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Abstract

The local level model with stochastic volatility, recently proposed for U.S. Inflation by Stock
and Watson (“Why Has U.S. Inflation Become Harder to Forecast?”, Journal of Money, Credit
and Banking, Supplement to Vol. 39, No. 1, February 2007), provides a simple yet sufficiently
rich framework for characterizing the evolution of the main stylized facts concerning the U.S.
inflation. The model decomposes inflation into a permanent component, evolving as a random
walk, and a transitory component. The volatility of the disturbances driving both components is
allowed to vary over time. The paper provides a full Bayesian analysis of this model and
readdresses some of the main issues that were raised by the literature concerning the evolution of
persistence and predictability and the extent and timing of the great moderation. The assessment of
various nested models of inflation volatility and systematic model selection provide strong
evidence in favor of a model with heteroscedastic disturbances in the permanent component,
whereas the transitory component has time invariant size. The main evidence is that the great
moderation is over, and that volatility, persistence and predictability of inflation underwent a
turning point around 1995. During the last decade, volatility and persistence have been increasing
and predictability has been going down.
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1 Introduction
Inflation’s volatility has attracted a great deal of attention recently; the interest has
been sparked by the debate on the Great Moderation, that has been documented for
real economic aggregates. Inflation stabilization is indeed a possible source of the
reduction in the volatility of macroeconomic aggregates. The issue is also closely
bound up with inflation persistence and predictability. In an influential paper Stock
and Watson (2007), using a local level model with stochastic volatility, document
that inflation is less volatile now than it was in the 1970s and early 1980s; more-
over, persistence, which measure the long run effect of a shock, has declined, and
predictability has increased.

There is still an ongoing debate about the statistical significance of inflation
persistence and its stability over time, see Pivetta and Reis (2007), Cogley, Prim-
icieri, and Sargent (2007), Cecchetti, Hooper, Kasman, Shoenholtz, and Watson
(2007), among others. Recently Bos, Koopman, and Ooms (2007) analyzed a U.S.
core inflation series (excluding food and energy) as a long memory process sub-
ject to heteroscedastic shocks, and documented remarkable changes, taking place
about at the time of the Great Moderation (1984), in the volatility of the series and
the fractional integration parameter (which is the measure of persistence adopted in
that paper).

In this paper we reconsider the unobserved components model of U.S. in-
flation estimated in Stock and Watson (2007), referred to as the local level model
with stochastic volatility (UC-SV). The model provides a simple yet sufficiently
rich framework for discussing the main stylized facts concerning inflation, such as
the changes in persistence and predictability. The model postulates the decompo-
sition of observed inflation into two components: the permanent component (or
underlying inflation) which captures the trend in inflation, and the transitory com-
ponent, which captures the deviations of inflation from its trend value. We will start
from a specification such that both components are driven by disturbances whose
variance evolves over time according to a stationary stochastic volatility process,
and will attempt to assess the significance of the changing volatility in each of the
components.

The contributions of this paper are the following: we provide a full Bayesian
analysis, so that, unlike the current literature, we do not assume that some of the pa-
rameters, namely the variances of the stochastic volatility components, are known.
Secondly, we carry out systematic model selection by comparing the marginal like-
lihood implied by the different models of inflation volatility. The marginal likeli-
hood is estimated according to the Chib and Jeliazkov (2001) algorithm.

The interesting final result is that we find strong support for the specifica-
tion with stochastic volatility in the permanent component, but not in both. We
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Figure 1: Quarterly U.S. Inflation, yt = 400∆ lnCPIt

document that persistence is higher than in previous studies and is subject to a sig-
nificant increase starting from the second half of the 90’s, whereas predictability
has decreased somewhat at about the same time.

This paper is organized as follows. In Section 2 we present the local level
model with stochastic volatility. Section 3 illustrates the Monte Carlo Markov
Chain (MCMC) sampling scheme used to perform Bayesian inference for this model.
In Section 4 we present and discuss the estimation results. In Section 5 we describe
the Chib and Jeliazkov (2001) approach to the evaluation of the marginal likelihood.
The results are used to select the final model among four competitors. Section 6
concludes the paper.

2 The UC-SV Model
The paper focuses on the quarterly inflation rate constructed from the Consumer
Price Index (All Urban Consumers, seasonally adjusted), made available by the
U.S. Bureau of Labor Statistics. The quarterly index is obtained from the monthly
index by computing the average of the three months that make up each quarter;
if we denote the quarterly series by CPIt , the annualized quarterly inflation rate,
denoted yt , t = 1, ...,T, is computed as yt = 400∆ lnCPIt . The series is plotted in
figure 1 and is available for the sample period 1960:q1 –2008:q3.
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The most general specification of the UC-SV model with stochastic volatil-
ity represents inflation as the sum of an underlying level, denoted here by αt , which
evolves as a random walk, and a transitory component:

yt = αt +σεtεt , εt ∼ N(0,1),
αt = αt−1 +σηtηt , ηt ∼ N(0,1), (1)

where εt and ηt are independent standard normal Gaussian disturbances and their
size, σηt and σεt , respectively evolve over time according to a SV process. Denoting
h1,t = lnσ2

εt and h2,t = lnσ2
ηt ,

h1,t = µ1 +φ1h1,t−1 +κ1,t , h1,0 ∼ N 0,
σ2

κ1

1−φ2
1

)
, κ1 ∼ N(0,σ2

κ1
),

h2,t = µ2 +φ2h2,t−1 +κ2,t , h2,0 ∼ N 0,
σ2

κ2

1−φ2
2

)
, κ2 ∼ N(0,σ2

κ2
).

(2)
The model encompasses the traditional stochastic volatility model that is widely
used in finance (see for instance Shepard, 2006), which arises when the process αt
degenerates to a constant.

The specification of the stochastic volatility processes differ only slightly
from Stock and Watson (2007) and Cecchetti, Hooper, Kasman, Shoenholtz, and
Watson (2007), who assume a random walk process for the log-variances hi,t , i =
1,2. In fact, their specification is encompassed by (2), which is a more canonical
specification of a volatility model (see for instance Jacquier, Polson, and Rossi,
1994, and Kim, Shepard, and Chib, 1998), since it arises as the discrete-time ap-
proximation to the Ornstein-Uhlenbeck continuous time process used in finance,
and ensures the stationarity of ηt and εt , provided that |φi|< 1, i = 1,2. As a matter
of fact, when the autoregressive coefficients φi are close to unity and the constants
µi, i = 1,2, are close to zero, specification (2) is virtually indistinguishable from a
random walk.

When both variances σ2
εt and σ2

ηt do not vary with time, the model reduces to
the the traditional local level model. The latter has a IMA(1,1) reduced form, ∆yt =
ξt +ϑξt−1, with ξt ∼ NID(0,σ2). The structural parameters are related to the re-
duced form parameters by the two equations σ2(1+ϑ2) = σ2

η +2σ2
ε , σ2ϑ =−σ2

ε ,
which are obtained by equating the autocovariances at lags 0 and 1, respectively;
from these we obtain the moving average parameter ϑ =

[
(q2 +4q)

1
2 −2−q

]
/2,

where q = σ2
η/σ2

ε is the signal to noise ratio, and the prediction error variance
(p.e.v.), σ2 = −σ2

ε /ϑ . Notice that ϑ is restricted within the range [-1,0]. The lo-
cal level model has a long tradition and a well-established role in the analysis of
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economic time series, since it provides the model-based interpretation for the popu-
lar forecasting technique known as exponential smoothing, which is widely used in
applied economic forecasting and fares remarkably well in forecast competitions;
see Muth (1960) and the comprehensive reviews by Gardner (1985, 2006). In the
sequel we shall also consider the cases when either σ2

εt or σ2
ηt , or both, are constant.

The UC-SV model can be considered as an IMA(1,1) model with time-
varying p.e.v. and moving average parameter. This suggests taking, as a local
measure of persistence, Pt = 1+ϑt , where ϑt varies with time according to the
values of the time-varying signal to noise ratio qt = σ2

ηt/σ2
εt . The quantity Pt de-

creases linearly from 0 to 1 as ϑ increases from -1 to 0. Cecchetti, Hooper, Kasman,
Shoenholtz, and Watson (2007) use the implied time varying first order autocorre-
lation of ∆yt , as a measure of persistence; the local autocorrelation (i.e. conditional
on σ2

ηt and σ2
εt) is ρt(1) =−1/(qt +2) =ϑt/(1+ϑ2

t ). Alternatively, we can use the
(conditional) normalized spectral generating function at the zero frequency, which
is

P∗
t =

σ2
ηt

σ2
ηt +2σ2

εt
= 1+

2ϑt

1+ϑ2
t
= 1+2ρt(1).

This measure decreases monotonically from 0 to 1 as ϑ increases from -1 to 0.
As a measure of local predictability we can take the prediction error vari-

ance, conditional on {hi,t , i = 1,2, t = 1, . . . ,T}, which is defined as

σ2
t =−σ2

εt
ϑt

.

A relative measure of predictability can be defined in terms of the (Granger and
Newbold, 1986, p. 310) forecastability index:

Predt = 1−
Var(ξt |hi,t)

Var(∆yt |hi,t)
=

ϑ2
t

1+ϑ2
t
. (3)

In terms of the parameters of the UC-SV, the prediction error variance equals

Var(ξt |hi,t) =
σ2

ηt
(1+ϑ)2 , whereas the variance Var(∆yt |hi,t) = σ2

ηt + 2σ2
εt . The above

measure ranges between 0 (ϑt = 0) and 0.5 (ϑt = −1), and it is negatively related
to the persistence of the process. As a matter of fact, as ϑt ranges from -1 to 0,
predictability decreases from its maximum, 0.5, to zero.

3 Bayesian Estimation
This section provides an overview of the MCMC methodology adopted for the esti-
mation of the UC-SV model. All inferences are based on a Gibbs sampling scheme,
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according to which samples are drawn componentwise from the full conditionals;
for the components which cannot be sampled directly a Metropolis-Hasting sub-
chain is used within the Gibbs sampling cycle. In particular, the posterior of the
AR parameters, φ1 and φ2, is not available in closed form; see Kim, Shepard, and
Chib (1998) and Bos and Shephard (2006). More details on the specification of the
prior distributions, the full conditionals and the Metropolis-within Gibbs steps are
provided in Appendix A.

Let θ =(µ1,µ2,φ1,φ2,σ2
κ1
,σ2

κ2
) denote the vector of hyperparameters, hi, i=

1,2, be the collection of the values of the latent stochastic volatility processes, and
α and y denote the stack of the values of permanent inflation and the series, respec-
tively. The Gibbs sampling scheme can be sketched as follows:

1. Initialize hi,θ .
2. Draw a sample from θ ,α|y,hi:

a) Sample θ from θ |y,α,hi (see Appendix A).
b) Sample α from α|y,θ ,hi, using the simulation smoother proposed by

Durbin and Koopman (2002).
3. Sample hi, i= 1,2, from hi|α,y,θ , using a Random Walk Metropolis-Hastings

algorithm.
4. Go to 2.

The most complex part of the algorithm deals with the simulation of the
stochastic volatility processes. We adopt a single move sampler based on the den-
sity:

hi,t |hi,t+1,hi,t−1,yt ,αt−1,αt . (4)

For this purpose, we implement a Random Walk Metropolis-Hastings algorithm,
described in detail in Appendix A; see also Cappé, Moulines, and Rydén (2007). In
order to sample from the full conditional we use the following results:

f (hi,t |hi,t−1,hi,t+1,yt ,αt ,αt−1) ∝ f (hi,t |hi,t−1) f (yt |αt ,h1,t) f (αt |αt−1,h2,t). (5)

4 Estimation Results
This section reports on the main estimation results for the model presented in sec-
tion 2. The MCMC sampler was initialized by setting all hi,t = 0 and φi = 0.86,
σ2

i = 0.07 and µi = 0.6. We iterated the sampler for a burn-in period consisting of
12,500 iterations, before recording the draws from a subsequent 25,000 iterations.
The programm is written in Ox v. 5.10 console (Doornik, 2007) using our own
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source code. The time needed for all calculations (including the additional sim-
ulations required to evaluate the marginal likelihood with the Chib and Jeliazkov
method) is about 35 minutes.

Figure 2 displays the inflation series with the posterior mean of the perma-
nent component, and the interval estimates of two stochastic volatility components
for the irregular and the permanent disturbances, σεt and σηt . The third panel shows
that the volatility of the permanent component has been increasing from the 60ies
up to 1982, and then is slowly decreasing. The volatility of the transitory compo-
nent (central panel) is much more stable, instead. In the sequel of the paper we will
address the question as to whether it can be considered as time invariant.

The estimates of the latent volatility processes are comparable to the cor-
rected estimates obtained by Stock and Watson (2007) and displayed in their Figure
2, referring to CPI (all items), on page 8, panels (a) and (b), of the document avail-
able at http://www.princeton.edu/∼mwatson. In particular, the estimated standard
deviation of the permanent component shows two distinctive peaks in 1975 and
1981, and changes substantially over time; on the contrary, the volatility of the ir-
regular component is much less evolutive. The difference that arise are due to the
different sample considered and to the fact that Stock and Watson estimate a re-
stricted version of the model (in particular, φi = 1,µi = 0,σ2

κi = 0.2, i = 1,2; notice
that the variance of the volatility shocks is not estimated).

Figure 3 displays the evolution of the Monte Carlo estimates of the posterior
mean of the signal to noise ratio, qt , of the persistence parameter, Pt , the prediction
error variance and the predictability measure, Predt . The graph reveals that the size
of the random walk component increases during the 70s, when the trend dynamics
become more sustained, and it is lower in the 80s. Persistence is time varying at val-
ues well below 1 and there is evidence for a strong decreasing tendency during the
80s. The robustness of these results will be discussed later. As far as predictability
is concerned, the prediction error variance undergoes a decline after 1982 (this is
consistent with the results of Bos, Koopman, and Ooms, 2007). In relative terms,
the forecastability index shows an increase in the 80s.

Table 1 reports some summary statistics concerning the posterior distribu-
tion of the parameters and some convergence diagnostics. As for the assessment of
convergence, we report the Geweke statistics: let θ( j) denote the j-th sample of the
sampling scheme for the generic parameter θ after the initial burn-in period. Let
also θ̄a denote the average of the first na draws, θ̄b the average of the last nb draws
at the end of the convergence period, which are taken sufficiently remote to prevent
any overlap, the Geweke’s convergence statistic (Geweke, 1992, 2005) is defined as

CG =
θ̄a − θ̄b√

VL,a/na +VL,b/nb
,
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Figure 2: Upper: Inflation and posterior mean of permanent component; Middle: Ir-
regular Volatility component with 95 percent credible interval. Bottom: Permanent
Volatility component with 95 percent credible interval.
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Figure 3: Upper left: Signal to noise ratio. Upper Right: Persistence, with 95
percent credible interval. Bottom left: Prediction error variance, with 95 percent
credible interval. Bottom right: Predictability, with 95 percent credible interval.
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where

VL,k = c0,k +2
nk−1

∑
j=1

w jc j,k, k = a,b,

is the long run variance of the parameter sample path for the nk draws, based on
a weighted combination of the autocovariances of the draws at lag j, c j,k, with
weights w j that are decreasing in j and ensure that VL,k ≥ 0. A customary choice is
the set of linearly declining weights w j =

l− j
l+1 , where l is the truncation parameter.

The inefficiency factor is INEF = 1+ 2∑n−1
j=1 w jρ̂ j, where ρ̂ j is the sample

autocorrelation of the draws at lag j. This can be interpreted as a normalized mea-
sure of persistence of the draws. Large values imply that the draws are strongly and
positively autocorrelated (the spectral power is concentrated at the origin), so that
the chain explores the parameter space very slowly and the additional information
content of a draw is small.

The values reported in table 1 highlight that the convergence assessment of
the chain are not fully satisfactory, since the Geweke statistic for some parameters,
like µ1 and φ2, are strongly significant.

Table 1: Posterior mean, Median, Geweke statistic and Inefficiency factor for UC-
SV model

Parameters Mean Median Geweke’ GC INEF
µ1 -0.0017 -0.0015 -11.20 137.1
µ2 -0.0253 -0.0252 -2.30 30.92
φ1 0.9356 0.9372 1.18 13.00
φ2 0.9885 0.9905 15.06 307.7
σ2

κ1
0.0491 0.0482 -2.38 24.43

σ2
κ2

0.0487 0.0479 -0.18 63.41

5 Model Selection
Thus far the literature has focused on fitting the UC-SV model (sometimes with
arbitrary restrictions on the parameters σ2

κi) and describing the estimation result.
There is a potential danger that the UC-SV model could be overfitting the data, but
little or no attention has been devoted to this issue.

We thus turn our attention to Bayesian model selection. The models under
comparison are the following four variants of the local level model:
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• M1: the Local Level Model with homoscedastic disturbances (UC);
• M2: the Local Level Model with a SV disturbance only on the transitory

component (UC-SVt);
• M3: the Local Level Model with a SV disturbance only on the permanent

component (UC-SVc);
• M4: the Local Level Model with two SV disturbances (UC-SV).

Bayesian model comparison entails the computation of posterior model probabili-
ties, see Geweke (2005) for more details. If the models have the same prior prob-
ability, the ratio of the posterior mode probabilities is the Bayes factor, which is
the ratio of the marginal likelihoods of two rival specifications. The main diffi-
culty lies with the evaluation of the marginal likelihood. For this purpose we adopt
the method proposed by Chib and Jeliazkov (2001), which is based on the MCMC
output, and additional draws from given partial full conditionals.

Denoting by f (y|θk,Mk) the conditional density of the data, given Mk and
the parameter vector θk, and by π(θk|Mk), π(θk|y,Mk), the prior and posterior den-
sities, respectively, of θk, the Chib and Jeliazkov (2001) approach is based on the
following basic marginal likelihood identity:

m(y|Mk) =
f (y|Mk,θk)π(θk|Mk)

π(θk|y,Mk)
, k = 1,2,3,4, (6)

where m(y|Mk) is the marginal likelihood of model Mk.
The formal Bayesian approach for comparing any two rival specifications,

Mk and Mr, is through the pairwise Bayes factor, defined as the ratio of marginal
likelihoods:

Bk,r =
m(y|Mk)

m(y|Mr)
,

which can also be interpreted as the posterior odds ratio the two models, when they
are assumed to be equally likely a priori.

Taking logarithms of (6) and evaluating this function at some hight density
point θ∗

k , such as the mean of the posterior density π(θk|y,Mk), we have:

logm(y|Mk) = log f (y|Mk,θ∗
k )+ logπ(θ∗

k |Mk)− logπ(θ∗
k |y,Mk). (7)

The conditional likelihood appearing as the first term on the right hand side is eval-
uated with the support of the Kalman filter for the linear Gaussian homoscedastic
local level model (M1); for the other specifications, featuring stochastic volatility in
at least one of the components, it is evaluated by sequential Monte Carlo methods
(particle filters). Full details are provided in Appendix B. The second component
is simply the product of the prior distribution for the parameters of each model.
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The last component, i.e. the normalized posterior density of the parameters, re-
quires a specialized treatment. In Appendix C we provide the relevant details for its
estimation, with particular reference to UC-SV specification.

Table 2: Marginal likelihood for UC models of U.S. inflation.

Models log f (y|Mk,θ∗
k ) logπ(θ∗

k |Mk) logπ(θ∗
k |y,Mk) Total

UC -369.56 -11.48 -0.12 -380.93
UC-SVt -367.80 -8.83 7.24 -383.87
UC-SVc -366.71 -2.51 -13.5 -355.72
UC-SV -356.10 -3.06 20.81 -379.96

The results, reproduced in table 2, clearly point out that the model that per-
forms best is the local level model with stochastic volatility in the permanent com-
ponent. The variation in the transitory one is by and large insignificant. The UC-SV
has the highest conditional likelihood, but receives a high “penalty” from the term
logπ(θ∗

k |y,Mk). As a result the posterior odds of model UC-SV against UC-SVc
are close to zero. Hence, we conclude that the model with two stochastic volatility
components is likely to over-fit the data.

Hence, our preferred model is the UC-SVc specification; table 3 and figures
4-5 report the main estimation results for this model. In particular, figure 4 displays
the posterior mean of the permanent component, along with the 95% credible in-
tervals. The bottom panel displays the posterior mean and the interval estimates of
the process σηt . The plot illustrates that the volatility of the permanent component
is subject to a steep decline in the years 1982-1995, whereas the trend is reversed
after 1995. The first panel of figure 5 displays the evolution of the posterior mean
of the signal to noise ratio, σ2

ηt/σ2
ε . The persistence parameter, plotted in the top

right panel of figure 5, declined during the great moderation, but has been increas-
ing since 1995. The trend in predictability (see the bottom panels of figure 5) is the
mirror image of persistence: predictability increases during the great moderation,
but declines at the end of the sample.

Finally, figure 6 displays the nonparametric estimates of the posterior den-
sity of the parameters of the permanent volatility process and the irregular variance,
and table 3 presents summary statistics concerning the distribution of the parame-
ters and the convergence of the MCMC sampling scheme. We notice in particular
that the Geweke’s convergence diagnostics are fully satisfactory.
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Figure 4: Upper: Quarterly inflation and its posterior mean level; Bottom: Volatility
of the permanent component with 95% percent credible interval.
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Figure 5: Upper left: Signal to noise ratio; Upper Right: Persistence Parameter with
95 percent credible interval. Bottom left: Prediction error variance with 95 percent
credible interval; Bottom right: Predictability with 95 percent credible interval.
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Table 3: Posterior mean, median, Geweke’s statistic and Inefficiency factor for UC-
SVc model.

Parameters Mean Median Geweke’s GC INEF
µ2 -0.0233 -0.0229 -0.93 26.61
φ2 0.9791 0.9801 -0.13 69.74
σ2

κ2
0.0472 0.0463 -0.82 32.16

σ2
ε 1.2509 1.2403 1.80 135.00

6 Conclusions
The paper has provided a full Bayesian analysis of the local level model with
stochastic volatility proposed by Stock and Watson (2007) for the U.S. quarterly
CPI inflation rate. The model provides a simple yet effective decomposition of U.S.
inflation into a permanent component and a transitory one, with stochastic volatility
in the disturbances driving the two components. Bayesian model selection enabled
us to conclude that inflation’s volatility is subject to significant changes over time,
but the volatility affects only the permanent disturbances, not the transitory compo-
nent.

The volatility of the permanent has been decreasing substantially after 1982,
reaching a minimum around 1995, but has been increasing ever since, albeit at a
small rate. The estimated volatility pattern support the view that a turning point
took place around the mid-90ies and the great moderation is likely to be over. As
correctly pointed out by a Referee, this result deserves further investigation as for
its economic interpretation and implications. There are two possible explanations
as to why it went undetected in previous analyzes: first and foremost, previous
studies were conducted on a much shorter sample; for instance, the sample period
consider by Stock and Watson (2007) ended in the fourth quarter of 2004, whereas
our series ends in the 3rd quarter of 2008. The series, displayed in figure 1, does
indeed display higher volatility at the end of the sample. Secondly, there are two
substantial differences in model specification and estimation, that may play a role:
on the one hand, our final specification, suggested by Bayesian model selection, is
such that the volatility of the transitory component is constant. Also, the parameters
of the permanent disturbance volatility process are estimated, rather than fixed.

The persistence implied by the model has been decreasing during the years
of the great moderation and it stayed at historical lows up to the mid-90ies. Re-
cently, persistence has been rising again. Correspondingly, the predictability of
inflation increased during the great moderation up to maximum occurring around
1995 and it has been going down ever since.
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Figure 6: Prior and posterior densities of the parameters of the permanent volatility
process and the irregular variance.

APPENDIX A: Metropolis - within - Gibbs Sampling

This Appendix illustrates the prior and posterior distributions used in our analysis.
For the prior distribution we assume an independent structure between each block
of variables and within each block so that π(θ ,α,h1,h2) = π(θ)π(α)π(h1)π(h2),
and, for instance,

π(θ)= π(µ1|c1,d1)π(µ2|c2,d2)π(φ1|a1,b1)π(φ2|a2,b2)π(σ2
κ1
|γ1,β1)π(σ2

κ2
|γ2,β2).

The prior distributions and their hyperparameters are reported in table 4.
The posterior densities are available in closed form for the permanent level

of inflation (for which samples are drawn by a multimove sampler known as the
simulation smoother, here implemented according to the algorithm presented in
Durbin and Koopman, 2002), and for some elements of the vector θ for which we
can exploit conditional conjugacy.

Scheme
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Table 4: Specification of the prior distributions

θ Prior Hyperparameters
µi N(ci,d2

i ) ci = 0.00 di = 10.00
φi Beta(ai,bi) ai = 20.50 bi = 1.50
σ2

κ1
IG(γ1,β1) γ1 = 20.00 β1 = 0.20

σ2
κ2

IG(γ2,β2) γ2 = 20.00 β2 = 0.20

1. Given the choice of the prior distribution, the full conditional density of the
parameter φ1 (and similarly φ2) is not available in closed form; therefore, to
sample from the full conditional we employ a Metropolis-Hastings sampling
algorithm, similar to the one described in Kim, Shepard, and Chib (1998),
which enforces the stationarity of the stochastic volatility process. Another
possibility is to use a random walk Metropolis-Hasting that can be sketched
as follows: if φ( j−1)

i denotes the current value of the chain at the j-th iteration,
we sample a new proposal φ( j)

i = φ( j−1)
i +w j, where w j is drawn a normal

distribution with mean 0 and variance 0.1. If the proposal is within the sta-
tionary region then it is accepted with probability min{1,g(φ( j)

i )/g(φ( j−1)
i )},

where
g(φi) = π(φi) f (hi|µi,φi,σ2

κi
)

and, apart from a constant term,

log f (hi|µi,φi,σ2
κi
) =−

h2
i,0

2σ2
κi

+
1
2

log(1−φ2
i )−

∑T−1
t=1 (hi,t+1 −φihi,t −µi)

2

2σ2
κi

ˆ

ˆ

.

(8)
2. Using a Normal prior, the full conditional distribution of the parameters µi is

N(Ci, D̂i) where:

Ci = D̂i
Ci

D2
i
+

1
σ2

κi

T

∑
t=1

(hi,t −φihi,t−1)

)
, D̂i =

(
1
d2

i
+

T
σ2

κi

)−1

. (9)

3. Using a conjugate Inverse Gamma prior, the full conditional of the variances
of volatility processes are:

σ2
κi
|y,α,hi,φi,µi ∼ IG

{
T
2
+αi,βi +

h2
i,0 +∑T−1

t=1 (hi,t+1 −µi −φihi,t)
2

2

}
.

(10)
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4. To sample from h1,t |h1,t−1,h1,t+1,yt ,αt ,θ , we adopt the single move Metropolis-
Hastings simulation step, based on the factorization:

f (h1,t |h1,t−1,h1,t+1,yt ,αt ,θ)∝ f (h1,t |h1,t−1,h1,t+1,θ) f (yt |αt ,h1,t). (11)

It can be shown that

f (h1,t |h1,t−1,h1,t+1,θ) = f (h1,t |h1,t−1,θ) f (h1,t+1|h1,t ,θ) (12)

is a Gaussian density with mean

h∗1,t =
µ1(1−φ1)+φ1(h1,t−1 +h1,t+1)

(1+φ2
1 )

and variance

v2
1 =

σ2
κ1

1+φ2
1

(see Jacquier, Polson, and Rossi, 1994). Random Walk proposals h( j)
1,t can

be made from this Gaussian density; their acceptance probability is min{1,
g(h( j)

1,t )/g(h( j−1)
1,t )}, where

g(h1,t) =exp
[
−
{
(h1,t+1 −µ1 −φ1h1,t)

2

2σ2
κ1

+
(h1,t −µ1 −φ1h1,t−1)

2

2σ2
κ1

}]
×

× 1
exp(h1/2)

exp
[
−(yt −αt)

2

2exp(h1)

]
(13)

for t = 1, . . . ,T −1, whereas

g(h1,0) = exp

{
−
(h1,1 −µ1 −φ1h1,0)

2

2σ2
κ1

−
(1−φ2

1 )h
2
1,0

2σ2
κ1

}
,

and, for t = T ,

g(h1,T ) = exp
{
−
(h1,T −µ1 −φ1h1,T−1)

2

2σ2
κ1

}
.

A similar sampling scheme is adopted for h2,t .
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APPENDIX B: Auxiliary Particle Filter
For evaluating the conditional likelihood, f (y|θk,Mk), for the SV specifications,
we implemented an auxiliary particle filter (see Pitt and Shephard, 1999). The lat-
ter estimates the one-step-ahead predictive densities which enter the factorization:
f (y|θk,Mk) = ∏t f (yt+1|Yt ,θk,Mk), where Yt = {y1, . . . ,yt}, and the predictive den-
sity is evaluated by sequential Monte Carlo methods as follows:

f (yt+1|Yt ,θk,Mk) =
1
M

M

∑
i=1

w(i)
1,t ×

1
R

R

∑
j=1

w( j)
2,t . (14)

Here M denotes the number of particles, w1,t are the so-called first stage weights,
R is the number of daughter particles (see below) and w2,t are the so-called second
stage weights.

All the inferences will be conditional on (θk,Mk); henceforth, for notational
simplicity we will omit these conditioning elements. After initializing the weights
w1,0 =

1
M and drawing samples z(i)0 , i = 1, . . . ,M, from the initial distribution of the

random vector zt = (αt ,h1,t ,h2,t), at time t = 0, with

α0 ∼ N (0,1000) h1,0 ∼ N 0,
σ2

κ1

1−φ2
1

)
h2,0 ∼ N 0,

σ2
κ2

1−φ2
2

)
, (15)

we iterate, for t = 1, . . . ,T , the following steps:

1. Set the first stage weights, w1,t ≡ 1
M .

2. Predict the unobserved states one-step-ahead, and update the weights, by

z̄(i)t+1 = E(zt+1|z
(i)
t ),

w(i)
1,t = w(i)

1,t × f (yt+1|z̄
(i)
t+1),

(16)

α(i)
t+1 and variancewhere f (yt+1|z̄

(i)
t+1) is a Gaussian density with mean ¯

exp(h1,t+1). The w(i)
1,t are the first stage weights described in Pitt and Shep-

hard (1999).
3. Resample the particles z(i)t with replacement R times (by multinomial resam-

pling). Let z̃(i)t denote the resampled particles.
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˜4. Sample z(i)t+1, i = 1, . . . ,R, from zt+1|z
(i)
t ,yt+1, using the approach by Godsill

and Clapp (2001), which is based on the factorization:

f (zt+1|zt ,yt+1) = f (αt+1|h2,t+1,αt ,yt+1) f (h1,t+1|h1,t) f (h2,t+1|h2,t) (17)

where f (h j,t+1|h j,t), j = 1,2, are Gaussian densities with mean µ j + φ jh j,t
and variance σ2

κ j
, and

αt+1|h2,t+1,αt ,yt+1 ∼ N(m,S2)

with

S2 =

(
1

exp(h2, t+1)
+

1
exp(h1, t+1)

)−1

m= S2
(

yt+1

exp(h1, t+1)
+

αt

exp(h2, t+1)

)
.

(18)

5. Compute the second stage weights:

w(i)
2,t =

f (yt+1|z
(i)
t+1) f (z(i)t+1|z̃

(i)
t )

f (yt+1|z̄
(i)
t+1) f (z̄(i)t+1|z̃

(i)
t )

. (19)

6. Resample M particles by multinomial resampling, with probabilities propor-
tional to w(i)

2,t .
7. Go to step 1.

APPENDIX C: Chib and Jeliazkov Algorithm
This Appendix illustrates the steps of the Chib and Jeliazkov (2001) algorithm that
are necessary to estimate the posterior density π(θ |y) for the UC-SV model at a
high density point θ∗. The latter is the component of the basic marginal likelihood
identity that is not automatically available from the MCMC output.

The estimate is constructed as follows: denoting θ = {θ j, j = 1, . . . ,J} the
vector containing the hyperparameters, where the elements of the vector θ are
{µ1,φ1,σ2

κ1
,µ2,φ2,σ2

κ1
}, consider the factorization of the joint conditional density:

π̂(θ∗|y) =
J

∏
j=1

π̂(θ∗
j |y,θ∗

1 , . . . ,θ
∗
j−1).

Further, let z = (h1,h2,α).
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• From the MCMC sample evaluate the posterior mean of µ1 and set µ∗
1 equal to

this value. A Monte Carlo estimate of the first multiplicative factor, π(θ∗
1 |y)=

π(µ∗
1 |y), is obtained from the output of the MCMC sampling scheme by the

technique known as Rao-Blackwellization.
• For estimating π(θ∗

2 |y,θ∗
1 ) = π(φ∗

1 |y,µ∗
1 ) run a reduced Metropolis-Hastings

within Gibbs chain for the following subset of parameters {φ1,σ2
κ1
,µ2,φ2,σ2

κ2
,

z}, where the value of µ1 is kept fixed at µ∗
1 .

• Estimate the value of the density π(θ∗
2 |y,θ∗

1 ) = π(φ∗
1 |y,µ∗

1 ), using the follow-
ing steps:

1. Simulate G draws from the posterior of {φ(g)
1 ,σ2,(g)

κ1 ,µ(g)
2 ,φ(g)

2 ,σ2,(g)
κ2 ,

z(g)}, g = 1, . . . ,G, by the same MCMC methods presented in Appendix
A, conditional on µ∗

1 .
2. Compute the posterior mean of φ1 by averaging across the draws φ(g)

1
and denote it φ∗

1 .
3. Include φ∗

1 in the conditioning set and sample J draws from the condi-
tional distibutions:

π(σ2
κ1
|y,z,φ∗

1 ,µ
∗
1 ,µ2,σ2

κ2
,φ2), π(z|y,σ2

κ1
,µ∗

1 ,φ
∗
1 ,µ2,φ2,σ2

κ2
),

π(µ2|y,z,µ∗
1 ,φ

∗
1 ,σ

2
κ1
,φ2,σ2

κ2
), π(φ2|y,z,µ∗

1 ,φ
∗
1 ,σ

2
κ1
,µ2,σ2

κ2
),

π(σ2
κ2
|y,z,µ∗

1 ,φ
∗
1 ,σ

2
κ1
,µ2,φ2).

These iterations provide the sample {σ2( j)
κ1 ,µ( j)

2 ,φ( j)
2 ,σ2( j)

κ2 ,z( j)}J
j=1.

Furthermore, at each iteration we generate

φ( j)
1 ∼ q(φ∗

1 ,φ1|y,z( j),µ∗
1 ,σ

2,( j)
κ1 ,µ( j)

2 ,φ( j)
2 ,σ2,( j)

κ2 )

where q(θ j,θ′
j|u) is the proposal density for the transition from θ j to θ′

j

conditional on u. As a result, the collection {φ( j)
1 ,σ2( j)

κ1 ,µ( j)
2 ,φ( j)

2 ,σ2( j)
κ2 ,

z( j)}J
j=1 is are multiple (correlated) draws from the distribution:

π(σ2
κ1
,µ2,φ2,σ2

κ2
,z|y,µ∗

1 ,φ
∗
1 )×q(φ∗

1 ,φ1|y,z,µ1,σ2
κ1
,µ2,φ2,σ2

κ2
).

4. Denoting the probability of a move by

ψ(φ1,φ′
1|u) = min

{
1,

f (y|φ∗
1 ,ς ,z)π(φ

∗
1 ,ς)

f (y|φ(g)
1 ,ς ,z)π(φ(g)

1 ,ς)

q(φ∗
1 ,φ

(g)
1 |y,ς ,z)

q(φ(g)
1 ,φ∗

1 |y,ς ,z)

}
,

where ς is the collection of parameters (µ∗
1 ,σ

2
κ1
,µ2,φ2,σ2

κ2
). The re-

quired marginal density at φ∗
1 , can now be estimated as

The Chib and Jeliazkov (2001) algorithm takes the following steps:
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• Run a reduced Gibbs sampling scheme on the following parameters {σ2
κ1
,µ2,

φ2,σ2
κ2
,z} and calculate σ2,(∗)

κ1 .
• Run a reduced Gibbs sampling scheme and calculate the φ∗

2 with the same
procedure describe before noticing that the φ∗

1 ,µ
∗
1 ,σ

2,(∗)
κ1 are fixed.

• Run a reduced Gibbs sampling scheme on the following parameters {µ2,σ2
κ2
,

z} and calculate µ∗
2 .

• Run a reduced sampling scheme Gibbs on the following parameters {σ2
κ2
,z}

and calculate σ2,(∗)
κ2 .

π̂(φ∗
1 |y) =

∑g ψ(φ(g)
1 ,φ∗

1 |y,z(g),µ∗
1 ,σ

2(g)
κ1 ,µ(g)

2 ,φ(g)
2 ,σ2(g)

κ2 )q(φ(g)
1 ,φ∗

1 |y,z(g),µ∗
1 ,σ

2(g)
κ1 ,µ(g)

2 ,φ(g)
2 ,σ2(g)

κ2 )

G · J−1 ∑ j α(φ∗
1 ,φ

( j)
1 |y,z( j),µ∗

1 ,σ
2( j)
κ1 ,µ( j)

2 ,φ( j)
2 ,σ2( j)

κ2 )
.

References
Bos, C. S., S. J. Koopman, and M. Ooms (2007): “Long Memory Modelling of In-

flation with Stochastic Variance and Structural Breaks,” Tinbergen Institute Dis-
cussion paper, N. 099/4.

Bos, C. S. and N. Shephard (2006): “Inference for Adaptive Time Series Models:
Stochastic Volatility and Conditionally Gaussian State Space Form,” Economet-
ric Reviews, 25, 219 – 244.
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