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Abstract An important issue in modelling economic time series is whether key unobserved com-
ponents representing trends, seasonality and calendar components, are deterministic or evolutive.
We address it by applying a recently proposed Bayesian variable selection methodology to an en-
compassing linear mixed model that features, along with deterministic effects, additional random
explanatory variables that account for the evolution of the underlying level, slope, seasonality and
trading days. Variable selection is performed by estimating the posterior model probabilities using
a suitable Gibbs sampling scheme.

The paper conducts an extensive empirical application on a large and representative set of
monthly time series concerning industrial production and retail turnover. We find strong support
for the presence of stochastic trends in the series, either in the form of a time-varying level, or,
less frequently, of a stochastic slope, or both. Seasonality is a more stable component, although
in at least 60% of the cases we were able to select one or more stochastic trigonometric cycles.
Most frequently the time variation is found in correspondence with the fundamental and the first
harmonic cycles.

An interesting and intuitively plausible finding is that the probability of estimating time-varying
components increases with the sample size available. However, even for very large sample sizes we
were unable to find stochastically varying calendar effects.
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1 Introduction

Economic time series, recorded at monthly time intervals, exhibit trends, seasonality and the
effects due to the aliasing of the weekly cycle in economic activity. Modeling and extracting these
components has represented an important problem in time series analysis. See Zellner (1978) Zellner
(1983) Nerlove et al. (1979), Harvey (1989) Hylleberg (1992), Peña et al. (2001), and Ghysels and
Osborn (2001), among others.

Figure 1 displays the index of industrial production for total manufacturing for Italy. The series
shows trending behaviour and a strong seasonal pattern. It is definitely less straightforward to be
able to spot the effect of trading days and moving festivals from the graph, but their contribution is
also relevant. An interesting question is whether these components can be adequately represented
by deterministic functions of time. For instance, the trend may be modelled by a time polynomial,
and the seasonal component by a combination of sine and cosine functions with pre-specified
frequencies. An alternative view is that these components are subject to random evolution, and
thus we need more elaborate stochastic processes to model them. The time series literature offers
methods for discriminating the deterministic generation hypothesis against the stochastic one.
One approach is performing the class of seasonal unit root tests proposed by Hylleberg et al.
(1990), which is based on the finite autoregressive representation of the series and tests for the
presence of roots with unit modulus and zero or seasonal phase in the autoregressive polynomial.
An alternative approach is to carry out the stationarity tests proposed by Canova and Hansen
(1995) and extended by Busetti and Harvey (2003). In this paper we propose to investigate the
issue as a model selection problem within a mixture model that encompasses both deterministic
and stochastic generation hypotheses. For this purpose, we use the stochastic model specification
search proposed by Frühwirth-Schnatter and Wagner (2010) (FS-W henceforth), and applied by
Grassi and Proietti (2014) and Proietti and Grassi (2012). The mixture model nests the different
specifications for the components, with the elements of the mixture representing the evolution
of a particular unobserved component, such as a stochastic level, a stochastic slope, a stochastic
trigonometric cycle defined at the fundamental frequency and at the harmonics. By setting up a
suitable Gibbs sampling scheme we can sample the indicators of the mixture, as well as the model
parameters and underlying state, and obtain a Monte Carlo estimate of the posterior probability for
the various different specifications. Deterministic components are obtained by imposing exclusion
restrictions. Hence, discriminating between deterministic and stochastic components amounts to
performing variable selection within a regression framework that is similar to that considered by
George and McCulloch (1993).

The central contribution of this paper lies with the empirical analysis, as we apply the method-
ology to a dataset consisting of 530 time series, with the aim of assessing the case for the presence
of stochastic trends, seasonals and trading days effects in economic time series. For each of the
series belonging to the dataset we perform model selection and evaluate the frequency by which
time evolving components were selected. Since the available series are characterised by different
lengths, we will be able to assess the role of the sample size in the probability of detecting time vari-
ation in the components. We find the evidence for the presence of stochastic trends overwhelming,
most frequently as a result of a time-varying level, whereas the probability of detecting stochastic
variation in the seasonal cycles depends crucially on the length of the available series and on the
nature of the prior.

The paper is structured as follows. The reference model will be presented in Section 2, which
also reviews the literature and contextualises the various specifications. Section 3 discusses how
stochastic model specification search can be applied for the selection of the components of the
linear mixed models. This hinges on a convenient reparameterization of the standard deviations
of the disturbances that drive the components. Section 4 discusses the state space representation
of the non-centered model and the prior specification. It also reports briefly the Gibbs sampling
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used for model selection and Bayesian estimation. After a brief description of the dataset, Section 5
presents the empirical results. In Section 6 we draw our conclusions. Appendix A provide a detailed
description of the Gibbs sampling outlined in Section 4.
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Fig. 1 Italy, Index of Industrial Production for Total Manufacturing. Source: Eurostat, Europa Database.

2 An encompassing linear mixed model with trend and seasonal effects

Let yt denote a time series observed at t = 1, 2, . . . , n. We focus on modelling yt by a linear mixed
model that accounts for a trend component, denoted µt, a seasonal component, St, a calendar
component, Ct, and an irregular disturbance term, ϵt, specified as follows:

yt = µt + St + Ct + ϵt, t = 1, . . . , n, ϵt ∼ NID(0, σ2
ϵ ). (1)

The trend component has a deterministic linear part, and a random part, specified as follows:

µt = µ0 + q0t+ σηµ̃t + σζÃt,

µ̃t = µ̃t−1 + η̃t, η̃t ∼ NID(0, 1),

Ãt = Ãt−1 + q̃t−1,

q̃t = q̃t−1 + ζ̃t, ζ̃t ∼ NID(0, 1),

(2)
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here µ̃t is a random walk component with starting value µ̃0 = 0 and unit size; the parameter ση ≥ 0

establishes the scale of this component. The process Ãt is an integrated random walk (such that
q̃0 = Ã0 = 0), driven by standard normal disturbances, accounting for the random evolution of the
slope; σζ ≥ 0 is the scale parameter for the component. The trend component (2) can be rewritten
equivalently using the following recursions:

µt = µt−1 + qt−1 + ηt, ηt ∼ NID(0, σ2
η),

qt = qt−1 + ζt, ζt ∼ NID(0, σ2
ζ ),

(3)

where qt is the slope component and we assume that ηt and ζt are mutually uncorrelated and
independent of ϵt and St (see Harvey, 1989 and West and Harrison, 1997). The trend model is
related to cubic spline smoothing (see Wecker and Ansley, 1983). If σζ = 0 the trend is a random
walk with constant drift; if ση = 0 and σζ > 0 the trend is an integrated random walk; finally,
if both ση = σζ = 0 the trend is linear deterministic. The seasonal component results from the
sum of six trigonometric cycles defined at the seasonal frequencies λj = 2πj/12, j = 1, . . . , 6: the
first is defined at the fundamental frequency, λ1 = π/6 (corresponding to a period of 12 monthly
observations) while the others are defined at the harmonic frequencies λj = 2πj/12, j = 2, . . . , 6,
(corresponding, respectively, to periods of 6 months, i.e. two cycles in a year, 4 months, i.e. three
cycles in a year, 3 months, i.e. four cycles in a year, 2.4, i.e. five cycles in a year, and 2 months).

In particular, St =
∑6

j=1 Sjt, with each Sjt made up of a deterministic and a random compo-
nent, for j = 1, . . . , 5,

Sjt = aj0 cosλjt+ bj0 sinλjt+ σj

(
ãjt cosλjt+ b̃jt sinλjt

)
,

ãjt = ãj,t−1 + ω̃jt, ω̃jt ∼ NID(0, 1), t = 1, . . . , n,

b̃jt = b̃j,t−1 + ω̃∗
jt, ω̃∗

jt ∼ NID(0, 1),

(4)

with starting values ãj0 = b̃j0 = 0, whereas, for j = 6,

S6t = a60(−1)t + σ6ã6t(−1)t

ã6t = ã6,t−1 + ω̃6t, ω̃6t ∼ NID(0, 1).
(5)

The parameters aj0 and bj0, j = 1, . . . , 6, determine the amplitude of the fixed trigonometric cycles,
whereas σj regulate the contribution of the random component. Using trigonometric identities, the
j-th seasonal cycle in equation (4) can be rewritten as Sjt = φt cos(λjt− ϑt), where

φt =

√√√√(aj0 + t−1∑
k=0

ω̃j,t−k

)2

+

(
bj0 +

t−1∑
k=0

ω̃∗
j,t−k

)2

is the time varying amplitude and

ϑt = tan−1

(
aj0 +

∑t−1
k=0 ω̃j,t−k

bj0 +
∑t−1

k=0 ω̃
∗
j,t−k

)
represents the phase shift. If σ1 = · · · = σ6 = 0, the seasonal component is the sum of six perfectly
deterministic cycles. The recursive representation of the j-th seasonal cycle is[

Sjt

S∗
jt

]
=

[
cosλj sinλj

− sinλj cosλj

] [
Sj,t−1

S∗
j,t−1

]
+

[
ϖj,t

ϖ∗
j,t

]
, j = 1, . . . , 5, (6)

and S6,t = −S6,t−1 +ϖ6t, where ϖjt ∼ NID(0, σ2
j ), j = 1, . . . , 6, ϖ∗

jt ∼ NID(0, σ2
j ), j = 1, . . . , 5.

These recursions hold for t = 1, . . . , n, with starting values Sj,0 = aj0 and S∗
j,0 = bj0. This
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representation is the one usually adopted in the time series literature (see Harvey, 1989 and West
and Harrison, 1997).

The calendar component, Ct, plays an important role for the class of economic time series that
we investigate in the paper; the component accounts for trading days (TD) effects and for moving
festivals. The former are related to the fact that the number of weekdays and weekend days is not
the same across the months. Let Djt denote the number of days of type j, j = 1, . . . , 7, occurring in
month t, and define xkt = Djt −D7t, k = 1, . . . , 6, which is a contrast between the number of days
of a particular type (Mondays, Tuesdays, . . . , Saturdays), and the number of Sundays occurring in
the same month. A time varying trading day component can be modelled as a regression component
with time-varying coefficients:

TDt =
∑6

k=1 ϕk0xkt + σν

(∑6
k=1 ϕ̃ktxkt

)
,

ϕ̃kt = ϕ̃k,t−1 + ν̃t, ν̃t ∼ NID(0, 1).
(7)

The coefficients associated with the regressors xkt evolve as independent random walks with start-
ing value ϕ̃k0 = 0. Obviously, if σν = 0 the trading days effect are time invariant. As far as moving
festivals are concerned, we focus on Easter and Labor Day (U.S. time series), and model their
effects defining explanatory variable measuring the proportion of 7 days before Easter (xEt) or
Labor Day (xLt) that fall in month t and subtracting their monthly long run average, computed
over the first 400 years of the Gregorian calendar (1583-1982). This treatment is quite standard in
the literature; see Bell and Hillmer (1983), among others, and the references therein. Finally, the
irregular component is a Gaussian white noise process, ϵt ∼ NID(0, σ2

ϵ ).
The linear mixed model proposed above sufficiently general to accommodate both deterministic

and stochastic trends, seasonals and calendar effects. The specification with σj constant across j
and σν̃ = 0 is referred to as the basic structural model; see Harvey (1989). The representation used
for the components is known as the non-centred (with respect to location and scale) representation;
Frühwirth-Schnatter and Wagner (2010) (FS-W henceforth) and Strickland et al. (2007) discuss
its advantages for Bayesian estimation of the model.

3 Bayesian stochastic specification search

A widely debated issue is whether trends, seasonals and trading day effects are deterministic or
stochastically evolving over time; this translates into the following main specification issues with
respect to the model set up in Section 2:

– when σζ = 0, ceteris paribus, the trend changes are white noise around a constant drift;
– when ση = σζ = 0, ceteris paribus, the trend is linear deterministic;
– when σj = 0, ∀j, ceteris paribus, seasonality is represented by a set of perfectly periodic deter-

ministic components;
– when σν = 0, ceteris paribus, the TD coefficients are time invariant.

In the econometric literature formal statistical tests are available for discriminating determin-
istic trends from stochastic ones. When seasonality is absent, unit root tests, see Dickey and Fuller
(1979) and Phillips and Perron (1988), test the null of integration versus a stationary alternative;
for the Bayesian approach to unit root testing see De Jong and Whiteman (1991), Koop (1992),
Sims (1988), Sims and Uhlig (1991), Phillips (1991), Schotman and van Dijk (1991), Phillips and
Perron (1994), among others. On the contrary, the tests proposed by Nyblom and Makelainen
(1983) and Kwiatkowski et al. (1992) take trend stationarity as the null hypothesis against the
alternative of integration. Unit root tests were extended to the seasonal case by Hylleberg et al.
(1990), whereas the extension for stationarity tests was proposed by Canova and Hansen (1995),
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and Busetti and Harvey (2003). Other important references on whether seasonality is stochastically
evolving over time include Hylleberg and Pagan (1997) and Koop and van Dijk (2000). The issue
as to whether trading days affects are time varying has been addressed by Dagum et al. (1993),
Dagum and Quenneville (1993), Bell and Martin (2004).

We can decide on the above main specification issues using the specification search methodology
proposed by FS-W. The approach starts with the linear mixed model representation presented in
Section 2 and proceeds to the reparameterization of the hyperparameters representing standard
deviations as regression parameters with unrestricted support, as it will be illustrated shortly.

It should be noticed that the linear mixed model is identified up to sign switches that operate on
both the standard deviations and on the underlying stochastic components. Consider, for instance
the trend component in equation (3): if we replace σηµ̃t by the product (−ση)(−µ̃t), i.e. we switch
the sign to both the elements, we obtain an observationally equivalent representation, characterised
by exactly the same likelihood. FS-W came up with the clever idea of replacing σηµ̃t with βµµ

∗
t ,

where, for t = 1, . . . , n,

βµµ
∗
t =

{
σηµ̃t, with probability 0.5

(−ση)(−µ̃t), with probability 0.5.

Hence, the sign switch is the outcome of a Bernoulli random experiment, with 50% success proba-
bility. According to this setting, the parameter βµ can take any real value and it would be suitable
to set up a normal prior for it centred in zero. The same reasoning can be applied to the pairs

(−σζ)(−Ãt) and (σζ)(Ãt), (−σj)
[
−
(
ãjt cosλjt+ b̃jt sinλjt

)]
and σj

(
ãjt cosλjt+ b̃jt sinλjt

)
,

and (−σν)
(
−
∑6

k=1 ϕ̃ktxkt

)
and σν

(∑6
k=1 ϕ̃ktxkt

)
. The likelihood function is symmetric around

zero along the parameter space and multimodal, if the true standard deviations are larger than
zero, as resulting from the identifiability issue. This feature will be later exploited to judge
whether the posteriors of ση, σζ , σj , j = 1, . . . , 6, and σν , are far away from zero or sufficiently
close to it. The random switch process can be formalised by defining independent Bernoulli ran-
dom variates with success probability 0.5, Bµ,BA,Bsj , j = 1, . . . , 6,BTD, so that we can use

the reparameterisation σηµ̃t = βµµ
∗
t , where βµ = (−1)Bµση, and µ∗

t = (−1)Bµ µ̃t,; similarly,

σζÃt = βAA
∗
t , where βA = (−1)BAσζ , A

∗
t = (−1)BAÃt, σj

(
ãjt cosλjt+ b̃jt sinλjt

)
= βsjU

∗
jt,

βsj = (−1)Bsjσj , U
∗
jt = (−1)Bsj

(
ãjt cosλjt+ b̃jt sinλjt

)
, for j = 1, . . . , 6, and

σν

(∑
k

ϕktxkt

)
= βTDΦ

∗
t , βTD = (−1)BTDσν , Φ

∗
t = (−1)BTD

(∑
k

ϕktxkt

)
.

As stated above, the reparameterisation aims at transforming a standard deviation into a regres-
sion parameter in a linear mixed model, so that the selection of an evolutive component is related
to the inclusion of a particular explanatory variable. The different specifications for the trend and
the seasonal components are obtained by imposing exclusion restrictions, so that discriminating
between deterministic and stochastic components amounts to performing variable selection within
the regression framework considered by George and McCulloch (1993). Although in principle we
could conduct variable selection for any of the explanatory variables in the model, for our purposes,
it will suffice to carry it out on the slope term q0t, on the random walk and integrated random

walk components µ∗
t , A

∗
t , on the six stochastic terms U∗

jt and on
(∑6

k=1 Φ
∗
ktxkt

)
. We thus intro-

duce nine binary indicator variables γµ, γA, γsj , j = 1, . . . , 6, γTD, taking value 1 if the random

effects µ∗
t , A

∗
t , Ujt, j = 1, . . . , 6,

(∑6
k=1 Φ

∗
ktxkt

)
are present and 0 otherwise, along with a binary

indicator for the linear trend component, δ, taking values (0,1) according to whether the term q0t
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is included in the model. The ten indicators can be further collected in the multinomial vector
Υ = (γµ, γA, γsj , j = 1, . . . , 6, γTD, δ).

As there are U = 10 possible variables to select, considering all the possible values of Υ , there
are K = 2U = 1024 possible models in competition, which are nested in the specification:

yt = µt + St + Ct + ϵt, ϵt ∼ NID(0, σ2
ϵ ),

µt = µ0 + δq0t+ γµβµµ
∗
t + γAβAA

∗
t ,

µ∗
t = µ∗

t−1 + η̃t, η̃t ∼ NID(0, 1),
A∗

t = A∗
t−1 + q̃t−1,

q̃t = q̃t−1 + ζ̃t, ζ̃t ∼ NID(0, 1),

St =
∑5

j=1(aj0 cosλjt+ bj0 sinλjt) + a60(−1)t +
∑6

j=1 γsjβsjU
∗
jt,

U∗
jt = A∗

jt cosλjt+B∗
jt sinλjt, j = 1, . . . , 5, U∗

6t = A∗
6t cosπt,

A∗
jt = A∗

j,t−1 + ω̃jt, ω̃jt ∼ NID(0, 1),
B∗

jt = B∗
j,t−1 + ω̃∗

jt, ω̃∗
jt ∼ NID(0, 1),

Ct =
∑6

k=1 ϕk0xkt + γTDβTD

(∑6
k=1 Φ

∗
ktxkt

)
+ ϕExEt + ϕLxLt,

Φ∗
kt = Φ∗

k,t−1 + ν̃t, ν̃t ∼ NID(0, 1),

(8)

where we have defined A∗
jt = (−1)Bsj ãjt, B

∗
jt = (−1)Bsj B̃jt, Φ

∗
kt = (−1)BTDϕ∗kt.

All the specifications will include the constant term, the set of 11 sine and cosine terms at the
seasonal frequencies, the six trading days regressors and the moving festivals regressors, so that the
most elementary model is a model with a constant level, deterministic seasonal and fixed calendar
effects, corresponding to Υ = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0). When Υ = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1), the model
features a deterministic linear trend and a perfectly deterministic seasonal component (assuming
there is no moving festival):

yt = µ0 + q0t+
∑5

j=1(aj0 cosλjt+ bj0 sinλjt) + a60(−1)t +
∑6

k=1 ϕk0xkt + ϵt. (9)

In turn, Υ = (1, 0, 1, 0, 0, 0, 0, 0, 0, 1) corresponds to a specification featuring a stochastic trend,
represented by a random walk with constant nonzero drift, fixed seasonals and calendar effects,
and a stochastic seasonal cycle defined at the fundamental frequency:

yt = µ0 + q0t+ σηµ̃t +
∑5

j=1(aj0 cosλjt+ bj0 sinλjt) + a60(−1)t+

σ1

(
ã1t cosλ1t+ b̃1t sinλ1t

)
+
∑6

k=1 ϕk0xkt + ϵt.
(10)

The different models will be labelled by

Mk, k = 1 +
U∑

u=1

2U−uΥu,

where Υu is the u-th element of the vector Υ , u = 1, . . . , U . For instance, Υ = (1, 0, 1, 0, 0, 0, 0, 0, 0, 1)
is model M642.
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4 Statistical Treatment

Depending on the value of Υ , the models nested in (8) admit the following state space representa-
tion:

yt = x′δ,tρδ + z′γ,tαγ,t + ϵt, ϵt ∼ NID(0, σ2
ϵ ), t = 1, . . . , n,

αγ,t = Tγαγ,t−1 +Rγuγ,t, uγ,t ∼ NID(0, I),
(11)

where αγ,0 = 0, and

xδ,t = (1, δt, cosλ1t, sinλ1t, . . . , cosπt, x1t, . . . , x6t, xEt, xLt)
′,

ρδ = (µ0, q0, a10, b10, . . . , a60, ϕ1, . . . , ϕ6, ϕE , ϕL)
′,

zγ,t = (γµβµ, γAβA, 0, γs1βs1 cosλ1t, γs1βs1 sinλ1t, . . . , γs6βs6 cosπt,
γTDβTDx1t, . . . , γTDβTDx6t)

′,
αγ,t = (µ∗

t , A
∗
t , q̃t, A

∗
1t, B

∗
1t, . . . , A

∗
6t, Φ

∗
1t, . . . , Φ

∗
6t),

Tγ =


1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 I12

 , Rγ =


1 0 0
0 0 0
0 1 0
0 0 I12

 .

In the sequel we will denote by α the collection of the latent states {αγ,t, t = 0, 1, . . . , n},
and by ψΥ the appropriate subset of the parameters (µ0, q0, a10, b10, . . . , a60, ϕ10, . . . , ϕ60, βµ,
βA, βs1, . . . , βs6, βTD) that enter the model for a particular value of Υ .

In matrix notation, we write the model as y = ZΥψΥ + ϵ, where y and ϵ are vectors stacking the
values {yt} and {ϵt}, respectively, and the generic row of matrix ZΥ contains the relevant subset
of the explanatory variables.

Model selection entails the computation of the posterior model probabilities π(Mk|y) ∝ π(Mk)
π(y|Mk), where y denotes the collection of time series values {yt, t = 1, . . . , n}. The evaluation
of the marginal likelihood π(y|Mk) for each model is computationally intensive; in fact, it would
be unfeasible to compute the posterior model probabilities for each of the 1024 specifications and
select the specification characterised by the largest. It is feasible instead to draw samples from the
posterior distribution of Υ given the data by MCMC methods, as by a suitable design of the priors
the full conditional posterior distribution of the multinomial vector Υ is available in closed form. A
suitable Gibbs sampling (GS) scheme can in fact be devised which enables Υ to be sampled along
with the model parameters and states. After the GS scheme has converged, we estimate π(Υ |y),
by the proportion of times a particular specification was drawn.

The prior has the following conditional independence structure:

π(Υ, ψΥ , σ
2
ϵ , α) = π(Υ )π(σ2

ϵ )π(ψΥ |Υ, σ2
ϵ )π(α|Υ ),

where individual factors are given as follows.

– As far as π(Υ ) is concerned, we write π(Υ ) = π(γµ)π(γA) · · ·π(γTD)π(δ) and, following Ley and
Steel (2009), we adopt a hierarchical prior for the probability of including a specific component.
For instance, we write π(γµ = 1) = ς, where ς is a beta random variable with hyperparameters
ha, hb > 0, ς ∼ B(ha, hb), and the same prior is specified for the other indicator variables. We
set ha = 1, as in Ley and Steel (2009), and hb = 4, which corresponds to an expected model
size, M̄ = 10 1

1+hb
equal to 2 (there are 10 variables to select from).

Hence, the prior puts most mass on the null model. This is a mildly conservative prior that
requires some data evidence to favour the inclusion of regressors. We compare the results with
the alternative prior assumption that the models Mk, k = 1, ...,K, are equally likely a priori,
that is π(Υ ) = 2−10, which amounts to setting ς = 0.5, so that the expected model size is
M̄ = 5.
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– For σ2
ϵ we adopt a hierarchical inverse Gamma (IG) prior: σ2

ϵ ∼ IG(c0, C0), where C0 ∼
G(g0, G0), G(·) denoting the Gamma distribution, c0 = 2.5, g0 = 5, andG0 = g0/[0.75Var(yt)(c0
−1)]. The hierarchical prior is intended to make the posteriors less sensitive to the choice of
the hyperparameters of the IG distribution.

– Denoting the i-th element of the parameter vector ψΥ by ψΥi , i = 1 . . . , p, we set π(ψΥ |σ2
ϵ ) =∏p

i=1 π(ψΥi |σ2
ϵ ), where all the priors are conjugate. For instance, q0|σ2

ϵ ∼ N(0, d0σ
2
ϵ ), etc.

For the constant term and the coefficients aj0, j = 1, . . . , 6, bj0, j = 1, . . . , 5, ϕk0, k = 1, . . . , 6
we adopt the uninformative priors π(µ0|σ2

ϵ ) ∝ 1.
For the remaining parameters, βµ, . . . , βTD, two prior specifications will be considered:
1. Fixed scale priors. A distinctive feature of the FS-W methodology is the adoption of

Gaussian priors, centered at zero, for the parameters βµ, βA, βsj , βTD:

βµ|σ2
ϵ ∼ N(0, κµσ

2
ϵ ), βA|σ2

ϵ ∼ N(0, κAσ
2
ϵ ),

βsj |σ2
ϵ ∼ N(0, κjσ

2
ϵ ), j = 1, . . . , 6, βTD|σ2

ϵ ∼ N(0, κTDσ
2
ϵ ).

Not only this allows conjugate analysis, but FS-W show that inference will benefit substan-
tially from the use of a normal prior for e.g. βµ = ±ση, βµ|σ2

ϵ ∼ N(0, κµσ
2
ϵ ), instead of the

usual inverse Gamma prior for the variance parameter σ2
η.

2. Fractional priors. We also consider the fractional prior of O’Hagan (1995), which, in the
context of model (11), see Frühwirth-Schnatter and Wagner (2010), is defined as: p(ψΥ |
σ2
ϵ ) ∝ p(y | ψΥ , σ

2
ϵ )

b, where b > 0 is a fraction between 0 and 1, close to zero. The fractional
prior can be interpreted as the posterior of a non-informative prior and a fraction b of the

data y and amount in our case to setting: ψΥ | σ2
ϵ ∼ N

(
(Z

′

ΥZΥ )
−1(ZΥ )y, σ

2
ϵ (Z

′

ΥZΥ )
−1/b

)
.

– The prior distribution for α is given directly by the Gaussian dynamic model (11):

π(α|Υ ) = π(αγ0)
n∏

t=1

π(αγt|αγ,t−1),

with αγt|αγ,t−1 ∼ N(Tγαγ,t−1, RγR
′
γ) and αγ,0 = 0.

The estimation of the posterior density π(Υ, ψΥ , σ
2
ϵ , α|y) is performed by a Gibbs sampling

scheme that can be sketched as follows. After specifying a set of initial values Υ (0), σ
2(0)
ϵ , α(0), ψ

(0)
Υ ,

the following steps are iterated for i = 1, 2, . . . ,M :

a. Draw Υ (i) ∼ π(Υ |α(i−1), y);

b. Draw σ
2(i)
ϵ ∼ π(σ2

ϵ |Υ (i), α(i−1), y);

c. Draw ψ
(i)
Υ ∼ π(ψΥ |Υ (i), σ

2(i)
ϵ , α(i−1), y);

d. Draw α(i) ∼ π(α|Υ (i), σ
2(i)
ϵ , ψ

(i)
Υ , y).

The above complete conditional densities are available, up to a normalizing constant, from the
form of the likelihood and the prior. Details are provided in appendix 6.

5 Empirical Results

Our application deals with data set consisting of 530 monthly time series for 10 Euro Area countries,
the UK, and the US, referring to the index of industrial production and retail turnover. This is
a large and representative sample, with 379 series referring to the index of industrial production
(IIP) and 151 to the index of retail turnover (RT). The breakdown of the series by country and
their sample period is available in Table 1.



Stochastic trends and seasonality in economic time series 9

Table 1 Breakdown of the series by country, sample period, number of time series.

Index of industrial production Index of Retail sales

Country Sample period Number of series Sample period Number of series
Austria 1996.1-2010.12 28 1999.1-2010.12 6
Belgium 1995.1-2010.12 27 1998.1-2010.12 15
Finland 1990.1-2010.12 20 1995.1-2010.12 14
France 1990.1-2010.12 28 1994.1-2010.12 14
Germany 1991.1-2010.12 28 1994.1-2010.12 15
Greece 2000.1-2010.12 29 1995.1-2010.12 13
Italy 1990.1-2010.12 27 2000.1-2010.12 14
Netherlands 1990.1-2010.12 22 1996.1-2010.12 9
Portugal 1995.1-2010.12 20 1995.1-2010.12 9
Spain 1980.1-2010.12 28 2000.1-2010.12 14
UK 1990.1-2010.12 28 2000.1-2010.12 14
US 1947.1-2010.12 94 1992.1-2010.12 14

For the IIP we consider series from Sectors B (Mining and quarrying), C (Manufacturing), D
(Energy). The series for the manufacturing sectors are from those identified by two digits of the
NACE statistical classifications of economic activities (sectors C1-C31). For the US we consider
the 63 series for Market and Industry Group and the 32 series for Special Aggregates and Selected
Detail (see http://www.federalreserve.gov/releases/g17/table1_2.htm for more details).

For retail turnover we focus on the series available with code starting with G47 (Retail trade,
except of motor vehicles and motorcycles). The sources of the series are Eurostat (http://epp.
eurostat.ec.europa.eu/portal/page/portal/eurostat/home/), the Federal Reserve and the
US Census Bureau. All the series are analysed in logarithms.

5.1 Stochastic model specification search results

Stochastic model specification search was conducted using the hierarchical prior on the model space,
discussed in Section 3, implying an expected model size consisting of 2 random effects (in addition
to the time-invariant explanatory variables). As far as the priors on the regression parameters are
concerned, we considered two values for the scale factors d0 = κµ = κA = κj = κTD = κ, namely
κ = 10 and κ = 100, and two values for the fraction b of the fractional prior described in the
previous section, namely 10−4 and 10−5.

The Gibbs Sampling scheme was iterated 100,000 times, including a burn–in sample of 20,000
draws. Hence, all the results presented refer to 80,000 MCMC draws. For each series yit, i =
1, . . . , N, we recorded the 10 modal models, denoted Υik(r), r = 1, . . . , 10, visited by the GS
scheme, as well as the number of times they were visited. The estimated posterior probability of
the model are

π̂ik(r) =
cik(r)

ci
,

where cik(r) denotes the number of times model Mk was selected for series i, whereas ci is the total
number of draws (which is actually invariant with i, ci = 80, 000).

Limiting ourselves to the first 10 modal models is motivated by storage constraints, and is not
at all restrictive. For instance, in the fixed-scale prior case with κ = 100 the median percentage
of draws absorbed by the top 10 modal models across the 530 series amounts to 99.41%, and the

http://www.federalreserve.gov/releases/g17/table1_2.htm
http://epp.eurostat.ec.europa.eu/portal/page/portal/eurostat/home/
http://epp.eurostat.ec.europa.eu/portal/page/portal/eurostat/home/
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distribution of
∑10

r=1 π̂ik(r), i.e. of the total probability attached to the 10 modal specification,
turns out to be highly concentrated around 100%, as shown by figure 2.

65.0 67.5 70.0 72.5 75.0 77.5 80.0 82.5 85.0 87.5 90.0 92.5 95.0 97.5 100.0

Fig. 2 Distribution of
∑10

r=1 π̂ik(r) for the 530 series in our dataset.

The output of the stochastic model specification search are the 5,300 indicator vectors

Υik(r) =
(
γµ,k(r), γA,k(r), . . . , δk(r)

)
, i = 1, . . . , 530, r = 1, . . . , 10,

referring to the 10 modal models for the 530 time series and the associated estimated posterior
probabilities π̂ik(r). Their distribution is displayed in figure 3, separately for the two prior as-
sumptions, in the model space: the horizontal axis refers to Mk, k = 1, . . . , 1024, and each bar is
proportional to the average number of times the corresponding specification was visited per series.

The empirical evidence can be summarised as follows:

– The posterior distribution of Υi is highly concentrated around some modal models; in partic-
ular, model M513, corresponding to Υ = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0), plays a prominent role. This
specification features a stochastic level, no slope and a fixed seasonal pattern. Another impor-
tant specification in the case of fixed-scale priors is M514, which is as the same as M513, but
with a time-invariant non zero slope.

– The heterogeneity of the distribution {Mik(r), πik(r), i = 1, . . . , 530, r = 1, . . . , 10} varies ac-
cording to the prior assumptions: typically, it is smaller for less informative priors and if a
fractional prior is taken.

– The empirical evidence for a stochastically evolving seasonal component is larger for the frac-
tional priors. In particular, when b = 10−4, the modal model is M1022, corresponding to
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κ = 100 
κ =10 

0 100 200 300 400 500 600 700 800 900 1000

0.2

0.4

0.6

0.8

1.0

Model 513: ϒ= (1, 0, 0, 0, 0, 0, 0, 0, 0, 0)

Model 641: ϒ= (1, 0, 1, 0, 0, 0, 0, 0, 0, 0)

Model 765: ϒ= (1, 0, 1, 1, 1, 1, 1, 0, 0, 0)

Model 514: ϒ= (1, 0, 0, 0, 0, 0, 0, 0, 0, 1)

Model 257: ϒ= (0, 1, 0, 0, 0, 0, 0, 0, 0, 0)

Fixed−Scale Prior

κ = 100 
κ =10 

Fig. 3 Distribution of selected models in the model space. The horizontal axis refers to Mk, k = 1, . . . , 1024. Each
symbol is proportional to the average number of times the corresponding specification was visited per series. The
corresponding Υ vector is also reported.

Υ = (1, 1, 1, 1, 1, 1, 1, 1, 0, 1). This model features stochastic level, slope and seasonals, and
a fixed calendar component.

– Specifications featuring some but not all stochastically evolving seasonal cycles are non ignor-
able: for instance, models M641 and M765 play an important role and are such that only the
fundamental (M641) cycle and all the cycle except that defined at the Nyquist frequency (M765)
are time-varying.

To obtain an estimate of the marginal probabilities that a particular component is present in
series i we compute

π̂i =

∑10
r=1 cik(r)Υik∑10
r=1 cik(r)

,

where, with obvious notation, cik(r) is the number of times model Mk was selected as the r-th
modal model for series i. This is a 1 × 10 vector containing the estimated probability that each
component is present in the first ten modal specifications that were recorded, as it amounts to
summing up the values cik(r)/

∑10
r=1 cik(r) over those specifications which contain the component,

i.e. for which the elements of Υ are equal to one. However, as we have illustrated, the modal
specifications absorb the quasi totality of the GS draws, so that the vector π̂i can be thought of
as an approximation to the true marginal probabilities given the data.

The distribution of the π̂i, i = 1, . . . , 530, can be effectively represented graphically using a
biplot; see Gower and Hand (1996) and Greenacre (2010). The latter is a two-dimensional display
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that is based on the singular value decomposition of the 530× 10 matrix Π, obtained by stacking
the row vectors π̂i.

In the graph, obtained using the BiplotGUI package, described in La Grange et al. (2009), the
individual series are represented as points and the columns are represented as calibrated axes, as
advocated by Gower and Hand (1996). For simplicity we only present the case referring to the
fixed-scale prior with κ = 100. Points are marked by a circle if they refer to the IIP series, whereas
the RT series are marked by a square.

The interpretation of the biplot is such that (the best rank 2 approximation to) the individual
probabilities π̂ik(r) are obtained from the orthogonal projection of the point representing the series
on the calibrated axis representing the r-th component. Moreover, the Euclidean distances among
the points are an approximation to the Mahalanobis distances between the vectors π̂i, so that series
that follow similar models are represented close in the plane. The calibrated axes are defined by
the eigenvectors corresponding to the two largest eigenvalues of the covariance matrix of Π. The
orientation of the axes can be gauged from the position of the labels. For instance slope and level
span essentially the same subspace, which we can label the trend subspace, but move along opposite
directions, which is a consequence of the negative correlation between the corresponding columns of
the matrix Π. Also, the trend subspace is almost orthogonal to the space spanned by the seasonal
components. This is interesting, and conforms our expectation that the probability of detecting
a time-varying seasonality should not depend on the trend; on the contrary, the probability of
detecting a time-varying slope is at odds with that of detecting a stochastic level.

The cluster of points in the lower left part of the graph refers to series for which the level is
stochastic, the slope is fixed (the probability of selecting this component is well below the average)
and seasonality is stable, i.e. the projection of those points along the Seas1-6 axes is low. This is
the most numerous cluster. The points to the left will display stochastic seasonality as well. On the
contrary, the set of points on the top left corner are characterised by low probabilities for stochastic
level and seasonal cycles, but the probability that the slope is stochastic is high. The biplot also
illustrates that most industrial production series feature a stochastic level and a fixed slope.

The vectors π̂i can be further aggregated across the series to yield:

π̂ =

N∑
i=1

π̂iwi, wi =

10∑
r=1

cik(r)/

N∑
i=1

10∑
r=1

cik(r).

Here the weight is needed to adjust for the fact that the number of draws pertaining to the first
10 modal models varies with the series.

The elements of this vector are presented in Table 2 for the 379 industrial production series
(IIP), the 151 retail turnover series (RT) and for all the 530 series. The main result is that the
marginal probability of having a stochastic level component is very high, and it is much higher for
the industrial production series. The probability of having a stochastic slope is higher for the retail
series, and it is very low for the IIP series, which confirms the patterns displayed in the biplot.
Thus, we find that the trend component in the IIP series has a different characterisation than the
RT series. The marginal probability of a stochastically time-varying seasonal trigonometric cycle
is always less than 50% and tends to decrease with j, as order of the harmonic cycles increases.
Time-varying trading day effects are never detected.

The probability of a stochastically evolving seasonal component is larger if the prior is less diffuse
(i.e. if κ and the fraction b are smaller) and more generally if a fractional prior is considered.

Additional important stylized facts are obtained by presenting the joint frequencies by which
given stochastic components are detected. In particular, we focus on the joint frequency distribution
for the indicators γµ, γA and I(

∑
j γj > 0); the latter is the indicator for the presence of at least

one stochastic cycle at anyone of the seasonal frequencies. We refer for simplicity to the fixed-scale
prior case with κ = 100. This analysis is presented in table 3, separately for the complete dataset
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Fig. 4 Principal components biplot of π̂i, i = 1, . . . , 530. Circles represent industrial production (IIP) series, and
squares represent retail sales (RT) series. The orientation of the calibrated axes is provided by the position of the
labels.

(Total, 530 series), the industrial production series (IIP, 379 series), the retail turnover series (RT,
151 series), the subset of very long time (VL) series, consisting of the US industrial production
series (for which more than sixty years of data are available), the subset of long time series (L),
featuring 195 series having more less than 30 but more that 18 years of data; (all the series except
the US RT series belong to the IIP group), the subset of medium sized series (M), featuring more
than 12 and no more than 18 years of data (149 series are in this group), and finally the subset of
short time series, with at most 12 years of data (this subsets comprises 96 time series).

The table reports the proportion of the MCMC draws referring to the 10 modal specifications
that featured a particular combination of the indicators. A stochastic trend (either γµ = 1 or
γA = 1, or both) is detected in most occurrences; only in the case of short time series a completely
deterministic trend was found in 2.54% of the draws. The modal representation for short time series
is (1,0,0), i.e. it features a stochastic level, but deterministic slope and seasonals. If we consider
the entire dataset, the modal representation (42.62%) features a stochastic level and at least one
stochastic seasonal cycle.

An interesting finding is that the frequency by which stochastic slope and seasonality are de-
tected depends inversely on the sample size. The percentage of specifications featuring all three
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Table 2 Probability of identifying a particular component for different prior specification.

Fixed-Scale Prior, κ = 100 Fixed-Scale Prior, κ = 10

Component of Υ IIP RT Total IIP RT Total
Stochastic Level γµ 0.93 0.62 0.84 0.92 0.57 0.82
Stochastic Slope γA 0.17 0.39 0.23 0.17 0.42 0.24
Stochastic Seas1 γs1 0.34 0.42 0.36 0.38 0.46 0.40
Stochastic Seas2 γs2 0.35 0.41 0.37 0.40 0.45 0.41
Stochastic Seas3 γs3 0.31 0.36 0.32 0.38 0.41 0.39
Stochastic Seas4 γs4 0.25 0.36 0.28 0.31 0.43 0.35
Stochastic Seas5 γs5 0.19 0.26 0.21 0.24 0.30 0.26
Stochastic Seas6 γs6 0.14 0.18 0.15 0.17 0.21 0.18
Time-Varying Calendar γTD 0.00 0.00 0.00 0.00 0.00 0.00
Drift δ 0.35 0.49 0.39 0.34 0.38 0.35

Fractional Prior b = 10−5 Fractional Prior b = 10−4

Component of Υ IIP RT Total IIP RT Total
Stochastic Level γµ 0.95 0.75 0.89 0.93 0.71 0.87
Stochastic Slope γA 0.32 0.54 0.38 0.38 0.64 0.46
Stochastic Seas1 γs1 0.42 0.66 0.49 0.50 0.74 0.57
Stochastic Seas2 γs2 0.52 0.72 0.58 0.60 0.78 0.65
Stochastic Seas3 γs3 0.53 0.71 0.58 0.60 0.78 0.65
Stochastic Seas4 γs4 0.48 0.74 0.55 0.55 0.79 0.62
Stochastic Seas5 γs5 0.43 0.67 0.50 0.52 0.73 0.58
Stochastic Seas6 γs6 0.33 0.57 0.40 0.42 0.66 0.49
Time-Varying Calendar γTD 0.00 0.00 0.00 0.00 0.00 0.00
Drift δ 0.35 0.49 0.39 0.43 0.56 0.47

Table 3 Joint frequency distribution of the three indicators γµ, γA and I(
∑

j γj > 0) for the complete dataset

(Total), the industrial production series subset (IIP), the retail turnover series subset (IIP), the subsets consisting
of very long time series (VL), long time series (L), medium sized (M), and short time series (S).

γµ γA I(
∑

j γj > 0) Total IIP RT VL L M S

0 0 0 0.44 0.13 1.22 0.00 0.00 0.00 2.54
0 0 1 0.93 0.14 2.90 0.00 0.39 0.01 4.85
0 1 0 4.49 2.20 10.27 0.00 1.18 7.66 10.70
0 1 1 9.35 3.82 23.26 1.26 8.39 18.19 4.64
1 0 0 32.89 36.01 25.03 25.11 22.31 39.57 49.30
1 0 1 42.62 46.92 31.78 32.69 64.21 33.39 26.49
1 1 0 1.97 2.44 0.78 9.62 0.42 0.13 0.34
1 1 1 7.31 8.32 4.77 31.32 3.11 1.05 1.15

random components (corresponding to the triple (1,1,1) of the indicators) is 31.32 for the U.S.
industrial production series, which are all classified as VL (very long). This percentage decreases
quite rapidly as the sample sizes decreases. The different results for the IIP and RT subsets may
be also the consequence of the different sample sizes of the series making up the two groups, the
RT series being much shorter.

A further analysis that we conducted was to assess the sensitivity of the results to different prior
model probabilities assumptions. In particular, we considered the fixed-scale prior with κ = 100,
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but assuming that the models are equally likely a priori (yielding a larger expected model size a
priori). The heterogeneity of the posterior model distribution decreased, as can be seen also by
comparing1 the estimated selection probabilities, displayed in table 4 with those reported in the
upper left panel of table 2.

Table 4 Probability of identifying a particular component estimated using a uniform prior on the model space.

Component of Υ IIP RT Total
Stochastic Level γµ 0.93 0.60 0.84
Stochastic Slope γA 0.18 0.43 0.25
Stochastic Seas1 γs1 0.39 0.46 0.41
Stochastic Seas2 γs2 0.42 0.47 0.43
Stochastic Seas3 γs3 0.41 0.44 0.42
Stochastic Seas4 γs4 0.34 0.47 0.37
Stochastic Seas5 γs5 0.24 0.34 0.27
Stochastic Seas6 γs6 0.18 0.23 0.19
Time-Varying Calendar γTD 0.00 0.00 0.00
Drift δ 0.34 0.38 0.35

Finally to check MCMC convergence we can run the first 1000 draws, for each time series, both
from a full (Υ = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)) and a sparse (Υ = (1, 1, 0, 0, 0, 0, 0, 1, 1, 0)) model and
we can check, if the selected model and the corresponding posterior probabilities are more or less
the same. Table 5 reports an experiment that refers to a subset of the series available, namely the
general index for each country. The table reports the first (M1) and second (M2) selected model in
the unrestricted (S1) and restricted (S2) case. The table shows that the procedure is quite reliable,
in fact the selected models are the same and the corresponding posterior probabilities are almost
the same in both cases.

5.2 Illustrative example

After getting to the broad picture emerging from our analysis, we discuss the results for the Italian
industrial production series plotted in figure 1. The series is fairly representative and serves to
illustrate the sensitivity to the prior assumptions, amongst other things. In table 6 we report the
first three models that were visited more frequently by the Gibbs sampler; the last column reports
the posterior probability of the model, estimated by MCMC as π̂ik.

The evidence is overwhelmingly in favour of a stochastic level component, as, regardless of our
prior assumption, the random walk component µ∗

t is featured by all the modal specifications. There
is little or no evidence for the presence of a slope component: a stochastic slope is never selected,
whereas a constant slope is featured e.g. by specificationM514. As for stochastic seasonality, the se-
lection results depend on the nature of the prior. The evidence for an evolutive seasonal component
is strong for the fractional prior and rather weak for the fixed scale prior. The choice of the prior
also affects the distribution of the estimated posterior probabilities, which is more heterogeneous
for the fractional prior, a circumstance that we have already observed.

Do these differences matter for characterising the time series properties of the data? To address
this issue, figure 5 compares the posterior mean of the trend, seasonal and calendar components
estimated by Gibbs sampling for modelsM513 (selected under a fixed-scale prior with κ = 100) and

1 The results are based on 80,000 draws, with burn-in sample of 20,000.
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Table 5 Sensitivity to starting values. S1 represent the full model, corresponding to Υ = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1).
S2 represent the null restricted model (e.g model 791) corresponding to Υ = (1, 1, 0, 0, 0, 0, 0, 1, 1, 0). Finally M1

and M2 represent the first and the second most selected model. The percentage of the selected model is reported in
parenthesis. Prior specification κ = 100.

Austria Belgium Finland France

M1 M2 M1 M2 M1 M2 M1 M2

S1 514
(56.20)

513
(25.50)

553
(49.39)

569
(19.98)

641
(53.54)

130
(40.08)

513
(71.03)

514
(28.70)

S2 514
(57.60)

513
(34.50)

553
(54.93)

569
(22.08)

641
(51.12)

130
(42.41)

513
(72.40)

514
(27.21)

Germany Greece Italy Netherlands

M1 M2 M1 M2 M1 M2 M1 M2

S1 513
(71.87)

514
(27.16)

257
(70.10)

258
(26.30)

513
(51.00)

529
(23.60)

513
(70.68)

514
(28.61)

S2 513
(67.78)

514
(31.37)

257
(70.68)

258
(25.74)

513
(46.10)

529
(22.70)

513
(70.80)

514
(28.50)

Portugal Spain UK US

M1 M2 M1 M2 M1 M2 M1 M2

S1 513
(69.26)

514
(27.20)

421
(36.05)

417
(21.30)

641
(72.46)

642
(22.10)

889
(23.60)

865
(18.17)

S2 513
(58.10)

514
(40.20)

421
(42.30)

417
(21.64)

641
(69.90)

642
(23.30)

889
(26.23)

865
(18.53)

M569 (selected under a fractional prior with b = 10−5). The main differences arise with respect to
the seasonal component, which towards the end of the sample is subject to an amplitude reduction
in the fractional case. The estimated trend and the calendar components do not vary relevantly,
implying that the two specifications will differ also for the estimated contribution of the irregular
component. As a result, the different specifications may impact on the seasonally adjusted series.

5.3 Convergence and Diagnostics

The specification selected according to its posterior model probability is estimated by MCMC and
the convergence of the chain can be assessed by means of the Geweke statistic. In this subsection we
will consider the case of a fixed scale prior with κ = 100. Let ψ(i) denote the i-th draw of a generic
parameter ψ produced by the GS scheme, after the initial burn-in period. Let also ψ̄a denote the
average of the first Ma draws, ψ̄b that of the last Mb draws, which are taken sufficiently remote
to prevent any overlap, the Geweke’s convergence statistic (Geweke, 1992, 2005) is defined as

CG =
ψ̄a − ψ̄b√

VL,a/Ma + VL,b/Mb

,

where

VL,k = c0,k + 2

Mk−1∑
j=1

wjcj,k, k = a, b,

is the long run variance of the parameter sample path for the Mk draws, based on a weighted
combination of the autocovariances of the draws at lag j, cj,k, with weights wj that are decreasing
in j and ensure that VL,k ≥ 0. A customary choice is the set of linearly declining weights wj =
l−j
l+1 , j = 1, . . . , l, where l is the truncation parameter.
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Table 6 Estimation results for the Italian Industrial Production Total Series.

Fixed-Scale Prior, κ = 100
Mk γµ γA γs1 γs2 γs3 γs4 γs5 γs6 γTD δ 100× π̂ij
513 1 0 0 0 0 0 0 0 0 0 50.93
529 1 0 0 0 0 1 0 0 0 0 23.59
514 1 0 0 0 0 0 0 0 0 1 13.45

Fixed-Scale Prior, κ = 10
Mk γµ γA γs1 γs2 γs3 γs4 γs5 γs6 γTD δ 100× π̂ij
529 1 0 0 0 0 1 0 0 0 0 41.12
513 1 0 0 0 0 0 0 0 0 0 22.05
530 1 0 0 0 0 1 0 0 0 1 18.10

Fractional Prior, b = 10−5

Mk γµ γA γs1 γs2 γs3 γs4 γs5 γs6 γTD δ 100× π̂ij
569 1 0 0 0 1 1 1 0 0 0 24.88
570 1 0 0 0 1 1 1 0 0 1 20.50
762 1 0 1 1 1 1 1 0 0 1 11.43

Fractional Prior, b = 10−4

Mk γµ γA γs1 γs2 γs3 γs4 γs5 γs6 γTD δ 100× π̂ij
765 1 0 1 1 1 1 1 1 0 0 28.22
761 1 0 1 1 1 1 1 0 0 0 20.61
633 1 0 0 1 1 1 1 0 0 0 7.94

In our particular case, we set Ma = 20, 000, Mb = 40, 000 and l = 100 for all the parameters.
Recalling that the total number of MCMC draws is 80,000, the first block represents the first 25%
of the draws, whereas the second is formed by the last 50% of the draws; the two blocks are thus
well separated.

Table 7 refers to a subset of the series available, namely the general index for each country, and
reports, for each of the parameters of the modal specification, the Geweke convergence diagnostic,
CG, and the simulation inefficiency factors (SIF), calculated according to Kim et al. (1998) as

R̂Bm = 1 + 2
Bm

Bm − 1

Bm∑
j=1

K(j/Bm)ρ̂(j), (12)

where K(·) the Parzen kernel, Bm is the bandwidth, chosen equal to 1500, and ρ̂(j) the j-th order
autocorrelation of the draws ψ(i). Large values imply that the draws are strongly and positively
autocorrelated, so that the mixing of the chain is very slow and the information content of an
additional draw is small.

The convergence statistics are highly satisfactory; in particular, with only a few exceptions
(referring e.g. to a40 and a50 for IIP Germany, γδ for IIP Austria, etc.), CG is almost never
significant. Also, SIF is small in most cases; it is typically larger for the initial level µ0.

As a misspecification check we compute the Ljung-Box test statistic of the null of no resid-
ual autocorrelation. The statistic is based on the pseudo-innovations vt = yt − ỹt|t−1, where

ỹt|t−1 = E(yt|y1, . . . , yt−1, ψ̃Υ ), and ψ̃Υ is the posterior mean of the parameters. The pseudo-
innovations are computed by the Kalman filter, see Durbin and Koopman (2012). Obviously, vt
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Fig. 5 Italian Index of Industrial Production, Total. Posterior mean of the trend, seasonal and calendar components
estimated by Gibbs sampling for models M513 (selected under a fixed-scale prior with κ = 100) and M569 (selected
under a fractional prior with b = 10−5.

is not a true innovation sequence, which is yt − E(yt|y1, . . . , yt−1). The latter could be computed
by a particle filter (see e.g. Durbin and Koopman (2012), chapter 12), which however entails be-
ing able to simulate from π(ψΥ |y1, . . . , yt−1). The test is based on the first 24 autocorrelations of
the standardized innovations, where again the variance of the pseudo-innovations is given by the
Kalman filter. Table 7 reports the p-value based on the chi-squared null distribution. Only for three
series the null is rejected at the 5% level. We can tentatively conclude that the model is sufficiently
general to capture the evolution of most of the series without any major misspecification.

6 Conclusions

An important issue in modelling economic time series is whether the most relevant unobserved com-
ponents, representing trends, seasonality and calendar components, are deterministic or evolutive.
Adopting the approach by Frühwirth-Schnatter and Wagner (2010), we argue that deciding upon
this issue amounts to performing Bayesian variable selection in a linear mixed models that fea-
tures, along with deterministic linear trends, trigonometric seasonals and trading days regressors,
additional random explanatory variables that account for the evolution of the underlying level,
slope, seasonality and trading days. Variable selection is performed by estimating the posterior
model probabilities by MCMC, via a Gibbs sampling scheme that samples the indicator variables
for the different specifications, along with the parameters and the unobserved states.
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The paper has conducted an extensive empirical application on a large and representative set of
monthly time series concerning industrial production and retail turnover. We find strong support
for the presence of a stochastic trend in the series, either in the form of a time-varying level, or,
more rarely, of a stochastic slope, or both. We estimate the probability of detecting a stochastic
trend close to 1. There is however a difference in the trend model for the industrial production
series and the retail turnover, as for the latter a stochastic slope is more likely to be found, whereas
for the former the slope is either fixed or zero in most of the cases.

The evidence for a stochastically evolving seasonal pattern is stronger under a fractional prior
and our results depend also on the prior assumptions. As it is well known, the fractional prior is
tailored for situations when prior information is weak, and thus it seems appropriate for our case.
Nevertheless, the paper does not aim at reaching a conclusion on what prior assumptions should
be taken; on the contrary, it has a more exploratory intent and aims at presenting the empirical
evidence, as well as at evaluating the sensitivity to different prior assumptions. We conclude that
although seasonality is a more stable component, even for a fixed-scale prior, in about 60% of
the series we were able to select at least one stochastic trigonometric cycle out of the six possible
cycles. Most frequently the time variation is found in correspondence with the fundamental and
the first harmonic frequencies.

An interesting intuitive finding is that the probability of estimating time-varying components
increases with the sample size available. As pointed out by one of the referees, this outcome partly
results from having a fixed scale prior for different sample sizes. The fixed-scale prior specification
can lead to overfitting (i.e. a more complex model with stochastically evolving components is
selected) for longer time series, as shown by (Casella et al., 2009). On the contrary, the fractional
prior automatically corrects for this problem.

The fact that a more flexible model is chosen for larger sample sizes is particularly true of
seasonality. However, even for very large sample sizes (such as those available for the US industrial
production) we were unable to find stochastically varying calendar effects.
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Appendix A: Markov Chain Monte Carlo Estimation

This appendix provides details of the Gibbs sampling scheme outlined at the end of section 3. Recall that the linear
mixed model was defined as y = ZΥψΥ +ϵ, where y and ϵ are vectors stacking the values {yt} and {ϵt}, respectively,
and the generic row of matrix ZΥ contains the relevant subset of the explanatory variables.

Step a. is carried out by sampling the indicators with probabilities proportional to the conditional likelihood of
the regression model, as

π(Υ |α, y) ∝ π(Υ )π(y|Υ, α)
which is available in closed form (see below). All the 210 combinations of indicators are sampled jointly in a multimove
way as in FS-W, conditional on the latent process α.

Under the normal-inverse Gamma conjugate prior for (ψΥ , σ
2
ϵ )

σ2
ϵ ∼ IG(c0, C0), ψΥ |σ2

ϵ ∼ N(0, σ2
ϵDΥ ),

where DΥ is a diagonal matrix with elements κµ, κA, etc., steps b. and c. are carried out by sampling from the
posteriors

σ2
ϵ |Υ, ψΥ , α, y ∼ IG(cT , CT )
ψΥ |Υ, σ2

ϵ , α, y ∼ N(m,σ2
ϵS)

where

S =
(
Z′
ΥZΥ +D−1

Υ

)−1
, m = SZ′

Υ y,

cT = c0 + T/2, CT = C0 + 1
2

(
y′y −m′S−1m

)
.

Finally,

π(y|Υ, α) ∝
|S|0.5

|DΥ |0.5
Γ (cT )

Γ (c0)

Cc0
0

C
cT
T

,

see e.g. Geweke (2005), where Γ (·) denotes the Gamma function. The sample from the posterior distribution of
the latent states, conditional on the model and its parameters, in step d., is obtained by the conditional simulation
smoother proposed by Durbin and Koopman (2002).

The draws of the parameters βµ, βA, βsj , j = 1, . . . , 6, βTD are obtained by performing a final random sign
permutation. This is achieved by drawing independently Bernoulli random variables Bµ, BA, Bsj , j = 1, . . . , 6,BTD

with probability 0.5, and recording (−1)Bµ (ση , µ̃t), (−1)BA (σζ , Ãt, at), etc.
The starting values are obtained by iterating for the full model (with all the indicators being equal to 1) the

above GS scheme 1000 times, with initial values of the hyperparameters in ψΥ set equal to zero.
Under a fractional prior the marginal likelihood is evaluated as follows:

cT = c0 + 1−b
2
T, CT = C0 +

(1−b)
2

(
y′y −m′ (Z′

ΥZΥ

)−1
m
)
,

π (y | Υ, α) ∝ bq/2

2πT (1−b)/2

Γ (cT )
Γ (c0)

C
c0
0

C
cT
T

,
(13)

where q is the dimension of ψΥ , and m is as given above. The free parameter in the fractional prior specification is
b that in our study is set to be 10−4 and 10−5.

A key assumption is that σ2
ϵ is strictly greater than zero, i.e. the irregular component is always present.
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