.21 31

{φ(t+ h4), p(t)} −363.28 770.56 19.21 37

{[φ(t+ h), p(h)]2} −370.36 764.72 13.38 27

{[φ(t+ h), p(h)]3} −368.32 766.64 15.30 32

{[φ(t+ h), p(h)]4} −368.27 772.54 21.20 39

{[φ(t+ h), p(t+ h)]2} −362.28 762.57 11.22 22

{[φ(t+ h), p(t+ h)]3} −360.13 764.26 12.92 26

{[φ(t+ h), p(t+ h)]4} −359.94 769.87 18.53 36

Table 6.6: Summary of model fitting of female possum data using the logistic
link function. The smallest AIC is circled.
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Model `max AIC ∆AIC Order

{φ(·), p(·)} −491.20 986.40 38.73 37

{φ(·), p(t)} −487.31 992.63 44.96 38

{φ(·), p(h2)} −475.28 958.56 10.90 14

{φ(·), p(h3)} −467.83 947.67 0.00 1

{φ(·), p(h4)} −467.83 951.67 4.00 4

{φ(·), p(t+ h2)} −468.76 959.52 11.86 17

{φ(·), p(t+ h3)} −461.69 949.38 1.71 2

{φ(·), p(t+ h4)} −461.69 953.38 5.71 7

{φ(t), p(·)} −488.02 994.03 46.37 39

{φ(t), p(h2)} −470.58 963.15 15.49 20

{φ(t), p(h3)} −463.08 952.16 4.49 5

{φ(t), p(h4)} −463.08 956.16 8.49 10

{φ(t), p(t+ h2)} −464.17 964.34 16.67 22

{φ(t), p(t+ h3)} −456.87 953.74 6.08 8

{φ(t), p(t+ h4)} −456.87 957.74 10.08 13

{φ(h2), p(·)} −480.13 968.26 20.60 25

{φ(h3), p(·)} −480.13 972.26 24.60 27

{φ(h4), p(·)} −480.13 976.26 28.60 30

{φ(h2), p(t)} −474.73 971.46 23.80 26

{φ(h3), p(t)} −474.73 975.46 27.80 29

{φ(h4), p(t)} −474.73 979.46 31.80 33

{[φ(h), p(h)]2} −474.67 959.35 11.68 16

{[φ(h), p(h)]3} −467.73 951.47 3.80 3

{[φ(h), p(h)]4} −467.73 957.47 9.80 12

{[φ(h), p(t+ h)]2} −468.76 961.52 13.86 18

{[φ(h), p(t+ h)]3} −461.65 953.31 5.64 6

{[φ(h), p(t+ h)]4} −461.65 959.31 11.64 15

{φ(t+ h2), p(·)} −475.40 972.80 25.14 28

{φ(t+ h3), p(·)} −475.40 976.80 29.14 32

{φ(t+ h4), p(·)} −475.40 980.80 33.14 35

{φ(t+ h2), p(t)} −470.30 976.61 28.94 31

{φ(t+ h3), p(t)} −470.30 980.61 32.94 34

{φ(t+ h4), p(t)} −470.30 984.61 36.94 36

{[φ(t+ h), p(h)]2} −470.46 964.93 17.26 24

{[φ(t+ h), p(h)]3} −462.87 955.75 8.08 9

{[φ(t+ h), p(h)]4} −462.87 961.75 14.08 19

{[φ(t+ h), p(t+ h)]2} −463.43 964.87 17.20 23

{[φ(t+ h), p(t+ h)]3} −456.73 957.46 9.79 11

{[φ(t+ h), p(t+ h)]4} −456.72 963.45 15.78 21

Table 6.7: Summary of model fitting of male possum data using the logistic
link function. The smallest AIC is circled.
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Model `max AIC ∆AIC Order

{φ(·), p(·)} −882.19 1768.39 68.60 37

{φ(·), p(t)} −875.83 1769.67 69.88 39

{φ(·), p(h2)} −855.78 1719.57 19.78 17

{φ(·), p(h3)} −847.74 1707.48 7.69 4

{φ(·), p(h4)} −847.66 1711.33 11.54 8

{φ(·), p(t+ h2)} −844.92 1711.85 12.06 9

{φ(·), p(t+ h3)} −836.89 1699.79 0.00 1

{φ(·), p(t+ h4)} −836.30 1702.61 2.82 2

{φ(t), p(·)} −875.45 1768.90 69.11 38

{φ(t), p(h2)} −853.61 1729.21 29.43 26

{φ(t), p(h3)} −845.34 1716.68 16.89 14

{φ(t), p(h4)} −845.29 1720.58 20.79 20

{φ(t), p(t+ h2)} −842.34 1720.68 20.89 21

{φ(t), p(t+ h3)} −834.88 1709.75 9.96 6

{φ(t), p(t+ h4)} −834.33 1712.67 12.88 10

{φ(h2), p(·)} −860.40 1728.79 29.00 24

{φ(h3), p(·)} −860.40 1732.79 33.00 28

{φ(h4), p(·)} −860.40 1736.79 37.00 31

{φ(h2), p(t)} −851.55 1725.10 25.31 22

{φ(h3), p(t)} −851.55 1729.10 29.31 25

{φ(h4), p(t)} −851.55 1733.10 33.31 29

{[φ(h), p(h)]2} −855.02 1720.04 20.26 19

{[φ(h), p(h)]3} −847.43 1710.86 11.07 7

{[φ(h), p(h)]4} −847.28 1716.57 16.78 13

{[φ(h), p(t+ h)]2} −844.91 1713.82 14.04 12

{[φ(h), p(t+ h)]3} −836.70 1703.40 3.62 3

{[φ(h), p(t+ h)]4} −835.99 1707.97 8.18 5

{φ(t+ h2), p(·)} −857.98 1737.96 38.17 32

{φ(t+ h3), p(·)} −857.98 1741.96 42.17 34

{φ(t+ h4), p(·)} −857.98 1745.96 46.17 36

{φ(t+ h2), p(t)} −849.26 1734.52 34.74 30

{φ(t+ h3), p(t)} −849.26 1738.52 38.74 33

{φ(t+ h4), p(t)} −849.26 1742.52 42.74 35

{[φ(t+ h), p(h)]2} −852.89 1729.79 30.00 27

{[φ(t+ h), p(h)]3} −845.01 1720.03 20.24 18

{[φ(t+ h), p(h)]4} −844.86 1725.72 25.93 23

{[φ(t+ h), p(t+ h)]2} −840.69 1719.39 19.60 16

{[φ(t+ h), p(t+ h)]3} −834.85 1713.70 13.91 11

{[φ(t+ h), p(t+ h)]4} −833.98 1717.97 18.18 15

Table 6.8: Summary of model fitting of combined possum data using the lo-
gistic link function. The smallest AIC is circled.
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Following the AIC model selection criteria (or ∆AIC), model {φ(·), p(t +

h3)} is selected for the female dataset, model {φ(·), p(h3)} is selected for the

male dataset and model {φ(·), p(t+ h3)} is selected for the combined dataset.

By comparing the AIC values (see supplementary file possfeb.pdf) from

PPN2003, our best models are better than the best models chosen in PPN2003.

We have explored all plausible model by allowing up to four mixture compo-

nents. This is an important finding since the models selected are conceptually

simpler than the models selected in PPN2003. We also note that the models

we have found all have constant survival probabilities, which also makes it

easier to interpret the model.

6.3 Using Different Link Functions

Recall that in Example 5.2.1, we discussed the effect of using different link

functions on the result of parameter redundancy. If there is a one–to–one

transformation between the links, the same parameter redundancy results hold

for both link functions. This is also true for model fitting by maximum log–

likelihood (Morgan, 2008).

Table 6.9 shows the AIC values for all three sets of possum data from using

both the linear link function and the logistic link function.

Models with a † indicate that there is a one–to–one transformation between

the linear link function and the logistic link function. There are 18 out of the

39 models that are invariant to the choice of the link functions. We observe

that if there exists a one–to–one transformation, the models will have the same

AIC value as expected.

In some rare cases, for example see the values in circles, using the linear

link function gives a smaller AIC value than using the logistic link function.
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Combined Female Male

logit linear logit linear logit linear

{φ(·), p(·)}† 1768 1768 765 765 986 986

{φ(·), p(t)}† 1770 1770 767 767 993 993

{φ(·), p(h2)}† 1720 1720 754 754 959 959

{φ(·), p(h3)}† 1707 1707 753 753 948 948

{φ(·), p(h4)}† 1711 1711 757 757 952 952

{φ(·), p(t+ h2)} 1712 1712 753 759 960 960

{φ(·), p(t+ h3)} 1700 1712 751 761 949 960

{φ(·), p(t+ h4)} 1703 1716 755 765 953 964

{φ(t), p(·)}† 1769 1769 766 766 994 994

{φ(t), p(h2)}† 1729 1729 766 763 963 963

{φ(t), p(h3)}† 1717 1717 763 763 952 952

{φ(t), p(h4)}† 1721 1721 767 767 956 956

{φ(t), p(t+ h2)} 1721 1722 762 766 964 965

{φ(t), p(t+ h3)} 1710 1722 760 770 954 965

{φ(t), p(t+ h4)} 1713 1726 764 773 958 969

{φ(h2), p(·)}† 1729 1729 754 754 968 968

{φ(h3), p(·)}† 1733 1733 758 758 972 972

{φ(h4), p(·)}† 1737 1737 762 762 976 976

{φ(h2), p(t)}† 1725 1725 753 753 971 971

{φ(h3), p(t)}† 1729 1729 757 757 975 975

{φ(h4), p(t)}† 1733 1733 761 761 979 979

{[φ(h), p(h)]2}† 1720 1720 756 756 959 959

{[φ(h), p(h)]3}† 1711 1711 757 757 951 951

{[φ(h), p(h)]4}† 1717 1717 762 763 957 957

{[φ(h), p(t+ h)]2} 1714 1713 755 755 962 961

{[φ(h), p(t+ h)]3} 1703 1714 755 759 953 963

{[φ(h), p(t+ h)]4} 1708 1720 761 765 959 969

{φ(t+ h2), p(·)} 1738 1739 763 763 973 975

{φ(t+ h3), p(·)} 1742 1743 767 767 977 979

{φ(t+ h4), p(·)} 1746 1747 771 771 981 983

{φ(t+ h2), p(t)} 1735 1735 763 763 977 979

{φ(t+ h3), p(t)} 1739 1739 767 767 981 983

{φ(t+ h4), p(t)} 1743 1743 771 771 985 987

{[φ(t+ h), p(h)]2} 1730 1730 765 765 965 965

{[φ(t+ h), p(h)]3} 1720 1720 767 766 956 956

{[φ(t+ h), p(h)]4} 1726 1726 773 772 962 962

{[φ(t+ h), p(t+ h)]2} 1719 1721 763 766 965 965

{[φ(t+ h), p(t+ h)]3} 1714 1723 764 771 957 967

{[φ(t+ h), p(t+ h)]4} 1718 1729 770 775 963 973

Table 6.9: Comparison of model AIC values from using logistic link and linear
link. Circled values are explained in the text.
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For the combined data, the model {[φ(h), p(t+h)]2} using the linear link gives

an AIC value of 1713 while using the logistic link give an AIC value of 1714.

For the female data, models {[φ(t + h), p(h)]3} and {[φ(t + h), p(h)]4} show

that the model with the linear link has a lower AIC value by the difference of

1 compared to the logistic link. These differences are most likely due to the

rounding errors of model fitting.

Example 6.3.1 (One–to–one transformation: numerical example). We now

give a numerical example to show a one–to–one transformation between the

linear link function and the logistic link function.

The model {φ(·), p(h4)} has constant survival probability and heteroge-

neous recapture probability with 4 groups. The maximum–likelihood estimates

from using the linear link function are given below



φ̂ = 0.798982

ŵ1 = 0.227750

ŵ2 = 0.334073

ŵ3 = 0.397814

η̂p2 = 0.768960

η̂p3 = 0.998797

η̂p4 = 0.185628

µ̂p = 0.000439744

,

resulting in a maximized log–likelihood value of −847.678 with point estimates

of pjc given by 

p̂j1 = µ̂p = 0.000439744

p̂j2 = µ̂p + η̂p2 = 0.769400

p̂j3 = µ̂p + η̂p3 = 0.999236

p̂j4 = µ̂p + η̂p4 = 0.186068

,



6.3. USING DIFFERENT LINK FUNCTIONS 164

for all j = 2, 3, . . . , 9. We now consider using the logistic link function on the

recapture probabilities to give,

log

(
pjc

1− pjc

)
= µp + ηpc.

Equivalently, we have 

pj1 = 1
1+exp(−µp)

pj2 = 1
1+exp(−µp−ηp2)

pj3 = 1
1+exp(−µp−ηp3)

pj4 = 1
1+exp(−µp−ηp4)

.

To get the estimates on the logistic scale, we solve



0.000439744 = 1
1+exp(−µp)

0.7694 = 1
1+exp(−µp−ηp2)

0.999236 = 1
1+exp(−µp−ηp3)

0.186068 = 1
1+exp(−µp−ηp4)

to obtain 

η̂′p2 = 8.9338

η̂′p3 = 14.9056

η̂′p4 = 6.25311

µ̂′p = −7.72888

.

We obtain the estimate of φ on the logistic scale by solving

1

1 + exp(−φ)
= 0.798982 =⇒ φ̂′ = 1.37994.
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The new set of estimates



φ̂′ = 1.37994

ŵ1 = 0.227750

ŵ2 = 0.334073

ŵ3 = 0.397814

η̂′p2 = 8.9338

η̂′p3 = 14.9056

η̂′p4 = 6.25311

µ̂′p = −7.72888

,

are the equivalent maximum–likelihood estimates from using the logistic link

function. We can double check this by substituting them into the correspond-

ing log–likelihood and confirm that it gives the same maximum log–likelihood

value of −847.678.

When there is no one–to–one transformation between the links, in most

cases the models with the logistic link function result in a lower AIC. Thus the

logistic model performs better than using the linear link function and is more

likely to be chosen based on AIC.

Next we give an example below where there is no one–to–one transforma-

tion between the linear link function and the logistic link function for compar-

ison.

Example 6.3.2 (Not a one–to–one transformation: numerical example). We

now show an example which there is no one–to–one transformation between

the linear link function and the logistic link function. Consider the model

{φ(·), p(t+ h4)}: The survival probability is constant and the recapture prob-

abilities are time–varying and there is a heterogeneous recapture probability

with 4 groups. The maximum–likelihood estimates from using the linear link
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function are given by 

φ̂ = 0.806564

ŵ1 = 0.270547

ŵ2 = 0.054746

ŵ3 = 0.047751

η̂p2 = 0.563662

η̂p3 = 0.563662

η̂p4 = 0.907902

µ̂p = 0.092098

τ̂p3 = −0.04141

τ̂p4 = −0.0920984

τ̂p5 = −0.056473

τ̂p6 = −0.0920968

τ̂p7 = −0.0806524

τ̂p8 = −0.0840715

τ̂p9 = −0.0920984

,

giving a maximized log–likelihood value of −843.244 with point estimates of

pjc given below

c = 1 c = 2 c = 3 c = 4

j = 2 0.0920980 0.655760 0.655760 1.000000

j = 3 0.0506880 0.614350 0.614350 0.958590

j = 4 0.0000000 0.563662 0.563662 0.907902

j = 5 0.0356250 0.599287 0.599287 0.943527

j = 6 0.0000000 0.563663 0.563663 0.907903

j = 7 0.0114456 0.575108 0.575108 0.919348

j = 8 0.0080265 0.571689 0.571689 0.915929

j = 9 0.0000000 0.563662 0.563662 0.907902

.
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Using the logistic link function, the recapture probabilities {pjc} are given by



1
1+e−µp

1

1+e−(µp+ηp2)
1

1+e−(µp+ηp3)
1

1+e−(µp+ηp4)

1

1+e−(µp+τp3)
1

1+e−(µp+τp3+ηp2)
1

1+e−(µp+τp3+ηp3)
1

1+e−(µp+τp3+ηp4)

... · · · · · · ...

1

1+e−(µp+τp9)
1

1+e−(µp+τp9+ηp2)
1

1+e−(µp+τp9+ηp3)
1

1+e−(µp+τp9+ηp4)


.

If there is a one–to–one link, we require that



1
1+e−µp

= 0.0920980

1

1+e−(µp+ηp2)
= 0.6557600

1

1+e−(µp+τp3)
= 0.0506880

1

1+e−(µp+τp3+ηp2)
= 0.6143500

...

...

.

The system has no solution. The first three equations can determine the values

of µp, ηp2 and τp3. But these estimates will not satisfy the fourth equation.

This is true for any model as long as there is one parameter with both

time and heterogeneous effects. Using the linear link function, the differences

between any two of the columns are constant and equal to ηφc or ηpc if the

model is heterogeneous in {φjc} or {pjc} respectively. However, when using

the logistic link function, the differences between any two of the columns are

no longer a constant. We have different point estimates from using the linear

link function and using the logistic function. Therefore a different likelihood

value results.
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6.4 Models With Interactions

We will now consider models with interactions between time and heterogeneous

components. We will use the model {φ(·), p(t × h3)} for illustration. For

simplicity, we use the linear link function.

Example 6.4.1. This example shows that putting different constraints on

the interaction matrix can give different point estimates. Therefore, a differ-

ent likelihood value can be obtained.

The model {φ(·), p(t × h3)} is constant in recapture probability and the

survival probabilities are time–varying and heterogeneous. We also assume

that there are interactions between time and heterogeneous components.

Using the linear link function, the point estimates of pjc are given by

pjc = µp + τpj + ηpc + (τη)pjc, (6.3)

with τp2 = ηp1 = 0 and p1c = 1 (see Notation 3.2.1). We first set (τη)p2c =

(τη)pj1 = 0, so that the interaction matrix is given by

[(τη)pjc] =



(τη)pj1 (τη)pj2 (τη)pj3

(τη)p1c 0 0 0

(τη)p2c 0 0 0

(τη)p3c 0 (τη)p32 (τη)p33

(τη)p4c 0 (τη)p42 (τη)p43

(τη)p5c 0 (τη)p52 (τη)p53

(τη)p6c 0 (τη)p62 (τη)p63

(τη)p7c 0 (τη)p72 (τη)p73

(τη)p8c 0 (τη)p82 (τη)p83

(τη)p9c 0 (τη)p92 (τη)p93



. (6.4)
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This determines the point estimates of ppj,

[pjc] =



1 1 1

µp µp + ηp2 µp + ηp3

µp + τp3 µp + τp3 + ηp2 + (τη)p32 µp + τp3 + ηp3 + (τη)p33

µp + τp4 µp + τp4 + ηp2 + (τη)p42 µp + τp4 + ηp3 + (τη)p43

µp + τp5 µp + τp5 + ηp2 + (τη)p52 µp + τp5 + ηp3 + (τη)p53

µp + τp6 µp + τp6 + ηp2 + (τη)p62 µp + τp6 + ηp3 + (τη)p63

µp + τp7 µp + τp7 + ηp2 + (τη)p72 µp + τp7 + ηp3 + (τη)p73

µp + τp8 µp + τp8 + ηp2 + (τη)p82 µp + τp8 + ηp3 + (τη)p83

µp + τp9 µp + τp9 + ηp2 + (τη)p92 µp + τp9 + ηp3 + (τη)p93



. (6.5)

The maximum log–likelihood is found to be −836.515 with the point esti-

mates of pjc given by

[p̂jc] =



1 1 1

1 0.1968 0.8272

0.9523 0 1

0.9154 0.0158 0.2228

0.9431 0.0496 0.4206

0.8814 0 0.7441

0.8499 0.0374 0.2660

0.9039 0 0.4616

0.8861 0 0



. (6.6)

All values are rounded to 4 decimal places.

For comparison, we now set (τη)p2c = (τη)pj3 = 0, so that the interaction
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matrix is given by

[(τη)pjc] =



(τη)pj1 (τη)pj2 (τη)pj3

(τη)p1c 0 0 0

(τη)p2c 0 0 0

(τη)p3c (τη)p31 (τη)p32 0

(τη)p4c (τη)p41 (τη)p42 0

(τη)p5c (τη)p51 (τη)p52 0

(τη)p6c (τη)p61 (τη)p62 0

(τη)p7c (τη)p71 (τη)p72 0

(τη)p8c (τη)p81 (τη)p82 0

(τη)p9c (τη)p91 (τη)p92 0



(6.7)

with point estimates

[pjc] =



1 1 1

µp µp + ηp2 µp + ηp3

µp + τp3 + (τη)p31 µp + τp3 + ηp2 + (τη)p32 µp + τp3 + ηp3

µp + τp4 + (τη)p41 µp + τp4 + ηp2 + (τη)p42 µp + τp4 + ηp3

µp + τp5 + (τη)p51 µp + τp5 + ηp2 + (τη)p52 µp + τp5 + ηp3

µp + τp6 + (τη)p61 µp + τp6 + ηp2 + (τη)p62 µp + τp6 + ηp3

µp + τp7 + (τη)p71 µp + τp7 + ηp2 + (τη)p72 µp + τp7 + ηp3

µp + τp8 + (τη)p81 µp + τp8 + ηp2 + (τη)p82 µp + τp8 + ηp3

µp + τp9 + (τη)p91 µp + τp9 + ηp2 + (τη)p92 µp + τp9 + ηp3



. (6.8)

We now obtain the maximum log–likelihood to be −832.999 with the point
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estimates of pjc given by

[p̂jc] =



1 1 1

0.1278 1 1

0 0.8547 1

0.0089 0.6860 0.9673

0.0380 0.7630 0.9767

0 0.6506 1

0.0419 0.5016 1

0 0.7640 0.9533

0 0.6734 0.9219



. (6.9)

All values are rounded to 4 decimal places.

In both cases, the maximum likelihood values are better than under the

model {φ(·), p(t+ h3)}, which is −843.244. We see that by changing the con-

straints, we effectively have different point estimates, and therefore a different

likelihood.

Models with interactions can vary in many ways by changing the con-

straints. We will conclude by noting that they can improve the model fitting,

but it is difficult to determine which constraints to use.

6.5 Conclusion

In this chapter, we have focused on fitting capture–recapture mixture models

to data from open populations.

We have seen in Section 6.1 that optimization routines can sometimes stop

at a local maximum if not enough initial points were taken to explore the

parameter space. Without careful checking, we might miss the global optimum.
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We also find that sometimes estimates that are close in the parameter space can

give very different likelihood values. This is a challenge for the optimization

routine and makes the fitting of the mixture models difficult.

We also discussed that for the model {[φ(t+h), p(t+h)]2}, where both the

survival and the recapture probabilities are time–varying with two heteroge-

neous groups, it is not necessary to sub–divide the model into a “similar” and

an “opposite” model by putting constraints on ηpcηφc > 0 or ηpcηφc < 0. With-

out such constraints, the optimization can identify the better model of the two.

We use the Akaike information criterion (AIC) to select the best models.

By allowing up to four mixture components, we found better models for the

Brushtail Possum (Trichosurus vulpecula) data, which were missed by the au-

thors in PPN2003 as they have only fitted two mixture components.

We explored the effect of using different link functions in Section 6.3. Ta-

ble 6.9 compares the AIC values from using the linear link function and using

the logistic link function. We discussed a one–to–one transformation between

the links. When there exists a one–to–one transformation, the results from us-

ing either link functions are equivalent, otherwise the results will be different.

We discussed models with interactions in Section 6.4. We illustrated using

an example that by choosing different constraints on the interaction matrix,

the point estimates can change, therefore resulting in a different likelihood. We

saw here how the result from model fitting can change by having a different

constraint.

To conclude, mixture models are difficult to fit to open population capture–

recapture data. Careful checks are necessary, such as checking the gradients at

the maximum likelihood estimates are zero (or close to 0). Profile likelihood
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plots can also be used to check for global maximization. It is also essential to

use multiple starting points.

6.6 List of files

In this section, we list all relevant files on the supplementary CD in Table 5.11.

Details on using the Maple R© package MixtureModelforCaptureRecapture.mla

are given in Appendix A and details on using the Mathematica R© package

MixtureModelforCaptureRecapture.m are given in Appendix B.

All files are created and updated at the time of writing. PDF copies are

given instead of the source files to avoid unintentionally editing the source.
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File Name Description

hcjsRun.pdf File from the first author in PPN2003.
Lines 69 – 91 show the number of it-
erations, cycles of fitting and the toler-
ances they have used.

hcjsFunctions.pdf File from the first author in PPN2003.
The file shows that the authors have
only considered two mixture compo-
nents.

possfeb.pdf The fitted result from PPN2003.
6.1.2_Combined_2nd.pdf Mathematica R© notebook for Sec-

tion 6.1.3 in PDF format.
6.1.3_Female_S_O.pdf Mathematica R© notebook for Sec-

tion 6.1.4 in PDF format.
6.1.4_Male_4C.pdf Mathematica R© notebook for Sec-

tion 6.1.5 in PDF format.

CJSfit_Logistic_Link.pdf Model fitting using the logistic link
function. Results for Table 6.6, Ta-
ble 6.7 and Table 6.8.

CJSfit_Linear_Link.pdf Model fitting using the linear link func-
tion. Results (of AIC values) are given
in Table 6.9 for comparison.

Logit_RandomSearch.m The maximum likelihood estimates
from using the logistic link function and
can be imported to Mathematica R© .

Linear_RandomSearch.m The maximum likelihood estimates
from using the linear link function and
can be imported to Mathematica R© .

6.4_Interactions.pdf Copy of Mathematica R© notebook file
for Section 6.4.

Table 6.10: List of files on Chapter 6



Chapter 7

Conclusion and Future Work

7.1 Conclusion

To conclude, in Chapter 2 we have extended the closed–population mixture

models from Morgan and Ridout (2008). We presented the new mixture model

of a binomial distribution with a logistic–normal binomial distribution. We

found that when fitted to real data sets the performance of the new model

is comparable to that of the binomial beta–binomial model in Morgan and

Ridout (2008), and in some cases there were improvements.

In Chapter 3, we moved on to open population capture–recapture mod-

els. We looked in detail at the CJS capture–recapture mixture model from

Pledger et al. (2003) and the JS capture–recapture mixture model from Pledger

et al. (2010). We also reviewed the capture–recovery model and the capture–

recapture–recovery model. We showed the format of the data, expressions with

and without heterogeneity and examples of probabilities from corresponding

capture histories for each of the models.

We started Chapter 4 by introducing the concept of parameter redun-

dancy through a motivating example from the CJS model. We discussed

175
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existing methods of detecting parameter redundancy using exhaustive sum-

maries. We gave examples of using both the symbolic method and the hybrid

symbolic–numerical (SN) method. We have shown examples of the param-

eter redundancy results from using the SN method for K = 2, 3, . . . 10 and

C = 2, 3, . . . 10, using both the linear link function and the logistic link func-

tion. We compared our results with the closed population result from Holz-

mann et al. (2006), and we also compared our findings with these in Pledger

et al. (2003). We noted the issue of obtaining different results from using dif-

ferent link functions. For finding general rules for parameter redundancy, we

also listed the theorems that are need to develop the work further, and ex-

plained what we call simpler exhaustive summaries. A general framework for

detecting parameter redundancy based on exhaustive summaries was adapted

from Cole et al. (2010).

Chapter 5 focuses on exhaustive summaries and their use for determin-

ing the results of parameter redundancy. We started by looking at how to

find a reparameterisation that is useful for developing the simpler exhaustive

summary using the linear link function. We then provided the fine detail for

various examples, from the relatively simple ones to more complicated models.

We also gave examples for models using the logistic link function and explained

the relevance of one–to–one transformations. After that we discussed how to

use the simpler exhaustive summary to obtain general conditions for parame-

ter redundancy and listed tables of parameter redundancy results.

We returned to model fitting in Chapter 6. We fitted a range of plausi-

ble models, except the models with interactions, to the Australian brushtail

possum (Trichosurus vulpecula) data, kindly provided by Professor Pledger.

The results were compared with those from Pledger et al. (2003). We note

that we have obtained better results. Not having enough starting points for
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maximum likelihood optimization could result in a local optimum and stop

the optimization from finding a global maximum to the likelihood. We also

noted that by allowing up to four mixture components, we have found struc-

turally simpler models than those found in Pledger et al. (2003) for each of

the combined data, female data and male datasets. We demonstrated that

different results can be obtained by using different link functions if there is

no one–to–one transformation between the links. We showed that the results

can also be affected by changing the constraints on the interaction matrix for

models with interactions between time and heterogeneous components.

7.2 Future Work

We have seen that it is not easy to know whether we can estimate all parameters

of a mixture model. Even with the existing formal methods, we rely heavily

on the use of symbolic computer packages. There is still work to be done

when the logistic link function is being used as well as looking at models

with interactions. There are also a lot to explore on the fitting of such mixture

models, specifically the effect of having different valid constraints. To finish off

the thesis, we again quote the following from the web supplementary material

in Pledger et al. (2010):

Finding exact rules for these more complex open–population mod-

els would be a difficult and time–consuming exercise, and the rules

are unlikely to be simple.

This sentence best describes the majority of the work in this thesis and the

nature of the work, which is in general not easy to conduct.



Appendix A

Maple R© Computer Package:

MixtureModelforCaptureRecapture

A.1 About the package

The Maple R© package MixtureModelforCaptureRecapture.mla is written specif-

ically to check the parameter redundancy results for the models described in

Chapter 3.

A.2 How to use the package?

If you have Maple R© installed on your computer, the compiled package

MixtureModelforCaptureRecapture.mla can be added on by double click-

ing. After this, type with(MixtureModelforCaptureRecapture) to load the

package into the Maple R© session, see Figure A.1.

The libname:= reviews your local path to the Maple R© library and the path

where this package is currently being loaded from. If you want to permanently

install the package to your copy of Maple R© , this can be done by copying the

package (.mla) file to your Maple R© library folder. If you want to delete the

package from your Maple R© library, this is done by deleting (or removing) the

178
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> > 

(1)(1)

> > 
> > 

march('open',
"D:\\Dropbox\\PhD_thesis\\Codes\\chapter5\\Mix
tureModelforCaptureRecapture.mla");

libname := "C:\Program Files\Maple 18\lib", ".",
"D:\Dropbox\PhD_thesis\Codes\chapter5\MixtureModelforCa\
ptureRecapture.mla"
with(MixtureModelforCaptureRecapture):
myMixtureModelforCaptureRecapture();

Welcome to Maple package 
'MixtureModelforCaptureRecapture'!
This is version 1.0.
Last updated on 07 March 2015.

Figure A.1: How to install the Maple R© package?

package (.mla) file from your Maple R© library path.

A.3 Functions Available

We give a short summary of the functions available in Table A.1. Some func-

tions are created solely for shorthand, avoiding typing in long syntax repeat-

edly.

The source code of all procedures can be obtained by using

1 print(funcname);
2 # or
3 showstat(funcname);

where funcname is the name of the procedure. For example,

1 > print(myCHcc);
2 proc (K::integer, { M::truefalse := false }, ‘ $‘)
3 local CH::list;
4 description " Capture History for Capture Recapture ";
5 CH := combinat[permute]([seq(‘$‘(s, K), s = [0, 1])], K);
6 if M then return Matrix(sort(CH)) else return sort(CH) end if
7 end proc

This prints the source of the procedure myCHcc, which gives the full capture

histories of a K–year capture–recapture study.
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Maple Syntax Description

myCHcc full history for capture–recapture

myCHcr full history for capture–recovery

myCHcrr full history for capture–recapture–recovery

myparM gives the matrices (in order) of φjc, pjc and
λjc

myinteractM gives the interaction terms

myindprobcc gives the probability from a capture–
recapture history

myindprobcr gives the probability from a capture–recovery
history

myindprobcrr gives the probability from a capture–
recapture–recovery history

mykappa gives the original exhaustive summary

mypars gives all parameters in the exhaustive sum-
mary

myDD1 gives the derivative matrix

myEstpars gives estimable parameters (for parameter
redundant models only)

mysscc reparametrisation for capture–recapture
models

sskappa simplifying kappa using ss

Table A.1: Functions in the Maple R© package
MixtureModelforCaptureRecapture.mla

A.4 The mykappa function

The main function to generate an exhaustive summary is mykappa. For other

functions, detailed explanations are given in the Maple R© worksheet when they

first appear. We will focus on the use of mykappa in this section.

To see what inputs mykappa takes, we use

> showstat(mykappa);
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and the first few lines from the output are given below:

1 MixtureModelforCaptureRecapture:-mykappa := proc(
2 K::integer, C::integer, CH::list, {
3 CC::truefalse := true,
4 CR::truefalse := false,
5 CRR::truefalse := false,
6 JS::truefalse := false,
7 hlambda::truefalse := false,
8 hp::truefalse := false,
9 hphi::truefalse := false,

10 intlambda::truefalse := false,
11 intp::truefalse := false,
12 intphi::truefalse := false,
13 logit::truefalse := false,
14 logs::truefalse := false,
15 printparM::truefalse := false,
16 tvarlambda::truefalse := false,
17 tvarp::truefalse := false,
18 tvarphi::truefalse := false
19 }, $)
20

21 # with the rest omitted

The first two inputs K and C are integer values as given in the text. K

is the length of the open population capture–recapture study and C is the

number of mixture components. The third input CH is the capture history

matrix. By default, it generates a complete capture history matrix from the

model you have input (which is the CJS mixture by default).

The arguments between the curly brackets {} are optional, all with a value

set to either true or false. If the values are omitted, by default they have a

value false except CC. Table A.2 gives the explanation for each options.

A.5 Using a real dataset

The function mykappa also accepts a capture–history matrix CH. For example,

instead of using the full capture history for K = 3, we can define a list of

capture histories as the following:

1 mykappa(3,1,tvarp,tvarphi); # CJS with K=3 (full history)
2

3 # Define my own history (as a list)
4 CH:=[[1,1,1],[1,1,1],[1,1,1],[0,1,0]];
5 # Finding the probabilities
6 mykappa(3,1,CH,tvarp,tvarphi);
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Maple R© Syntax Description

CC CC=true for capture–recapture model by de-
fault

CR CR=true for capture–recovery model

CRR CRR=true for capture–recapture–recovery
model

JS JS=true for Jolly–Seber mixture models

hlambda hlambda=true when the recovery probabili-
ties are heterogeneous

hp hp=true when the recapture probabilities are
heterogeneous

hphi hphi=true when the survival probabilities
are heterogeneous

intlambda intlambda=true when there are interaction
terms in the recovery probabilities

intp intp=true when there are interaction terms
in the recovery probabilities

intphi intphi=true when there are interaction
terms in the recovery probabilities

logit logit=true when the logistic link function
is used (by default, the linear link function is
used)

logs logs=true when the log link function is used

printparM printparM=true show the parameter matri-
ces for φjc, pjc, λjc

tvarlambda tvarlambda=true when the recovery proba-
bilities are time–varying

tvarp tvarp=true when the recapture probabilities
are time–varying

tvarphi tvarphi=true when the survival probabili-
ties are time–varying

Table A.2: Optional arguments for Maple R© function mykappa

.
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By omitting the CH, we assume a full capture history. That is, line 1 is identical

to having the following

1 mykappa(3,1,myCHcc(3),tvarp,tvarphi);

Note since by default we also assume it is a CJS mixture model, the first

capture history [0,0,0] from myCHcc(3) is ignored.



Appendix B

Mathematica R© Computer

Package:

MixtureModelforCaptureRecapture

B.1 About the package

The Mathematica R© package MixtureModelforCaptureRecapture.m is writ-

ten specifically to check the parameter redundancy results for models described

in Chapter 3.

B.2 How to use the package?

If you have Mathematica R© installed on your computer, the compiled package

MixtureModelforCaptureRecapture.m can be imported by entering the fol-

lowing:

1 SetDirectory[NotebookDirectory[]];
2 Get["MixtureModelforCaptureRecapture.m", "ChenYu_thesis"]

if you have saved your notebook and the package in the same folder.
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B.3 Functions Available

We give a short summary of the functions available in Table B.1. Some func-

tions are created solely for shorthand, avoiding typing in long syntax repeat-

edly.

The source code of all procedures can be obtained by using

1 ?funcname
2 (* or *)
3 ??funcname

where funcname is the name of the procedure. For example,

1 ??myCH
2

3 Gives full capture history from a K--year study.
4 myCH[CJS][K_Integer/;K>=0]:=Rest[Tuples[{0,1},K]]
5

6 myCH[JS][K_Integer/;K>=0]:=Tuples[{0,1},K]
7

8 myCH[CR][K_Integer/;K>=0]:=Sort[
9 ReplaceList[ConstantArray[0,K],{

10 Private‘a___,Private‘x_,
11 Private‘b___,Private‘y_,
12 Private‘c___
13 }:>{Private‘a,1,Private‘b,2,Private‘c}]]
14

15 myCH[CRR][K_Integer/;K>=0]:=Sort[Join@@Table[If[
16 Private‘k==0,Identity,Join[Join[#1,{2}],
17 ConstantArray[0,Private‘k-1]]&]/@Rest[
18 Tuples[{0,1},K-Private‘k]
19 ],{Private‘k,0,K-1}]]

This prints the source of the procedure myCH, which gives the full capture

histories of a K–year capture–recapture study.

B.4 Usage

The usage of the Mathematica R© package is similar to the Maple R© package de-

scribed in Appendix A. The main function is mykappa, similar to the Maple R© func-

tion described in Section A.4. Options of the Mathematica R© function are given

in Table B.2.

The function mykappa takes three compulsory inputs in the order of K, C

and CH, where K is the length of study (as defined in text), C is the number
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Maple Syntax Description

myCH["CJS"][K] gives full capture histories from a K–year CJS
capture–recapture study;

myCH["JS"][K] gives full capture histories from a K–year JS
capture–recapture study;

myCH["CR"][K] gives full capture histories from a K–year
capture–recovery study;

myCH["CRR"][K] gives full capture histories from a K–year
capture–recapture–recovery study;

myparM gives the matrices (in order) of φjc, pjc and λjc

myinteractM gives the interaction terms

myprobCJS gives CJS mixture probability

myprobJS gives JS mixture probability

myprobCR gives capture–recovery mixture probability

myprobCRR gives capture–recapture–recovery mixture prob-
ability

mykappa gives the original exhaustive summary

mynum gives the model rank using the SN method

myDD1 gives the derivative matrix

myEstpars gives estimable parameters (for parameter re-
dundant models only)

H the H function

makess gives the reparameterisation

sskappa simplify using the reparameterisation

myoptlogit Optimization routine for using the logistic link
function

myoptlinear Optimization routine for using the linear link
function

Table B.1: Functions in the Mathematica R© package
MixtureModelforCaptureRecapture.m
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Mathematica R© Syntax Description

hlambda hlambda -> true when the recovery proba-
bilities are heterogeneous

hp hp -> true when the recapture probabilities
are heterogeneous

hphi hphi -> true when the survival probabili-
ties are heterogeneous

intlambda intlambda -> true when there are interac-
tion terms in the recovery probabilities

intp intp -> true when there are interaction
terms in the recovery probabilities

intphi intphi -> true when there are interaction
terms in the recovery probabilities

logit logit -> true when the logistic link func-
tion is used (by default, the linear link func-
tion is used)

tvarlambda tvarlambda -> true when the recovery
probabilities are time–varying

tvarp tvarp -> true when the recapture proba-
bilities are time–varying

tvarphi tvarphi -> true when the survival proba-
bilities are time–varying

Table B.2: Optional arguments for Mathematica R© function mykappa

.
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of mixture components and CH is a capture history matrix. It determines the

model by the capture histories you have entered.

For example, using the combined Brushtail Possum (Trichosurus vulpecula)

data from Section 6.1, we enter

1 (* Loading the package *)
2 SetDirectory[NotebookDirectory[]];
3 Get["MixtureModelforCaptureRecapture.m", "ChenYu_thesis"]
4 (* Import data *)
5 data = Import["combined_unique_sort.csv", "CSV"];
6 CH = data[[All, 1 ;; 9]];
7 feq = data[[All, 10]];

The data is stored as a comma separated values (.csv) file, where the first

9 columns are entries of 0s and 1s and the last column (column 10) are the

frequencies of each such row history.

We can now get the CJS mixture probabilities by entering

1 mykappa[9, 2, CH, hp -> True]

for the model {φ(·), p(h2)} for example. By default, the logistic link func-

tion is used. For more usage, please refer to Mathematica R© notebooks in the

supplementary materials.
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