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Abstract

This thesis explores techniques for the automated production of schematic dia-
grams, in particular those in the style of metro maps. Metro map style schemat-
ics are used across the world, typically to depict public transport networks, and
therefore benefit from an innate level of user familiarity not found with most
other data visualisation styles. Currently, this style of schematic is used infre-
quently due to the difficulties involved with creating an effective layout – there
are no software tools to aid with the positioning of nodes and other features,
resulting in schematics being produced by hand at great expense of time and
effort.

Automated schematic layout has been an active area of research for the past
decade, and part of our work extends upon an effective current technique –
multi-criteria hill climbing. We have implemented additional layout criteria
and clustering techniques, as well as performance optimisations to improve the
final results. Additionally, we ran a series of layouts whilst varying algorithm
parameters in an attempt to identify patterns specific to map characteristics.
This layout algorithm has been implemented into a custom-written piece of
software running on the Android operating system. The software is targeted
at tablet devices, using their touch-sensitive screens with a gesture recognition
system to allow users to construct complex schematics using sequences of sim-
ple gestures.

Following on from this, we present our work on a modified force-directed
layout method capable of producing fast, high-quality, angular schematic lay-
outs. Our method produces superior results to the previous octilinear force-
directed layout method, and is capable of producing results comparable to many
of the much slower current approaches. Using our force-directed layout method
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we then implemented a novel mental map preservation technique which aims
to preserve node proximity relations during optimisation; we believe this ap-
proach provides a number of benefits over the the more common method of
preserving absolute node positions. Finally, we performed a user study on our
method to test the effect of varying levels of mental map preservation on dia-
gram comprehension.
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Helen Purchase, and everyone else who expressed particular interest in my
work and provided valuable advice and feedback on various aspects. Finally,
I would like to thank all members of the computing department, in particular
my colleagues in SW104 “The Zoo”, for providing an enjoyable and rewarding
working environment during my time at the University of Kent.

iv



Contents

Abstract ii

Acknowledgements iv

Contents v

List of Tables x

List of Figures xii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Research Goals / Contributions . . . . . . . . . . . . . . . . . . . . 8
1.3 Statement of Publications . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Summary of Chapters . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Background 13
2.1 Schematic Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Published Metro Maps . . . . . . . . . . . . . . . . . . . . . 14
2.1.2 The Metro Map Metaphor . . . . . . . . . . . . . . . . . . . 18

2.2 Graph Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.1 Force-directed Layout . . . . . . . . . . . . . . . . . . . . . 23
2.2.2 Search-based Layout . . . . . . . . . . . . . . . . . . . . . . 37
2.2.3 Additional Notes on Force-directed and Search-based Lay-

out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

v



2.2.4 Dynamic Layout and Mental Map Preservation . . . . . . 44
2.3 Automated Schematic Layout . . . . . . . . . . . . . . . . . . . . . 46

2.3.1 Topologically Correct Schematic Maps . . . . . . . . . . . . 46
2.3.2 Octilinear Force-directed Layout . . . . . . . . . . . . . . . 48
2.3.3 Multi-criteria Hill Climber . . . . . . . . . . . . . . . . . . . 50
2.3.4 Mixed-Integer Linear Programming . . . . . . . . . . . . . 53
2.3.5 Simulated Annealing . . . . . . . . . . . . . . . . . . . . . . 56
2.3.6 Path Simplification . . . . . . . . . . . . . . . . . . . . . . . 58
2.3.7 Focus+Context Least-Squares Conjugate Gradient . . . . . 59
2.3.8 Ant Colony System . . . . . . . . . . . . . . . . . . . . . . . 61
2.3.9 Curved Metro Map Layout . . . . . . . . . . . . . . . . . . 63

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3 Improving the User Interface 67
3.1 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.1.1 Draw Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.1.2 Move Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.1.3 Contextual Menu . . . . . . . . . . . . . . . . . . . . . . . . 71

3.2 Gestures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.2.1 Minimum direct length to be classified as an edge . . . . . 73
3.2.2 Minimum straightness to be classified as an edge . . . . . 73
3.2.3 Minimum actual length to be classified as a station . . . . 73
3.2.4 Minimum straightness to be classified as a station . . . . . 74
3.2.5 Minimum number of sharp bends to be classified as a

bend point . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.2.6 Minimum average radius to be classified as a junction . . 74

3.3 Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.4 Labelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4 Multi-criteria Hill Climbing Optimiser 80
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.1.1 Extensions & Modifications . . . . . . . . . . . . . . . . . . 81

vi



4.1.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.2 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2.1 Swap 2-degree junctions for stations . . . . . . . . . . . . . 86
4.2.2 Add bends proportional to station counts . . . . . . . . . . 87
4.2.3 Identify periphery line sections . . . . . . . . . . . . . . . . 87
4.2.4 Align nodes to grid . . . . . . . . . . . . . . . . . . . . . . . 88

4.3 Main Layout Process . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.3.1 Iterations and Search Distance . . . . . . . . . . . . . . . . 90
4.3.2 Single Node Movement . . . . . . . . . . . . . . . . . . . . 91
4.3.3 Node Clustering . . . . . . . . . . . . . . . . . . . . . . . . 92
4.3.4 Mid-processing . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.4 Layout Criteria & Objective Function . . . . . . . . . . . . . . . . . 96
4.4.1 Octilinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.4.2 Edge Length . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.4.3 Line Straightness . . . . . . . . . . . . . . . . . . . . . . . . 98
4.4.4 Line Straightness through Junctions (LSJ) . . . . . . . . . . 98
4.4.5 Line Straightness along Peripheries (LSP) . . . . . . . . . . 99
4.4.6 Angular Resolution . . . . . . . . . . . . . . . . . . . . . . . 100
4.4.7 Parallels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.4.8 Occlusions & Crossings . . . . . . . . . . . . . . . . . . . . 101
4.4.9 Balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.4.10 Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.4.11 Criteria Weighting . . . . . . . . . . . . . . . . . . . . . . . 103

4.5 Minimum Working Example . . . . . . . . . . . . . . . . . . . . . . 104
4.6 Automated Label Layout . . . . . . . . . . . . . . . . . . . . . . . . 106

4.6.1 Placement Fitness . . . . . . . . . . . . . . . . . . . . . . . . 106
4.6.2 Label Placement . . . . . . . . . . . . . . . . . . . . . . . . 107
4.6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.7 Produced Layout Example & Comparison . . . . . . . . . . . . . . 111
4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5 Exploring the Effects of Parameter Manipulation 114
5.1 Testing Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

vii



5.2 Optimiser Performance . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.3 Results – Fitness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.3.1 Grid Spacing . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.4 Results – Iterations and Optimisation Time . . . . . . . . . . . . . 126
5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6 Force-directed Octilinear Layout 133
6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.2 Graphs – FDOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.2.1 Graph Creation and Modification . . . . . . . . . . . . . . 134
6.2.2 Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.2.3 Automated Label Placement . . . . . . . . . . . . . . . . . 138

6.3 Implementation of Octilinearity . . . . . . . . . . . . . . . . . . . . 138
6.3.1 Grid Snapping . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.3.2 Edge Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.3.3 Simultaneous Force-Directed and Edge-Rotation Forces (1) 143
6.3.4 Simultaneous Force-Directed and Edge-Rotation Forces (2) 144
6.3.5 Sequential Force-Directed and Edge-Rotation Forces . . . 145
6.3.6 Semi-Simultaneous Force-Directed and Edge-Rotation Forces146
6.3.7 Schematic Resizing . . . . . . . . . . . . . . . . . . . . . . . 150
6.3.8 Auto-scaled Postponed Semi-Simultaneous Layout . . . . 153
6.3.9 Small Edge Length Forces Using Hooke’s law . . . . . . . 154
6.3.10 Fine-Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
6.3.11 Post-Processing to Further Straighten Peripheries . . . . . 156
6.3.12 Force Switchover Changes . . . . . . . . . . . . . . . . . . . 157

6.4 Alternate Resolution Angular Layout . . . . . . . . . . . . . . . . 159
6.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7 Force-directed Layout & Mental Map Preservation 166
7.1 Delaunay Triangulation Calculation . . . . . . . . . . . . . . . . . 167

7.1.1 Circumcircle Calculation . . . . . . . . . . . . . . . . . . . . 168

viii



7.2 Using the Triangulation as a Frame . . . . . . . . . . . . . . . . . . 170
7.3 Combination with Octilinear Forces . . . . . . . . . . . . . . . . . 172
7.4 Node Oscillation in High-Strength Frames . . . . . . . . . . . . . . 172
7.5 Similarity Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
7.6 Frame Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
7.7 Linearising the Mental Map Slider . . . . . . . . . . . . . . . . . . 176
7.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

8 Mental Map Preservation Comprehension Study 181
8.1 Schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
8.2 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
8.3 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
8.4 Testing Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
8.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
8.6 Interpretation of Results . . . . . . . . . . . . . . . . . . . . . . . . 191
8.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

9 Conclusion & Future Work 193
9.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
9.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

9.2.1 User Study on Layouts between Multiple Techniques . . . 195
9.2.2 Schematic Aesthetics . . . . . . . . . . . . . . . . . . . . . . 196
9.2.3 Extension of Graphs – FDOL Software . . . . . . . . . . . . 197
9.2.4 Extension of Force-directed Layout Method . . . . . . . . . 199
9.2.5 Metro Map Characterisation . . . . . . . . . . . . . . . . . 200
9.2.6 Combination of Layout Methods . . . . . . . . . . . . . . . 201
9.2.7 Definition of Standard Data Sets and Evaluation Metrics . 201

Bibliography 203

Appendix 212

ix



List of Tables

1 Default criteria weightings used. . . . . . . . . . . . . . . . . . . . 104
2 Schematics used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
3 Parameters and values used . . . . . . . . . . . . . . . . . . . . . . 115
4 Overall time improvement across all tested parameter sets (min-

utes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5 Vienna results (abridged) . . . . . . . . . . . . . . . . . . . . . . . . 119
6 Percentage improvement of best schematic over median. . . . . . 130
7 Average edge lengths for maps laid out without scaling. . . . . . 152
8 Sum of line bending with and without schematic resizing. . . . . 152
9 Sum of line bends with and without post processing - Mexico. . . 158
10 Layout timing comparison . . . . . . . . . . . . . . . . . . . . . . . 162
11 Schematic metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
12 Example anonymised software output section. . . . . . . . . . . . 187
13 Mean response time and mean number of errors for the three

MMP conditions, over all non-test schematics and all post-modification
questions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

14 Fitness statistics by map. . . . . . . . . . . . . . . . . . . . . . . . . 212
15 Fitness statistics by parameter value. . . . . . . . . . . . . . . . . . 212
16 Mexico results (1 of 3). . . . . . . . . . . . . . . . . . . . . . . . . . 213
17 Mexico results (2 of 3). . . . . . . . . . . . . . . . . . . . . . . . . . 214
18 Mexico results (3 of 3). . . . . . . . . . . . . . . . . . . . . . . . . . 215
19 Sydney results (1 of 3). . . . . . . . . . . . . . . . . . . . . . . . . . 216
20 Sydney results (2 of 3). . . . . . . . . . . . . . . . . . . . . . . . . . 217
21 Sydney results (3 of 3). . . . . . . . . . . . . . . . . . . . . . . . . . 218
22 Vienna results (1 of 3). . . . . . . . . . . . . . . . . . . . . . . . . . 219

x



23 Vienna results (2 of 3). . . . . . . . . . . . . . . . . . . . . . . . . . 220
24 Vienna results (3 of 3). . . . . . . . . . . . . . . . . . . . . . . . . . 221
25 Washington results (1 of 3). . . . . . . . . . . . . . . . . . . . . . . 222
26 Washington results (2 of 3). . . . . . . . . . . . . . . . . . . . . . . 223
27 Washington results (3 of 3). . . . . . . . . . . . . . . . . . . . . . . 224

xi



List of Figures

1 London Underground map, 1932 – the year before introduction
of Harry Beck’s design. . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 London Underground map, 1931 (design) – Harry Beck. Image
shows pamphlet produced in 1933. . . . . . . . . . . . . . . . . . . 2

3 London Underground map, 2014 – Copyright Transport for Lon-
don. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

4 Madrid metro, 2014 – Copyright Metro de Madrid, S.A. . . . . . . 5
5 Metro map style cancer pathway visualisation by Hahn and Wein-

berg (designed by Claudia Bentley) (Hahn and Weinberg 2015). . 6
6 Metro map of music by Dorian Lynsky (Lynskey 2015) (clipping).

Lines represent music genres, stations represent bands/artists. . . 7
7 Moscow metro - Copyright Moskovsky Metropoliten. . . . . . . . 15
8 Sydney metro - Copyright RailCorp. . . . . . . . . . . . . . . . . . 16
9 Vienna metro - Copyright Wiener Linien. . . . . . . . . . . . . . . 16
10 Washington metro - Copyright Washington Metropolitan Area

Transport Authority. . . . . . . . . . . . . . . . . . . . . . . . . . . 17
11 Stars and points of interest in our Milky Way system. Lines rep-

resent arms of the galaxy. (Arbesman 2014) . . . . . . . . . . . . . 19
12 Technology venders used by a consulting firm. Lines represent

the vendors field of expertise. (Group 2014) . . . . . . . . . . . . . 20
13 Metro map of metro maps from (Ovenden 2005). Lines are purely

for aesthetic purposes. . . . . . . . . . . . . . . . . . . . . . . . . . 21
14 Examples of common graph usage. . . . . . . . . . . . . . . . . . . 22

xii



15 Tutte embedding of a cube. Red vertices indicate the initial fixed
convex polygon (a unit square). Vertices are labelled with their
position within the unit square. . . . . . . . . . . . . . . . . . . . . 25

16 Example of a force-directed layout method. Note: labels have
been manually positioned to cross-reference nodes and are unaf-
fected by the layout algorithm. . . . . . . . . . . . . . . . . . . . . 27

17 Hierarchical boxing (left) and force calculation (right) in two di-
mensions of the Barnes-Hut optimisation from (Barnes and Hut
1986). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

18 Example graph outputs for Kamada & Kwai graph theoretic dis-
tance method from (Kamada and Kawai 1989). . . . . . . . . . . . 31

19 Example graph outputs for Fruchterman & Reingold force-directed
layout (Fruchterman and Reingold 1991). Note: the left graph is
the same structure as that in Figure 18 by Kamada & Kwai. . . . . 33

20 An example illustrating the layers of abstraction in a multilevel
graph from (Eades and Feng 1997). . . . . . . . . . . . . . . . . . . 34

21 Example of Walshaw’s multilevel optimiser on a graph with many
vertices from (Walshaw 2001). . . . . . . . . . . . . . . . . . . . . . 35

22 Layout improvements obtained by Finkel and Tamassia’s curvi-
linear force-directed method from (Finkel and Tamassia 2005). . . 36

23 Example of the simulated annealing layout method from (David-
son and Harel 1996). . . . . . . . . . . . . . . . . . . . . . . . . . . 39

24 Example of graph crossover in a genetic algorithm layout ap-
proach from (Hobbs and Rodgers 1998). Arrows indicate vertex
selection gradient, red vertices indicate the selected vertices from
each parent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

25 An initial graph (left) and aesthetically optimised result (right)
from (Hobbs and Rodgers 1998). . . . . . . . . . . . . . . . . . . . 42

26 Preservation of the mental map between sequential graph states. 45
27 Example of streets in a standard map and a derived schematic

map by Avelar and Müller from (Avelar and Müller 2000). . . . . 47
28 Sydney metro map produced by Hong et al. using their spring

embedded method from (Hong, Merrick and do Nascimento 2005). 49

xiii



29 Sydney metro map produced by Stott et al. using their multi-
criteria hill climbing method from (Stott and Rodgers 2004). . . . 51

30 Sydney metro map produced by Stott et al. using their multi-
criteria hill climbing method from (Stott et al. 2010). . . . . . . . . 53

31 Sydney metro map produced by Nöllenburg et al. using their
mixed-integer linear programming method from (Nöllenburg and
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Chapter 1

Introduction

This thesis addresses the problem of automated metro map layout. Current
published maps seen around the world are drawn by hand, requiring a great
deal of time and skill to create. Research in automated layout techniques for
creating this style of diagram has progressed over the past decade, but the up-
take of these methods into schematic diagram creation has been slow. Possible
reasons for this include the lack of availability of software for design and layout,
and that the output quality of current automated techniques does not yet equal
that of a well-designed hand drawn schematic. Our work in this field aims to
address this problem by furthering the current research in automated schematic
layout. We have created two pieces of software for supporting user’s needs of
an automated layout system, and developed a new layout method offering a
number of benefits over existing techniques.

Current metro maps, that can be seen in cities all around the world (see Sec-
tion 2.1.1 for world metro examples), share a number of characteristics which
appear to originate mostly from a map of the London Underground drawn in
1931 by Harry Beck (Figure 2). Beck worked as a technical draftsman and pro-
duced the map taking inspiration from electrical schematics, in particular octi-
linear line angles (multiples of 45◦) and roughly equidistant station spacing in
place of geographical accuracy. These features were a radical change from both
the existing map (Figure 1) and its predecessors, which aimed to preserve geo-
graphic positions of stations, and used curved lines to mimic the physical line
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Figure 1: London Underground map, 1932 – the year before introduction of
Harry Beck’s design.

Figure 2: London Underground map, 1931 (design) – Harry Beck. Image shows
pamphlet produced in 1933.
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This diagram is an evolution of the original design conceived in 1931 by Harry Beck

Correct at time of going to print, December 2013

Figure 3: London Underground map, 2014 – Copyright Transport for London.

paths. These previous maps were also often seen drawn over a ground-level
map, further emphasising their geographical accuracy. Beck believed that users
of the underground system were not interested in geographical accuracy but
rather how to get where they were going and where to change trains, and so
he removed this characteristic in favour of only maintaining map topology – all
nodes and connections are accurate, but geographical accuracy is not ensured.
The move from geographic to topological accuracy afforded Beck the ability to
move stations, thereby allowing straighter lines, approximately equidistant sta-
tion spacing, and expansion of dense areas in order to improve the primary ob-
jective of a schematic – readability. The river Thames also features in Beck’s de-
sign, albeit following an octilinear representation, to preserve some geographic
reference for users. Beck’s design was initially declined in 1931 by London Un-
derground for being too radically different, and not indicating distances be-
tween stations; but after a successful trial run in 1932 the map was given its first
full publication in 1933. The positive reaction from customers proved it was
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a sound design, and a large reprint was required after only one month (Beck
2014).

Beck’s map has been continually updated since its initial inception to ac-
commodate new lines and additional station information, and the underlying
design elements have been kept roughly in line with the original. The modern
London Underground map (Figure 3) has become an iconic design and sym-
bol of London itself, and its effective yet simple method of conveying complex
information is mimicked in many other published metro maps.

1.1 Motivation

It is intuitive that the design of a schematic has an impact on its readability –
a well-designed schematic will allow the user to interpret the presented infor-
mation faster. In the case of a metro map this refers to tasks such as the speed
at which a user can locate a station, or plan a route from station a to station
b. There are no defined rules to ensure a metro map is easy to use, and as such
most are drawn by graphical designers who are experienced in producing clean,
easy to use diagrams using appropriate software for the task, typically a vector
graphic design application. Even so, metro maps such as that of London contain
hundreds of stations making the creation of diagrams very difficult; because of
this it has become necessary to have not just good graphic design skills, but an
understanding of the psychology of map reading in order to design an effective
layout. Figure 4 shows the published Madrid metro map in 2014 and is a good
example of bad layout decisions. It can be seen that the designer(s) of this di-
agram have used many characteristics also found in the London Underground
map, such as octilinearity and even station distribution, but have chosen to re-
tain a level of geographical accuracy. The result of this is that many line sections
contain unnecessary bends, only serving to make the diagram harder to read.
For example, the leftmost red periphery section bends downwards slightly, be-
fore bending back upwards twice as it extends outwards; a similar strange lay-
out can be seen in the southernmost circular line. One might assume that these
layout decisions are to maintain geographical accuracy, but as the entirety of
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Figure 4: Madrid metro, 2014 – Copyright Metro de Madrid, S.A.

the schematic is not geographically accurate, it would be wrong to infer that
these line sections are. This means that the line bends do not convey any addi-
tional information and serve no purpose – it would have been more suitable to
use straight lines with minimal bends, and the same can be said of many other
design choices in the schematic.
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Figure 5: Metro map style cancer pathway visualisation by Hahn and Weinberg
(designed by Claudia Bentley) (Hahn and Weinberg 2015).

As this visualisation technique is used for most published metro maps, it
holds an advantage of public familiarity over other styles. For this reason it
can also be used as a very powerful visualisation for many other types of data,
benefitting from a higher base level of public comprehension. There are a wide
variety of examples of such usage on the Internet, for example those shown in
Figures 5 and 6; these figures show a metro map style layout of cancer path-
ways and musical artists respectively. These two figures, along with many
other privately created maps (more examples can be found in Section 2.1.2),
indicate that this visualisation technique has great potential beyond transporta-
tion systems and that there is a desire for it in many application areas. However,
the difficulty currently involved with the creation of such maps unfortunately
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Figure 6: Metro map of music by Dorian Lynsky (Lynskey 2015) (clipping).
Lines represent music genres, stations represent bands/artists.

puts a limit on the use of this visualisation style – an effective design is very time
consuming and difficult to create. As a result of this, there are many examples
of hard to read and/or poorly designed metro map schematics. An alterna-
tive approach to the creation of these diagrams is to take an existing schematic
and simply modify the labels; this method was used to create the metro map of
music (Figure 6) from the London Underground map – even the river Thames
can still be seen. Although this method of creation is somewhat easier as it
removes the responsibilities of node placement and line routing, the creator is
subsequently restricted on label placement and must be flexible with their data
to ensure the schematic works. This is not ideal for the vast majority of custom
data sets.

Besides the creation of static diagrams, the recent popularity of smartphones
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and mobile tablets offer new and exciting opportunities for automated layout
algorithms. A fast layout method could allow real-time interaction with the
user providing custom-generated maps – for example a transport map could be
manipulated to emphasise a particular route, making it both easier and faster
for users to navigate.

These points provide motivation for our work in automated metro map lay-
out. We believe that a software tool combining effective drawing tools and an
automated layout method would benefit many users – both professional de-
signers for a fast initial layout that can be further improved, and amateur de-
signers who may struggle with creating a good quality layout. Such a tool will
hopefully lead to a wider adoption of this underused visualisation style.

1.2 Research Goals / Contributions

The work described throughout this thesis can be broken down into multiple
smaller research goals, each of which is explained in this section. These goals
introduce multiple new concepts and/or techniques for automated metro map
layout, however most have not been empirically tested. The rationale for this
approach is that in the current environment of automated metro map layout,
there is still plenty of room for experimentation with novel layout techniques
to discover methods that yield effective results and operational advantages. We
believe that the field is not yet at a stage at which, although it may be interest-
ing, detailed empirical comparisons between methods are necessary, as mostly a
subjective visual comparison can provide compelling evidence of the effective-
ness of a technique. For this reason we believed it more beneficial to explore a
wider range of techniques with shorter subjective evaluations.

1. To develop a gesture-based input system for mobile devices to facilitate
the creation and modification of schematics in a metro map style. We
achieved this goal by producing an Android application which allows
users to quickly draw schematics by using a series of gestures to create
schematic objects. This section of work is described in Chapter 3 and pub-
lished in (Chivers and Rodgers 2011).
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2. To implement and improve a current multi-criteria optimisation method,
as well as examine how modifying optimiser parameters affects the re-
sulting fitness value. We achieved this goal by implementing a published
multi-criteria optimiser into our Android application, and using a num-
ber of techniques to improve its performance. We then ran a large number
of tests to attempt to determine a link between optimiser parameters and
the final layout. This section of work is described in Chapters 4 and 5 and
published in (Chivers and Rodgers 2013)(Chivers and Rodgers 2014a).

3. To develop a new force-directed octilinear layout method which would
improve upon the existing implementation. Our method is outlined in
Chapter 6, and example layouts are shown. Our results show that our
new technique produces superior results than that of its predecessor. This
section of work is explained in Chapter 6 and published in (Chivers and
Rodgers 2014b).

4. To develop a mental map preservation technique based upon node prox-
imity relations, as opposed to the standard absolute node position meth-
ods. We used a Delaunay triangulation to achieve this goal, and imple-
mented the technique into our graphing software for combination with
our force-directed layout method. This section of work is explained in
Chapter 7 and published in (Chivers and Rodgers 2014b).

5. To carry out a user study to determine if mental map preservation has an
effect on diagram comprehension after a modification. This study was to
provide further valuable information to the current inconclusive research
in this area. This section of work is outlined in Chapter 8 and published
in (Chivers and Rodgers 2014b).

1.3 Statement of Publications

The following is a list of publications, including their related chapter(s) and
goal(s):
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• Gesture-Based Input for Drawing Schematics on a Mobile Device (Chivers
and Rodgers 2011). Daniel Chivers and Peter Rodgers, In Proceedings of the
15th International Conference on Information Visualization (IV11), pages 127–
134, July 2011. Goal 1; Chapter 3.

. This paper covers the implementation of our gesture-based schematic
input software along with details of the implementation of a multi-criteria
hill-climbing layout optimiser.

• Exploring Local Optima in Schematic Layout (Chivers and Rodgers 2013).
Daniel Chivers and Peter Rodgers, In 19th International Workshop on Visual
Languages and Computing (VLC), proceedings of Distributed Multimedia Sys-
tems (DMS 2013), 28 pages, August 2013. Goal 2; Chapter 5.

. This paper explores how varying optimiser parameters of a multi-
criteria hill climber affects the resulting fitness.

. This paper received the DMS 2013 best paper award.

• Improving Search-Based Schematic Layout by Parameter Manipulation (Chivers
and Rodgers 2014a). Daniel Chivers and Peter Rodgers, In International
Journal of Software Engineering and Knowledge Engineering, in print, 2014.
Goal 2; Chapter 5.

. This paper is an extended journal version of (Chivers and Rodgers
2013), which we were invited to submit after presentation at DMS 2013.

• Octilinear Force-Directed Layout with Mental Map Preservation for Schematic
Diagrams (Chivers and Rodgers 2014b). Daniel Chivers and Peter Rodgers,
In 8th International Conference on the Theory and Application of Diagrams (Di-
agrams 2014), pages 1–8, July 2014. Goals 3, 4, 5; Chapters 6, 7, 8.

. This paper covers our force-directed octilinear layout algorithm, our
Delaunay triangulation mental map preservation, and our study into the
effect mental map preservation has on diagram comprehension.

All of the above publications were peer reviewed.
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1.4 Summary of Chapters

This thesis is divided into chapters as described here:

2. Background. This chapter provides a background in schematic layout and
how schematics are designed, including details on previous and current
automated layout methods.

3. Improving The User Interface. This chapter details a piece of software
written to allow creation of metro map style schematics using a series of
gestures.

4. Multi-criteria Hill Climbing Optimiser. This chapter covers the imple-
mentation of our multi-criteria hill climbing optimiser, explaining improve-
ments that were made.

5. Exploring the Effects of Parameter Manipulation. This chapter covers
our testing process that was performed to determine the effect of optimiser
parameters on the final layout.

6. Force-directed Octilinear Layout. This chapter describes the steps taken
in the development of our method to enforce octilinearity in force-directed
layout.

7. Force-directed Layout & Mental Map Preservation. This chapter details
how a Deluanay triangulation is used to constrain node movement during
optimisation and thus help preserve the users’ mental map.

8. Mental Map Preservation Comprehension Study. This chapter provides
the procedure and results of our study into how mental map preservation
in dynamic schematic layout affects comprehension.

9. Conclusion & Future Work. This chapter provides a conclusion to our
work and covers a number of ideas for future research in this area.
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1.5 Summary

Metro map design is currently inaccessible to a wide audience due to the di-
fiiculty involved in both design and layout. This is due to a lack of programs
designed to aid users in their creation by providing functionality such as au-
tomated layout and construction tools specific to the metro map style. Along
with this, the current multi-criteria hill climbing technique for metro map lay-
out leaves room for improvement in the form of additional new criteria and
performance improvements. It is also a local optimum method and is very sen-
sitive to its initial configuration, although there has been no research into any
apparent trends dependent on this.

Search based techniques can produce good quality results but this comes at
the cost of performance, making them unsuitable for interactive applications.
The existing force-directed method, which does run fast enough to be suitable
for interactive applications, does not produce results of a comparable quality
and leaves plenty of room for improvement.

Finally, although current literature in the area of mental map preservation
has shown no significant effect, the techniques used in its implementation have
all been based on the absolute movement of nodes. A proximity-based imple-
mentation has not been tested, and may produce alternate results.

This thesis will address these specific problems and shortcomings.

12



Chapter 2

Background

This chapter will provide a background to the area of schematic layout, in par-
ticular that of metro maps. We examine a selection of current metro maps from
around the world, explain current design processes used in their production,
and discuss how there is vast potential for improvement. Besides official metro
maps, we explain the metro map metaphor and why this visualisation style
is not more frequently used. We then examine a number of techniques which
have been developed for the automated layout of graphs, leading specifically
into metro map style schematics.

2.1 Schematic Mapping

This section presents a selection of official metro maps from around the world.
These maps are up-to-date as of July 2014, found within metro stations, and are
used by the majority of customers. We examine the key characteristics of each
and summarise how these maps share a number of common features employed
to aid comprehension. Many more examples can be seen in Mark Ovenden’s
book, Metro Maps of the World (Ovenden 2005). We discuss the design processes
in place to create such maps for official use, and identify the advantages and
disadvantages of the current approach. Following this we explain the metro
map metaphor and provide a number of examples to show alternate uses of the
visualisation style; we then discuss why it is not more frequently seen.
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2.1.1 Published Metro Maps

This section will focus on the following four examples: Moscow (Figure 7),
Sydney (Figure 8), Vienna (Figure 9), and Washington (Figure 10); maps for
London (Figure 3) and Madrid (Figure 4) have also been previously presented.
These maps have been chosen as they represent good examples of typical metro
maps, as well as include a number of unique and interesting features.

2.1.1.1 Features

When comparing the example schematics, many common features can be iden-
tified. An obvious but important feature of metro maps is the use of multiple
line colours. This feature is found in all published metro maps and is very ef-
fective at differentiating between lines. Black and white versions of metro maps
have been produced, and under these circumstances the use of colours is re-
placed by other distinguishing features such as dashed lines or patterns.

Another is the restricted resolution of edge angles – in all four maps it can
be seen that edges have been restricted to angles that are a multiple of 45◦. One
exception to this is seen in Moscow, which chooses to use a circular ring line as a
stylistic feature; however, all other edges follow this rule. This design feature is
commonly referred to as octilinearity (specifically 45◦), and is found in a large
number published schematics. A smaller number of schematics use alternate
resolutions for edge angles including 90◦ (rectilinearity) and 30◦; even fewer do
not apply any restriction on edge angles.

Station distribution in the published schematics has been made even across
the diagram. This is especially apparent when comparing published schemat-
ics to their original geographic map, in particular for large networks such as
Moscow and Sydney. Typically, stations in the city centre are close together,
and this distance increases in the suburban periphery map sections. The effect
of this is a complicated centre with clearer periphery sections; this is the oppo-
site of what is desired as the city centre will most likely carry the most traffic
and therefore be read most frequently. Designers deal with this by expanding
dense areas whilst contracting sparse sections to create an evenly distributed
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(a) Geographic.
(b) Published.

Figure 7: Moscow metro - Copyright Moskovsky Metropoliten.

schematic. Along with an even distribution of stations, in most cases the dis-
tance between stations along lines is kept as equal as possible.

Lines in a geographic map will often contain many bends. Schematics aim to
simplify this by removing all possible bends to keep lines as straight as possible.
A good example of this can be seen in Moscow, in which the red line bisects the
circular line from bottom-left to top-right, with only a single small bend at the
end. The argument for removing bends is that the eye can then follow along
the lines faster and with more accuracy. Vienna and Washington appear to not
apply this technique due to their more geographic layout, explained below.

Many cities have prominent features such as rivers, parks, or seas that can be
used as orientation tools to help create a reference between the abstract station
positions and the world at ground level – these can be incorporated into the
schematic in one of two ways. Either the feature is distorted and fitted around
schematic lines as in Moscow and Sydney, or the feature remains less distorted
and the schematic is adapted to work around it, as in Vienna and Washington. If
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(a) Geographic.

(b) Published.

Figure 8: Sydney metro - Copyright RailCorp.

(a) Geographic.
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(b) Published.

Figure 9: Vienna metro - Copyright Wiener Linien.
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(a) Geographic.

(b) Published.

Figure 10: Washington metro - Copyright Washington Metropolitan Area Trans-
port Authority.

done well, this can be beneficial as it is useful to know where you are positioned
at ground level. However, often designers have allowed geographic features to
alter the schematic to an extent that has a detrimental affect on comprehension,
such as in Figure 4 – the Madrid metro map.

In line with including geographic features on schematics, it has become in-
creasingly common for maps to abandon a purely schematic layout in favour
of a semi-geographical approach. The Washington schematic is a particularly
good example of this, as it contains many line bends which follow the line ge-
ography but go against typical schematic layout design.

The layout features explained here make up the metro map “fingerprint”,
and are applied as criteria in most automated layout techniques. This is ex-
plained in greater detail in Sections 2.2 and 2.3.

2.1.1.2 Production

Published metro maps, such as those shown here, are currently produced man-
ually by graphical designers. The design of these maps is a very difficult task,
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as it requires the designer to have expertise in both the psychology of map read-
ing and schematic design. Besides this, metro maps can often contain hundreds
of nodes and it’s up to the designer to decide on effective positions to create
the layout. This takes a great deal of time to complete, and many designers are
also not experienced in design considerations pertaining to how metro maps
are used.

For these reasons, the production of metro maps leaves much room for im-
provement. An automated layout technique capable of producing results of
comparable quality to those currently drawn by hand would be a great bene-
fit in terms of time and difficulty saved during production, and would also be
developed to follow empirically tested layout criteria shown to aid comprehen-
sion, reducing the number of metro maps with bad design features; this benefit
will result in faster and more accurate journey planning for passengers. Even
if the automation of metro map layout is not able to produce an output of as
high a quality as a human design in terms of aesthetics, it can still be used as an
initial layout design step for designers, alleviating them of what is arguably the
most difficult part in map production. After producing a good layout, designers
could then finalise aesthetics to meet the transport systems’ specifications.

2.1.2 The Metro Map Metaphor

The metro map metaphor refers to the use of a metro style schematic being used
to visualise an abstract data set rather than a transport system. Examples of this
use can be found in a wide range of subjects, produced by both private individ-
uals and large organisations. This section examines a few such examples.

Figure 11 shows a schematic of our home galaxy, the Miky Way. Stations
represent stars, nebulae, and points of interest, and lines represent arms of the
galaxy. According to the designer, care has been taken to position stations in
their actual positions, and lines have been drawn to follow the natural spiral of
the galaxy. It is not clear if the lines represent recognised groupings of objects,
or if they are simply drawn for aesthetic purposes in the shape of the galaxy, as
suggested by line names such as Express and Suburban. Although this schematic
is relatively small the layout is clear, consistent, and provides an easy to read
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Figure 11: Stars and points of interest in our Milky Way system. Lines represent
arms of the galaxy. (Arbesman 2014)

diagram.
Figure 12 is a schematic produced by technical consulting company Real

Story, illustrating used vendors and their fields of expertise. This schematic is
not based on geographical data, and therefore the positioning of the nodes has
no significance. Despite this potential benefit of no node position constraints,
the designers have chosen positions along irregular line angles, instead of con-
forming to any subset such as octilinearity. Along with this, lines are both
straight and curved, and line bends are both curved and angular. The centre of
the schematic is also unclear with no apparent junction alignment or position-
ing, introducing many line crossings in a confined area. A lack of uniformity
across this schematic, combined with a confusing centre, makes this schematic
very unordered and chaotic. However, this type of data is a perfect match for a
metro map style schematic and in spite of its flaws, it still presents the informa-
tion in an appealing and easy-to-read way.
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Figure 12: Technology venders used by a consulting firm. Lines represent the
vendors field of expertise. (Group 2014)

Figure 13 is a metro map style schematic illustrating metro systems around
the world. The lines in this diagram do not represent any connection between
the nodes, and have been included purely for aesthetic purposes. At a first
glance it may appear that the schematic is geographically correct, but further
inspection shows only a very rough accuracy in city (node) positions. There are
a large number of similarities between the layout of this schematic and that of
the official London Underground (Figure 3), which indicates that it is a modifi-
cation based upon an existing well-lived layout.

As discussed previously, published schematics used for transport system
visualisations, such as the current London Underground map, are drawn by
designers typically using vector graphics software packages. Providing a good
level of expertise this can produce very high quality diagrams, however it does
nothing to aid the designer with the key aspect of schematic design – the layout.

20



Figure 13: Metro map of metro maps from (Ovenden 2005). Lines are purely for
aesthetic purposes.

As there is no help in the creation of the layout, this results in many poor lay-
outs, or schematics being based on previously drawn examples as in Figure 13.
This section shows that there are many potential areas in which the visualisa-
tion technique can be applied, and many people have attempted to do so with
varying levels of success, but the difficulty involved with layout design severely
hinders its adoption as a visualisation technique. An system capable of auto-
matically producing good layouts will therefore help amateur designers as well
as, if not more so than, professionals.

2.2 Graph Drawing

Graphs play a very important role in a wide variety of disciplines; from visu-
alisation tools for network structures such as social networks (Figure 14a) or
transport networks as illustrated in the previous section, through to their use as
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Figure 14: Examples of common graph usage.

data structures underlying other concepts such as in navigation systems (Fig-
ure 14b).

Traditionally, graphs were drawn by hand, but much research has been car-
ried out on their automated layout. This section examines a selection of no-
table graph drawing methods. We focus specifically on 2D, undirected and un-
weighted node-link graphs, although most of these techniques are extensible to
other graph subtypes. Automated layout techniques can be divided into two
main categories: force-directed (2.2.1) and search-based (2.2.2).

Graph layout is an important foundation for research in automated schematic
layout, as many schematic layout techniques lean upon existing methods in this
area. The reason for this is that schematics are often represented as graphs, and
so modified versions of graph drawing techniques can be used for the layout
process.

In the modern world there are vast quantities of data that have the poten-
tial to be visualised as graphs, many of which frequently change. For example
social networks or computer-based visualisations which respond to user inter-
action. The process of adjusting a layout to reflect changes in its underlying data
set is called dynamic layout, and is further explained in Section 2.2.4. We also
cover a concept commonly associated with dynamic re-optimisation known as
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mental map preservation.

2.2.1 Force-directed Layout

The initial automated graph layout methods are typically variants of a force-
directed layout. This layout technique relies on information contained within
the graph structure, rather than external factors to perform the layout. Graphs
are modelled as physical systems in which nodes and/or edges exert forces
upon each other in order to move into desirable positions. Force-directed lay-
out methods typically produce aesthetically pleasing layouts, but are limited in
scalability due to the physical model being unable to escape local optima.

Typical run times of force-directed layout methods on modern machines us-
ing small to medium sized graphs are very fast, often producing an output
within a fraction of a second; this is highly beneficial for use in interactive ap-
plications as users are able to optimise graphs without having to wait. Perfor-
mance is a major advantage of force-directed layouts over their search-based
counterparts explained in the following section which can take minutes, if not
hours, to run. A disadvantage of these techniques is that new criteria can only
be enforced by applying additional forces to the nodes, thereby causing them
to move differently. This makes it very difficult to strongly enforce additional
criteria as nodes are moved by summing all their forces in each iteration; the
resulting composite force fully satisfies none of the applied criteria, and nodes
are moved to unoptimal positions.

Later research in the technique extended both the performance and scala-
bility of this type of method up to many thousands of nodes by using a multi-
levelled approach, in which the graph is represented by a series of progressively
simpler graphs.

2.2.1.1 Barycentric Tutte Embedding

The first methodology for graph layout was proposed in (Tutte 1963). The
method uses a system of linear equations to position vertices at the barycen-
tre of their neighbouring nodes, within the bounds of a fixed convex polygon.
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This technique is categorised as force-directed layout as the method iterates to-
wards a minimum energy vertex configuration. In his paper, Tutte proves that
the method is capable of calculating a straight-line, crossing-free drawing for
any given 3-vertex-connected planar graph, and that every face of the embed-
ding is convex.

The method takes an input graph consisting of a number of vertices and
edges G = (V, E). In this graph, vertices V must be split into two groups, V0

and V1. Group V0 must contain at least three vertices selected at random, these
are to become fixed vertices; group V1 contains the remaining vertices, to be
positioned by the algorithm. For the most effective layout, group V1 should
contain more vertices than V0. Along with these two groups of vertices, a con-
vex polygon with |V0| vertices is required. During the algorithm, V1 vertices
will be positioned within this polygon. With the required input, the algorithm
pseudocode is as follows:

1. Place each vertex of V0 at vertices of the convex polygon, and

each vertex of V1 at the origin.

2. For each vertex v in V1:

xv = mean x-value of all connected vertices.

yv = mean y-value of all connected vertices.

3. Repeat step 2 until the x and y-values for each free vertex

converge to a solution.

The formula for calculating xv and yv for a given vertex is shown in Equation 1.

(x|y)v =
∑(u,v)∈E (x|y)u

degree (v)
(1)

where v is a connected vertex.
Figure 15 shows an example output from a Tutte embedding of the mesh

of a cube. The red vertices around the edge make up the fixed group V0 and
form the initially chosen convex polygon; the remaining white vertices belong
to the free group V1. The algorithm has successfully placed all free vertices at
the barycentre of their neighbours.
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Figure 15: Tutte embedding of a cube. Red vertices indicate the initial fixed
convex polygon (a unit square). Vertices are labelled with their position within
the unit square.

As mentioned previously, an advantage of Tutte’s method is a guarantee of
finding a straight-line, crossing-free drawing for any given 3-vertex-connected
planar graph. There is also only a single global solution meaning that the
method does not produce inferior local optima results, as opposed to the more
recent force-directed approached discussed next. Disadvantages of the method
include the requirement that the graph must be planar and 3-vertex-connected,
restricting it’s potential use as a more general graph layout method. Another
issue is that when applied to larger graphs, node spacing can be very unevenly
distributed across the output as shown in (Eades and Garvan 1996).

2.2.1.2 Force-directed Layout

In 1984, Peter Eades presented a new force-directed layout method, providing
an effective method for small to medium sized graph layout (Eades 1984). This
method has since become the basis for subsequent force-directed techniques,
and is still commonly used in graph layout. Eades attempts to meet two criteria
with his method: edge lengths should be kept roughly equal across the graph,
and the layout should display as much symmetry as possible. The justification
for attempting to meet these two criteria is that they are considered “aestheti-
cally pleasing” in a wide variety of application areas.
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In the force-directed layout method, the graph is modelled as a mechanical
system where vertices act as steel rings and edges act as springs between these
rings. The vertices are then positioned in some initial layout before being re-
leased so that the spring forces move the system into a minimal energy state.
The algorithm outputs the vertex positions from this stable state.

Two force types are used during the algorithm; the first of which are edge
forces which act upon vertices. The force exerted on a vertex by an edge is
calculated using Equation 2. Eades explains that a logarithmic function is used,
as linear springs are too strong when the vertices are far apart.

fa = C1 log
(

d
C2

)
(2)

where d is the length of the spring, C1 is the spring strength, and C2 is the ideal
spring length.

Secondly, nonadjacent vertices repel each other using an inverse square law
force (Equation 3).

fr =
C3

d2 (3)

where d is the distance between the vertices, and C3 is the repulsion strength.
Vertices are moved each iteration by C4 × (force on vertex). C1, C2, C3 and

C4 are constants in the algorithm, set at values 2, 1, 1 and 0.1 respectively. Ac-
cording to Eades, these values are appropriate for most graphs and almost all
graphs achieve a minimal energy state after the simulation step is run 100 times.

Figure 16 shows the effect of a force-directed layout on a small graph con-
taining nine nodes. Figure 16a is the input to the algorithm; the nodes in the
input diagram can be either randomly positioned (as in this example), or be po-
sitioned by another criterion such as geographic location. Figure 16b shows the
resulting layout after the force-directed method is applied and illustrates how
the algorithm output meets the two initial target criteria; edge lengths have
been roughly equalised when compared to the input graph, and elements of
symmetry can be seen throughout.

Eades notes that there are several classes of graphs for which the algorithm
produces poor layout: dense graphs, graphs with dense subgraphs, or graphs
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(b) After force-directed layout
method is applied.

Figure 16: Example of a force-directed layout method. Note: labels have been
manually positioned to cross-reference nodes and are unaffected by the layout
algorithm.

with a small number of bridges (graph edges whose removal disconnects the
graph). However, for a wide class of graphs the method can be used to produce
fast, good quality layouts with roughly equalised edge lengths and improved
symmetry.

2.2.1.3 Performance Optimisations

The first significant performance modification to the basic algorithm was de-
tailed in (Quigley and Eades 2001) and was based upon a previous technique
from (Barnes and Hut 1986). This modification originated from research into
N-body simulations – modelling how multiple celestial bodies with individual
gravitational fields interact together, and predicting future interaction. For the
most accurate simulation there must exist a force between every pair of bodies
(modelled as vertices), and as such has a time complexity of O

(
N2) – meaning

that performance will decrease drastically as more vertices are added. Force-
directed layouts, which are similar to N-body simulations as they also contain
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Figure 17: Hierarchical boxing (left) and force calculation (right) in two dimen-
sions of the Barnes-Hut optimisation from (Barnes and Hut 1986).

multiple vertices and forces between all node pairs, share this same problem
and this performance optimisation can greatly speed up the algorithm when
more vertices are added.

Due to the inverse-square function used to calculate forces between vertices,
the magnitude of the force between two distant vertices is very small. There
are also often many distant vertices in a similar vicinity, for which the standard
algorithm individually calculates forces for. The Barnes-Hut approach relies
on grouping close vertices together into a single pseudo-vertex. This pseudo-
vertex contains the total mass of the combined vertices and is positioned at their
barycentre. This vertex can then used to calculate the force between the current
vertex and all vertices in the group simultaneously, at the cost of a small loss in
precision.

Figure 17 illustrates how the area is partitioned to create groupings (left),
and how groups are used to calculate forces on vertex x (right). Vertex groups
are calculated at the start of each iteration as follows; an initial empty cell large
enough to contain all vertices is created, then each vertex contained within the
cell bounds is added to the cell. If a cell contains more than one vertex, that cell
is subdivided into four smaller child cells. This is repeated until each cell con-
tains at most one vertex. This process creates a quad-tree of cells, from the root
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cell containing all vertices down to child cells containing zero or one vertices
(Figure 17, left). The final step in constructing the tree is to tag each cell with
the location of it’s centre of mass and the total mass of the particles contained
within it.

Having constructed the cell-tree, the force on any particle p may then be ap-
proximated by a simple recursive calculation. Starting from the root cell which
contains all vertices, let s be the width of the cells region and d the distance
from the cells centre of mass to p. If (s/d < θ), where θ is a fixed accuracy
degree parameter, then use the calculated force between this cell and p. Other-
wise, resolve the current cell to its four children and recursively examine each
in turn.

The authors tested their method using a 4096 particle body simulation and
results indicated that the number of two-body interactions computed by their
technique was 0.1 times the amount required by a direct-summation force calcu-
lation. They also comment regarding precision loss and that in practice, forces
computed even with a large θ value (around 1.0) are still accurate to approxi-
mately 1% with little dependence on the number of nodes.

Another technique for the optimisation of force-directed layout was pro-
posed in (Tunkelang 1998) and uses a method based upon an inexact line search
to improve the speed at which nodes converge to their local optimum. Force-
directed methods typically do not specify an objective function, but rather ex-
press its negative gradient for each node in the form of forces, the magnitude of
which is mostly used as the distance that each is moved by. Using these forces
to move nodes requires many iterations to achieve convergence on the local op-
timum, as nodes are only moved a small distance towards it each iteration. If
an algorithm was capable of calculating, or even estimating, the position of the
local optimum based upon the objective function gradient, convergence could
be achieved much faster by moving nodes a greater distance each iteration.

The conjugate gradient method, along with line search, can be used to min-
imise an objective function in a single step based upon its gradient. However,
because the objective function of a force-directed method is not quadratic, the
conjugate gradient method cannot be used. An accurate polynomial interpola-
tion line search is possible, but such an approach would require many gradient
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recalculations. To this end, the author states that (page 6):

Our approach uses an adaptive step size. We us [sic] an empirically deter-
mined initial step size, and we increase or decrease this step size on each
iteration based on the previous one. We perform a gradient evaluation to
ensure that we do not overshoot; if our step size is acceptable, we use this
computed gradient for the following iteration.

Unfortunately, it is unclear how the step size is increased or decreased as
no further details are provided on these or the gradient evaluation procedure.
However, the empirical evaluation timings show a significant increase in opti-
miser performance for meshes and trees of various sizes. The author also tested
hypercubes, for which performance improvements were unclear.

2.2.1.4 Graph Theoretic Distance

Kamada and Kawai presented a variation of Eades’ force-directed layout method
in (Kamada and Kawai 1989). Rather than using graph edges as fixed length
springs between connected vertices, the authors add virtual springs between all
pairs of vertices. These springs are then weighted by calculating their graph the-
oretical distance – this distance is found by calculating the shortest path through
the graph between each pair of vertices. The algorithm functions by attempting
to minimise the difference between the graph theoretical distance, and the Eu-
clidean distance for each virtual spring. To this end, the basic constant attraction
and repulsion forces used by Eades are not used, but rather each virtual spring
will attract or repel it’s vertices depending on its current Euclidean length pro-
portional to its graph theoretical distance.

Figure 18 shows example output graphs from the Kamada and Kwai method.
These graphs look very similar to a typical output by Eades’ force-directed
method, and share many desirable properties – symmetric drawings, equidis-
tant edge lengths, and minimal edge crossings. An interesting point made by
the authors is that “The experiments have shown that the initial positions do not have
a great influence on the resultant pictures.” – and that due to this, their method
can be used as a fast visual check for isomorphism. This statement goes against
common understanding that force-directed techniques are prone to local optima
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Figure 18: Example graph outputs for Kamada & Kwai graph theoretic distance
method from (Kamada and Kawai 1989).

and that initial vertex configuration has a large effect on the output. Unfortu-
nately, there is no further discussion or evidence to support this.

Kamada and Kawai put forward an novel alternative to Eades’ force-directed
method, but it is unclear if this technique provides any beneficial advantages
over the existing method. In terms of map comprehension, it could be argued
that in certain situations a Euclidean distance between vertices based upon their
graph theoretic distance could be beneficial, although the accuracy of this crite-
rion is not guaranteed and so can only be taken roughly. The algorithm is more
computationally expensive, so there is a trade-off for this potential advantage.

2.2.1.5 Force-directed Layout Extension

Fruchterman and Reingold presented a variant of Eades’ force-directed layout
model in (Fruchterman and Reingold 1991) in which a number of modifications
were made. The authors note how Eade’s formulas do not reflect Hooke’s law,
and therefore came up with new formulas for attraction (Equation 4) and repul-
sion (Equation 5) which they claim are more closely related.

fa =
d2

k
(4)

fr =
−k2

d
(5)
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where d is the distance and k is the optimal distance between vertices.
Unlike Eade’s implementation which uses constants to define spring strengths

which affect the least-energy distance between vertices, Fruchterman and Rein-
gold calculate an optimal distance between vertices based upon the area of the
graph and its number of vertices. This optimal distance k is calculated using
Equation 6.

k = C

√(
area

number o f vertices

)
(6)

where C is a constant found experimentally.
When the attraction and repulsion formulas are plotted on a graph of force

against distance, the point at which the sum of the two crosses the x-axis is
where the two forces would exactly cancel each other out, and this happens
when d = k. Using these formulas Fruchterman and Reingold state “We have
achieved results similar to those of Eades, as we will show, but we rejected his formula
for fa [attraction] since it was inefficient to compute.”

Along with changes to the force calculations, the authors introduce a global
“temperature” level. The temperature value is initialised to a value determined
by a function of the graph area and is used to cap the movement allowed by
vertices, decreasing to zero over the duration of the algorithm. This modifica-
tion changes the termination behaviour of Eades’ algorithm from being reliant
on vertices to find equilibrium positions, to being user-defined depending on a
given cooling schedule (cooling schedule refers to the operation of the function
used to manipulate temperature over the duration of the algorithm). The au-
thors note that they conducted subjective experiments with two types of cooling
schedule: the first starts at a high temperature and cools rapidly at a constant
rate, whilst the second is set at a constant low temperature. They concluded that
results from a constant low temperature schedule were superior and required
less iterations.

As with other force-directed layout methods, the major time consuming as-
pect is calculating repulsion forces between each pair of vertices. The authors
use a combination of two methods to address this problem. Firstly, the graph
area is divided into a grid of resolution 2k – twice the optimum vertex-vertex
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Figure 19: Example graph outputs for Fruchterman & Reingold force-directed
layout (Fruchterman and Reingold 1991). Note: the left graph is the same struc-
ture as that in Figure 18 by Kamada & Kwai.

distance found in Equation 6. Vertices are placed in their grid squares at each
iteration, and repulsive forces between vertices are only calculated if they lie in
neighbouring cells. Using this technique, the authors state that “In practice, we
found that the square of the grid boxes caused distortion” and to solve this a further
check was introduced, after the neighbouring cell check, in which repulsion is
ignored if the distance between the vertices is > 2k.

Figure 19 shows example graph outputs from this algorithm. Much like al-
ternate force-directed layouts, the results are aesthetically pleasing with good
symmetry and node separation. When comparing the left graph to the same
graph produced by Kamada and Kwai (Figure 18), a slight difference can be
seen in the perimeter edge – the edges in the Fruchterman and Reingold ap-
proach have been pulled in, compromising the straight edge. This could be due
to the graph theoretic distance approach resulting in more even distribution
across all vertices, rather than limiting forces to a localised area.

2.2.1.6 Scalable Force-directed Layout

One of the main drawbacks for basic force-directed layout algorithms is the
lack of scalability; a good layout can be produced for up to approximately 40
vertices, but scaling beyond this is problematic for two reasons. Firstly, the time
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Figure 20: An example illustrating the layers of abstraction in a multilevel graph
from (Eades and Feng 1997).

complexity of these algorithms is typically O(N2) and as such adding too many
nodes is infeasible in terms of performance. Secondly, as the size of the graph
increases, the number of possible suboptimal configurations also increases –
raising the likelihood of a poor result.

Chris Walshaw presented a scalable force-directed layout technique in (Wal-
shaw 2001), extending the work on multilevel graph visualisation in (Eades and
Feng 1997). A multilevel visualisation of a graph uses a number of levels of ab-
straction to group together nodes in a similar vicinity. Figure 20 illustrates a
multilevel graph with two levels of abstraction; the blue graph (bottom) is the
most detailed version of the graph including all vertices. The green graph (top)
shows the coarse graph as a single vertex and the red graph (middle) shows
how close vertices are grouped together.

This concept is used by Walshaw to simplify large graphs to the point where
they are suitable for a force-directed layout. The process of grouping nodes to
form clusters is repeated until the number of vertices falls below some thresh-
old. A force-directed method is then applied to the simplified graph before un-
grouping vertices to their clusters of the previous abstraction level. This process
is repeated until the original graph is optimised.
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Figure 21: Example of Walshaw’s multilevel optimiser on a graph with many
vertices from (Walshaw 2001).

Using this method, Walshaw’s algorithm is capable of producing good op-
timisations of very large graphs with up to 100,000 vertices. Optimisation tim-
ings for such large graphs are understandably larger – 30 seconds for a 10,000
vertex graph to around 10-20 minutes for the larger graphs; however, when ap-
plied to a smaller graph, the method is no slower than any other technique as
none or very few abstraction levels are required. Figure 21 shows an exam-
ple of Walshaw’s multilevel optimiser on a very large graph. The result shares
characteristics seen in previous force-directed layouts on smaller graphs; ap-
proximately equal edge lengths with regular vertex positioning, and symmetry
amongst vertices. The data for this graph was taken from a fluid simulation,
and as such displays an extremely high density of nodes at certain edges.

2.2.1.7 Curvilinear Graphs

The large majority of layout techniques focus on graphs using straight edges
between vertices, but there has also been research into producing layouts using
curved edges. Using curved edges provides an additional level of flexibility in
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(a) (b)

Figure 22: Layout improvements obtained by Finkel and Tamassia’s curvilinear
force-directed method from (Finkel and Tamassia 2005).

graph drawing, introducing the ability to modify the angular resolution of a
vertex without affecting the position of adjacent vertices. High angular resolu-
tion is a desirable trait for a graph layout as it provides a clean look, increasing
readability – this is evidenced by the numerous methods implementing this
constraint.

Initial attempts at curvilinear graphs focused on planar polyline drawings
(Gutwenger and Mutzel 1998) and edge routing between fixed vertex posi-
tions generated using existing layout methods (Dobkin et al. 1997)(Brandes and
Wagner 1998). A common approach was to use an edge routing method to
construct a polyline, and subsequently use the vertices to construct a Bèzier
spline (Goodrich and Wagner 1998). These approaches are capable of produc-
ing curved connections between nodes resulting in an improved angular res-
olution, but still leave room for improvement as they are unable to move the
vertices that they connect.

Finkel and Tamassia present a method which combines curvilinear edges
into a force-directed layout method in (Finkel and Tamassia 2005). They em-
bed Bézier spline control points along edges as dummy vertices which are then
included in the force-directed layout method. Figure 22 shows two example
graph comparisons between a straight-line layout and Finkel and Tamassia’s
curvilinear force-directed method. These examples show how effective using
curved edges can be in increasing the angular resolution of edges around ver-
tices; in particular, the layout of Figure 22b has been much improved.
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2.2.2 Search-based Layout

Search-based graph layout methods use mathematical optimisation techniques
to improve layout using an objective function which is used to quantify the aes-
thetic quality of a graph. The layout is then refined by repeatedly performing
small modifications to the graph configuration to optimise the objective func-
tion. These methods typically take much longer to run than a force-directed
approach, as many possibilities are evaluated in order to find a better layout.
However, the extensibility of the objective function calculation in these meth-
ods allows for much easier implementation of additional criteria. There are
too many possible layout configurations to perform an exhaustive search, and
therefore these methods use a number of heuristics to limit the search space;
this often results in the method only obtaining a local optimum, although cer-
tain methods such as simulated annealing have attempted to mitigate this.

2.2.2.1 Simulated Annealing / Multi-criteira Hill Climbing

Davidson and Harel propose the use of a simulated annealing optimisation
technique for automated layout of undirected graphs (Davidson and Harel 1996).
The authors claim that their method produces good results for graphs of a mod-
est size, comparable to those produced by alternate methods including Eades’
force-directed technique.

The authors’ approach implements several simple criteria, listed below, many
of which are also present in the force-directed approach taken by Eades:

1. Even distribution of nodes.

2. Uniform edge lengths.

3. Minimal edge crossings.

4. Keeping nodes away from edges.

A cost function is defined for each criterion, which provides a numerical mea-
surement to be taken of how well a schematic adheres to it. These cost functions
typically produce values which vary by orders of magnitude, making them in-
comparable. In order to work around this, the authors add a weighting to each
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function. Once the cost functions are comparable they can be summed to pro-
duce a value indicating the total fitness of the schematic to all criteria; this is
called the objective or loss function and can be subjected to a general optimisa-
tion method – in this case simulated annealing.

After choosing some initial schematic configuration most iterative methods
alter the layout at each iteration, re-evaluate the objective function and possibly
replace the previous configuration with it, for example if the new layout reduces
the objective function. This process continues over a set number of iterations or
until some termination condition is satisfied, for example if there are no more
moves that improve the objective function. The procedure ends in a minimum
energy configuration, but it is generally a local minimum rather than an optimal
global minimum.

Simulated annealing differs from standard iterative improvement methods
by allowing “uphill” moves – moves that spoil, rather than improve, the tem-
porary solution. This is controlled using a temperature value which decreases
over the duration of the method, lowering the likelihood of choosing an up-
hill move as the number of iterations increases. Pseudocode for the simulated
annealing method is as follows:

1. Choose an initial configuration σ and an initial temperature T.

2. Repeat the following (usually some fixed number of times):

a) Choose a new configuration σ′ from the neighbourhood of σ.

b) Let E and E′ be the values of the objective function for σ

and σ′ respectively:

. if E′ < E or random < e(E−E′)/T then set σ← σ′.

c) Decrease temperature T.

d) If the termination rule is satisfied, stop.

(In step 2b, random stands for a real number between 0 and 1, selected ran-
domly.)

This simulated annealing approach has advantages over force-directed meth-
ods including the ability to easily add new criteria, as long as a cost function can
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(a) Initial layout example.

(b) After simulated annealing lay-
out method is applied.

Figure 23: Example of the simulated annealing layout method from (Davidson
and Harel 1996).

be defined for numerically quantifying it. Criteria weights can also be adjusted
to allow control over the strength of individual criteria. Another advantage
is that simulated annealing is able to escape from local optima, allowing the
method to find a “better” result and be less sensitive to initial configuration.
Disadvantages of the simulated annealing approach include a long optimisa-
tion time, typically much longer than that of a force-directed method. This is
largely due to the requirement of re-calculating the objective function at each
new configuration, most of which will be discarded. It should also be noted
that, due to the randomised aspect of configuration choice, the obtained result
is nondeterministic.

Figure 23 shows the result (23b) of the simulated annealing method applied
to a typical input graph (23a). The result is an aesthetically pleasing layout
which manages to follow all algorithm criteria – nodes are evenly distributed,
edge lengths have been equalised somewhat, edge crossings have been avoided,
and nodes have been kept away from other edges. Besides this, the method
has managed to produce a planar graph without prior knowledge of planarity,
which can be attributed to the addition of the edge crossings criterion. The algo-
rithms’ ability to escape local optima greatly aids when finding a planar layout
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from an input with many crossings, which is something that a force-directed ap-
proach can struggle with. The output also has a high level of symmetry present
– an emergent property from the defined criteria.

In conclusion, the simulated annealing approach by Davidson and Harel is
an effective layout technique for small to medium sized graphs. It is capable
of producing aesthetically pleasing schematics which conform to a number of
user-defined criteria. A major benefit of this method is the ease at which new
criteria can be added and their strength adjusted, providing much more scope
for extension to suit a wide range of applications. However, these benefits come
with a performance trade-off, so it cannot replace a force-directed method in all
situations.

Simulated annealing can be simplified by removing the concept of tempera-
ture and disallowing moves that produce a worse result – a technique known as
multi-criteria hill climbing. A new configuration is only accepted if the value of
its objective function has been improved over that of the existing solution. The
benefits of this simplification are that it will converge on a solution much faster.
It does, however, restrict the layout to a local optimum result. There are a num-
ber of variations on the hill climbing technique including next ascent and best
ascent methods. Next ascent performs random neighbourhood changes and
chooses the first configuration that has a lower objective function value (and
is non deterministic). Best ascent fully searches the local neighbourhood and
selects the best configuration found (and is deterministic).

2.2.2.2 Hybrid Genetic Algorithm

General genetic algorithms have been successfully used in a range of graph-
related optimisation problems such as pathfinding and network optimisation
(Piggot and Suraweera 1995)(Schweitzer et al. 1997). However, these systems
use one-dimensional encodings which makes them unsuitable for applying mul-
tiple global criteria. Hobbs and Rodgers propose the use of a hybrid genetic
algorithm for aesthetic graph layout in (Hobbs and Rodgers 1998). Based on
five well known measurable aesthetic criteria for graphs, the authors use the
following criteria in their objective function:
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(b) The resulting child graph.

Figure 24: Example of graph crossover in a genetic algorithm layout approach
from (Hobbs and Rodgers 1998). Arrows indicate vertex selection gradient, red
vertices indicate the selected vertices from each parent.

1. Total edge length – minimise the sum of all edge lengths.

2. Graph area – minimise the area of vertex-bounding rectangle.

3. Vertex overlap – penalty for close or overlapping vertices.

4. Angular resolution – penalty for acute angles between edges connected to
the same vertex.

5. Edge crossings – penalty for crossing edges.

As with other layout techniques utilising an objective function, these criterion
are weighted before summation to ensure comparability.

An initial population of graph configurations is randomly generated from
a given graph of vertices and edges. From these, four are randomly selected
and the two fittest graphs of these are chosen for reproduction. The authors use
a geometrically-based gradient crossover function which adds vertices to the
child graph by selecting vertices from the parents along a randomly generated
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Figure 25: An initial graph (left) and aesthetically optimised result (right)
from (Hobbs and Rodgers 1998).

gradient – one parent ascending and one descending the gradient. A vertex
is selected from each parent in turn along the gradient and added to the child
graph; if the chosen vertex has already been selected, the next unused vertex is
used. This procedure, illustrated in Figure 24, creates a new child graph whilst
preserving spacial relationships and topological features. Based upon the new
child graph, a new population of graph configurations is then generated by
mutation. A random selection of vertices from the graph are moved a random
distance along both the x and y-axes. Mutation likelihood and size of movement
are controlled by the user.

Figure 25 shows an example of the method applied to a randomly gener-
ated graph with 159 edge crossings. The result of the algorithm, shown on the
right, was selected from the final population and has only four edge crossings
remaining. This result was obtained by running the GA with a population of 20
for 1000 generations, although the authors state that most improvements were
seen by around 250 generations. This is a positive result, as the method has
shown to be effective in removing edge crossings. However, the graph does ap-
pear quite irregular; this is perhaps caused by criteria 1 and 2 used to minimise
edge lengths and graph area respectively, and could possibly be improved by
including additional criteria for uniform distribution and minimum distance
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between vertices/edges as in Davidson and Harel’s simulated annealing ap-
proach.

Benefits of this method include a greater ability to escape local optima than
force-directed or simulated annealing techniques, along with a more scalable
time-complexity to achieve good results. This latter point allows the method to
optimise much larger graphs, which may be infeasible for alternate layout tech-
niques due to optimisation time and/or local optima. The use of a multi-criteria
objective function also allows easy implementation of additional criteria.

2.2.3 Additional Notes on Force-directed and Search-based Lay-

out

Many examples used to illustrate the results of a graph layout technique are
symmetrical – this can be seen in Figures 15, 18, 19 and 23. The reason for
using symmetrical graphs is that they provide an easy way to visually verify
the effectiveness of a layout method. This is because symmetrical layouts are
visually appealing, and therefore justified as being deemed “effective” layouts
(effective being a graph that is quickly and accurately traversable). It is therefore
much easier to say that the layout method provides good results if it manages
to obtain this expected layout, rather than using a non-symmetric graph which
does not have such an obvious expected output. This is not to say that these
layout methods cannot also produce quality optimisations for non-symmetric
graphs, as can be seen in Figures 16, 21 and 22.

The previous sections indicate that force-directed approaches are more effi-
cient than search-based approaches, yet perhaps do not fully clarify the reason;
the justification for this is as follows. Force-based approaches operate by sum-
mation of the forces applied to each node. This resulting force is equal to the
negative gradient of an objective function to optimise node positions. As such,
the algorithm knows exactly the direction in which to move nodes in order to
quickly minimise the function – there is no wasted movement. In search-based
techniques, is it not possible to directly calculate the gradient of the objective
function, and so a large number of trial-and-error node movements are required
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to determine the general direction for each node at each iteration. It is these nec-
essary, yet wasted, node movements that make search-based approaches much
slower than their force-directed counterparts at reaching a solution.

Similarly, this reason contributes to the difficulty of implementation of ad-
ditional criteria into force-based approaches. Each additional criterion must be
expressed as a force for which the gradient of it’s objective function can be cal-
culated.

2.2.4 Dynamic Layout and Mental Map Preservation

Dynamic graph layout is concerned with the visualisation of data sets which
continually change. These changes typically consist of nodes/edges being added
or removed, or other transformations which reflect changes in the underlying
data. When this happens, it is desirable to modify the graph to accommodate
the changes whilst still adhering to the layout criteria used. Many such changes
can be reflected in the graph with simple modifications, but some require con-
siderable changes to node positions in order to produce a high quality layout.
A naı̈ve approach to re-enforcing layout criteria after a modification is to per-
form an algorithm designed for static layout on the whole graph. However, this
approach can drastically change node positions in the visualisation and thereby
hinder readability, as users must re-familiarize themselves with node positions
– this problem gives rise to the concept of mental map preservation (Eades et al.
1991).

From (Diehl and Görg 2002) (page 2):

The term mental map refers to the abstract structural information a user
forms [cognitively] by looking at the layout of a graph. The mental map
facilitates navigation in the graph or comparison of it and other graphs.
In the context of dynamic graph drawing changes to this map should be
minimal, in other words algorithms to draw sequences of graphs should
preserve the mental map.

The reason for this is that large node movements between graph states can con-
fuse users as a topologically identical graph can look radically different. Con-
sider the example graph Gn in Figure 26, after deletion of the red node and its
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(a) Gn. (b) Gn+1(0). (c) Gn+1(1).

Figure 26: Preservation of the mental map between sequential graph states.

associated edges, the mental map will be similar to the graph Gn+1(0). How-
ever, an optimisation algorithm not designed to preserve the mental map may
output Gn+1(1) which is isomorphic, but for a user this is not immediately obvi-
ous. Because of this, a dynamic algorithm should take into account the previous
state of the schematic and aim to minimise the change in layout.

An example of a technique to preserve the mental map includes implement-
ing an additional layout criterion into a static method that limits node move-
ment during re-optimization, in order to retain similarity and alleviate the issue
of re-familiarisation. A key paper on mental map preservation (Misue et al.
1995) states that “Intuitively, layout adjustment should preserve proximity relations:
items which are close together should stay close together”; however, subsequent im-
plementations of mental map preservation techniques restrict absolute node
movement without regard to proximity relations. For example, Kelly Lyons
in (Lyons 1992) constructs a Voronoi diagram upon the schematic and uses
the resulting node-enclosing polygons to restrict absolute node positions. An-
other technique includes that used by Graphael (Forrester et al. 2005), where
the authors construct inter-timeslice edges and vary their strength in order to
limit node movements. There have been a number of studies on the effect of
mental map preservation on user readability and accuracy (Archambault, Pur-
chase and Pinaud 2011)(Archambault and Purchase 2012)(Purchase, Hoggan
and Görg 2007)(Purchase and Samra 2008)(Saffrey and Purchase 2008); how-
ever, none have identified the technique to have any significant effect.
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2.3 Automated Schematic Layout

Considerable effort has gone into developing automated methods for schematic
layout. These methods are extensions on standard graph drawing techniques
in that they must perform the same basic tasks with the added requirement of
adhering to additional aesthetic criteria.

Metro maps are commonly used when developing automated schematic lay-
out techniques. This is due to a large number of reasons: 1) Availability of pre-
defined layouts in the form of real-world maps. 2) Variance of layouts both in
size and difficulty. 3) Published, hand-drawn, metro schematics can be used as
benchmarks for algorithm performance. 4) Published metro maps share a sim-
ilar set of layout criteria which can be emulated. 5) Familiarity/popularity of
maps to a wide audience. Early layout methods, including (Avelar and Müller
2000)(Hong, Merrick and do Nascimento 2005)(Stott and Rodgers 2004), were
the first to compile a number of criteria derived from examination of published
schematics, and subsequent methods often implement many of these as a base-
line. These criteria, covered in the following sections, are generally accepted
to improve the readability and aesthetic appearance of a schematic to create a
metro map style diagram.

The following sections provide an overview of notable schematic layout
techniques which have been implemented, and explain the advantages and dis-
advantages of each method. Martin Nöllenburg covers the background of au-
tomated metro map layout algorithms with further emphasis on computation
in (Nöllenburg 2014).

2.3.1 Topologically Correct Schematic Maps

Before the use of metro maps became commonplace for developing schematic
layout techniques, Avelar and Müller used road network data to present the
first schematic layout technique in (Avelar and Müller 2000). They discuss the
characteristics of schematic maps including straight lines, a reduced number of
fixed line angles, and contrasting colours to differentiate transportation lines.
With this in mind, they choose to implement the following criteria into their
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Figure 27: Example of streets in a standard map and a derived schematic map
by Avelar and Müller from (Avelar and Müller 2000).

layout technique:

1. Straight lines which can be horizontal, vertical, or diagonal (angles of 45◦).

2. Maximum length for straight line sections.

3. Minimum distance between lines.

An important aspect of their method is that these are all binary criteria, either
met or not met, and there is no value representing fitness. Along with these
criteria, the authors emphasise the importance of topological correctness in the
resulting layout, and state the following properties which must be adhered to
throughout the method:

1. Line crossings, where present in the input map, must not be removed.

2. Line crossings must not be introduced.

3. Cyclic order of outgoing connections around any node agrees with the
ordering of connections in the input map.
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This method uses the network lines to be schematised as the input to the algo-
rithm, and the Douglas-Peucker line simplification (Douglas and Peucker 1973)
preprocessing step is applied to remove line crenulations. The resulting long
line sections are then cut according to the user defined maximum line length.
The next step finds an improved location for each node by evaluating each in
turn; if the examined node does not satisfy all criteria, then it is moved to the
nearest position that does. This process is performed iteratively until the user
decides the schematic reaches an acceptable appearance. Figure 27 shows an
example of how the method can successfully schematise a large public road
network.

2.3.2 Octilinear Force-directed Layout

The first attempt at the layout of metro maps was performed by Hong et al. in
(Hong, Merrick and do Nascimento 2005). The authors devised a number of cri-
teria for metro map layout by studying existing hand-drawn metro maps from
all over the world, in particular Harry Beck’s map of London. These criteria
extend the observations of Avelar and Müller, and are defined as follows:

1. Each line is to be drawn as straight as possible.

2. Minimum edge crossings.

3. Minimum overlapping of labels.

4. Lines mostly drawn horizontally or vertically, with some at 45 degrees
(octilinearity).

5. Each line is to be drawn with unique colour.

Hong et al. chose to use a force-directed layout technique for metro map
optimisation, this is an extension of Eades’ method described in Section 2.2.1.2.
Due to the characteristics of force-directed layout, criteria 1, 2, and 3 are natu-
rally enforced, and the main challenge involves enforcing criterion 4, octilinear-
ity. In order to attempt this, Hong et al. combined the standard force-directed
layout method with a magnetic spring model by Sugiyama and Misue (Sugiyama
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Figure 28: Sydney metro map produced by Hong et al. using their spring em-
bedded method from (Hong, Merrick and do Nascimento 2005).

and Misue 1995) which rotates edges around their midpoint by applying addi-
tional “magnetic” forces to end nodes. Sugiyama et al. use this technique in
their paper to apply an overall structure to the resulting graph, for example a
tree with edges mainly in the y-axis or graphs following polar coordinate axes;
they also demonstrate its use for drawing orthogonal graphs – a step towards
octilinearity.

Hong et al. use this magnetic spring model in combination with the force-
directed method to attempt to rotate edges to the closest multiple of 45◦ whilst
also undergoing the standard graph layout. Figure 28 shows the result of this
method applied to the Sydney metro map, and it can be seen that edges in the
schematic have been roughly aligned to a multiple of 45◦. However, along with
a number of other characteristics including stations not being evenly distributed
and sharp line bends, the slightly-off octilinearity makes the schematic less ap-
pealing and hinders its readability when compared to published maps.
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An advantage of this layout method is the speed at which optimisation
is performed, taking only 7.6 seconds to produce the example shown in Fig-
ure 28. Along with this, the optimisation process of force-directed methods
can be viewed in real time as they produce an aesthetically pleasing animation
from the initial embedding to the final layout; this is in contrast to search-based
methods where nodes quickly jump around as the algorithm searches for ideal
positions. This advantage should be taken into account for applications where
real-time optimisation with user interaction is required, such as dynamic layout,
as the animation can substitute for the wait required with alternate methods.

The main disadvantage of this method is that multiple force-types, each at-
tempting to optimise a specific criteria, cannot be fully enforced when run si-
multaneously. The reason for this is that the multiple forces are combined into
a single movement vector for each node during each iteration, and conflicting
forces result in little or incorrect movement required to fit one specific criterion.
This effect can be seen in Figure 28, and is the reason why octilinearity has not
been fully applied – the edges are unable to move into the desired octilinear
angles as they are held in place by the standard spring-embedder forces. This
is a major problem in schematic layout, where it is often desirable to strongly
enforce a number of criteria; the result is that this method is generally unable to
produce schematics of a comparable quality to hand-drawn maps.

2.3.3 Multi-criteria Hill Climber

Shortly after the force-directed approach by Hong et al., an alternative multi-
criteria hill climbing approach was proposed in (Stott and Rodgers 2004). This
search-based layout method, covered in Section 2.2.2.1, computes a layout by
iteratively repositioning nodes to optimise an objective function. As mentioned
previously, a major advantage of search-based methods using an objective func-
tion is the ease at which new criteria can be added, and therefore these methods
are well-suited to metro map layout. Stott et al. devised a number of criteria to
implement into their optimiser based upon examination of popular published
metro maps. It should also be pointed out that this method was developed
simultaneously and independently from the method by Hong et al., yet both
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Figure 29: Sydney metro map produced by Stott et al. using their multi-criteria
hill climbing method from (Stott and Rodgers 2004).

techniques share many of the same criteria gathered from examination of pub-
lished maps. The criteria used in their layout algorithm are as follows:

1. Minimum edge crossings.

2. 4-gonality (edge angles should be multiples of 45◦, now commonly re-
ferred to as octilinearity).

3. Equal edge lengths.

4. Angular resolution (maximise incident edge angles).

5. Line straightness.

As with the force-directed method, the major new criterion over standard graph
layout is octilinearity – this being a very prominent feature in metro-maps.

Figure 29 shows the result of this method applied to the Sydney metro map.
This map of Sydney differs from that used by Hong et al. as intercity lines
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are excluded, shortening most periphery line sections; however, this difference
should have little effect on the resulting layout. It is clear from this image
that octilinearity has been enforced on almost all of the schematic, with only
one edge not managing to achieve this (pink/green edge on the left side of
the schematic). The method also uses a critereon for maximising the incident
edge angles at nodes, and this has been effective at limiting sharp line bends
such as those seen in the method by Hong et al. Clusters of nodes can be seen
which give the impression of worse node distribution, but when compared to
the force-directed method the distribution across the entire schematic is more
uniform. Overall, this layout compares much more favourably to published
maps drawn by hand.

Over a number of years, Stott et al. refined their method by adding the
following layout criteria:

1. Ordering of parallel line edges should remain consistent through nodes.

2. Lengths of edges incident to a node should be kept equal.

3. Enforcement of relative position between nodes.

Along with these new criteria, node clustering methods were utilised to move
multiple nodes at once in order to allow the method to escape from common sit-
uations of local optima, for example over-length edges separating two clusters
of nodes. The authors also implemented a labelling algorithm into their opti-
miser. Figure 30 shows the same Sydney map optimised using the extended hill
climbing method. This result, when compared to the previous attempt, shows
improved station distribution and consistent edge ordering along with an im-
proved overall appearance, in particular the left side of the schematic. However,
the city centre (far right) has become congested and is difficult to interpret.

Along with the previously mentioned optimiser improvements, in (Stott
et al. 2010) the authors present the results of a study conducted to evaluate
maps drawn using their method in comparison to their official published ver-
sion and an undistorted geographic map. The study used six different maps
and 43 participants in order to find which map users were faster on and which
they preferred to use for typical navigation tasks. They found that in most cases
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Figure 30: Sydney metro map produced by Stott et al. using their multi-criteria
hill climbing method from (Stott et al. 2010).

a map drawn with their automated system was faster for finding an optimal
route than both an undistorted map and the official published map. They also
found that overall, users preferred the automated maps.

The advantages and disadvantages of this method are much the same as
that of a multi-criteria hill climber for a standard graph layout. The method is
capable of producing a good quality schematic at the expense of optimisation
time and the likelihood of only finding a local optima configuration. As before,
the use of an objective function allows for easy implementation of additional
criteria.

2.3.4 Mixed-Integer Linear Programming

Nöllenburg and Wolff present a mixed-integer linear programming method for
the optimisation of metro maps in (Nöllenburg and Wolff 2006). This method
differs from standard search-based methods as it defines its constraints as one
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of two types, “hard” and “soft”; hard constraints must be met, whilst soft con-
straints are maximised but not strongly enforced. Hard constraints are as fol-
lows:

1. Graph topology must be respected.

2. All edges must be octilinear.

3. Each edge has a minimum length.

4. Each edge has a minimum distance from each other non-incident edge.

Soft constraints are as follows:

1. Lines should have few bends.

2. Total edge length should be small.

3. Relative position of nodes must be preserved.

The MIP optimisation technique used is a derivative of linear programming
– a method of determining the best outcome in a mathematical model based on
a set of linear constraints (the hard constraints in this case) and a linear objective
function. The linear constraints are plotted onto a graph to produce a feasible
area, in which the linear objective function can then be minimised against the
soft constraints.

Figure 31 shows the Sydney schematic optimised using this linear program-
ming method. The result is of a high quality, meeting all defined hard con-
straints and showing signs of soft constraint optimisation. It is interesting to
see just how similar this automated optimisation is to the officially published
Sydney map (Figure 8), drawn by an experienced designer.

This method is advantageous in that its optimisation technique guarantees
(if possible) that all hard constraints are met, whilst avoiding the problem of
local optima; this allows the technique to generate schematic layouts of a very
high quality. The cost of these advantages are a long-running optimisation time
(the authors state Figure 31 took 22 minutes), and the possibility that it may not
be able to produce a result if all hard constraints cannot be met.
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Figure 31: Sydney metro map produced by Nöllenburg et al. using their mixed-
integer linear programming method from (Nöllenburg and Wolff 2006).

(a) Straight-line travel route Vienna
metro map from (Wu et al. 2012). (b) Annotated Taipei metro map

from (Wu et al. 2013).

Figure 32: Two schematics produced by Wu et al. using their modified mixed-
integer linear programming method for straight-line travel routes (32a) and an-
notations (32b).
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More recently, Wu et al. have extended the mixed-integer linear program-
ming method in two ways. Firstly, in (Wu et al. 2012), they adapt the method to
form a straight, centred line based on a specified travel route with annotations
around the edge of the layout (Figure 32a). Subsequently, they placed more
emphasis on node annotation in (Wu et al. 2013). In this approach the authors
apply additional constraints to generate schematics with enough room for sta-
tion thumbnail images (Figure 32b) – such annotated maps are commonly seen
in tourist guides. The technique is effective at allowing extra room for annota-
tions whilst avoiding occlusions, however this comes at the cost of a reduction
in quality of the schematic itself – many areas of Figure 32b can be seen with
unnecessary line bends, in particular the red line at the top.

2.3.5 Simulated Annealing

The first implementation of a simulated annealing layout method for schematics
was published in (Ware et al. 2006). The authors use this technique to produce
schematic maps based upon road networks for mobile devices. The optimisa-
tion method remains the same as the approach described in Section 2.2.2.1, but
the criteria used have been revised and are now defined as follows:

1. Topology should remain consistent.

2. Edges should lie in octilinear angles.

3. All edges should have a length greater than some minimum distance.

4. The angle between two incident edges should be greater than some mini-
mum angle.

5. Edges should remain rotated as close as possible to their starting orienta-
tion.

6. The distance between disjoint nodes/edges should be greater than some
minimum distance.

7. Nodes should remain close to their starting positions.

56



Figure 33: Sydney metro map produced by Ware et al. using their simulated
annealing method in (Ware et al. 2006). Note: image from later paper (Ware and
Richards 2013).

This method was later used by the authors to provide a comparison for an-
other method in (Ware and Richards 2013). As part of the comparison, this
SA approach was used to generate Figure 33, the Sydney metro. It should be
pointed out, however, that the Sydney schematic used has been simplified more
than that found in the alternate methods; many sections with a “triangle” of
nodes have been condensed into a single junction, and the complicated city cen-
tre section of the schematic has been reduced into a set of simpler connections.
However, the SA approach has produced a good layout exhibiting an evenly-
distributed, fully octilinear schematic following the defined criteria. This SA
approach is compared to a multi-criteria hill climber method in (Anand et al.
2007). The implemented method is a modified version of this SA approach,
with negative movements disallowed. As one would expect, they found that
the SA method has an advantage over a multi-criteria hill climber in its ability
to escape local optima, and this is seen when comparing the results – for ex-
ample SA showing a higher level of line straightness as seen in Figure 34. The
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(a) Highest-cost (worst) simulated an-
nealing result (cost=115).

(b) Lowest-cost (best) multi-criteria hill
climbing result (cost=132).

Figure 34: Comparison between the highest-cost simulated annealing (34a) and
lowest-cost gradient descent (34b) approaches to show variation. From (Anand
et al. 2007).

increased quality from an SA method is fairly substantial, with the worst SA
result still beating the best multi-criteria hill climbing result in terms of the ob-
jective function. However, optimisation time is increased and non determinism
introduced.

2.3.6 Path Simplification

Two path simplification methods for metro map layout were proposed. The first
(Merrick and Gudmundsson 2007) extends previous work in path simplification
(Douglas and Peucker 1973) and applies additional constraints to allow only
specific edge angles. The second (Dwyer, Hurst and Merrick 2008) simplifies
the first algorithm developed by Merrick et al., and improves its performance.

These methods are capable of producing simplified metro schematics as
shown in Figure 35, but layout quality is heavily compromised. It can be seen
that although all edges conform to the restricted angles, other criteria com-
monly found in alternate algorithms are not followed – this is because these
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(a) Sydney metro (Merrick and Gud-
mundsson 2007).

(b) Sydney metro (Dwyer, Hurst and
Merrick 2008).

Figure 35: Sydney metro map produced by Merrick and Gudmundsson
(35a, (Merrick and Gudmundsson 2007)) and Dwyer et al. (35b, (Dwyer, Hurst
and Merrick 2008)) using path simplification. Note: Figure 35b has been flipped
vertically because it was upside-down.

criteria are not implemented into the algorithm, but as a result it leaves the
schematic with many line bends and some dense sections.

The advantage of these path simplification methods is the speed at which
they run, with stated timings of 268ms and <10ms respectively for the Sydney
schematic shown in Figure 35, which in specific situations could be more ben-
eficial than the output quality. For example it is suggested that these methods
could perform part of a preprocessing step to simplify the input for another
method.

2.3.7 Focus+Context Least-Squares Conjugate Gradient

Wang and Chi present an automated metro map layout technique using a least-
squares conjugate gradient optimisation method in (Wang and Chi 2011). They
present their method in terms of a focus+context method, although it can also
be used to produce a layout for the entire system. Focus+context visualisation
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(a) Standard Sydney layout. (b) Sydney layout with focused route.

Figure 36: Sydney metro maps produced by Wang and Chi using their fo-
cus+context least-squares conjugate gradient method.

techniques magnify focal regions whilst maintaining visibility of contextual re-
gions, for example like a fisheye lens, and are most commonly used in the ex-
ploration of large data sets on limited screen space. Their system determines the
best route between two user-selected vertices using a shortest path algorithm.
The edges contained within this route are then emphasised during the layout
process to apply focus, whilst other edges are shortened and de-emphasised to
provide context.

Their algorithm consists of two discrete steps; initially, they compute a smooth
deformation in which vertices are moved into positions which result in smooth
angles between edges, they then rotate edges to octilinear directions. The mo-
tive for splitting octilinearity into a separate step is that the octilinear direction
is a discrete property and integrating this constraint into a continuous objective
function would make global optimisation more challenging. Much like other
search-based methods, the conjugate gradient method (Hestenes and Stiefel
1952) minimises an objective function defined by a number of criteria. To speed
up optimisation, the objective function is solved in a least-squares sense, which
means constraints are only approximated and not fully satisfied. Wang and Chi
use fewer criteria than typically seen in metro map optimisation, these are:
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1. Regular edge lengths (Smooth deformation).

2. Maximal angles of incident edges (Smooth deformation).

3. Positional constraints – nodes are very slightly attracted to their original
positions to provide basic geographical guidance (Smooth deformation).

4. Octilinearity (Route octilinearity).

Figure 36 shows two examples of Wang and Chi’s layout method – 36a
shows the standard optimisation of the Sydney metro map, and 36b shows the
same Sydney schematic with a focused route. Both layouts are aesthetically
pleasing, and satisfy the implemented constraints. Wang and Chi quote a time
of 0.816s for optimisation of this schematic, which is very fast for a search-based
method, and considered fast enough that the flow of thought is uninterrupted
for an interacting user (Nielsen 1993). As such this is the first metro map lay-
out method, capable of producing high quality results, suitable for interactive
applications.

2.3.8 Ant Colony System

Ware and Richards present an ant colony system algorithm for automatically
schematising network data in (Ware and Richards 2013). Their ant colony sys-
tem takes a similar approach to a multi-criteria hill climber, using the same cri-
teria as found in their simulated annealing approach discussed previously (Sec-
tion 2.3.5). Non-determinism is introduced into the node-positioning stage by
moving nodes in a random order; as opposed to the same sequential order each
iteration. During each iteration, the current configuration is modified multiple
times, with each new layout being known as an ant. At the end of each iter-
ation the best resulting layout applies pheromones to its node positions in a
global grid so as to affect all ants in future iterations. The pheromone increases
the likelihood of nodes moving near to it during the node-positioning stage,
and gets stronger over time in node positions that consistently produce a good
layout (as multiple ants will lay pheromones in the same position, creating a
cumulative high pheromone value). As the pheromone gets stronger in node
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Figure 37: Sydney metro map produced by Ware and Richards using their ant
colony system algorithm from (Ware and Richards 2013).

positions that produce a good layout, the algorithm converges to a single solu-
tion.

Layouts produced by this method (Figure 37 – Sydney), much like the SA
method, appear cleaner than a standard hill climbing approach with the entire
schematic fully enforcing octilinearity and, where possible, a consistent length
between adjacent stations; this is partly due to the fact this method can avoid
some local optima by the possibility of moving to a worse layout. There are
still sections of this layout that show signs of unoptimal layout, including the
top right line which comes off at an angle not expected from the incoming two
lines. The authors conclude that “in each case the ACS algorithm outperformed that
of a previous SA algorithm in terms of cost (quality) and time”. The running time
is quoted as 150 seconds for the Sydney map shown, which is comparable to
search-based methods.
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2.3.9 Curved Metro Map Layout

Some of the latest work on the automated layout of metro maps has begun
looking at metro layouts with alternate criteria, in particular curved metro lines
are used instead of the more traditional octilinearly-aligned edges. This work
builds upon the previous curvilinear graph drawing research discussed in Sec-
tion 2.2.2 for standard graphs.

In (Roberts et al. 2013), the authors suggest that there are circumstances in
which the conventional schematic map layout criteria fail to yield benefits, and
performed a study to investigate the use of an all-curved design for the Paris
metro map. The authors found that journey planning time for the all-curved
map was up to 50% better than when using the official RATP octilinear map.
Roberts then also worked with researchers in automated schematic layout to
develop a force-directed layout method capable of producing curvilinear metro
maps using Bèzier curves in (Fink et al. 2013). This paper concisely states the
premise of, and problem with, octilinear metro map designs in the following
paragraph (page 1):

Such [octilinear] schematic maps potentially offer usability benefits by
simplifying line trajectories, and hence reducing the amount of information
that is irrelevant for deciding how to travel from one station to another.
However, there is often a misbelief that it is merely the use of straight lines
and a restricted angle set that benefits the user, and as a consequence many
human designers fail to optimize octilinear maps, converting chaotic real-
life line trajectories into complex sequences of short straight-line segments
and bends (Roberts 2012). In other instances, the network structure itself
makes the benefits of octilinearity difficult to realize.

For this reason the authors suggest the use of curvilinear designs for situations
where octilinear layout techniques fail to produce high-quality maps, both by
automation and manual design, such as in dense interconnected networks with
many bends.

The authors apply the following criteria to the Bèzier curves:

1. Any pair of Bèzier curves that are consecutive on a metro line must meet
in a station and must have the same tangent there.
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Figure 38: Curvilinear Sydney metro map produced by Fink et al. using their
force-directed Bèzier curve method from (Fink et al. 2013).

2. The aim for each individual metro line is to consist of the smallest number
of Bèzier curves necessary in order to maintain interchanges.

3. Points of inflection should be avoided (change in curve direction).

Previous attempts such as (Finkel and Tamassia 2005) (Section 2.2.2) at drawing
curvilinear graphs with a force-directed layout method treat vertices as con-
trol points, and subject these to standard straight-edge layout forces. This new
method implements additional forces which modify the curves by handling ver-
tices and control points in different ways in order to meet the defined criteria.
Vertices are influenced by standard force-directed placement forces as defined
in (Fruchterman and Reingold 1991), and forces acting upon control points are
applied as a rotation around the vertex towards the tangent of the colinear edge.
This has the effect of straightening edges as much as possible, whilst ensuring
consecutive line sections share the same tangent through vertices. Forces are
also applied to line tangents at vertices to improve angular resolution.

Figure 38 shows the Sydney schematic as optimised using this curvilinear
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force-directed method by Fink et al. The authors use octilinear produced opti-
misations from the MIP approach of (Nöllenburg and Wolff 2006) as the input
schematic; geographic input configurations were also tested, but they state that
superior results were obtained from octilinear inputs. This layout technique
has produced an aesthetically pleasing rendition of the Sydney layout, and the
constructed Bèzier curves follow all predefined criteria. There are no appear-
ances of sharp edges in lines caused by mismatched tangents through vertices,
and there are minimal points of inflection. Arguably the most difficult section
of Sydney to optimise for all algorithms is the city centre (far-right), and this
method struggles here with an unnecessary crossing below the circular section
(the orange line crossing out of the circle is unavoidable), caused by the entire
section angling upwards as opposed to the more horizontal layout seen in other
methods. Periphery line section splits also remain very close (top-left red line),
presumably caused by both sections attempting to align to the tangent of the
section before the split whilst remaining straight.

This method is a very good adaptation of curvilinear graph drawing meth-
ods into the area of schematic layout, and the authors have outlined potential
improvements including labelling mechanisms. As mentioned previously, the
topology of certain schematics does not adapt well to octilinear configurations,
and as such this method has useful applications. Limitations include the use of
an octilinear input configuration meaning that the schematic must be optimised
beforehand, increasing the total time taken to produce a schematic. This can be
seen as a disadvantage depending on the application requirements; however,
with layout methods becoming increasingly fast at producing good quality oc-
tilinear configurations, the issue can be mostly mitigated.

2.4 Summary

Throughout this chapter we have covered the areas of schematic mapping, graph
drawing, and automated schematic layout. Existing research in each of these
fields has been explored, along with a look at examples of current officially
used designs and those using the metro map metaphor for non-transport data.
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We have talked about current design processes, and explained how an auto-
mated layout system would provide benefits for both professional and amateur
schematic designers in the hope of increasing the popularity of this type of vi-
sualisation.
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Chapter 3

Improving the User Interface

Initial research into the creation of metro map style schematics revealed few ap-
plications designed to aid users during the design process. Applications which
claim to do so such as (EdrawSoft 2014) (iMapBuilder 2014) turn out to be more
general purpose vector based design applications and do not allow easy modi-
fication of drawn schematics. This distinction is important, as users should ide-
ally be able to easily modify the schematic layout after the structure itself has
been created. For example, moving nodes should also update adjacent edges
to remain connected. Lack of such connectivity between node and edge objects
makes this task laborious to perform, hindering the user during layout.

CAD/GIS packages such as (AutoCAD 2015) (ArcGIS 2015) do support
schematics with connections between objects, however many important fea-
tures specific to metro maps are not supported, such as the common require-
ment of multiple lines running parallel to each other with different colours, or
schematic layout techniques tailored specifically to the metro map style.

The number of problems present in the creation of metro maps is further
compounded by a lack of support for automated layout. As discussed in the
previous Chapter, automated metro map layout methods have been the sub-
ject of much research, but have only been implemented in a proof-of-concept
context.

Taking these two points into consideration, our initial work focused on the
development of an application to facilitate the fast manual drawing of metro
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Figure 39: SchemaSketch running on an ASUS Eee Pad Transformer device us-
ing Android v3.1.

map style schematics whilst recording connectivity information between objects
to allow easy layout modifications once the structure has been input. Using the
same connections, it is also possible to perform automated layout techniques
upon the drawn schematic – this extension is covered in Chapter 4.

The timing of this work coincided with a great increase in both the availabil-
ity and popularity of portable touch-sensitive devices such as mobile phones
and tablets, and with them a large number of applications designed for touch
interactivity. We were unable to find a gesture-based input system for the cre-
ation of schematics, and were interested in exploring their suitability for fast
and accurate input of schematics into software. We therefore decided to imple-
ment our application, SchemaSketch, for Google’s Android operating system
found on a large number of such devices. SchemaSketch (Figure 39) has been
primarily developed for v3.0 but is compatible with newer releases and will ac-
commodate a variety of screen sizes. The application (.apk) can be downloaded
at the following URL: http://cs.kent.ac.uk/projects/schemasketch.
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(a) Junction. (b) Bend Point. (c) Edge. (d) Station.

Figure 40: Schematic objects.

3.1 Interface

This section explains how SchemaSketch is used to create and edit metro map
style schematics. There are two editing states for the input and modification
of schematics, these are termed the “Draw” and “Move” modes respectively
and can be toggled using a context menu. Draw mode allows the use of sketch
gestures for the creation and connection of various schematic objects and is ex-
plained further in Section 3.1.1. Move mode allows the user to reposition objects
along with object deletion and load/save functionality, and is explained further
in Section 3.1.2.

3.1.1 Draw Mode

This mode allows schematics to be created by using gestures to input objects
(see Section 3.2 for details on gesture recognition). The following list describes
the objects that can be constructed:

• Junction – Junctions are circular stations and are used when multiple edges
join or diverge (Figure 40a).

• BendPoint – Bend points should be used when a bend is desired in a line.
Similar to a junction, edges can split or converge at bend points. Ensur-
ing bends in a line do not occur at either junctions or stations provides
more aesthetically pleasing results in the schematic. SchemaSketch’s op-
timisation process will attempt to automatically insert bend points where
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Figure 41: Section of the Washington metro map represented in SchemaSketch
using all available objects.

required, however functionality for manual addition is also provided (Fig-
ure 40b).

• Edge – Provides a connection between a pair of junctions or bend points.
SchemaSketch provides support for different coloured edges to be drawn.
Multiple incident edges of the same colour will form a line, and extending
an edge will add the new edge onto the existing line. Parallel edges (of
different colours) can be drawn and will be automatically aligned parallel
to each other (Figure 40c).

• Station – Stations can be added onto existing edges and will distribute
themselves evenly along it. They will also align to be perpendicular to
the parent edge. Stations can be added to both single and parallel edge
segments (Figure 40d).

The draw mode also allows the user to add labelling to the schematic, see
Section 3.4 for details. Figure 41 shows a section of the Washington metro map
represented in SchemaSketch using all available objects.

3.1.2 Move Mode

This mode allows the manual modification of created schematics by enabling
drag and drop functionality for all objects. Objects retain their connections dur-
ing movement, and this functionality allows faster and easier manual modifi-
cation of schematics than using an application which does not support this by
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default, such as many vector graphics applications.
Whilst in move mode, touching a blank section of the drawing area will

bring up additional operations. These include the ability to manually snap
all nodes to grid intersections, show or hide labels, mark parallels and auto-
align nodes. The mark parallels mode allows users to select a number of edges
that they wish to be parallel in the final layout; the automated layout method
then uses additional criteria to ensure these edges are kept parallel. The auto-
alignment of nodes is intended as a post-processing feature and allows users to
select a number of nodes, then choose to align these vertically or horizontally.
Nodes are moved along the angle of their parent edge so as to not break octilin-
earity after optimisation. This feature is mainly intended for the alignment of
periphery nodes to improve the appearance of the schematic. The move mode
also allows users to manually position labels on the schematic, see Section 3.4
for details.

3.1.3 Contextual Menu

In both draw and move modes, a contextual menu allows a number of addi-
tional options. These are:

• Colour – Change the colour of the next edge to be drawn.

• Eraser – Changes the pen to an eraser pen that will remove everything
drawn over.

• Clear All – Clears all objects from the screen (requires confirmation).

• Optimise – Uses a multi-criteria hill climbing optimiser to rearrange nodes
into a more optimised schematic (see Chapter 4).

• Load/Save – Allows the loading and saving of drawn schematics to a file.

• Mode: Move/Mode: Draw – Switch between move and draw modes.
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Figure 42: Gesture capture – Red crosses indicate time-sampled points along
the drawn gesture.

3.2 Gestures

We have examined previous work in gesture-based input (Rubine 1991), sketch
recognition and beautification of hand drawn sketches (Freeman and Plimmer
2007) (Kara and Stahovich 2004) (Gusaite 2006) in order to decide on an effi-
cient and intuitive input mechanism for drawing schematics. For the purpose
of our application, only a small fixed set of gestures need to be supported. The
application does also not need to provide a method for learning new gestures.
To meet these requirements, we chose to use a number of metrics to identify
drawn gesture shapes rather than use a learning algorithm. Figure 43 illustrates
the supported gestures to input the various objects defined in Section 3.1.1.

Although full sketch recognition can provide more advanced functionality
than gestures by supporting multi-stroke symbols, it comes with a performance
overhead in recognition as well as a mechanism to determine when the user
has finished one symbol and moved onto the next. A common mechanism to
implement this is the use of a waiting time between pen strokes (Gusaite 2006)
but this hinders the input flow of the user. Simpler gesture recognition, where
a single-stroke gesture corresponds to an object, can provide the required func-
tionality whilst ensuring the user is not disturbed by workflow pauses.

Gestures are recorded as a sequence of time-stamped coordinates. As a ges-
ture is drawn, SchemaSketch will record the current position of the touch mo-
tion ten times a second. Figure 42 shows a visual example of this sampling pro-
cess upon a junction gesture. Red crosses indicate sampled coordinates, starting
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from p0 (the initial point of contact) up to the final point pn. Although some ac-
curacy of the gesture is lost, providing a high enough sample rate is used there
is still enough information to determine the drawn gesture. Using these sample
coordinates, SchemaSketch will attempt to recognise the gesture based on the
metrics explained in the following subsections.

3.2.1 Minimum direct length to be classified as an edge

Direct length refers to the absolute distance between the start and end coordi-
nates of the gesture. For a gesture to be an Edge object, this distance must be
≥ 45 pixels.

3.2.2 Minimum straightness to be classified as an edge

The straightness of the gesture G is measured using Equation 7.

straightness(G) =
dist (Gstart, Gend)

actualLength(G)
(7)

where actualLength(G) is calculated using Equation 8.
The straightness calculation will produce a value between 0 and 1. A value

of 1 is a perfectly straight line. For a gesture to be classed as an edge,
straightness(G) must be ≥ 0.9. If a gesture passes the minimum direct length
test and minimum straightness test, it can be classified as an edge, otherwise it
is potentially either a junction, station, or bend point. Differentiating between
these last three is performed by the following four features.

3.2.3 Minimum actual length to be classified as a station

Actual length refers to the length of the gesture if it was straightened out, and
is calculated using Equation 8, where n is the number of points in the gesture
and pi is the ith sample point along the gesture.

actualLength(G) =
n−1

∑
i=0

dist (pi, pi+1) (8)
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actualLength(G) must be ≥ 10 pixels for the gesture to be evaluated. This
means any gesture shorter than 10 pixels will not be recognised and nothing will
be added to the schematic. This is useful for discarding unintentional screen
touches.

3.2.4 Minimum straightness to be classified as a station

The straightness is once again checked using Equation 7 and if straightness(G) ≥
0.5 then it will be classified as a station. Although stations and edges are both
straight line gestures, edges require a higher straightness(G) value because the
longer a gesture, the easier it is to obtain a high straightness(G) value.

3.2.5 Minimum number of sharp bends to be classified as a

bend point

The number of sharp bends along the length of the gesture is measured using
Equation 9. If sharpBends(G) ≥ 1 then the gesture is classified as a bend point.
A sharp bend is defined as a difference in edge angle that is ≥ 100◦ between
any two adjacent edges in the gesture.

sharpBends(G) =
n−2

∑
i=0

{
1 if angle(pi, pi+1, pi+2) ≥ 100
0 else

(9)

3.2.6 Minimum average radius to be classified as a junction

If there are no sharp bends, this last check is performed to identify a junction
gesture. We calculate the average radius of the shape (we know the shape is
curved, as straightness(G) is low). First we calculate the centre point of the ges-
ture, by averaging x and y co-ordinates across all points. We can then calculate
the average radius using Equation 10, where n is the number of points in the
gesture and pi is the ith point along the gesture.

radius(G) =
∑n

i=0 dist (Gcentre, pi)

n
(10)
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(a) Junction. (b) Bend. (c) Edge. (d) Station.

Figure 43: Schematic object gestures. Gestures start at the ×.

If radius(G) ≥ 10 pixels, this gesture can now be classified as a junction, oth-
erwise the gesture will not be recognised and nothing will be added to the
schematic.

These rules result in junctions being drawn by a circular shape with start
and end points close together (Figure 43a); bend points by a line across an edge
with at least one sharp bend (Figure 43b); edges by a long, straight gesture (Fig-
ure 43c); and stations by a short, straight gesture across an edge (Figure 43d).
Figure 44 illustrates the gesture interpretation process in a flow chart.

Although no studies were performed to objectively evaluate the effective-
ness of our input mechanism, during extensive personal use it has proven to be
an effective method for the construction of metro map schematics. Gestures are
interpreted accurately and allow quick and easy schematic creation, providing
a solid proof of concept for gesture-based schematic construction.

There are a number of accessibility issues associated with touch and gesture-
based input systems, for example for individuals with visual or dexterity dis-
abilities. Our current implementation system does not provide additional sup-
port for these users, however we have ensured that the gestures used for cre-
ating schematics are as simple and intuitive as possible. There are also no time
limitations on gesture input, meaning the system will read gestures with iden-
tical accuracy when drawn at any speed. As mentioned later in this chapter,
implementation difficulties prevented the addition of zoom and scroll function-
ality, however this is another feature that could greatly further aid users who
may find it difficult to use the gesture input system accurately.
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Figure 44: Gesture interpretation flow diagram.
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3.3 Connections

SchemaSketch will automatically create graph connections between drawn ob-
jects based on location and how the gesture is drawn. Connections between
objects in the schematic are essential to allow modification without breaking
the structure. Whilst the user draws their schematic and connections are added,
SchemaSketch maintains a graph structure representing the visualised schematic.
This underlying graph structure allows automated layout techniques to be ap-
plied to the schematic as explained in the next chapter. Below is a explanation
of how each gesture can be used to connect objects in the schematic.

• Junction

. Drawing a junction encompassing one or more edge ends will con-
nect the new junction to these ends.

. Drawing a junction encompassing a bend point will replace the en-
closed bend point with a new junction.

• Bend Point

. Drawing a bend point crossing an edge will insert it at the drawn
location – this can also be used to insert a junction along an edge, as the
inserted bend point can then be replaced by a junction.

• Edge

. An edge can extend an existing edge by starting or ending the edge
gesture at another edge start or end.

. Edges can be connected to junctions and bend points by starting or
ending the edge gesture close to them.

• Station

. Drawing a station either crossing or close to an edge will insert it
along that edge. Existing stations along the edge will be redistributed
equidistantly.
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Figure 45: Possible label positions relative to parent node.

3.4 Labelling

Labels can be added to junctions and stations whilst in draw mode. Touching
on a junction or station will open a text input dialog allowing the user to enter a
label name. Whilst in move mode, labels can be manually relocated by dragging
them around their parent. There are eight positions in which a label can be
placed, these positions relative to the parent are North, North-East, East, South-
East, South, South-West, West and North-West, as shown in Figure 45. A label will
initially be placed in the South position.

Along with these positions, during the automated layout process labels are
rotated to one of four angles in order to help avoid occluding other parts of the
diagram. This is further explained in Section 4.6.

3.5 Summary

This chapter has covered the user interface of our metro map creation appli-
cation, SchemaSketch, along with details of how we recognise gestures to con-
struct schematic objects and connections.

Drawbacks of the application include the limited screen space available on
mobile devices. Although techniques such as zoom and scroll can be used,
SchemaSketch does not currently support this functionality and therefore has
a limited drawing area. Another problem we contended with was the relatively
low performance of these devices, with many struggling to maintain a smooth
interface whilst viewing complicated schematics. This last point was also a hin-
derance to the implementation of features to remove drawing area restrictions
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and allow larger schematics. These two drawbacks ultimately arose from a lack
of processing power in early devices, but performance has vastly increased in
the last few years and it may now be possible to develop software which allows
much larger schematics to be drawn utilising zoom and scroll functionality.

Although there were a number of disadvantages associated with the hard-
ware, personal use shows the gesture-based input system to be very effective
and allows much faster creation of schematics when compared to a more tradi-
tional approach of selecting objects from a toolbox and placing them. It would
therefore be a very useful addition to any schematic creation software, and
could also be used on non-touch enabled devices with the aid of a graphics
tablet and pen.

Following on from this work in creating an effective input system for con-
structing metro map style schematics, we chose to implement an automated
layout method into our software. This layout algorithm is able to modify the
drawn schematic by manipulation of the generated underlying graph struc-
ture. The following chapter details our chosen method, and illustrates how
automated techniques can be used to vastly improve a number of schematic
characteristics and aid designers in the creation of effective schematic layouts.
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Chapter 4

Multi-criteria Hill Climbing
Optimiser

Along with our gesture based input system described in the previous chapter,
we implemented an automated layout algorithm into SchemaSketch. The pur-
pose of such algorithms is to aid users in the layout of their planned schematics
– typically a time consuming and difficult task. To do so, our algorithm follows
a number of criteria in order to make informed node movement decisions, as
described throughout this chapter.

The layout technique chosen falls under the category of a multi-criteria hill
climbing optimiser, and takes inspiration from previous work in (Stott et al.
2010) (Section 2.3.3). The reasons for choosing this particular method to extend
were as follows: 1) The hill climbing method is capable of producing decent
results which have been evaluated and shown to be effective in user studies
against geographic and published schematics. 2) There is still obvious room
for aesthetic improvement and additional criteria when comparing produced
layouts to published schematics. 3) The method is very extensible, allowing
us to implement new experimental criteria rapidly. 4) The method operates in
a more reasonable time-frame than alternate methods including SA and linear
programming which can take many hours to run. 5) The result of a hill climber
is often inferior to that of an SA method, as it has no way to escape local optima.
However, the benefit of this is that it produces a deterministic result making it
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easier to see the effects a specific new criterion and/or criterion weight has upon
the final layout.

4.1 Overview

An abstraction of the operation of our layout method allows us to divide it
into three main operations and their most important sub-functions, as listed
below. The ordering of this list also corresponds to the order of execution of our
method (note: the main layout process is iterative). References are provided to
related sections which cover each of these operations in further detail.

1. Pre-processing (Section 4.2).

1.1. Swap 2-degree junctions for stations (Section 4.2.1).

1.2. Add bends proportional to station counts (Section 4.2.2).

1.3. Identify periphery line sections (Section 4.2.3).

1.4. Align nodes to grid (Section 4.2.4).

2. Main layout process (Iterative) (Section 4.3).

2.1. Single Node Movement (Section 4.3.2).

2.2. Node Cluster Movement (Section 4.3.3).

2.3. Mid-processing (Section 4.3.4).

3. Label layout process (Section 4.6).

4.1.1 Extensions & Modifications

The following list identifies the main extensions and modifications that we have
made to the existing method (Stott et al. 2010) upon which it is based:

1. We have introduced a new schematic object, bend points. Previously, line
bends in the schematic were only possible at junctions/stations. The result
of this contributed to a less aesthetically pleasing layout than published
versions and could be harder to follow, for example when multiple lines
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enter a junction and exit at different angles. Our new bend point objects
can be inserted along edges allowing the optimiser to move line bends
away from junctions. This change is combined with a new criterion (ex-
plained below) to enforce the straightness of lines through junctions, and
greatly helps increase the angular resolution of nodes. As well as manual
addition of bend points, our algorithm automatically introduces and re-
moves bend points where necessary to help produce a layout which more
closely resembles a published schematic.

2. The method by Stott et al. operates by moving both junctions and stations.
This creates a very large number of objects for which positions must be
evaluated – the main contributor of slow performance. A common tech-
nique to reduce this number and increase performance is to replace strings
of 2-degree vertices with a single edge, weighted to account for the num-
ber of vertices upon it; however this does not produce satisfactory results,
as it does not allow line-bending along edges between junctions. With the
introduction of bend points, we can use a half-way solution capable of
both faster performance and allowing bends within lines when required.
Stations are now not moved by the layout method, and lines cannot bend
at them; instead we move only junctions and bend points. Considering
typical mid-sized metro schematics often contain upwards of 100 stations,
this change considerably improves the performance of the method as it
significantly reduces the number of objects requiring evaluation.

3. We have reduced the number of potential positions to check when mov-
ing nodes. Previously, all grid intersections within a certain distance of
the original node position were regarded as potential positions and eval-
uated. Now, we only evaluate eight positions for each level of distance (in
grid steps) from the node. This is a relatively small modification, but has
a noticeable effect on the performance of the method by further reducing
the number of position evaluations performed, without any visual detri-
ment in layout quality. This modification also allows the distance nodes
can be moved to be increased whilst only incurring linear time complex-
ity growth; each additional grid unit of distance only requires eight more
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evaluations, rather than the exponential growth resulting from evaluation
of all new positions as the distance increases.

4. The method by Stott et al. includes clustering methods designed to im-
prove specific situations in the layout of schematics that the optimiser has
difficulty with when using only single node optimisation. These cluster-
ing techniques operate by grouping a number of nodes together and mov-
ing them as one, as explained later in this Chapter. We have implemented
a new node clustering method – periphery clustering. This solves a com-
mon situation of suboptimal layout where kinks in periphery line sections
can not be removed during layout, affecting metro maps in particular. Our
new technique effectively straightens out these periphery line sections re-
sulting in an improved aesthetic appearance of the schematic.

5. We have conceived and implemented a number of new criteria, previously
not considered in any metro-map layout method, to perform the following
functions:

. Enhance the straightness of lines through junctions. With the intro-
duction of bend point objects, this criterion helps shift line bends away
from junctions and onto bend points.

. Enhance the straightness of periphery line sections. Previously, all
lines are subject to a line straightness criterion; we extend this by imple-
menting an additional straightness criterion affecting only periphery line
sections which have no need for bends.

. Enforced parallel lines. SchemaSketch provides functionality for the
user to identify multiple edges to be aligned in parallel – a new criterion
then enforces this by penalising the edges if they are misaligned. This
can be used to great effect on many metro maps in which the user desires
specific sections to be aligned.

. Enhance the balance of the schematic. This balance criterion aims
to provide more even node distribution across the entire schematic. This
criterion helps both with the expansion of dense centre sections and con-
densation of sparse periphery sections of schematics.
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Figure 46: Section of a metro map highlighting the various objects that make up
a typical schematic diagram.

6. Criteria weightings have been recalculated to account for the varying dif-
ferences in the layout method, as well as the need to be balanced with new
criteria.

7. The previous implementation of labelling only supports horizontal orien-
tation of text. We have extended functionality in this area to allow four
possible angles for labels to be oriented. These additional angles provide
an increase from 8 to 24 positions per label, greatly increasing placement
flexibility. Our label placement method also performs an extra step in
which labels are grouped with neighbours and positioned simultaneously.
This greatly enhances label position consistency.

4.1.2 Definitions

Many of these definitions have been previously covered and retain their mean-
ing. Figure 46 provides a visual illustration of these objects.

• Junction – Circular stations which are used when multiple edges join or
diverge.

• Bend Point – Allows a bend in the line. Similar to a junction, edges can join
or diverge at bend points.
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• Node – A parent group consisting of junctions and bend points. All edge
objects start and finish at a node.

• Edge – Provides a straight connection between a pair of nodes. Edges are
always coloured to indicate their line group.

• Line – Consists of multiple edge objects containing the same colour con-
nected in sequence via nodes. It is important to make this distinction as
many layout criteria are evaluated upon lines.

• Parallel Edge – Edges can contain multiple colours if they belong to many
lines, in this case the colours are drawn in parallel. Note: a parallel edge
between two nodes is represented in the graph structure as a single edge,
rather than one for each colour.

• Station – A small perpendicular tick along an edge. Stations will distribute
themselves equidistantly along their parent edge. Note: stations are not
nodes and therefore lines cannot bend at them.

• Label – Allows text to be anchored to the parent object at a number of posi-
tions and orientations. Parent objects include both junctions and stations.

• Desired Parallel – The application allows users to designate edges to be
desired parallels. The layout algorithm will then attempt to align all such
edges to the same angle.

It is important to note that the layout process only operates on nodes; sta-
tions cannot be moved directly, as they are simply distributed along edges and
move when either of their parents do.

4.2 Pre-processing

Pre-optimisation is performed once at the beginning of the optimisation pro-
cess and is responsible for ensuring the schematic is prepared for layout. The
pre-optimisation process performs a number of functions which are run in the
following sequence and are covered in the listed subsections.
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Figure 47: Junctions with a degree of 2 are replaced with stations to simplify the
schematic, providing θ is less than some predetermined value (default = 45◦).

1. Swap 2-degree junctions for stations (Section 4.2.1).

2. Add bends proportional to station counts (Section 4.2.2).

3. Identify periphery line sections (Section 4.2.3).

4. Align nodes to grid (Section 4.2.4).

4.2.1 Swap 2-degree junctions for stations

This initial step replaces all suitable 2-degree junctions with stations and is per-
formed to simplify the schematic by reducing the number of nodes to be con-
sidered during the layout process. Stations cannot allow bending of lines and
therefore it is possible that the resulting station will not be in the same position
as the junction. Suitable junctions are those in which the incident edges do not
form a sharp angle which could cause bad distortion when replaced. The exact
angle at which this cutoff occurs is predefined in our algorithm; by default we
use a value of 45◦. An example of this process is illustrated in Figure 47.
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4.2.2 Add bends proportional to station counts

As lines can only bend when passing through nodes rather than at stations, and
as 2-degree junctions are replaced with stations during pre-processing, it is im-
portant to ensure that there are enough bend points to allow the required degree
of flexibility to the lines during the layout process. We therefore automatically
add a number of bend points along each edge dependent on both the length of
the edge and the number of stations it accommodates.

For each three stations along an edge, one bend point is added. Additionally,
for each four units of edge length, another bend point is added. The minimum
number of bend points added to each edge is one, and the maximum is four.
Equation 11 shows the calculation for the number of bend points based upon
this specification.

bends =
⌈(

stations
3

)
+

(
length

4

)⌉
≤ 4 (11)

We use a ceiling function when calculating the number of bend points to add
– this allows the function to favour adding more bends and enforces the mini-
mum of one bend point as length is always > 0. The values we chose for this
calculation were derived from personal testing and produce a suitable propor-
tion of bend points for each edge in the schematic.

4.2.3 Identify periphery line sections

Certain criteria used during the layout process (Section 4.4) specifically target
periphery line sections. We define periphery line sections as a sequence of edges
starting from a termination node (1-degree), passing through any number of 2-
degree nodes and ending at the first > 2-degree node.

We use a simple computational process to detect these sections. Firstly, we
identify all 1-degree nodes, and follow these along their parent line, recording
all objects passed through, until we meet the first > 2-degree node. Using these
identified sequences of edges, we construct new line objects for each periphery
section. These new line sections only exist within the underlying schematic
structure and are used when calculating the periphery line straightness criterion
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Figure 48: Periphery lines highlighted on a section of the Washington metro
map.

(Section 4.4.5); they are not visible to users.
Figure 48 shows a section of the Washington metro map with periphery line

sections highlighted with a pink background.

4.2.4 Align nodes to grid

Our optimisation process operates by examining the local neighbourhood of
nodes in order to determine the most optimal position based upon a number of
criteria. The schematic objects drawn by users are not aligned to a grid, and so
the resolution of the local neighbourhood is 1 pixel. We overlay a grid with a
default cell size of 10 pixels, and align all node objects onto this.

This is accomplished by examining each node in turn and moving it to the
nearest grid position. If multiple nodes contest a grid position, the original
position of each will be checked and the closest one moved; the remaining node
will then align to the second nearest. Using such a grid has multiple advantages
to simplify the optimisation process:

1. We can reduce the number of possible node positions that we are required
to check, greatly speeding up the process.

2. By aligning nodes to fit to a grid, we benefit from an improved initial level
of octilinearity (Section 4.4.1).
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3. Providing the resolution of the grid is greater than the diameter of a node,
we do not have to perform junction/junction occlusion checking, further
speeding up optimisation.

4.3 Main Layout Process

Once pre-optimisation is complete, the main layout process is initiated. The
layout process performs a number of iterations over the course of its opera-
tion. During each iteration a number of different methods are used to reposi-
tion nodes, these are run in the following sequence and are covered in the listed
subsections:

1. Single Node Movement (Section 4.3.2).

2. Node Cluster Movement (Section 4.3.3).

3. Mid-processing (Section 4.3.4).

The layout process evaluates the quality of the schematic based upon a num-
ber of criteria. These criteria, along with metrics for calculating numerical val-
ues representing how well the current configuration adheres to each of them,
are given in Section 4.4. Using these metrics to measure the fitness of each in-
dividual criteria, we can generate a single value to represent the total fitness
of the schematic to all criteria. This value is known as the objective function,
and is calculated by a summation of each weighted individual criteria value
(see Section 4.4.11 for details on criteria weighting). Using an objective func-
tion to measure schematic quality allows us to perform incremental position
adjustments to nodes, recalculating the fitness at each stage and retaining any
movements which yield a lower (improved) value.

We perform this process during each iteration upon all nodes in the schematic
(single node movement), along with a number of clustering techniques for mov-
ing multiple nodes at once (node cluster movement). Multiple iterations of
movements are performed before arriving at the optimised schematic. The fol-
lowing section details the iteration process and introduces the closely related
search distance parameter.
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Figure 49: Possible node movement positions (blue dots) for junction 2 during
an iteration with a distance of 4 units.

4.3.1 Iterations and Search Distance

The number of iterations performed and the search distance of the algorithm
are configurable. By default we use values of 12 and 16 respectively, although
as explored in Section 5 the optimum values vary based upon schematic charac-
teristics. The number of iterations is a limit, as the algorithm will prematurely
terminate if it cannot further lower the objective function.

Search distance refers to the maximum number of grid spaces a node can
be moved away from its initial position during a single iteration. Figure 49
illustrates the possible movement positions (blue dots) for junction 2 during an
iteration with a search distance of 4 units. Node repositioning is explained in
further detail in the following section.

Search distance and the number of iterations are related, as the search dis-
tance is decreased linearly at each iteration until the final iteration uses a value
of one unit. For the default values used, the search distance uses the following
values for each iteration:

• 16, 14, 13, 11, 10, 9, 7, 6, 5, 3, 2, 1

This sequence of search distance values is calculated from the specified num-
ber of iterations and initial search distance. The distance reduction amount per
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iteration (step) is calculated by startDist
iterations . The step is then subtracted from the

current search distance and the result is floored to determine the distance dur-
ing the next iteration. Flooring the value is the reason why, in this example, the
distance reduction varies between 1 and 2 units per iteration – the step is 1.33.
The actual distance value is recorded in double precision, and only floored for
the iteration distance value.

Restricting the search space by applying a maximum search distance for
each iteration is necessary to keep the execution time of the algorithm down,
as criteria values must be recalculated for each potential position, comprising
the major performance overhead.

4.3.2 Single Node Movement

During the single node movement phase, each node is examined sequentially in
an attempt to improve the objective function of the schematic by finding more
optimal positions. Nodes are always examined in the same order across all iter-
ations to ensure the layout process is deterministic. The potential negative effect
of using such a method is that we cannot be sure that the ordering method cho-
sen is the most suitable. It is possible that a different ordering, such as starting
with nodes that have the highest degree and working downwards, may pro-
duce improved results overall whilst still retaining determinism; however this
particular area was not investigated in our work.

As mentioned previously, reducing the number of node positions to check
yields large performance improvements. Therefore, as well as restricting the
search distance, we restrict potential positions to lie on horizontal and diagonal
lines from the node in question; this can be seen in Figure 49.

Nodes are placed in each position to be checked in turn (left→right,
top→bottom), and the objective function recalculated. Fitness values are recorded
for each position, and after checking all potential positions the node is moved
to the best identified location. If a better position is not found, the node is left
at its original location.

If a node is moved during either this phase or the upcoming clustering
phases, a flag is set to indicate a change has been made to the layout. If an
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Figure 50: An example situation requiring clustering methods to correct; as-
suming junction A is fixed in place and the desired edge length is 4 units.

iteration completes without setting this flag, there have been no improvements
found and the algorithm can terminate early.

4.3.3 Node Clustering

Although solely relying on single node movements will improve the schematic
layout somewhat, there are many situations in which this technique is unable
to improve the schematic. Figure 50 illustrates such an example – if we assume
that junction A cannot be moved (for example if it has many connections and
any movement breaks many criteria), then it is not possible to shorten edge AB.
This is because it would be necessary to move first B followed by C; however,
since moving B closer to A also increases the distance between B and C, the
repositioning does not lower the objective function and results in no permanent
movement.

In order to work around these quite common issues it is necessary to al-
low the optimiser to move multiple nodes simultaneously. We use a number of
techniques for grouping (clustering) nodes to be moved together, outlined in the
following three subsections. These clustering methods allow the layout method
to escape from the most common situations that single node movements cannot
solve.

Once clusters are identified, the layout method performs the same process
as in single node optimisation, moving all clustered nodes together by the same
offset as in single movement. At each position, the objective function is recal-
culated and nodes are left in the most optimal configuration. Moving multiple
nodes at once frequently produces node/node occlusions – this is strictly disal-
lowed by the algorithm which only allows one node per grid intersection. We
therefore perform a check for this before any criteria are recalculated and disal-
low the move if any node/node occlusion is introduced.
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(a) Length-based clustering used to identify and group offending junctions.
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4 4

(b) Result of length-based clustering operation.

Figure 51: Length-based clustering example. Shaded junctions cannot be
moved.

4.3.3.1 Length-based Clustering

Our first clustering technique groups nodes by the length of edges between
them. This is used to correct issues such as previously seen in Figure 50.

We first compile a list of all over or under length edges in the schematic. For
each of these edges we then create clusters by performing a breadth first search
starting from each connected node. Our breadth first search will only traverse
edges of the correct length, adding each node it passes through into the cluster.
If a starting node is already included in a cluster, we ignore it.

Performing the length-based clustering method upon Figure 51a results in
nodes B and C being grouped; this then allows the optimiser to move both
nodes towards A and fully satisfy the edge length criterion as seen in Figure 51b.

4.3.3.2 Angle-based Clustering

This clustering technique groups nodes by the angle at which incident edges
pass through them and is used to fix issues such as that seen in Figure 52 where
sections of a line are offset to their neighbours. This is a common trait caused
by forcing curved lines (such as metro lines fitting to geography) into octilinear
lines.

We examine each edge in turn, performing a breadth first search from each
connected node. The breadth first search will only traverse edges that lie at the
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(a) Angle-based clustering used to identify and group offending junctions.

B CA D E

(b) Result of angle-based clustering operation.

Figure 52: Angle-based clustering example. Shaded junctions cannot be moved.

same angle to the initial edge, and are not already part of a cluster, adding each
connected node to the current cluster.

Performing the length-based clustering method upon Figure 52a results in
nodes B, C, and D being grouped; this then allows the optimiser to move them
in line with A and E, fully satisfying the line straightness criterion as seen in
Figure 52b.

4.3.3.3 Periphery Clustering

Periphery clustering targets an issue specific to schematics with a centralised
area and protruding periphery sections, such as many metro maps. Figure 53a
shows an example of the situation and Figure 53b an ideal solution. It is desir-
able to keep lines as straight as possible so the optimal solution is to straighten
out nodes B and C. However, node A in Figure 53a is held in place by surround-
ing nodes and this makes the periphery section unable to move.

The periphery clustering method will perform a breadth first search start-
ing from all termination nodes. It will traverse and add 2-degree nodes that lie
along the same angle as the initial edge to the current cluster. For the exam-
ple given in Figure 53, this will cluster nodes B and C, allowing them to move
downwards and straighten over two iterations. This clustering method is capa-
ble of straightening periphery line sections even if they contain multiple bends.
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(a) Periphery-based clustering used to
identify and group offending junctions.
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(b) Result of periphery-based clustering op-
eration.

Figure 53: Periphery-based clustering example. Shaded junctions cannot be
moved.

4.3.4 Mid-processing

The layout section of the iteration is now complete, but before proceeding to the
next iteration we first perform a couple of mid-processing tasks.

The pre-processing section of the algorithm inserts a number of bend points
into the schematic to allow greater flexibility. However, many of these are not
needed and it is best to remove them for schematic simplicity as well as opti-
misation performance. During the layout process, each automatically-inserted
bend point keeps track of the difference in the angle of the edges passing through
it (automatically-inserted bend points always have a degree of 2). If this an-
gle remains at 0◦ (straight) for two consecutive iterations, the bend point is re-
moved from the schematic. It is during this mid-processing section that these
checks are evaluated.

Along with removing bend points, we perform a rebalancing of stations. Al-
though the desired length of edges is proportional to the number of stations
on it, more strongly weighted criteria such as occlusions or crossings can occa-
sionally cause bend points to position themselves in non-ideal places; causing
bunched up or sparse stations (Figure 54a). As bend points are used simply to
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(a) Unbalanced stations from layout
movements.
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(b) Stations have been rebalanced
around the bend point.

Figure 54: Station rebalancing on edges separated by bend points.

allow bends along lines, we can freely move stations from one side of a bend
point to another to help lower the fitness function. Figure 54 shows the result
of the station balancing step applied to a line section with uneven station distri-
bution.

4.4 Layout Criteria & Objective Function

This sections explains each of the criteria used during the layout process to de-
termine the quality of the current configuration. The equations we use to eval-
uate each criteria value are provided, and commonly use the following charac-
ters:

• G = Graph (containing nodes and edges).

• N = Node.

• E = Edge.

• L = Line.

Many criteria value calculations listed are squared, this provides the advan-
tage of a non-linear conformity progression where criteria are penalised more
heavily the less they conform.
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The resulting fitness values from each critereon have no upper bound, but
will always be ≥ 0; a value of 0 indicating that this criterion is perfectly met.
Our objective function is then calculated using Equation 12; a summation of all
critereon values after they have been weighted as explained in Section 4.4.11.

f itness = C0W0 + . . . + CnWn (12)

where Ci and Wi are the fitness and weighting values for criterion i respectively.

4.4.1 Octilinearity

All edges should be at an angle that is a multiple of 45◦. The octilinear layout
criterion is evaluated using Equation 13.

octilinearity = ∑
E∈G

(angle (E)− round (angle (E) , r))2 (13)

r = the resolution of accepted angles in degrees (r = 45 for octilinearity).
round(θ, r) rounds the argument to the nearest value that is a multiple of r.

4.4.2 Edge Length

The length of edge sections between schematic objects (including stations) should
be equal to an ideal length. The edge length criterion is evaluated using Equa-
tion 14.

edgeLength = ∑
E∈G

(
t× gridRes− length (E)

stations(E) + 1

)2

(14)

t = Target length of edge measured in grid squares.
gridRes = The resolution of the grid, used to convert a grid square measurement
into a pixel distance.
The stations(E) function calculates the number of stations on edge E.

The desired length of edges is defined in grid squares and multiplied by the
grid resolution in order to ensure that nodes can be positioned where they will
fully satisfy the edge length criterion. However, problems arise from this as
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diagonal edges fitted to grid intersections are unable to achieve the exact de-
sired length – this is because the diagonal of a square is

√
2 longer than the

edge, so the calculated desired length will very rarely lie on a grid intersection.
Rather than adjust the length calculation by multiplying the desired length by√

2 and allowing the edge to be t diagonal squares, we retain the same calcu-
lation which causes nodes to position themselves on the intersection closest to
the desired length, accepting that the criterion cannot be fully met for diagonal
edges. This decision was made due to sequences of diagonal edges appearing
very noticeably longer than their non-diagonal counterparts.

4.4.3 Line Straightness

Lines should be as straight as possible and have the minimum number of bends.
The line straightness criterion is evaluated using Equation 15.

lineStraightness = ∑
L∈G

∑
E∈L

angleDiff (E, E+1)
2 (15)

The angleDiff () function calculates the smallest angle between the adjacent edges
E and E+1.

Figure 55 illustrates how the angles along a line are calculated. Lines that
split into two edges at a node will be measured both relative to the first edge
encountered. As mentioned previously this formula uses a squared exponent,
providing the desirable behaviour that fewer sharper bends are penalised more
than multiple smaller bends.

4.4.4 Line Straightness through Junctions (LSJ)

Lines should be as straight as possible when passing through junctions. The
line straightness through junctions criterion is evaluated using Equation 16.

LSJ = ∑
L∈G

∑
E∈L

{
angleDiff (E, E+1)

2 if Junction
0 else

(16)
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θ3

Figure 55: Calculating Line Straightness. Angles θ1 to θn are squared and
summed.

The angleDiff () function calculates the smallest angle between the adjacent edges
E and E+1.

This criterion is identical to the more general line straightness criterion but
is only calculated for sections of the line that pass through junctions. This has
the desired effect of shifting any line bends away from junctions and onto bend
points, which is not penalised as heavily.

4.4.5 Line Straightness along Peripheries (LSP)

Periphery line sections should be as straight as possible and have the minimum
number of bends. The line straightness along peripheries criterion is evaluated
using Equation 17.

LSP = ∑
L∈Gperiph

∑
E∈L

angleDiff (E, E+1)
2 (17)

The angleDiff () function calculates the smallest angle between the adjacent edges
E and E+1.

This criterion is identical to the more general line straightness criterion but
is only calculated for periphery line sections (Gperiph). Periphery line sections
are identified during the pre-processing stage of optimisation (Section 4.2.3).
This has the effect of applying additional emphasis on keeping periphery line
sections straight.
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Figure 56: Improving the angular resolution whilst maintaining topological ac-
curacy. It is often not possible to attain a perfect angular resolution whilst main-
taining octilinearity as it requires a 4 or 8 degree node; although as shown here,
even an imperfect result can greatly improve the aesthetic appearance.

4.4.6 Angular Resolution

The incident edges of a node with a degree of≥ 3 should separated by an equal
angle. The desired angle is first calculated and is equal to 360

degree , this is then
compared to the actual angles in Equation 18.

The angular resolution criterion is evaluated using Equation 18.

angularRes = ∑
N∈G

∑
E∈N

(desiredAngle− angleDiff (E, E+1))
2 (18)

desiredAngle = The desired angle between incident edges.
The angleDiff () function calculates the smallest angle between the adjacent edges
E and E+1.

Figure 56 shows an example of how the angular resolution criterion affects
a junction with 3 incident edges. We do not apply this criterion to 2-degree
junctions as this situation covered by numerous line straightness criteria.
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4.4.7 Parallels

SchemaSketch allows the user to identify edges as “desired parallels” along
with a desired angle (Section 3.1.2). This criterion then penalises desired par-
allels for not being at the desired angle, causing them to align in parallel. The
parallel criterion is evaluated using Equation 19.

parallel = ∑
E∈Gparallel

(desiredAngle− angle (E))2 (19)

desiredAngle = The angle to which desired parallel edges attempt to align to.

4.4.8 Occlusions & Crossings

Objects should be positioned so that they do not obscure any other part of the
schematic. There are two situations in which this can occur; junction/edge oc-
clusion and edge/edge crossings. Junction/junction occlusion is not possible
providing the grid resolution is greater than the diameter of a junction.

Junction/edge occlusion is calculated by checking for occlusion between
each junction and each edge in turn. Edge/edge crossing checking is done for
each possible pair of edges. The criteria value for both crossings and edges is
simply the number of occurrences multiplied by a weighting without a squared
exponent. However, the weightings used for these criteria are relatively large
resulting in any occlusions or crossings being heavily penalised.

4.4.9 Balance

The resulting schematic should be aesthetically balanced. Nodes should be
evenly distributed, and dense/sparse areas should be avoided. Balance will be
measured by placing a second grid, independent from the grid used to position
nodes, over the schematic and measuring the density difference of the schematic
between comparison squares. The balance grid is shown in Figure 57; pairs of
cells that share the same character will be compared (represented mathemati-
cally in eqauation 20).
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Figure 57: The overlay grid used to measure balance. Pairs of cells that share
the same character will be compared; each cell has two comparison cells.

The grid is always 6× 6, and is initialised to the size of the schematic bound-
ing box as opposed to the entire canvas. This is because placing the grid over the
entire canvas produces incorrect results if the drawn schematic is not centred.
A value for each cell is then calculated by summation of the number of junc-
tions, bend points, and stations within it, based upon their centre points. The
grid is updated or recreated each time the schematic is modified, depending
on the modification. If any part of the schematic is moved outside the balance
grid, then the entire grid must be recreated; however, if a node simply moves
between cells then the grid values need only be updated.

The grid is represented by a 2D integer array, the value of each cell given by
the number of schematic objects within it. The pairs of cells shown in Figure 57
are then examined and the difference between their values is squared to create
the error for that pair. The error for all pairs is summed to create the final fitness
value for this criterion. This is evaluated using Equation 20.

balance =
n
2

∑
x=0

n
2

∑
y=0

(
cellx,y − celln−x,y

)2
+
(
cellx,y − cellx,n−y

)2 (20)
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n = The number of cells on one edge minus 1 (for the 6× 6 grid used, n = 5).

4.4.10 Topology

It is important that the topology of certain schematics, such as geographic trans-
port networks, is not broken during layout. To ensure this is the case, the order
of edges around junctions is strictly enforced and any movement resulting in
change is disallowed. This is more a node movement rule than a criterion, as it
uses no objective function and weighting, but is always strongly enforced. On
abstract schematics where network topology is unimportant, this rule can be
disabled.

4.4.11 Criteria Weighting

Fitness calculations produce values which vary greatly by criterion (up to many
orders of magnitude) due to being measured on different scales. As using these
unweighted values would put more emphasis on the criteria that are naturally
larger, it is necessary to weight the values so that they are comparable before
summation into the objective function.

Basic weighting involves multiplying the unweighted value by 1 over the
maximum possible value; this constrains the value to between 0 and 1. How-
ever, it would be incorrect/not possible to scale all criteria in this way as they
may either never reach the maximum in practice, or may not have a maximum.
Therefore, to calculate weightings, we created a series of example graph layouts
and recorded all unweighted criteria values. We averaged the value of each cri-
terion across all tests and used the inverse of the average as a weighting. Oc-
clusions and crossings are an exception to the standard weighting calculations,
and simply use a value of 1, as these are to be very heavily penalised. Table 1
lists these weightings for each criterion.

Although these values appear to be very specific this is simply due to the
method by which they were obtained. In actuality, these values are not that
significant and, in order to visually see an effect, must typically be varied by
orders of magnitude.
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Criterion Value
Octilinearity 4.322× 10−3

Edge Length 6.150× 10−6

Line Straightness 1.882× 10−5

Line Straightness through Junctions 1.882× 10−5

Line Straightness along Peripheries 1.900× 10−4

Angular Resolution 3.032× 10−5

Parallels 1.000
Occlusions 1.000
Crossings 4.762× 10−1

Balance 1.105× 10−3

Table 1: Default criteria weightings used.

4.5 Minimum Working Example

Figure 58 provides a minimum working example to illustrate the effects of the
layout method. An unoptimised schematic (Figure 58a) is used as the starting
point. As explained, the algorithm moves each node in turn (numbers in the
diagram indicate the order in which they are moved) attempting to lower the
objective function, calculated by summing a set of weighted criteria metrics.
Figure 49 shows an example of the node positions evaluated during an iteration
for node 2 during an iteration with a distance of 4 units.

Figure 58d shows the resulting output, and it is clear to see how the algo-
rithm has adjusted node positions to adhere to each criterion: 1) Each edge is
now at a multiple of 45◦, satisfying octilinearity. 2) Edge lengths have been
equalised. 3) Lines have been straightened as much as possible (without in-
troducing occlusion) both in total, as they pass through junctions, and at pe-
ripheries. 4) Angular resolution has been improved. 5) Line crossings have
been avoided. 6) Occlusions have been avoided. 7) Balance has been improved.
These changes result in the fitness value dropping from 7.63 to 0.74 as almost
all criteria have now been fully applied. The resulting fitness value is due to
unresolvable criteria conflicts – it is not possible to straighten both grey and red
lines without occlusion, and two 45◦ line bends are required.

Figures 58b and 58c have been included to show exactly how the schematic
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(d) Optimised output after cluster
movements (Fitness=0.74)

Figure 58: Minimum working example of the layout algorithm.

changes during each iteration of the algorithm. During the first iteration (58a
to 58b), many nodes are moved into positions which satisfy octilinearity. This
is due to octilinearity being weighted strongly as it is regarded as one of the
most important criterion to schematic layout. It can be seen that there is one
edge (from node 4 to 5) that does not manage to achieve this, and this is be-
cause moving either of the two ends to make the section octilinear would result
in a negative effect on the other neighbouring nodes. Node 6 shows how the
algorithm also attempts to standardise the edge lengths. This first iteration re-
sults in a drop in the fitness value from 7.63 to 4.22, as many octilinear issues
are addressed. During the second iteration (58b to 58c), given that most nodes
now already lie in octilinear directions from their neighbours, some over length
edges are shortened (from node 1 to 2, and from node 5 to 7). Node 6 has also
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been moved down, improving the total line straightness. These two changes
further lower the fitness from 4.22 to 2.65. The transition between the last two
schematics (58c to 58d) is a result of the clustering techniques used during the
previous iteration. Nodes 1 and 2 are clustered by angle, and both moved up-
wards; nodes 5, 6 and 7 are clustered by length, and are also moved upwards
to make the edge between nodes 4 and 5 octilinear. These final clustering tech-
niques further reduce the fitness from 2.65 to 0.74.

4.6 Automated Label Layout

After the schematic layout method has found optimum positions for each node,
the label placement algorithm is run. This process involves the repositioning of
labels into one of a number of preset locations and orientations based upon two
criteria. These criteria ordered by priority are:

1. Occlusions.

2. Position/rotation consistency.

Each of which explained further in the following subsection. Examples of the
automated label layout can be seen in Section 4.7.

There are many positions a label can occupy. Firstly, the label can be placed
in 8 locations: North, North-East, East, South-East, South, South-West, West, and
North-West. Each location also supports 4 angles of rotation: Horizontal, Posi-
tive Gradient, Negative Gradient and Vertical. This combination of location and
rotation offers a total of 32 possible label positions per node, as illustrated in
Figure 59.

4.6.1 Placement Fitness

The following two criteria are used to position labels. Rather than weighting
each and attempting to lower a summed objective function, we prioritise oc-
clusions over consistency; this means that occlusions are minimised at any cost
before consistency is examined.
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Figure 59: 32 potential label positions for a single label object. Drawn first in
two images to aid comprehension (colour), then a combined version to illustrate
label flexibility (no colour).

4.6.1.1 Occlusion – Priority 1

Each label must be checked against each other label, edge, and node. For la-
bel/label occlusion, each pair of labels need only be checked once and a vari-
able incremented for each occlusion. For label/edge and label/node occlusion,
each label must be checked against each other edge/node.

4.6.1.2 Consistency – Priority 2

Desirable label consistency is to have labels in the same position and rotation
as their neighbours. Each label is compared to its neighbours and a value is
incremented once if their position is not the same, and incremented again if
their rotation is different.

4.6.2 Label Placement

The label placement itself is a two-stage process. Firstly, we group 2-degree
node strings of labels together and position the entire group as one. During the
second stage we examine labels individually. These stages of label placement
are explained in the following two subsections.
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Figure 60: Example label groups are shown here. Take note of the top-left brown
line, in which the label group is split by a line bend. Junctions filled with red
are those with degree > 2 and initially discarded.

4.6.2.1 Label Group Placement

During the initial layout stage, we create groups of label objects based upon
the degree of their parent node. In order to create these groupings, we first
create a clone of the schematic and remove all nodes with a degree > 2. This
leaves a number of strings of 2-degree nodes, which we use as groups after
discarding any single nodes that have become disconnected. We further split
up groups if the string of nodes changes angle by ≥ 30◦. All ungrouped nodes
(those with degree > 2, or that have no 2-degree neighbours) are referenced
in a separate array. We then give these nodes priority label placement in the
following stage. A visual example of the groups generated from a schematic is
shown in Figure 60.
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Once the groupings have been created, each is examined in turn and all la-
bels are moved simultaneously into each position and rotation to determine the
best overall placement; because all labels in each group are moved together, po-
sition consistency is enforced. At this stage, it is very likely that some labels will
occlude other parts of the schematic, we therefore focus on placing the group of
labels in the position yielding the lowest number of occlusions. This process of
moving groups of labels together greatly improves the position consistency of
labels at the end of the label positioning process.

4.6.2.2 Individual Label Placement

Starting with labels that were not added to groups for the previous stage, each is
moved into all possible positions and rotations to determine the best placement
in terms of occlusions and consistency. Once all positions have been checked,
we discard any options which contain occlusions and position the label in the
best location for consistency. If no better location is found, we do not move the
label.

For both stages of label layout, the order in which positions are evaluated
is predetermined. This fixed ordering provides the effect of prioritisation for
positions checked first. For example, given two positions A and B who produce
the same fitness value and are evaluated in that order, position A will be chosen.
The order, and therefore position priority, in which positions are evaluated is as
follows: North, South, East, West, North-East, South-East, South-West, North-West.
The horizontal orientation for each position is checked first, followed by the
diagonals and finally the vertical orientation.

4.6.3 Summary

When compared to the previous label layout technique used by Stott et al., our
method is relatively simple. The previous method operates as part of their stan-
dard multi-criteria hill climbing optimiser and uses five criteria as follows:

1. Occlusion.

2. Position priority.
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3. Position consistency.

4. Station proximity (penalises labels that come into close proximity to unre-
lated stations).

5. Perpendicular tick (Encourages the tick for a particular station to be per-
pendicular to the line).

In contrast, our label placement technique only uses criteria 1 and 3. Criterion
2 is enforced by the order in which positions are evaluated, our method does
not take into account criterion 4, and criterion 5 is implementation specific – as
labels are placed relative to the end of station ticks, whereas we position relative
to the tick centre.

Our labelling method operates independently and after the main layout pro-
cess, and it could be argued that this is inferior to a method which operates
during the layout process. The potential advantage of positioning labels within
the main layout process is that the optimiser is able to move graph nodes to
allow space for labelling; however, in practice we saw no negative effect from
post-optimisation label layout using our method.

The major advantages of our technique come from the addition of a two-
stage approach and the ability to rotate labels. The group-positioning stage
provides very large benefits in label position consistency, and multiple options
for label orientation go a long way in minimising occlusions whilst maintaining
this.

In summary, our method uses fewer criteria with a two-stage approach com-
bined with larger selection of label positions, and we believe that the results
we have achieved are an improvement over the previous results in (Stott et al.
2010).
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Figure 61: Sydney metro map as optimised by our multi-criteria hill climber.

4.7 Produced Layout Example & Comparison

Figure 61 shows the Sydney schematic as laid out using our method. This can
be compared to Figure 62, produced by the previous multi-criteria hill climb-
ing method by Stott et al. Our new result illustrates how our additional mod-
ifications have increased the line straightness and octilinearity in many areas,
for example the central green line has now been kept horizontal and periphery
sections contain fewer bends thanks to the new clustering technique. The city
centre area to the right side of the schematic, typically very dense, has also been
expanded slightly due to the new balance criterion. In addition to these points,
the effect of bend points can be seen as lines now change direction more often
along an edge rather than at junctions.

Along with significant layout improvements, an improvement can be seen
in the positioning of labels. Our implementation that allows rotation of labels
has allowed for fewer occlusions and an improved level of label position con-
sistency overall.

An interesting aspect of our layout is that it appears to be more compacted
vertically. This is possibly attributable to the fixed screen size with which we
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Figure 62: Sydney metro map as optimised by the previous multi-criteria hill
climber by Stott at al.

worked not letting the schematic expand to its desired size, and has caused the
horizontal section with many parallel lines (to the right) to be positioned in very
close proximity to nearby separate lines. Along with this drawback, there are
also a couple of strangely sharp bends (centre – yellow, purple), caused by bend
points attempting to meet the octilinear criterion in a confined area.
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4.8 Summary

This chapter has detailed our implementation of a multi-criteria hill climbing
technique for the automated layout of metro map style schematics.

We have explained the modifications made to the original optimiser in (Stott
et al. 2010), including 1) New schematic objects – bend points, in order to move
line bends away from junctions/stations. 2) A change from operating on sta-
tions to bend points to reduce the number of objects for which to evaluate po-
sitions. 3) Reduced the number of potential positions for objects to move to
without hindering layout in order to improve optimisation speed. 4) A new
clustering method in order to ensure periphery line sections are straightened.
5) A number of new criteria: line straightness through junctions, line straight-
ness at peripheries, enforced parallel lines and schematic balance. 6) Recalcu-
lated criteria weightings. 7) An improved labelling technique allowing much
greater flexibility by rotation of labels. We believe the modifications we have
made allow the method to produce layouts of a higher quality as explained in
the previous section.

Although we employ techniques such as node clustering in order to allow
our method to escape common occurrences of suboptimal layout; as pointed
out in our examples, our layout technique still suffers from a number of occur-
rences of this. Sections of suboptimal layout are a common feature of search
based optimisations, caused by the necessity to restrict the search space due to
performance limitations.

We noticed that modifying the optimiser parameters had a large effect on
the resulting output, and often resulted in different sections of the schematic
not achieving an optimal configuration. We were therefore interested in explor-
ing if a methodological approach to modifying parameters would produce any
pattern of suboptimal layout sections in the output for specific schematics. If
this was the case, we hoped that we could then identify optimal parameter set-
tings based upon characteristics of the input schematic. The following chapter
covers our work exploring how optimiser parameter manipulation affects situ-
ations of suboptimal layout in the final output.
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Chapter 5

Exploring the Effects of Parameter
Manipulation

In search-based graph drawing methods there exist a number of parameters
which control the operation of the search algorithm. These parameters do not
affect the fitness function, but nevertheless have an impact on the final layout.
This chapter covers our work exploring how varying three such parameters
(grid spacing, search distance and cooling schedule) affects the fitness value of
the resultant diagram in our multi-criteria hill climbing optimiser.

By doing this, we hoped to identify patterns in the resulting layouts which
were attributable to specific changes in parameter values, and to correlate these
with characteristics of the input schematic. If such a relationship exists it would
then be possible to automatically set optimiser parameters based on the input
schematic, helping to produce a more optimal result than would otherwise be
achieved using default values, without broadening the search space.

5.1 Testing Procedure

In order to perform the required testing, we implemented a testing rig into
SchemaSketch which is capable of batch-optimising a large number of schemat-
ics whilst varying the parameter settings for each. Table 2 lists the schematics
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Table 2: Schematics used

Schematic Junctions Stations Edges
Washington 9 77 53
Vienna 10 80 63
Mexico City 24 123 120
Sydney 24 151 103

Table 3: Parameters and values used

Parameters Values
Grid Spacing 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
Search Distance 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
Cooling Schedule None, Linear, Exponential

on which the testing was performed, along with the number of junctions, sta-
tions and edges in each. These schematics were chosen as being representative
of reasonably sized schematics demonstrating different characteristics and for
which we could easily access the data. The table is listed by ascending order of
the total number of junctions and stations.

We examined the following three key parameters of the method. Table 3
shows the values we chose to test for each.

1. Grid Spacing: A grid is placed over the canvas, and each node must be
positioned onto a grid intersection. This parameter defines the grid reso-
lution in pixels. When altered, this parameter affects the starting layout as
the nodes are moved slightly when snapped to the grid. It will also alter
the number of potential sites that nodes can be positioned in when they
move, and the absolute distance by which they can move.

2. Search Distance: This parameter defines the initial (and maximum) dis-
tance that nodes can be moved, in terms of grid positions, each iteration.
Increasing this parameter allows greater movement flexibility for nodes
during layout. The distance by which nodes can be moved decreases over
time as defined by the cooling schedule.

3. Cooling Schedule: The cooling schedule affects the speed and pattern of
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the decrease in the node movement distance and can be set to one of the
following three styles (listed in ascending order of speed of reduction):

None: The distance is not reduced and stays at the initial start distance
value.

Linear: The distance is reduced by one grid space each iteration.

Exponential: The distance is reduced exponentially each iteration and
is calculated using Equation 21.

Distance =
StartDistance

Iteration
(21)

The cooling schedule parameter that we are testing is a modification to our
layout method which was necessary to obtain more valuable test data. Previ-
ously, we used a predefined number of iterations for the layout to complete in,
and the distance by which nodes could move was linearly decreased over this
number of durations down to one, after which the optimisation was stopped.
However, when testing the effect of parameters upon the fitness of the final lay-
out, we did not want to use a fixed number of iterations. Instead, we wanted
to let the optimisation run for as many iterations as required to achieve the best
layout (down to a fitness function accuracy of 3dp), as we felt this was necessary
to accurately see the effect of parameter modifications upon the final fitness. To
replace the reduction in search distance based upon a fixed number of itera-
tions, we implemented a cooling schedule to reduce the search distance over
time. Our cooling schedule supports 3 different schemes, as explained previ-
ously.

Using the schematics and parameters listed in Tables 2 and 3 respectively,
our testing rig optimises each schematic with every possible combination of
parameter values (363 variations of each schematic). It then outputs images
of each resulting layout and a file containing the fitness value and number of
iterations required.
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5.2 Optimiser Performance

The initial implementation of our layout method was not optimised for perfor-
mance, making the type of experimentation here infeasible. In order to speed
up the optimisation process, we implemented an alternate method for recalcu-
lating the objective function each time a node is moved. Rather than recalculate
all criteria upon all objects in the schematic, which is highly inefficient, we gen-
erate a subgraph which references all affected objects. This then allows us to
recalculate the criteria values for a smaller schematic, the modified subgraph,
and sum the result with that of the previous configuration minus the previous
fitness of the subgraph.

A requirement of this technique is that all criteria values must be cached, to
allow retrieval for addition to the updated subgraph values at each change. We
chose to store these criteria values within schematic objects themselves, for ex-
ample nodes store their angular resolution (Section 4.4.6) and edges store their
octilinearity (Section 4.4.1). There are criteria which are globally calculated,
such as balance (Section 4.4.9), and these are stored separately.

In certain cases, in particular for edge crossings and occlusions, detecting
which objects have been affected by a node movement is not trivial – a change
in the position of a single edge can also affect the edges or nodes along its length.
In order to avoid having to re-evaluate the moved edge with every other edge
and node, we place an additional grid over the entire schematic. At the start
of layout, each edge is examined and all edges passing through grid cells are
identified. This edge location grid is updated each time an edge is moved. Us-
ing such a grid to monitor the location of edges greatly speeds up checking for
edge crossings and occlusions, as the method can identify a subset of all nodes
and edges as potential occlusion or crossing candidates by the grid squares in
which changes have been made.

Table 4 shows the overall time performance increases gained by the algo-
rithm improvements for each map. There is a large performance increase from
the implemented changes, averaging at 7.5 times speed improvement across
the four schematics, each optimised three times. This improvement in run time
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Table 4: Overall time improvement across all tested parameter sets (minutes)

Diagram Avg. Before Avg. After Speedup (times faster)
Washington 36.872 4.630 8.0
Vienna 51.929 10.581 4.9
Mexico 234.982 27.475 8.6
Sydney 518.813 61.340 8.5

made our testing process feasible by allowing us to carry out the required exper-
iments in a reasonable time frame. The timings were performed on an ASUS Eee
Pad Transformer TF101 running the Android operating system, version 3.2.1.
The device uses a 1GHz NVIDIA Tegra 2 and has 1GB of RAM.

5.3 Results – Fitness

In this section we present the results from our tests relating to the final fitness
value. Specific examples from the Vienna schematic are shown, as they provide
a good level of variation between different runs. Data and layouts generated
from the other examples can been found in the Appendix.

Table 5 shows an abridged table of the Vienna schematic results from the
testing rig along with the parameter settings for each (full table can be found
in the Appendix). It shows the ten best schematics by fitness value, the median
schematic, and the worst. Some immediate trends can be seen when looking
at the frequency of certain parameter values in the top ten schematics. For Vi-
enna, search distance has a mode of 15, grid spacing 10 and no cooling schedule.
Other maps show similar, albeit with different values, patterns of frequently oc-
curring parameter settings in the top ten schematics, indicating possible map-
specific trends.

From Table 5 we can also see that there is a continuing improvement in fit-
ness at the top of the list. This pattern, where the best fitness is found for only
one set of parameters, is also shown in two other maps (Mexico, Sydney). This
may be an indication that the system is not converging on the optimum solu-
tion, and so an even wider examination of the search space may be required
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Table 5: Vienna results (abridged)

Rank Search Distance Grid Spacing Cooling Iterations Fitness
1 15 10 None 9 0.850
2 13 10 None 9 0.972
3 14 10 None 9 0.986
4 15 10 Linear 9 1.037
5 14 5 None 15 1.153
6 15 5 None 13 1.184
7 15 7 None 14 1.212
8 11 10 None 7 1.233
9 9 10 None 17 1.276
10 12 9 None 8 1.284
. . .
181 10 9 Linear 7 2.270
. . .
363 5 6 Exponential 3 6.694

to achieve the absolute best possible fitness. Washington shows the same fit-
ness value in the two best-ranked schematics, and we believe this indicates that
something near the best layout has been achieved.

Figure 63 shows the original geographic layout of Vienna, used as the start-
ing point by the algorithm. Figures 64, 65 and 66 show the best, median and
worst produced schematics respectively. Various cases of suboptimal layout are
visible in the median Vienna diagram, for example it has generally worse line
straightness than the best diagram in nearly all lines. Even more cases can be
seen in the worst diagram, which along with much poorer line straightness, has
multiple edges not meeting the octilinearity criterion, unequal edge lengths and
occlusions. Similar examples can also be seen in the produced diagrams of the
other maps.

Figure 67 shows the normalised cumulative mean fitness value against grid
spacing for all maps. It clearly shows how grid spacing values at both extrem-
ities of the test set produce a worse final fitness value. Conversely, the best
fitness values are produced near the middle of our test set, approximately us-
ing values varying between 8 and 11. When examining this data for individual
maps a similar, but map-specific, trend is seen. We present these more detailed
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Figure 63: Vienna – Geographic.

Figure 64: Vienna – Rank 1 (Fitness = 0.850).
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Figure 65: Vienna – Rank 181 (Fitness = 2.270).

Figure 66: Vienna – Rank 363 (Fitness = 6.694).
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Figure 67: Normalised cumulative mean fitness value against grid spacing – all
maps.

results in Section 5.3.1.
Figure 68 shows the normalised cumulative mean fitness value against search

distance for all maps. This graph clearly shows how increasing the optimiser
search distance reduces the resulting fitness value. This result is logical, as in-
creasing the search distance of the optimiser directly increases the search space,
allowing the optimiser to (mostly) find a better configuration. The same trend
is seen for each individual map for which graphs are provided in the Appendix.

Figure 69 shows the normalised cumulative mean fitness value against cool-
ing schedule for all maps. Using no cooling schedule produces the lowest fit-
ness values, followed by a linear cooling schedule and then an exponential
schedule. Similar to search distance, the cooling schedule directly affects the
search space of the algorithm, thus hindering the fitness value as the search
space is restricted. The same trend is seen for each individual map for which
graphs are provided in the Appendix.
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Figure 68: Normalised cumulative mean fitness value against search distance –
all maps.

Figure 69: Normalised cumulative mean fitness value against cooling schedule
– all maps.
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Figure 70: Grid spacing against mean fitness value – Mexico.

5.3.1 Grid Spacing

From examination of the fitness trends associated with grid spacing, search dis-
tance and cooling schedule; it is clear that the most interesting of the three is grid
spacing. Unlike the other two which directly vary the search space and produce
results that reflect this, this is not the case. Therefore, this section presents grid
spacing fitness graphs for each individual map.

Figures 70, 71, 72 and 73 show graphs of how grid spacing affects layout
fitness for Mexico, Sydney, Vienna and Washington respectively. These graphs
provide more valuable information than Figure 67 which combined all maps, as
they clearly show how each schematic has specific grid spacing values at which
the best schematics are most commonly produced; these values are: Mexico: 12,
Sydney 8, Vienna 10 and Washington 11.
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Figure 71: Grid spacing against mean fitness value – Sydney.

Figure 72: Grid spacing against mean fitness value – Vienna.
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Figure 73: Grid spacing against mean fitness value – Washington.

5.4 Results – Iterations and Optimisation Time

Besides the final fitness value, it is interesting to examine how our parameters
affect the number of iterations taken as well as the optimisation time. In this
section we present the results from our tests relating to the number of iterations
and optimisation time taken to achieve the final layout. The following graphs
have been normalised due to the combination of multiple maps with different
result scales, so the mean range must be taken into account when evaluating
any apparent trends.

Figure 74 shows the normalised number of iterations and optimisation time
against grid spacing for all maps. This graph shows a clear trend for both itera-
tions and optimisation time with higher grid spacing values resulting in a lower
average number of iterations and optimisation times. The number of iterations
has a range of 5.38, which is fairly large considering the highest average num-
ber of iterations was 12.26 when using a grid spacing of 5. Although there is
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Figure 74: Normalised iterations and optimisation time against grid spacing –
all maps. Range: Iterations (5.38), Time (12.58 minutes).

some fluctuation in data for specific grid spacing values when viewed for indi-
vidual maps, the trend in general remains the same and unlike the final fitness
value, there do not appear to be specific values which work well with particular
maps. From this graph we can conclude that the smallest grid spacing values
we used required significantly more iterations to achieve their final layout, and
as grid spacing increases, the number of iterations required reduces and levels
off. In terms of optimisation time the graph shows a similar effect, with a range
of 12.58 minutes which is a 79% decrease in optimisation time from an average
optimisation with a grid spacing of 5 to a grid spacing of 15.

Figure 75 shows the normalised number of iterations and optimisation time
against search distance for all maps. It can be seen that there is a decrease in the
number of iterations required as search distance is increased, but with a range
of 1.26 iterations, the difference is not significant. This same trend is visible on
individual map graphs, with each showing very little variance in the number
of iterations. Although there is no significant change in the number of itera-
tions, the optimisation time shows a very linear increase as search distance is
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Figure 75: Normalised iterations and optimisation time against search distance
– all maps. Range: Iterations (1.26), Time (20.23 minutes).

increased. With a range of 20.23 minutes, which is a significant 204% increase
over the time of an average optimisation with a search distance of 5 to a search
distance of 15, it clearly shows how increasing the search space via search dis-
tance directly affects the optimisation time.

Figure 76 shows the normalised number of iterations and optimisation time
against cooling schedule for all maps. Although from this normalised graph it
appears as though a linear cooling schedule leads to fewer iterations, the range
of the data is 0.67 – less than a single iteration. This range is insignificant, and
so we can deduce that the cooling schedule has no significant effect upon the
number of iterations. There is a very clear decrease in optimisation time as the
search space is restricted (None → Linear → Exponential). This decrease has
a range of 17.32 minutes, which is a 156% decrease in optimisation time from
an average optimisation with no cooling to an optimisation with exponential
cooling. This is a significant decrease, and again shows how increasing the
search space directly affects the optimisation time.
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Figure 76: Normalised iterations and optimisation time against cooling sched-
ule – all maps. Range: Iterations (0.67), Time (17.32 minutes).

5.5 Discussion

Our tests have indicated that for all four maps there is a very clear trend to-
wards better layouts being produced by a greater search distance and slower (or
no) cooling schedule. This behaviour is somewhat expected as increasing these
parameters allows the system to evaluate more node positions at the cost of in-
creased run time as seen in Section 5.4, however when beginning these tests we
believed there was a possibility that specific distances or schedules may work
better with different maps. Unlike start distance and iterations, grid spacing did
not display any obvious trend for improving fitness across all maps; but rather
showed that each schematic has an optimum grid spacing value at which lower
fitness layouts are more commonly produced, as can be seen in Figures 70, 71, 72
and 73. A connection between optimal grid spacing and map density could be
proposed, as the order in which maps increase in density inversely correlates
to their best grid spacing value (ordered by perceived increasing density, best
grid spacing in brackets): Mexico (12) → Washington (11) → Vienna (10) →

129



Table 6: Percentage improvement of best schematic over median.

Map Best Median % Improvement
Mexico 2.653 4.379 39.415%
Sydney 19.359 21.944 11.779%
Vienna 0.850 2.270 62.555%
Washington 3.844 4.976 22.749%
Mean 34.125%

Sydney (8). This is perhaps intuitive, as a denser schematic would benefit from
finer control of node positioning. However, this relationship needs to be veri-
fied with a larger number of schematics and a metric for objectively quantifying
density.

When parameters are set in an ad-hoc fashion and a wider search is not
performed, as in the case in most layout methods, the fitness of the expected
output is equal to the median fitness value – this allows us to approximate how
much our best diagram improves upon an average untuned optimiser result.
Table 6 shows the percentage improvement of the best schematic over the me-
dian for each map, and shows that the produced schematic will have on aver-
age a 34.125% lower fitness value than when using ad-hoc parameter settings.
It has been mentioned that a small change in algorithm parameters can have a
large effect on the resultant layout. An example of this is the best Vienna layout
which has a fitness of 0.850 with parameters: search distance 15, grid spacing
10 and no cooling. A change from 10 to 11 grid spacing (one step) results in a
drop to rank 94 with over double the final fitness (2.006). Both of these points
illustrate the large effect optimal parameter settings can have upon the result-
ing layout, and highlight the importance of finding any connection between
schematic characteristics and optimiser settings.

Interestingly, although trends have been identified in all parameters (grid
spacing on an individual map basis), it can be seen in the results tables that
the best layouts are not when all the parameters are at their best settings as
indicated by the individual trends; but that there is still considerable variation.
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5.6 Summary

When implementing any multi-criteria search method, many parameters are
used to configure the algorithm, for example those studied in this chapter. We
have performed a number of tests to examine how the variation of three such
parameters affects the fitness and performance of the resulting layout, and made
the following observations:

1. Increasing the search distance of the optimiser reduces the resulting fitness
at the expense of optimisation time and there do not appear to be specific
values that are suited to particular maps.

2. The optimal grid spacing value is specific to each map, and appears to be
dependent on node density. Grid spacing also has an effect on optimisa-
tion time, with larger values requiring fewer iterations and less time to
complete.

3. Slower cooling schedules (optimally no cooling) reduce the resulting fit-
ness at the expense of optimisation time and there do not appear to be
specific schedules that are suited to particular maps.

From these observations we conclude that for search distance and cooling
schedule, each should be set to ensure the largest search space is used that can
be evaluated in the target timescale. We also propose that grid spacing could
be automatically tuned to adapt to the density of the map. However, from our
testing we cannot draw any solid conclusions. It may be that due to the very
large number of variables involved with these methods, in order to see con-
clusive trends in optimiser values a currently unfeasibly large data set must be
evaluated.

Besides identifying trends, our results clearly highlight the importance of us-
ing optimum parameter values, which leads to an overall mean fitness improve-
ment of 34.125% over using ad-hoc values. When algorithms for schematic lay-
out are designed for the highest possible output quality with little regard to
performance, any further improvement is desired; and our test provides evi-
dence that optimising parameter values has a large positive effect on the fitness
of the final result.
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Although search-based approaches such as the multi-criteria hill climber
tested in this chapter are capable of producing layouts of a high quality, there
are a number of fixed limitations on these types of optimisers which limit their
suitability for specific applications such as dynamic layout. These limitations
are mostly performance-related and include: 1) Speed – search-based optimisers
evaluate a very large data set, and therefore frequently take considerable time
to complete. 2) Scalability – typical exponential time-complexities of these al-
gorithms further heavily hinder their performance on larger data sets. 3) Com-
putational process animation – the optimisation process moves nodes around
to evaluate potential positions and is chaotic to watch, as a result most methods
hide this process and simply produce a final output when finished. For these
reasons, we decided to switch to exploration of force-directed optimisers which
have received much less research in the specific area of metro-map layout, but
which we believed would solve many of the issues of search-based optimisers.
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Chapter 6

Force-directed Octilinear Layout

This chapter describes the steps taken in the development of a method to en-
force edge octilinearity in a force-directed layout. To implement such a method,
we first developed a new piece of software capable of creating node-link dia-
grams, and implemented a basic force-directed layout method on which to de-
velop our modified algorithm. The motivation for an octilinear force-directed
method is explained in Section 6.1, an overview of the software is then given in
Section 6.2, and Section 6.3 details the steps taken during the development of
our octilinear force-directed layout method.

6.1 Motivation

As explained in Chapter 2, Hong et al. first defined a number of criteria for
metro map layout and attempted to simulate them in their force-directed metro
map layout in (Hong, Merrick and do Nascimento 2005) and (Hong, Merrick
and do Nascimento 2006). However, the layouts produced are not of a high
quality due to weakly enforced octilinearity and unsatisfactory station spac-
ing. The force-directed method for metro map layout has since been super-
seded by other methods which allow easier definition of layout criteria such
as hill-climbing (Stott et al. 2010), simulated annealing (Anand et al. 2007) and
linear programming (Nöllenburg and Wolff 2006), all covered previously. Al-
though these methods can already compute layouts of a reasonable quality, a
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force-directed method that could produce comparable results would provide a
number of benefits. Firstly, it is a mature layout method which has been stud-
ied in great detail from a number of perspectives, so it is possible to piggy-
back on considerable related work in, for example, performance improvements
and scalability (Frick, Ludwig and Mehldau 1995) (Bartel et al. 2011) (Hu 2005).
Secondly, the flexibility of force-directed layout also presents other potential
advantages, for example use with a dynamically changing data set where the
algorithmic computation can be viewed in real time as a transition animation
from one graph state to another (Archambault and Purchase 2012). Thirdly, the
performance of force-directed layout methods is far superior to that of search-
based methods such as multi-criteria hill climbing and linear programming.

6.2 Graphs – FDOL

We first developed a piece of software, called Graphs – FDOL (Force Directed
Octilinear Layout), which allows the creation and modification of node-link di-
agrams (Figure 77). It is possible to load in existing schematics, and we used a
collection of real world metro maps for testing purposes. The software is writ-
ten in Java, has been tested on Windows and Macintosh, and is freely available
for download at: http://www.cs.kent.ac.uk/projects/fdol/.

6.2.1 Graph Creation and Modification

Our software allows easy creation of undirected node-link diagrams, such as
those shown in Figures 77 and 78. Users can add nodes by double-clicking
in the graph view where they wish to place a new node, and create edges by
performing a right-click drag between any pair of placed nodes. Both nodes
and edges can be right-clicked to bring up a contextual menu allowing access
to the object properties panel, along with a delete option. Nodes also have
the option to be “Pinned”, which will prevent all non-manual movement (e.g.
during automated layout). Graph nodes and edges can be moved by a click-
drag movement. Moving an edge will also move the two connected nodes.
Likewise, moving a node will update all connected edges.
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Figure 77: Graph visualization development software showing a geographic Vi-
enna metro map with default labelling. To the left can be seen settings for (from
top to bottom) force-directed octilinear layout (Section 6.3), Delaunay triangu-
lation mental map preservation (Section 7), and line colour tools.

Each edge is associated with a line colour. New line colours are created in
the “Colours” panel (bottom-left of Figure 77) by selecting “New Colour” and
setting the name and colour. Edges will be created with the currently selected
colour, and this allows parallel edges to be created between a pair of nodes by
using multiple colours. Right-clicking on a blank section of the graph view will
display a radial colour selection popup, allowing easy switching between all
defined colours when creating graphs.

6.2.2 Layout

Our software supports both standard force-directed and octilinear force-directed
schematic layout methods. Octilinear force-directed layout is our extension of
the standard model and is explained in detail in Section 6.3. The following sub-
sections will provide an overview of the implemented standard model.

The standard spring embedder has two types of force which act upon the
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nodes to produce a layout – a localised repulsive force between all pairs of
nodes and an attractive force between nodes directly connected by an edge.
These are explained below and formulas given for calculation.

6.2.2.1 Node repulsion forces

Each node in the graph produces a repulsive force upon all other nodes. These
forces cause the graph to expand and prevent nodes from being positioned too
close together. The strength of the repulsive force between a pair of nodes is
calculated using Equation 22.

fr =

{
R
d2 if d ≤ C
0 else

(22)

where R is the repulsion strength constant, d is the distance between the two
nodes and C is the force cut-off distance.

The force cut-off distance, C, is used to localise node repulsion. This pre-
vents the diagram from overly expanding in the centre, and helps maintain
even edge lengths in periphery line sections. It also contributes to the system
reaching a lower energy state more quickly.

6.2.2.2 Edge attraction forces

To hold together the outwards expanding graph, attraction forces are used for
all pairs of nodes that are connected by edges. The strength of the attractive
force between two connected nodes is calculated using Equation 23.

fa = Kd (23)

where K is the spring force constant (attraction force) and d is the distance be-
tween the two nodes.

6.2.2.3 Summary

The force-directed layout process is iterative, and during each iteration the re-
pulsion and attraction forces are summed for each node. Once all forces have
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(a) Geographic map of Stockholm metro.

(b) Force-directed layout applied.

Figure 78: Example of the standard force-directed layout algorithm.

been calculated, each node is moved simultaneously based upon the force act-
ing upon it. This iterative process continues until the energy of the schematic
falls below some predefined threshold. The energy of the schematic can be cal-
culated in a number of different ways; our energy is calculated by averaging the
force applied to all nodes. In order to prevent nodes with very high velocities
from moving large distances in a single step, the maximum distance that a node
can move is capped.

Figure 78 shows an example of the implemented standard force-directed
layout algorithm. It shows how the forces explained above produce an aes-
thetically pleasing graph layout, containing a number of desirable characteris-
tics for schematic layout: equal edge lengths, minimal line crossings and mini-
mal node occlusion. However, these forces do nothing to ensure that edges are
aligned to octilinear angles. Figure 78 and, unless otherwise stated, all further
extensions of the method in the subsequent sections use the following values
for force-directed calculations: node repulsion force R = 7500, spring strength
K = 0.1, force cutoff distance C = 250, termination energy v = 0.02. These
values were derived from personal experimentation and consistently produce
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appealing layouts for a wide range of schematics.

6.2.3 Automated Label Placement

The produced schematics are required for user testing, and therefore require la-
bels in order for users to perform a number of tasks, including node finding.
Labels cannot be arbitrarily placed as this can add unwanted occlusions, mak-
ing the schematic harder to read. Label position automation provides unbiased
label placement between the multiple schematics being used for testing.

The method used for label positioning is adapted from the method previ-
ously implemented in SchemaSketch, detailed in Section 4.6.

6.3 Implementation of Octilinearity

This section explains the steps taken to develop our octilinear force-directed
layout method. The method is built upon the standard force-directed layout
method previously implemented into our graphing application. The Stockholm
metro map will be used as an example schematic throughout this section.

6.3.1 Grid Snapping

The initial idea to attempt to enforce octilinearity was to create a grid to cover
the schematic, and keep nodes aligned to grid intersections. It is important to
note that the force-directed layout algorithm still calculates forces based on the
actual position of the nodes, and not the visible “snapped” positions. It was
known that this method would not solve the problem, but may provide a good
starting point upon which to apply further techniques. The result from this step
is shown in Figure 79, which clearly shows that this technique greatly increases
the octilinearity of the graph.

However, because simple alignment of nodes to grid intersections does not
take into account the angle of any edges, there are many edges which are left
in non-octilinear orientations. This is particularly a problem with edges whose
length is greater than 1.5 grid squares, because if they start off at an angle not
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Figure 79: Nodes are aligned to grid intersections.

close to 45◦, the connected nodes must move further to result in an octilinear
edge. An example of this from Figure 79 has been enlarged and is shown in
Figure 80 where edges a, b and c are aligned to grid intersections but are not
octilinear.

Another clearly visible issue with this method is that periphery line sections
seem to contain many bends. This is caused by the force-directed method pro-
ducing smooth curves for these sections, as can be seen in Figure 78b, and then
attempting to align these to the grid. These periphery line sections indicate
that there is clearly a need for additional forces on the graph nodes in order to
straighten them out to avoid this effect.

6.3.2 Edge Rotation

In order to solve the issue highlighted in Figure 80, it was clear that additional
forces must be added to nodes to enforce the desired edge angles. The method
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Figure 80: Example of non-octilinearity arising from aligning nodes to grid in-
tersections.

m

A

B

30

45

Figure 81: Example edge AB to be rotated to the indicated angle of 45◦. This is
an anti-clockwise rotation of 15◦ around m.

implemented to attempt to solve this operates by examining each edge in turn
and applying forces to the end nodes in order to rotate the edge to an octilinear
angle. This edge rotation technique is based upon the magnetic spring model by
Sugiyama and Misue in (Sugiyama and Misue 1995), used to apply an overall
structure to a graph – for example a tree with edges mainly in the y-axis. A dia-
grammatic example of this is shown in Figure 81, and the algorithm is detailed
in the following subsections.

6.3.2.1 Pseudocode

For each edge in the graph:

1. Calculate edge angle a using atan2 (y, x).
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2. Determine closest angular resolution multiple and calculate the

rotation angle θ required to achieve this (Section 6.3.2.2).

3. Calculate edge midpoint m.

4. Find target point At by rotation of θ◦ around m (Section 6.3.2.3).

5. Calculate attractive force f between points A, At (Section 6.3.2.4).

6. Apply this force to nodes A, B (Section 6.3.2.5).

6.3.2.2 Rotation Angle Calculation

Given the current edge angle a, where: (−180 < a ≤ 180), and a desired angular
resolution r (45◦ for octilinearity). We find c; the closest multiple of r to a. We
can then calculate the required angle of rotation θ = c− a.

6.3.2.3 Target Point Calculation

Given the edge midpoint m and the rotation angle θ. The transformation matrix
to rotate a point p(x,y) by θ◦ around the origin is combined with two translations
(to origin, from origin) and simplified to derive equations for the target point
coordinated, x′ and y′ (Equation 24).

x′ =
(
(x−mx) cosθ −

(
y−my

)
sinθ

)
+ mx

y′ =
(
(x−mx) sinθ +

(
y−my

)
cosθ

)
+ my

(24)

We can now calculate the rotation target point of A, At (Equation 25).

At =
(

Ax′ , Ay′
)

(25)

As trigonometric functions are relatively slow to compute, performing hun-
dreds of these calculations per second can hinder performance. A simple tech-
nique to speed up these calculations is to use sinθ and cosθ lookup tables. The
range of θ values required is zero to f loor(r/2) with increments of one degree.
r = angular resolution.
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6.3.2.4 Force Calculation

Given points A and At, we can calculate an attractive force f between them
(Equation 26). This calculation is the same as that used by our standard spring
embedder for the attraction between connected nodes and uses the same value
for K.

fa = Kd (26)

where K is the attraction force constant, and d is the distance between the two
points.

6.3.2.5 Applying Forces

In order to calculate the movement from the force, we must first calculate the
unit vector v for A, At using the following method. This method requires the
values for the two points A, At, found previously.

/∗∗
∗ C a l c u l a t e s the uni t vec tor from a to b .
∗/

p r i v a t e s t a t i c Point2f getUnitVector ( Point2f a , Point2f b ) {
f l o a t dx = b . x − a . x ;
f l o a t dy = b . y − a . y ;

// zero case .
i f ( dx == 0 && dy == 0)

re turn new Point2f ( 0 , 0 ) ;

f l o a t div = Math . abs ( dx ) > Math . abs ( dy ) ? Math . abs ( dx ) : Math . abs ( dy ) ;
re turn new Point2f ( dx/div , dy/div ) ;

}

We now calculate the additional movement V in both x and y dimensions
for node A (Equation 27) and add this to its existing movement. We can also
move node B, as its movement is equal and opposite to that of node A.

Vx = f vx

Vy = f vy
(27)
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Figure 82: Simultaneous force-directed and edge-rotation forces (1).

6.3.3 Simultaneous Force-Directed and Edge-Rotation Forces (1)

Figure 82 shows the example schematic laid out using both the edge rotational
and standard force-directed forces applied simultaneously. We also removed
the function that snapped nodes to grid intersections, as we felt that a good level
of octilinearity should be achievable by the clever application of forces, rather
than superficially repositioning nodes. This method uses the same techniques
as, and operates in the same way as the first force-directed octilinear layout
method by Hong et al. The level of octilinearity produced by this method is
not as strong as desired, and we were unable to increase the strength of the
rotational forces without causing the nodes to oscillate back and forth violently
– a behaviour that never stabilised.

Various other problems are apparent from examining Figure 82. Long strings
of off-angle 2-degree vertices are hard to straighten, as the rotation of one edge
to the correct angle puts it at an offset to the next edge; this can be seen in
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N

Figure 83: Example line section which is hard to align to octilinearity with edge
rotation.

Figure 83 where the blue dashed lines indicate the ideal angle for each edge.
This in turn causes the middle node N to oscillate, as it is being pulled in both
directions by opposing forces.

6.3.4 Simultaneous Force-Directed and Edge-Rotation Forces (2)

One of the main issues with the method described in the previous subsection is
that strings of 2-degree nodes have a hard time aligning themselves due to each
edges’ desired alignment position being offset from the next (Figure 83). An
idea to solve this was to use a common simplification technique of removing 2-
degree nodes, and calculating/applying rotational forces only to the remaining
nodes.

Figure 84 shows a test of this technique. The red lines indicate sections in
which 2-degree nodes have been removed, and therefore the edges to which
only rotational forces have been applied (red edges do not count as a connec-
tion between nodes, and therefore do not contribute to the attraction forces act-
ing on their connected nodes). All existing nodes are only under the influence of
the standard force-directed layout. The method showed promise, as the graph
composed of red rotational sections has much stronger octilinearity. One pos-
sible direction from this would be to apply attraction forces to the nodes that
pull them towards their associated rotational edge. However, problems arose
when we attempting this as the standard layout forces conflicted with any other
forces applied to the nodes. This caused the nodes to settle at a position halfway
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Figure 84: Simultaneous force-directed and edge-rotation forces (2).

between that shown in Figure 84 and the nearest red line – the position at which
the opposing forces cancel out.

6.3.5 Sequential Force-Directed and Edge-Rotation Forces

From our two previous attempts it became apparent that applying both types of
force simultaneously was causing a number of problems due to the fact that the
different forces were conflicting. The different force types would often attempt
to move nodes in opposite directions, leading to the resultant force moving the
node into an undesirable position which satisfies neither criterion. We therefore
decided to experiment splitting apart the two types of force, and applying them
sequentially. It was known that octilinearity forces must be applied last, as this
criteria must be fully met – even at the expense of standard force-directed layout
forces. A similar two stage approach is employed in (Wang and Chi 2011) using
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Figure 85: Sequential force-directed and edge-rotation forces.

a linear programming method. Figure 85 shows the result of applying first the
standard force-directed layout method until stable and then applying rotational
forces to each edge.

Although this method produces octilinear graphs, new problems arise from
the two stage process. Because the original forces (node repulsion, edge node
attraction) are no longer applied in the second (rotational) stage, there are no
forces to stop nodes unevenly distributing themselves or overlapping, as can
be seen in numerous cases in Figure 85. Aside from these issues, this method
produces the most promising results in terms of force-directed octilinear graph
layout.

6.3.6 Semi-Simultaneous Force-Directed and Edge-Rotation Forces

As shown in the previous section it is not desirable to use two discreet stages in
the layout process, this is because the node movements performed during the
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Figure 86: Coefficients Fspr and Foct decrease/increase to smoothly transition
between the two force types. Octilinear forces continue for a short time after
spring forces stop to ensure octilinearity is enforced.

initial stage are undone by many iterations of applying the latter stage forces.
However, as shown previously in Section 6.3.3, a solution to this is not as sim-
ple as applying both methods simultaneously. This section details a potential
method to combine the two sets of forces whilst alleviating previous issues.

Both force generating methods produce a force value (Fspr for spring and
Foct for octilinear forces) for each node which is used to calculate its movement
vector. The strength of these forces can therefore be controlled using coefficients
which we name Cspr and Coct respectively. Using coefficients on both force gen-
erating methods it is possible to reduce the effect of one over time whilst in-
creasing the effect of the other. This allows a smooth transition between the two
types of forces as shown in Figure 86.

A complication with this method is that in order to linearly interpolate the
value of the coefficients over the duration of the layout process, it is necessary
to estimate the iteration at which the energy will fall below a pre-defined value
(indicated by the vertical dashed line in Figure 86). In order to estimate this,
we must calculate a function based on the graph energy over time; and use this

147



-­‐1.0000	
  

1.0000	
  

3.0000	
  

5.0000	
  

7.0000	
  

9.0000	
  

11.0000	
  

13.0000	
  

15.0000	
  

1	
   6	
   11
	
  

16
	
  

21
	
  

26
	
  

31
	
  

36
	
  

41
	
  

46
	
  

51
	
  

56
	
  

61
	
  

66
	
  

71
	
  

76
	
  

81
	
  

86
	
  

91
	
  

96
	
  

10
1	
  

10
6	
  

11
1	
  

11
6	
  

12
1	
  

12
6	
  

13
1	
  

13
6	
  

14
1	
  

14
6	
  

15
1	
  

15
6	
  

16
1	
  

16
6	
  

17
1	
  

17
6	
  

18
1	
  

18
6	
  

19
1	
  

19
6	
  

20
1	
  

20
6	
  

21
1	
  

21
6	
  

22
1	
  

22
6	
  

23
1	
  

23
6	
  

24
1	
  

24
6	
  

25
1	
  

25
6	
  

26
1	
  

26
6	
  

27
1	
  

27
6	
  

28
1	
  

28
6	
  

29
1	
  

29
6	
  

30
1	
  

30
6	
  

31
1	
  

31
6	
  

32
1	
  

32
6	
  

33
1	
  

33
6	
  

34
1	
  

34
6	
  

Stockholm	
  

Mexico	
  

Vienna	
  

Recife	
  

Toronto	
  

Figure 87: Chart of how average energy (y-axis) varies over the iterations (x-
axis) for five example graphs of varying sizes; Stockholm, Mexico, Vienna, Re-
cife and Toronto.

function to predict the iteration at which the system energy will fall below a
defined value.

Figure 87 shows that the average energy Eavg of a graph over the duration
of layout approximates the line y = 1

x . Accounting for Eavg in the equation, we
deduce a function to estimate the layout iteration at which the energy level will
fall below a pre-defined value v (Equation 28).

Iteration =
10E10

v
(28)

Where E10 is the average energy on the tenth layout step.
The average energy of the tenth layout step E10 is used in this calculation.

This is because the initial Eavg is highly dependent on the initial configuration
of the loaded schematic (for metro maps the geographic layout). This can have
an adverse effect as some maps (e.g. Vienna) start with a few nodes of very high
energy. Allowing the layout an initial ten steps helps to reduce these erroneous
values and produce a more accurate estimation function. Before the estimation
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Figure 88: Semi-simultaneous force-directed and edge-rotational forces.

function is calculated we cannot modify the coefficients, and therefore their val-
ues during the first ten iterations will remain constant.

With Equation 28 we can calculate an estimated final iteration value, typi-
cally between 500 to 2500, and using this value we can linearly interpolate Cspr.
Calculating Coct is then trivial as it is the inverse of Cspr (Equation 29).

Coct = 1− Cspr (29)

Figure 88 shows the result of our semi-simultaneous method. An improve-
ment in the consistency of edge lengths can be seen and there are no longer
nodes pushed on top of each other. One negative aspect of this method is that
lines, especially at peripheries, appear less straight than before. This is partly
caused because this method does not apply the basic force-directed method
forces for as long as before, but could also be a side effect of the initial layout
and behaviour of force-directed methods.
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(a) Initial graph size. (b) Size after layout (section).

Figure 89: Comparison of the size difference between an initially loaded graph
and the post-layout graph. Because nodes are so close in Figure 90a, initial
strong repulsive forces cause the graph to ‘explode’. Note: the grid resolution
remains unchanged.

6.3.7 Schematic Resizing

From our tests, we knew that the initial layout of a schematic has a large impact
on its final layout when using force-directed methods. Taking this into account,
we noticed that when the maps are initially loaded they were very small com-
pared to the size post-layout (Figure 89). This caused the graph to “explode”
outwards in the initial iterations as it resized itself to adjust to the magnitude of
the layout forces.

Metro maps, which commonly feature long periphery lines of 2-degree nodes,
are particularly susceptible to this initial expansion. Nodes closer to the centre
are affected by more forces and therefore move outwards faster than those along
the periphery lines, this results in the periphery lines becoming “bunched up”
before the octilinearity fitting forces are applied (Figure 90).

A potential solution to this problem is to scale the loaded graphs to a similar
size as the final layout. This is done by calculating a scale factor S from the av-
erage edge length of the loaded schematic avgLen map and the desired average

150



(a) Initial close nodes. (b) Node bunching caused by expansion.

Figure 90: Node bunching in the grey periphery line caused by rapid graph
expansion during the initial layout iterations.

length avgLen (Equation 30).

S =
avgLen

avgLen map
(30)

All nodes are then scaled by S around the origin (Equation 31).

(
x′, y′

)
= (Sx, Sy) (31)

Figure 91 shows the result of the layout starting from a re-scaled graph.
The graph was scaled to have an average edge length avgLen of 59.65px – a
value derived from the average edge length at the end of layout for four exist-
ing maps run without scaling (Table 7). As seen in Figure 91, and quantified in
Table 8, performing this schematic resizing before layout considerably improves
the overall line straightness when compared to the previous method (Figure 88).
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Map Mean edge length
Stockholm 56.69
Vienna 62.26
Mexico 61.13
Sydney 58.51
Mean 59.65

Table 7: Average edge lengths for maps laid out without scaling.

Line No-resizing Resizing
Red 810◦ 495◦

Blue 180◦ 360◦

Green 1620◦ 900◦

All 2610 ◦ 1755◦

Table 8: Sum of line bending with and without schematic resizing.

Figure 91: Auto-scaled semi-simultaneous force-directed and edge-rotational
forces.
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Figure 92: Fspr remains stable for d steps before the force transition begins.

6.3.8 Auto-scaled Postponed Semi-Simultaneous Layout

Although auto-scaling the initial graphs has gone some way to helping reduce
line bends, it may be beneficial to allow the standard force-directed part of the
algorithm to run for longer before starting the changeover to octilinear forces.
This may give the lines more chance to straighten out whilst the forces that
do this are still in full effect. This modification involves changing the force
switchover process shown in Figure 86 to that of Figure 92, where spring forces
are applied for a fixed number of iterations (d) before the force transition begins.

If starting the layout algorithm on a graph with a very low energy, it is pos-
sible that the last iteration of d (the start of the force transition stage) will be
greater than the iteration the interpolator estimates to be the end of the force
transition stage. This will result in the layout algorithm never switching to the
octilinearity stage and maintaining Cspr = 1, Coct = 0. To avoid this possibil-
ity, when calculating Iteration (Equation 28), we use a modified function which
adds the additional constraint Iteration ≥ 2d (Equation 32).

Iteration =

{
10E10

v if 10E10
v ≥ 2d

2d else
(32)
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Figure 93: Auto-scaled postponed semi-simultaneous layout (d = 50).

where E10 = the average node energy on the tenth step and v = the energy
value of which to estimate the iteration of.

Figure 93 shows the result of using this method with d = 50. Compared to
Figure 91, the method manages to further suppress line bending and produce
an acceptable result. However, old problems still exist such as edge length con-
sistency and overlapping of nodes caused by the pure octilinearity force section.

6.3.9 Small Edge Length Forces Using Hooke’s law

An example of the node-overlap problem can be seen in Figure 94. This problem
is caused by running edge rotational forces without the standard force-directed
forces, such as the last stage in our layout method. If two edges share the same
desired edge angle, it is possible that the rotational forces will move one over
the other.

In order to avoid this, we apply Hooke’s law to attempt to maintain a specific
edge length during the octilinearity stage. Hooke’s law attempts to increase or

154



(a) The cause of overlap. (b) The resulting overlap.

Figure 94: Example of overlap caused by rotating edges to octilinearity with-
out simultaneously applying standard force-directed forces. Figure 94a shows
an example of what causes this, as both the green and brown edges rotate to
horizontal and therefore overlap (Figure 94b).

reduce the length of an edge to a specified amount, much like a spring. How-
ever, as we only wish to prevent under-length edges the force will only be ap-
plied to expand the edge if it is compressed too far. To do this, we apply the
force calculated in Equation 33 to both nodes in opposing directions.

f =

{
Coct ×−K (Dm − Dc) if Coct ×−K (Dm − Dc) ≥ 0
0 else

(33)

where Coct = the octilinearity spring coefficient, K = the spring force constant,
Dm = the desired length of the edge at rest and Dc = the current length of the
edge.

Figure 95 shows the result of these included forces using Dm = 50. It shows
that there is no longer an overlap of nodes, but as a result there is a break in
octilinearity. However, because the forces only take effect when nodes are very
close, this does not affect the octilinearity of the rest of the graph. The ideal
situation for this problem would be to move the entire dark-green line to point
north-east, but this requires more research into alternate methods to shift the
entire line and quite possibly specific functions to handle individual cases rather
than the current set of global forces.
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Figure 95: No overlap using small Hooke’s law forces (Dm = 50).

6.3.10 Fine-Tuning

After personal experimentation, a number of parameters have been fine-tuned
to improve the layout. The initial layout phase has been lengthened from d =

50 to d = 250 (see Figure 92). This change allows the schematic to reach a
lower energy using the initial spring-embedder forces, before rotational forces
are applied, which further helps straighten line sections.

The force cutoff distance during the initial layout stage has been increased
from 250 to 400. This cutoff distance is enforced on repulsion between pairs of
nodes and stops far away nodes affecting each other. Increasing this value has
increased the number of uneven edge lengths at periphery sections, but greatly
helps straighten out these sections.

Node repulsion force has been reduced from 7500 to 5000 to compensate for
the increased cutoff distance which makes schematics spread out more. The
effect of these differences are shown in Figure 96.

6.3.11 Post-Processing to Further Straighten Peripheries

In order to straighten periphery line sections further, we implemented a post-
processing method. This method runs after all forces have finished acting upon
the schematic.

The method identifies all 1-degree nodes, and traverses the graph from these
until a node with degree ≥ 2 is found. This creates a list of all periphery line
sections. These sections are then ordered by descending length, as longer lines
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(a) Before.
(b) After.

Figure 96: Before and after fine-tuning the Mexico metro; note the straightened
periphery sections and slightly fewer bends in the centre.

should be given priority of direction.
Each line is then straightened. The preferred straightening angle is that of

the edge in the line section that is connected to the node with a degree of ≥
2. Using the unit vector of this edge and a desired edge length the projected
placement for the end node can be calculated. The proposed straight line can
then be checked for the introduction of edge crossings before final placement
is made. Providing the proposed edge does not introduce any edge crossings,
all nodes in the line section are moved into place. During this process, we also
redistribute stations along the line to be perfectly equidistant.

Figure 97 shows the result of straightening periphery line sections, and quan-
tified results can be seen in Table 9.

6.3.12 Force Switchover Changes

Due to a modification to increase the initial run in period before starting the
switchover of forces, it was no longer correct to use a 1/x based estimation
function to determine switchover duration. Also, a fixed run in period was
not sensible as this started the switchover at varying energy states dependent
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Line No post-processing Post-processing
Orange 135◦ 135◦

Pink 360◦ 270◦

Blue 135◦ 135◦

Red 0◦ 45◦

Brown 45◦ 45◦

Yellow 135◦ 180◦

Dark Green 315◦ 225◦

Light Green 45◦ 45◦

Grey 540◦ 225◦

Maroon 135◦ 45◦

Green Ochre 225◦ 90◦

All 2070◦ 1440◦

Table 9: Sum of line bends with and without post processing - Mexico.

Figure 97: Mexico City schematic with straightened peripheries.
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Figure 98: Force constants remain stable in phase S1, then transition between
the two forces in phase S2. Stage S3 then ensures octilinearity is enforced by
only applying octilinear forces.

on the schematic. Figure 98 shows the updated, final, force-transition graph
for the method. The run in stage S1 has been modified to last until the energy
level falls below a threshold (default = 0.15). At this point the second stage S2

begins. S2 will now run for 200 iterations, instead of being dependent on an
estimation function, which produces acceptable results on all tested schematics.
The final stage S3, purely octilinear forces, will remain unchanged and run until
the energy falls below the termination energy level v.

6.4 Alternate Resolution Angular Layout

Along with optimising for octilinearity, we discovered that our algorithm is also
capable of aligning edges to any desired angular resolution. For example, Fig-
ure 99 shows the Stockholm metro map optimised using a desired edge angle of
60◦. Using alternate angular resolutions can be effective on certain schematics,
such as on Stockholm, but this is highly dependent on the schematic structure
and requires experimentation.
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Figure 99: Stockholm metro optimised to a 60◦ angular resolution.

6.5 Results

Figures 100 and 101 show the Mexico City metro map as laid out by our multi-
criteria and force directed methods respectively, Figures 102 and 103 show the
Vienna metro map, and Figures 104 and 105 show the Sydney metro map. These
layouts show that octilinearity is consistently strongly enforced, along with
other criteria commonly associated with schematic layout. Due to the way in
which force-directed methods function, many criteria that must be specifically
implemented into a multi-criteria approach are naturally occurring. These cri-
teria include the even distribution of nodes, minimal line bends and minimal
occlusions; all of which can be seen in the example layouts.
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6.6 Summary

In this chapter we have shown the application that we developed in order to
implement our new schematic layout technique, as well as describing the steps
taken during the development of our method to enforce octilinearity in a force-
directed layout.

Our new layout technique is able to produce results of a significantly higher
quality than the previous technique by Hong et al. (Figure 28), as we are able to
much more strongly enforce angular resolution of edges along with equidistant
station spacing. We further believe that our results are comparable to those
produced by the current alternate methods such as multi-criteria hill climbing
and linear programming.

Additionally, our method is able to produce these layouts much faster than
typical search-based techniques. Table 10 shows timing comparisons between
our final force-directed octilinear layout and our speed-optimised multi-criteria
layout algorithm which we re-implemented as a Java application in order to
produce comparable timings. We used a number of real world metro maps for
this comparison, and it can be seen that an average speedup of 10 times was
achieved. Testing for both methods was carried out on a quad-core Intel Core i5
running at 3.7GHz with 8.0GB 1066MHz DDR3 RAM and using x64 Microsoft
Windows 7 Professional with x64 Oracle JRE 7. Further speed improvements
are also possible using techniques explained in the introduction to this chapter.
We aim to use our method to improve applications of schematic layout in which
speed is crucial to a high-quality user experience.

In the next chapter we will extend the methods developed here to implement
a form of mental map preservation using a Deluanay triangulation. Mental map
preservation is the concept of restricting node movement during layout in order
to preserve a user’s familiarity with the schematic node positions. We devel-
oped this technique in order to use our octilinear force-directed technique for
dynamic schematic layout. Dynamic schematic layout is used to visualise data
sets which change over the duration of their lifetime, requiring layout methods
to be re-applied as the data is modified and when changes are needed to ensure
continued ease of readability.
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Table 10: Layout timing comparison

Force-directed Multicriteria Speedup
Schematic Nodes Edges time (sec) time (sec) Multiplier (x)
Recife 28 27 0.02 0.27 13.5
Atlanta 38 37 0.03 0.26 8.67
San Francisco 43 44 0.03 0.83 27.67
Bucharest 44 45 0.04 0.44 11
Toronto 69 69 0.14 0.49 3.5
Washington 86 88 0.14 1.00 7.14
Vienna 90 96 0.37 1.25 3.38
Stockholm 100 100 0.19 0.76 4
Mexico City 147 164 0.92 2.05 2.23
Sydney 173 180 0.59 11.85 20.08
Mean 81.8 85 0.25 1.92 10.12
Standard Deviation 45.71 49.83 0.28 3.35 7.87

Figure 100: Optimised Mexico City – Multi-criteria hill climber.
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Figure 101: Optimised Mexico City – Octilinear force-directed layout.
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Figure 102: Optimised Vienna – Multi-criteria hill climber.

Figure 103: Optimised Vienna – Octilinear force-directed layout.
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Figure 104: Optimised Sydney – Multi-criteria hill climber.

Figure 105: Optimised Sydney – Octilinear force-directed layout.
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Chapter 7

Force-directed Layout with Mental
Map Preservation

This section details how a Deluanay triangulation (Delaunay 1934) is used to
constrain node movement during optimisation and thus help preserve a user’s
mental map.

A beneficial property of Delaunay triangulations is that the circumcircle (see
Section 7.1.1) of each triangle will contain no other vertices. This property en-
sures that the interior angles of each triangle are maximised – thereby minimis-
ing the number of long, thin triangles. This also extends to 3-dimensions, where
the circumsphere will contain no other vertices. This property is especially
useful in many applications including 2D/3D interpolation between sample
points (de Berg et al. 2008), or polygon-creation when modelling terrain or other
objects represented by vertices (Shewchuk 2015). For our purposes it is also the
strongest notion of a proximity graph, being the super graph of other proxim-
ity graphs such as the Gabriel (Gabriel and Sokal 1969), nearest-neighbour and
Euclidean minimum spanning tree graphs.

As mentioned previously in Section 2.2.4, current mental map preservation
techniques restrict absolute node movement without regard to proximity rela-
tions, and we have not identified any use of a Deluanay triangulation to enforce
this. An advantage of restricting nodes by their proximity to other nodes, rather
than absolute node movement, is that it more readily allows certain changes to
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(a) Schematic with two node clusters sepa-
rated by an over-length edge.

(b) Absolute positioning effect. (c) Proximity positioning effect.

Figure 106: Red objects indicate those that negatively affect the similarity mea-
sure in absolute (106b) and proximity (106c) based similarity calculations.

a schematic which can be argued do not inhibit mental map preservation, and
therefore should be possible – for example the movement of a cluster of nodes.
Figure 106 shows a series of three figures; Figure 106a shows an example of
a schematic with two distinct node clusters separated by an over-length edge.
Our layout method handles such a situation by producing the schematic as seen
in Figures 106b and 106c. Such modifications, which preserve the proximity of
nodes within a cluster and move entire clusters together should not have a sig-
nificant negative effect the users’ mental map; however, depending on cluster
size, these movements will have a large effect on the similarity measure when
calculating based on absolute node positions. The red objects highlighted in
Figures 106b and 106c indicate those that negatively affect the similarity mea-
sure in each case, absolute and proximity, respectively.

7.1 Delaunay Triangulation Calculation

We use the Bowyer-Watson algorithm for calculating a Delaunay triangulation.
The method was developed simultaneously by Adrian Bowyer and David Wat-
son and published in the same issue of The Computer Journal – these papers
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are (Bowyer 1981) and (Watson 1981) respectively.
The algorithm uses an insertion method to add each node in turn until all

nodes are added and the triangulation is complete. A frame is first constructed
using four invisible nodes at each corner of the schematic, and two corner nodes
are joined to create two large initial triangles as shown in Figure 107a.

Each triangle is represented by a Triangle object. When each is constructed
the circumcircle of the three corners is calculated (Section 7.1.1) and stored. The
circumcircles of the two initial triangles are shown in Figure 107b – they happen
to share the same circumcircle so only one circle can be seen.

After initial setup, the triangulation is calculated as follows:

1. For each non-frame node n.

2. Identify all triangles for which n is contained within their

circumcircle.

3. Construct a perimeter around n by combining all edges from all

identified triangles. Remove all instances of any edges which

are present more than once (Figure 107c – red edges removed).

4. For each perimeter edge e of the polygon in which the node

exists, construct a new triangle estarteendn (Figure 107d).

The triangulation is complete once all nodes have been added via this method
(Figures 107e and 108). The four corner nodes that make up the frame are left
in place, however they are not part of the schematic and can be thought of as
anchors as they are unable to move (not being affected by any layout forces) –
this has the beneficial effect of preventing strange behaviour caused by the De-
launay frame not being connected to anything, such as rotation or translation of
the entire schematic.

7.1.1 Circumcircle Calculation

Any three points in a 2D plane lie on the circumference of a single circle known
as their circumcircle. Given three points p1p2p3 we can calculate the centre c
and radius r of their circumcircle as follows:
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Figure 107: Construction of a Delaunay Triangulation.
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1. Calculate mp1p2, the midpoint of p1p2.

2. Calculate the equation of the line perpendicular to p1p2 which

passes through mp1p2.

3. Repeat steps 1 and 2 for p2p3.

4. c = The intersection point of the resulting two lines.

5. r = The distance between c and p1.

7.2 Using the Triangulation as a Frame

Figure 108 shows an example of a Delaunay triangulation applied to the Vienna
metro map – the original schematic can be seen on top of the light-red Delau-
nay edges. The generated triangulation edges are then used during layout as
a frame to hold nodes in place. Each edge is modelled as a Hookean spring,
with a length at rest equal to its initial length, and a spring strength equal to a
user defined value, k (further information in Section 7.6). This spring strength
value can be varied in order to affect the level of mental map preservation; for
example using a low k value will apply weak springs which are unable to hold
nodes in place against strong movement forces.

Figure 109 shows an example of how a Delaunay edge affects connected
nodes. The blue line section indicates the spring length at rest, and the red
sections indicate extension. The force exerted by the edge is calculated using
F = k(d2− d1). The unit vector for AB is calculated and its x and y components
multiplied by F to calculate node movement for A. An equal and opposite force
needs to be applied to B, so x and y unit vector components are multiplied
by −F to calculate its movement. In order to help stop nodes moving large
distances in one step, F is capped at 25, which in turn ensures node movement
is limited.

When running in our layout method, Delaunay frame forces are calculated
and applied last, after the calculation of spring embedder and edge rotation
forces. This is to ensure that all node movements from other methods can be
counteracted by the mental map preserving frame.
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Figure 108: Delaunay triangulation of the Vienna metro map (including trian-
gulation frame).

A

B

d1

d2

y

x

Length at rest
Extension
Node movement

Figure 109: Example of Hooke’s law affecting nodes connected by Delaunay
edges.
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7.3 Combination with Octilinear Forces

In order to allow the Delaunay frame force to be used in conjunction with the
existing layout algorithm, it is required that any force produced by the frame
is subject to the same force coefficient as the standard spring embedder forces.
This is due to the necessity to reduce the force to zero before layout is complete,
in order to ensure the angular forces have the desired effect. Delaunay force cal-
culations therefore use a new force coefficient, FDel, which mirrors the value of
FSpr. Adding FDel into the force calculation, the result is shown in Equation 34.

F = FDelkx (34)

where x is the Delaunay edge length displacement and k is the spring strength
of the Delaunay edges.

7.4 Node Oscillation in High-Strength Frames

In order to hold nodes in place during the layout phase for 100% mental map
preservation (MMP), it is necessary to set a high Delaunay frame strength value
k. However, when set to a high value, nodes in the schematic have a tendency
to oscillate. This node oscillation happens because the application of forces in a
computer program must occur in steps rather than continuously. In our case, us-
ing multiple force types, these forces can also only be applied sequentially. This
characteristic allows nodes to move without regard to Delaunay frame forces
during the initial spring embedder calculations, and move past their stable des-
tinations in a single step. Figure 110 illustrates this point; consider the two
nodes A and B1 connected by both a schematic edge (black) and a Delaunay
edge (red). At high levels of MMP the Delaunay edge acts as a very stiff spring
with an equilibrium length of 10 units, unable to compress or extend without a
large force, thereby holding the two nodes apart. However, the schematic edge
is currently overextended and is applying a pulling force to both nodes to at-
tempt to reduce its extension. The resting length for this schematic edge is 5
units – when B1 is in the position of B2. These two forces conflict and in an
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Figure 110: Example of how high frame strength can cause node oscillation.

environment where forces are applied continuously the Delaunay edge would
successfully hold the nodes apart due to its much larger spring force. Prob-
lems arise from this, however, when forces are applied independently as the
schematic edge would initially pull the two nodes closer together, compressing
the high-force Delaunay edge. When subsequently calculating the effect of the
Delaunay edge, it will exert a large pushing force upon both nodes as it uncom-
presses, moving one or both nodes past their stable position and extending the
edge. This starts the node oscillation.

Node oscillation is also an issue in standard force-directed layouts, and a
solution ideal for use in our situation is described by Jamey Lewis in (Lewis
2014). The author uses a force coefficient termed “temperature” to dampen
node movements under certain conditions. This node dampening varies from
standard dampening in a couple of significant ways. Firstly, the dampening
coefficient (temperature) is able to both increase as well as decrease within a
bounded range. Secondly, the temperature varies based on the change in ve-
locity of the node, rather than simply decreasing over time. This also results in
each node in the schematic having an individual temperature, which is desir-
able behaviour as each node has a different oscillation force point.

The temperature varies between 0 and 1 with a resolution of 0.1. All temper-
atures initially start at a value of 0.5, and the temperature is used as a coefficient
to any node movement. This means that nodes initially move at half speed, and
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can vary between no movement and full speed movement. To combat node
oscillation, the temperature varies based on successive movements in a similar
direction. If the node moves with a vector within 45◦ of the previous move-
ment vector (forwards), the temperature is increased by 0.1. If the node moves
with a vector of greater than 135◦ from the previous movement vector (back-
wards), the temperature is reduced by 0.1. This has the effect of slowing down
oscillating nodes, whilst not penalising normally moving nodes.

7.5 Similarity Method

In order to quantify a level of MMP, it is necessary to have a measure of similar-
ity between two subsequent stages of a dynamic graph. This measured value
must represent the level of mental map preservation between the two stages. It
can be argued that moving a cluster of nodes is not a large change to the mental
map (Misue et al. 1995) (providing the relative node positions within the cluster
remain unchanged). Therefore the calculation should not be based on original
node positions, but rather node proximities. Our Delaunay triangulation edges
are well suited for this purpose and therefore we calculate our similarity mea-
sure based on the mean edge length difference in these. The value produced is
a proximity based measure, representing how nodes have moved in relation to
their neighbours. Equation 35 shows the calculation used to produce the value.
If no nodes are moved during optimisation this function will return a value
of zero, indicating full MMP. Conversely, a high value indicates a low level of
MMP.

EdgeSimilarity =
∑|e|i=0 abs

(
len (e[i])− lenorig (e[i])

)
|e| (35)

where e is an array of Delaunay frame edges (excluding edges connected to
frame nodes), len(e[i]) is the current length of edge e[i], lenorig(e[i]) is the origi-
nal length of edge e[i], and abs() returns the absolute value of its parameter.
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(a) Vienna - Geographic
(b) Vienna - 0% MMP

(c) Vienna - 50% MMP
(d) Vienna - 100% MMP

Figure 111: Vienna schematic optimised using varying levels of mental map
preservation. Figure 111a shows the input schematic; Figures 111b, 111c, and
111d have used the linearised slider to set their MMP levels to 0%, 50%, and
100% respectively.
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7.6 Frame Strength

The value of k used when calculating Delaunay frame forces can be manually
modified by the user. This allows the user to specify exactly how much force
they require the Delaunay edges to exert, altering the layout of the schematic
by holding nodes in positions relative to each other. Using a k value of 0 would
make no difference to the layout, and produce a result with 0% MMP. In order
to achieve 100% MMP, the user must set a high value for k, such as 1.

To achieve a custom level of mental map preservation between 0% and 100%
the user must set k correctly. This is difficult for a user to manually perform, as
percentages of the maximum frame strength do not linearly map to percent-
ages of the post-layout calculated similarity metric. For example, if 0% frame
strength produces a result with a similarity value of X, and 100% produces a
value of Y; 50% frame strength will not produce a layout with a similarity value
equal to X+Y

2 .
In order to help users easily set a desired level of mental map preservation

in the output schematic, we have mapped the value of k to a linear percentage
slider on the application GUI. The details of this slider are given in the next
section. Figure 111 illustrates varying levels of mental map preservation using
our linearised slider with the Vienna metro map and it can be seen that as a
higher preservation is used, the schematic retains more of its original features
(the purple periphery line section, extending to the right, is a good example of
this across all MMP levels). Octilinearity is always enforced, and is the main
cause of node displacement during a 100% MMP layout.

7.7 Linearising the Mental Map Slider

The mental map slider is a user controllable slider in the GUI of our software
that can be manually changed to vary the level of mental map preservation de-
sired from the layout method. As mentioned previously, there is not a natural
linear mapping between the percentage of max frame strength and the resul-
tant similarity value – the first 20% affects the result far more than the top 80%
(Figures 112 and 113 illustrate this). This makes it difficult for users to gauge
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(a) Vienna - 25% frame strength, nonlinear(b) Vienna - 50% frame strength, nonlinear

(c) Vienna - 75% frame strength, nonlinear
(d) Vienna - 100% frame strength, nonlin-
ear

Figure 112: Vienna schematic optimised at varying percentages of the maxi-
mum frame strength value. These schematics show how without linearising
the frame strength slider, very little schematic change occurs after the first 20%.
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a weak/medium/strong preservation value and it is therefore desirable to lin-
earise the slider scale to allow more intuitive strength setting. To do this, it
was required to plot a graph of percentage frame strength against the resultant
similarity value after layout (Figure 113). These results were calculated based
on 11 example schematics as listed to the right of the figure. It is important
to note that only the first stage of layout (standard spring embedder) is being
run before the difference method value computed. This is because the force co-
efficient for Delaunay frame edges, FDel, is reduced over time in line with the
spring embedder force constant, FSpr, and therefore not in effect for the latter
iterations. The graph is still changing in these latter iterations due to angular
forces, but it is not accounting for mental map preservation (due to edge octilin-
earity being a hard constraint). This results in the edge alignment stage skewing
the difference measure, effectively adding unwanted noise to the desired graph.
Figure 113 also shows the average similarity line, along with a best-fitting func-
tion curve (Equation 36) calculated using Microsoft Excel using a least-squares
method.

y = −6.541 ln(x) + 48.723 (36)

which rearranges to:

x = e
y−48.723
−6.541 (37)

The maximum (x = 0.01) and minimum (x = 100) y values (ymax and ymin)
of the function curve are calculated using Equation 36. This is shown in Equa-
tions 38 and 39. These values are required to calculate percentage values be-
tween ymax and ymin, along with the range yrange (Equation 40). We cannot use
x = 0 for ymax calculation because ln(0) is undefined.

ymax = −6.541 ln(0.01) + 48.723 = 78.845 (38)

ymin = −6.541 ln(100) + 48.723 = 18.601 (39)

yrange = ymax − ymin = 60.244 (40)
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Figure 113: Graph similarity against percentage frame strength.
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Example: if a k spring strength value of 0.125 is used for 100% MMP (we
term this k100); and we desire 25% mental map preservation (MMP), then this
is 100− 25 = 75% of yrange. Therefore we need to find the strength percentage
which produces a result of 75% of yrange, +ymin. Equation 41 shows the calcula-
tion to find the desired y-value.

0.75yrange + ymin = 0.75× 60.244 + 18.601 = 63.784 (41)

From this y-value we can use Equation 37 to find x (Equation 42).

x = e
63.784−48.723
−6.541 = 0.1 (42)

This x-value represents the required strength percentage to produce the cor-
rect value (75%). From this we can set the correct value for k based on the
schematic’s k100 (Equation 43), x% of k100.

k =
x

100
× k100 = 1.25× 10−4 (43)

Exceptions to this rule are 0% MMP where k = 0, and 100% MMP where
k = k100.

7.8 Summary

In this chapter we have shown how we use a Delaunay triangulation to con-
struct a frame over the schematic in order to constrain node proximities during
layout. We have explained how we have integrated these new forces into our
existing algorithm, and have detailed how we created a user controllable slider
that maps linearly to the similarity value of the resultant schematic.

Following on from this work, we performed a study to examine the effect of
mental map preservation in dynamic schematic layout on user comprehension.
The details and results of this study are covered the next section.
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Chapter 8

Mental Map Preservation
Comprehension Study

This chapter describes the procedure for a study to answer our research ques-
tion: “Can mental map preservation improve schematic comprehension in dy-
namic schematic layout?”. The hypothesis was that varying the level of mental
map preservation would have an effect on user response time and accuracy.
That is, a schematic re-optimised with high mental map preservation is easier
to comprehend (with regards to accuracy and speed of use) than a schematic
re-optimised with low mental map preservation – or vice versa.

Intuitively, a high level mental map preservation during re-optimisation of
a schematic will aid the user’s comprehension, as discussed previously in Sec-
tion 2.2.4 and shown in Figure 26; however, previous research into the effect
of mental map preservation has not shown any significant effect (Section 2.2.4),
and so we hoped to augment these findings.

The style of study performed here is based up those performed in (Pur-
chase and Samra 2008) and (Saffrey and Purchase 2008), in which participants
are shown a sequence of graphs and asked node/path-finding tasks to evalu-
ate response time and accuracy. The software used for this testing, along with
schematic and question data, test documents and anonymised raw data can be
downloaded from: http://www.cs.kent.ac.uk/projects/fdol/study/
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Type Schematic Final Q. Nodes Edges Lines Node+ Node- Edge+ Edge- Line+ Line-
Example em0 - 26 37 4 5 0 7 0 1 0

Test tm0 - 19 20 2 5 4 9 5 0 0
Test tm1 - 19 20 3 4 0 7 0 1 0
Test tm2 - 25 33 4 4 5 12 11 1 1
Test tm3 - 28 41 5 1 5 1 10 0 1
Test tm4 - 28 28 6 1 2 2 6 0 1
S-A m3 X 28 30 4 7 0 13 0 1 0
S-R m5 Y 28 29 4 0 7 1 15 0 1

S-A-R m4 Z 28 29 4 7 7 12 14 1 1
M-A m6 Z 35 38 5 7 0 13 0 1 0
M-R m1 X 35 35 5 0 7 1 14 0 1

M-A-R m7 Y 35 36 5 7 7 14 10 1 1
L-A m8 Y 42 43 6 7 0 12 0 1 0
L-R m0 Z 42 43 6 0 7 0 11 0 1

L-A-R m2 X 42 43 6 7 7 14 11 1 1

Table 11: Schematic metrics.

8.1 Schematics

We used three sizes of schematic as follows: Small (S) 4 lines, 28 nodes; Medium
(M) 5 lines, 35 nodes; and Large (L) 6 lines, 42 nodes. We used three modifica-
tion types as follows: Line addition (A) +1 line, +7 nodes; Line removal (R) -1
line, -7 nodes; Line addition and removal (A-R) +1 line, +7 nodes, -1 line, -7
nodes. These variations create nine unique tasks: {S-A, S-R, S-A-R, M-A, M-R,
M-A-R, L-A, L-R, L-A-R}. Schematic data, including one example and five test
schematics, is shown in Table 11. Each task was re-optimised after modification
with three levels of mental map preservation (MMP) – these are 0%, 50% and
100% (explained in the previous chapter and illustrated in Figure 111).

The previous studies on which we based our design used a within-subject
methodology to reduce subject variability; however, we felt that in order to
eliminate additional variables we would switch to using a between-subject
methodology, meaning that each participant was only part of a single test group
(one MMP variant). The reason for this is that it we felt it was more impor-
tant to use the same graphs and questions for each group in order to minimise
the number of variables and only change the level of MMP. Participants could
therefore not be used to test multiple levels of MMP, as they would already be
familiar with the maps and questions presented. To combat the increased risk
of subject variability, we used a far greater number of participants – (Purchase
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and Samra 2008) and (Saffrey and Purchase 2008) used 30 and 21 subjects re-
spectively whereas we used 60.

In order to help alleviate the effect of a learning curve when answering ques-
tions, we first had participants complete five training schematics. All data
recorded on these training schematics was discarded before evaluation, and
they began with a lower complexity (tm0 = 2 lines) building up to the level
of actual test schematics (tm4 = 6 lines). Schematic data was generated using
the Flickr API which we used to retrieve a number of photos, represented as
nodes, and their associated tags, represented by coloured lines between nodes.
Nodes that shared the same tag appeared along the same line, much like Line-
Sets (Alper et al. 2011). Figure 114 shows an example of a schematic used in the
study along with it’s modification and re-optimisations.

8.2 Questions

Each task consists of two stages of questions. Questions are multiple-choice
with a selection of four possible answers. Rather than use schematic terms
(node and line), in questions we use terms appropriate to the data set, these
being photo and tag respectively.

Firstly, the unmodified schematic is shown to the participant and five ques-
tions involving basic photo/tag finding tasks specific to the schematic are asked.
These questions are to familiarise the participant with the schematic before any
modification is made. Example questions for stage 1 are as follows (these ques-
tions are specific to the example schematic in Figure 114):

1. How many tags are associated with the photo titled “Range Rover”?

2. Which of the highlighted photos contains the most tags?*

3. How many tags are associated with the photo titled “Colin McRae”?

4. How many photos contain the yellow tag?

5. How many photos contain all of the following tags: pink and dark blue?
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(a) Original Schematic (m1, M-R). (b) Modified Schematic – 100% MMP.

(c) 50% MMP. (d) 0% MMP.

Figure 114: Comparison of MMP variants used in the study. 114b shows the
modified schematic, in which the magenta line has been removed (-4 nodes),
along with removal of three more nodes: “Bodyboarding” (upper-right, navy),
“Maracana” (centre, green/magenta), and “Goal!” (centre, green/magenta).
The yellow line has also been removed from nodes “Ken Block” and “Range
Rover” (centre, green/yellow).
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*This question (2) references highlighted tags; although these have been omit-
ted from the example schematic shown, in practice we highlight the label of 4
potential nodes with a yellow background during this question. An example of
this can be seen in Figure 115.

Following these questions, the schematic undergoes a modification and re-
optimisation. The schematic is re-optimised in line with the users designated
MMP group. A single stage 2 question is then asked on this re-optimised schematic.
There are three types of stage 2 question, X, Y and Z, which are assigned to
schematics so that each type is asked once for each schematic size and each
modification type – question assignment can be seen in Table 11. Stage 2 ques-
tions are as follows:

X. How many photos contain the “...” or “...” tags and not the “...” tag?

Y. What is the minimum number of tag changes required to travel between
the highlighted nodes?

Z. Which tag contains the most photos?

Only stage 2 question answers are used in the data analysis; stage 1 ques-
tions serve only the purpose of familiarising the participant with the schematic
before the modification and re-optimisation is performed.

8.3 Software

In order to carry out our tests, we developed a custom piece of software with
which participants can interact to answer questions. Our software presents par-
ticipants with the schematic, question, and possible answers for each task in
sequence. The modification and re-optimisation process of the schematic is per-
formed by the software as a fade in/out of lines/nodes followed by an animated
linear interpolation between node positions taking four seconds.

Figure 115 shows our software during a test; the schematic is shown to par-
ticipants in a large panel to the left, with a smaller right panel containing a
progress bar, the current question and 4 option button answers. This image also
shows an example of how we highlight nodes during questioning.
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Figure 115: Our testing application used to present schematics and questions.

As the participant is asked questions throughout the test, the time taken for
each answer is recorded along with their chosen answer. The software also col-
lects participant details at the start of the test including their Kent login, age,
gender, and subject. Once the participant has completed all tasks, the software
outputs a log file to the system; an example output log section can be seen in
Table 12 which shows anonymised data for 4 tasks of a single participants test.
Tasks can be identified from this table by the map column, which shows the
values tm3, tm4, m0, and m1; these represent schematics Test 3, Test 4, Map
0, and Map 1 respectively (details of each schematic can be seen in Table 11).
Further information we can gather from this table, besides participant details,
includes the level of MMP this user was assigned (indicated by the variant of
the final question for each schematic – in this case reop 50 indicates this partici-
pant was part of the 50% MMP group), their answer against the correct answer
(the correct column indicates if these match – redundant but included for faster
readability) and the time taken to answer in milliseconds.
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userID age gender course map variant questionID answer correctAnswer correct time(ms)
. . .

1.31107E+11 20 f German and Spanish tm3 base 0 base 2 2 1 5647
1.31107E+11 20 f German and Spanish tm3 base 1 base 1 1 1 7712
1.31107E+11 20 f German and Spanish tm3 base 2 base 3 3 1 25427
1.31107E+11 20 f German and Spanish tm3 base 3 base 0 0 1 2889
1.31107E+11 20 f German and Spanish tm3 base 4 base 1 1 1 5585
1.31107E+11 20 f German and Spanish tm3 reop 50 0 reop 1 1 1 12906
1.31107E+11 20 f German and Spanish tm4 base 0 base 2 2 1 12202
1.31107E+11 20 f German and Spanish tm4 base 1 base 1 1 1 22729
1.31107E+11 20 f German and Spanish tm4 base 2 base 1 1 1 6969
1.31107E+11 20 f German and Spanish tm4 base 3 base 2 2 1 11758
1.31107E+11 20 f German and Spanish tm4 base 4 base 0 0 1 6445
1.31107E+11 20 f German and Spanish tm4 reop 50 0 reop 1 1 1 24130
1.31107E+11 20 f German and Spanish m0 base 0 base 3 3 1 19582
1.31107E+11 20 f German and Spanish m0 base 1 base 1 1 1 8946
1.31107E+11 20 f German and Spanish m0 base 2 base 2 2 1 2923
1.31107E+11 20 f German and Spanish m0 base 3 base 0 0 1 8749
1.31107E+11 20 f German and Spanish m0 base 4 base 2 2 1 5181
1.31107E+11 20 f German and Spanish m0 reop 50 0 reop 3 3 1 16455
1.31107E+11 20 f German and Spanish m1 base 0 base 2 2 1 8232
1.31107E+11 20 f German and Spanish m1 base 1 base 1 1 1 8000
1.31107E+11 20 f German and Spanish m1 base 2 base 1 1 1 4910
1.31107E+11 20 f German and Spanish m1 base 3 base 3 3 1 5340
1.31107E+11 20 f German and Spanish m1 base 4 base 0 0 1 13829
1.31107E+11 20 f German and Spanish m1 reop 50 0 reop 2 0 0 26526

. . .

Table 12: Example anonymised software output section.

8.4 Testing Procedure

In order to test the effectiveness of varying levels of MMP we chose to test three
levels, these are 0%, 50%, and 100%. To do this we used a between-subject
methodology with a third of our participants in each group. Our testing soft-
ware assigned participants to groups, cycling through in order; our first partici-
pant was assigned 0%, second 50%, and so on, cycling around from 100% to 0%.
Using such a method ensured our group assignment was unbiased.

Participants were first given a test instructions document which was also
read to them; this document can be found online at the URL listed previously.
As part of this document, an example task is shown and it’s questions are
walked through with the participant. This example task was used to famil-
iarise the participant with the type of questions that would be asked, along
with the interface of the testing software. Once this example task had been
completed and the remainder of the instructional document read, the partici-
pant was given a chance to ask any questions they may have. We did not reveal
any information relating to our hypothesis to participants until the test was fully
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Figure 116: The data entry form for participants to input their details.

completed. Following this, the software displayed a small data entry window
(Figure 116) asking the user to enter the following information: Kent login, age,
gender and subject. Once the user had entered their details and pressed “Start”,
the first training schematic was shown. Once the five training tasks had been
completed, there were nine more tasks to complete (as seen in Table 11); the
results of these last nine tasks are those used in our data analysis. Each par-
ticipant saw the same order of schematics with the same questions; the only
variation being the re-optimisation of each schematic which was dependent on
the participants mental map preservation group (the same final question was
still asked, as the re-optimisation only alters the position of nodes).

After these nine tasks, there was one final stage of questions in the form of
a paper questionnaire combined with a number of schematics shown on the
software. The user was read a short script and provided with the questionnaire.
The questionnaire involved viewing three schematics, each of which could be
re-optimised as many times as desired with each of the three levels of MMP
(0%, 50%, and 100%) by pressing buttons to the right (the screen that shows
during this task is shown in Figure 117); and then subjectively ranking these
re-optimisations from best to worst. The questionnaire also asked a number of
qualitative questions about the schematics and tasks. Finally, the participant
was paid £7 for their time, and provided with a debrief sheet explaining the
purpose of our study.

As mentioned previously, each task consisted of six questions in the form of
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Figure 117: Software interface for the final mental map preservation ranking
task.

five familiarisation questions followed by a modification and re-optimisation,
and then another question. At the start of each task, the software gave partici-
pants five seconds to examine the newly displayed schematic before the ques-
tion and answer buttons were made visible. This provided a further small op-
portunity for participants to briefly familiarise themselves with available line
colours and basic structure before any questions were presented which may
distract them. Measuring the time taken for participants to answer each ques-
tion was crucial for our testing process. However, the participant could rest
between each task when no question was being presented.

We first performed a pilot study for which we used nine subjects (three per
condition). This study highlighted a number of small mistakes such as spelling
and question ambiguity, but no major flaws were identified. All issues found
were corrected before starting the main study. During the main study we used
a total of 60 participants recruited from the University of Kent job centre. These
participants were from a wide range of disciplines and ranged from 16 to 34
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Table 13: Mean response time and mean number of errors for the three MMP
conditions, over all non-test schematics and all post-modification questions.

Time (s) Error (%)
MMP x̄ σ x̄ σ

0% 19.95 4.31 14.44 13.54
50% 20.27 4.81 10.56 12.73
100% 23.96 7.07 12.78 13.13

years of age (x̄ = 20.83, σ = 2.88), 20 male and 40 female.

8.5 Results

Statistical analysis techniques were performed following guidelines in (Pur-
chase 2012). For a subjective interpretation of these results, see the following
section. In our analysis, data from questions which were answered incorrectly
were also included. This is because response time is intended to be an indication
of cognitive effort required, independent of whether or not the effort resulted
in a correct answer. Figure 118 shows charts for the mean time and mean error
against condition; Table 13 presents the data in tabular form with standard de-
viations. We used the Shapiro-Wilk method to determine if our data followed
a normal distribution, to which neither response time nor error rate did for all
conditions. We therefore then performed a Kruskal-Wallis non-parametric anal-
ysis of variance test. A non-parametric Levene’s test was first used to verify the
equality of variances in the samples (homogeneity of variance assumption). In
the following tests, we use a p-value of < 0.05 to indicate significance.

Kruskal-Wallis: There were no significant differences in response time (p =

0.207) or error rate (p = 0.593) as represented by the error data according to
condition under a non-parametric independent measures Kruskal-Wallis test.
These results indicate that the difference between the conditions can likely be
attributed to random chance, rather than being due to the differing nature of
the conditions.
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Figure 118: Test data shown as charts. Lower is better for both time and error.

8.6 Interpretation of Results

No significance was found between the level of MMP and user response time or
accuracy; this result provides evidence against our hypothesis. A possible ex-
planation for this is due to multiple impacts on diagram comprehension. One
impact occurs when the mental map is preserved – the layout is compromised
by the unoptimised modifications, making analysis of the diagram difficult be-
cause of features such as increased line bends and less effective node position-
ing. The alternative extreme is that the mental map is not preserved, so the di-
agram changes a great deal, impacting comprehension because the participant
needs to re-examine parts of the diagram that have changed. One hypothesis
is that these two conflicting impacts on comprehension are broadly equal, and
so it is not important which approach is taken for dynamic data. There have
been a number of studies on the effect of MMP on user readability as covered
in Section 2.2.4; however, none have found conclusive evidence of any effect,
supporting this hypothesis.

An important assumption made was that during the first five questions the
user builds a sufficient mental map of the schematic. Previous work in (Tory,
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Swindells and Dreezer 2009) as referenced by (Archambault and Purchase 2012)
tested the memorability of node diagrams. Their study found that users have
an accuracy of 87.1% in recognising a specific diagram in a set of 8 after an initial
exposure of 12 seconds. The mean time our participants viewed each schematic
for before modification was 56.13 seconds; this supports our assumption that
the first five questions were sufficient for participants to build a mental map.

During the questionnaire of our study we asked a number of optional qual-
itative questions on the schematics and tasks to ensure there were no consistent
problems in the study. However, the results to these did not indicate any prob-
lems and were not useful in the evaluation of our results.

8.7 Summary

This chapter has covered the implementation and execution of a study per-
formed to evaluate the research question of “Can varying mental map preser-
vation improve diagram comprehension in dynamic schematic layout?”. This
study was performed with the intention of augmenting the current inconclu-
sive research into the effect of mental map preservation, covered in Section 2.2.4.
From our results we have found no significant difference in either response time
or error rate based on the level of MMP, in line with previous studies. We have
suggested that this insignificance may be due to both extremes imposing con-
flicting factors on comprehensibility.
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Chapter 9

Conclusion & Future Work

This chapter provides a summary of each chapter of work, highlighting our
contributions. We also introduce a number of potential future work ideas that
could be explored.

9.1 Contributions

We first developed a piece of software, written for touch screen Android de-
vices, facilitating the drawing of metro map style schematics. Our software
uses a gesture-based input system, allowing users to quickly create schematics
using a series of simple gestures. Despite a number of limitations from using
early tablet devices such as performance issues with complex or large schemat-
ics, our gesture-based input mechanism proved effective for schematic diagram
creation (Chapter 3).

Using our gesture-based input software, we also implemented a multi-criteria
hill climbing optimiser for automatic layout of drawn schematics. This method
was based upon previous work by Stott et al. (Stott et al. 2010), however we
made a number of modifications to increase the quality of output and optimi-
sation speed. This included the implementation of a number of new criteria,
clustering methods, post-processing steps, and many performance optimisa-
tions (Chapter 4).

The performance optimisations made to our layout method allowed us to
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implement functionality to batch-optimise schematics with no user input in a
reasonable time frame. We knew that hill climbing techniques were prone to
local optima, and so we used this batch-processing functionality to experiment
how varying the initial parameter settings affected the final layout. We identi-
fied patterns that showed each schematic performed best under a specific set of
parameter values, rather than all schematics performing best when the search
space was maximised. This indicated a possible relationship between charac-
teristics of the input schematic and optimal parameter values (Chapter 5).

We then examined force-directed layout techniques due to a number of ad-
vantages they provide over search-based layout techniques including perfor-
mance, simplicity, predictability, and interactivity (Chapter 6). As explained in
the background chapter, the existing method for force-directed schematic layout
also leaves much room for improvement. We developed a new force-directed
system capable of effective schematic layout with edges constrained to a de-
fined angular resolution. Our method is cable of producing results comparable
to current alternatives, whilst also providing the benefits of force-directed lay-
out.

We implemented our force-directed layout technique into a new piece of
software. This software allows the creation of node link diagrams and provides
additional support for aesthetic features specific to metro map style schemat-
ics such as coloured and parallel edges. The software is written in Java, has
been tested on Windows and Macintosh, and is freely available for download
at: http://www.cs.kent.ac.uk/projects/fdol/.

We then extended our work on force-directed layout by implementing a
novel mental map preservation technique. Our technique uses a sprung Delau-
nay triangulation frame to constrain nodes by their proximity to other nearby
nodes. This is in contrast to the standard approach of constraining nodes by
absolute distance from their original positions. Our technique also allows us
to accurately control the level of mental map preservation applied by adjusting
the strength of our Delaunay frame (Chapter 7).
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We used our implementation of mental map preservation to test the hypoth-
esis that enforcing a higher level of mental map preservation increases the com-
prehensibility of a schematic after a re-optimisation in response to a modifica-
tion. Our study showed no significant results in terms of error or accuracy, in
line with previous studies (Chapter 8).

9.2 Future Work

This section covers a number of potential ideas for extending the work covered
in this thesis.

9.2.1 User Study on Layouts between Multiple Techniques

Over the past decade there have been a multitude of novel techniques for auto-
mated metro map layout, and most of the literature published with these meth-
ods contains a comparison between the new and existing layout techniques.
However, these evaluations are written by the authors and mostly provide a
few comparison examples highlighting the areas in which they vary, but leav-
ing much of the decision up to the reader.

A major problem with the evaluation of new schematic layout techniques
is that there is no objective measure by which a layout can be rated. Although
most search-based methods do use a number of criteria to rate the current con-
figuration with an objective function, these values are not comparable between
layout techniques due to differences in many aspects of implementation. How-
ever, even if these values were comparable, the measured fitness of the schematic
is based upon the assumption that the implemented criteria and their weight-
ings do indeed represent how users would rate a layout. Therefore, the objective
function is useful for the algorithm to maximise a number of criteria, but cannot
be used to compare schematics.

Because schematic layout evaluation is subjective, it is necessary to perform
a user study to determine favourable and effective maps; but due to factors
such as time, there have been very few user studies on the comprehension of
layouts produced by automated methods, in particular a comparison between
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them. It would be therefore be beneficial to perform a user study evaluation of
a number of current layout techniques, as well as officially published schemat-
ics, to evaluate user preference, accuracy, and performance across a number of
layouts. Different authors have chosen to implement various criteria into their
layout methods, and so such a study may also highlight effective combinations
of criteria.

9.2.2 Schematic Aesthetics

Metro map appearance is subjective, and for many users the preference of one
map over another is entirely dependent on aesthetic appearance, rather than
usability. Of course, layout does play a part in this decision as it is possible to
determine the usability of a schematic by visual inspection to a certain extent,
but for two schematics of a visually similar difficulty the decision will be based
on aesthetic preference.

Aesthetic preference refers to aspects such as the colours, styles, fonts, curves,
and sizes used; rather than layout decisions such as maximising the number of
straight lines. Figure 119 illustrates how a number of small aesthetic changes
can produce a drastically different schematic.

Certain features, including resized junctions and line curves, unarguably
have a positive effect on schematic aesthetics, and are desirable additions to
any layout system. Other features such as fonts, colours, and station style also
change the appearance of a schematic but the effects of these are subjective.
Figure 119b is clearly very different from the original Figure 119a, and this may
or may not appeal to individuals.

The aesthetics of metro maps has received little attention in the area of au-
tomated layout, with authors understandably focusing purely on the resulting
layout. However, on such a subjective visual diagram perhaps the importance
of this should not be underestimated. As well as determining what people find
attractive, it would be interesting to test if any aesthetic properties can signifi-
cantly affect the comprehension of a schematic in either a positive or negative
way.
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Figure 119: An example of how small aesthetic changes can drastically change
the appearance (either for good or bad). Both examples show a section of the
Stockholm metro map as produced by our multi-criteria hill climbing optimiser.
Figure (b) has been modified by hand to include: curved line bends, enlarged
junctions where applicable, different station markers, a different font/colour,
and a different background colour.

9.2.3 Extension of Graphs – FDOL Software

The software we developed for the implementation and testing of our force-
directed layout method, along with our Delaunay triangulation mental map
preservation provides a solid framework for the creation and manipulation of
node-link diagrams. During development it was important to structure the soft-
ware to allow easy implementation of additional layout methods. Due to a
number of factors such as time constraints, certain features were implemented
in a less-cohesive fashion. However, with a small amount of effort the program
could be refactored to become a foundation for the fast implementation of any
node-link layout method.

Our software already supports a number of features specific to metro map
layout such as edge colouring, parallel edges (multiple lines of different colours
running between the same stations), and a layout method developed specif-
ically for metro maps. More focus could be placed on emphasising the soft-
ware as a tool for the design and layout of metro map style schematics. Addi-
tional existing metro map layout techniques could be implemented, along with
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more drawing improvements such as polygonal edges using rounded corners
and junctions that adjust their size depending on the number of lines that pass
through them. Implementation of alternate layout techniques would be diffi-
cult, as each would need to be modified to work with a different underlying
graph structure (particularly if features such as polygonal edges are allowed,
which are not considered in most current layout methods); but a single piece of
software capable of demonstrating multiple layout techniques would be very
desirable. There are still currently no public software tools, as far as we are
aware, developed specifically for the layout of metro maps. However, the lay-
out style is slowly becoming more popular, and a tool which supports the cre-
ation of such maps may help speed up this process.

Along with additional layout methods, our implemented mental map preser-
vation technique could be improved. Currently, in order to achieve a desired
percentage of mental map preservation, we scale the frame strength value based
upon a predetermined formula derived from averaging a number of example
schematics (as explained in Section 7.7 and shown in Figure 113). The result of
this is that our percentage slider is not as accurate as it could be for all schemat-
ics. This leaves room for improvement as it would be possible to recalculate
this formula for any individual map at the time of optimisation. The maximum
frame strength value used could also be similarly calculated specifically for each
schematic.

The current input mechanism uses a mouse, and involves double-clicking or
right-click-dragging to create nodes and edges. Our initial software, SchemaS-
ketch, has shown that a gesture based input system is effective for drawing
schematics and this could be implemented into the Graphs software. Although
this software has been developed for use on PCs, it is becoming increasingly
common for even these to also use touch screens. Alternatively, users could
draw gestures using either a graphics tablet, touchpad, or mouse.

The Graphs – FDOL software code is freely available at: https://github.
com/d-chivers/Graphs.
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9.2.4 Extension of Force-directed Layout Method

Our octilinear force-directed layout method uses a two stage process to transi-
tion between two types of force in order to apply a second criterion. In alternate
search based methods there are typically many more criteria applied during the
layout that we do not consider. It would therefore be interesting to explore how
these extra criteria could be implemented into our algorithm with the use of
additional forces. Care must be taken when implementing additional forces, as
conflicting criteria can negatively impact the final layout. It is perhaps more
feasible to implement additional criteria as node movement constraint rules,
rather than forces acting on nodes.

Force-directed layouts find local optima, and our implementation does noth-
ing to try to avoid this. Along with local optima issues, force-directed meth-
ods are typically only effective upon graphs with up to around 100 nodes – a
medium sized metro map. Both of these issues could potentially be solved with
the use of a multi-level approach, as described in (Walshaw 2001). The multi-
level approach does not guarantee a global optimum, but has been shown to
improve the local optima found. Along with this, it is capable of optimising
graphs with many thousands of nodes. Our method could be extended to use a
multilevel approach to improve the produced layouts, as well as provide sup-
port for much larger schematics.

Currently, labelling of schematics is performed post layout and has no effect
at all on the position of nodes in the schematic. This approach suffers when
there is not enough room left to position labels without introducing occlusion. It
is therefore desirable to account for labels during the layout process. This could
be implemented with additional forces around labels to prevent occlusion with
other objects, and either more forces or a movement constraint to hold labels
near their parent node.

In the last few years many published metro maps have taken a more geo-
graphic stance, often including overground features such as rivers, parks, and
other landmarks. It would be interesting to experiment with how these features
could be incorporated into an automated layout system, as this has not yet been
attempted. The landmarks would need to impose topographical rules upon
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(a) Washington – Radial (b) Moscow – Orbital

Figure 120: Radial and orbital map characteristics can be seen in the Washing-
ton (120a) and Moscow (120b) metro maps respectively.

nearby nodes in order to maintain some level of geographical accuracy in their
vicinity. The shape of features such as parks and rivers is also flexible, meaning
they can be slightly modified to allow an improved layout surrounding them.
Parks are often simply an enclosed polygon of nodes, and perhaps rivers could
be created using a Bézier curve with control points subject to the forces from
nearby nodes.

9.2.5 Metro Map Characterisation

From our experimentation in parameter manipulation we concluded that dif-
ferent maps favour different optimisation values. However, we were unable to
identify any relationship between a schematic and its optimal parameter set-
tings. It would be useful to develop a number of characteristics which can be
used to describe particular metro maps – a few examples currently exist includ-
ing radial and orbital maps. Radial describes a metro map consisting of a dense
central area with many lines extending outwards from the centre, for example

200



Washington (Figure 120a). Orbital maps are characterised by a predominant
circular route around the city, such as is the case for Moscow (Figure 120b).

Characterisations of metro maps are limited, and those that exist are not
formally defined. This means that there is no metric to algorithmically deter-
mine if a map is radial or orbital. If a number of additional characteristics could
be developed and all of these formally defined, it may be possible to identify
a relationship between measurable map characteristics and optimal optimiser
parameters. If such a relationship exists, it would allow auto-tuning of layout
algorithms – improving both performance and the final layout.

9.2.6 Combination of Layout Methods

There are now many different layout techniques which operate in isolation from
each other. However, there has been no research into how a combination of
multiple techniques may be able to benefit automated layout.

An example of prime candidates for combination could be a force-directed
technique (faster, lower quality) and a search-based technique (slower, higher
quality). The two techniques could either be run sequentially, for example using
a force-directed method as a pre-processing step for a search based method;
or semi-simultaneously, for example the force-based method could be applied
between iterations of the search-based method.

It is unknown what effect such a combination would have, but it is entirely
possible that multiple methods may work effectively together and aid in escap-
ing local optima configurations.

9.2.7 Definition of Standard Data Sets and Evaluation Metrics

Objective evaluation of produced layouts is currently very difficult and one of
the biggest issues in this field. It would be hugely beneficial to establish de-
fined data sets and a number of evaluation metrics for this purpose. The Syd-
ney metro map has become an unofficial stand-in for this task, however there
is no single agreed-upon data set for this map, resulting in variations between
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authors. There are also no objective evaluation metrics for it, and so any com-
parison not based upon empirical study is purely subjective.

Many layout methods use an objective function, but most of these values
cannot be compared due to implementation differences. Any evaluation metrics
devised to objectively evaluate a layout would have to be independent from im-
plementation details and unambiguously defined. An example of such metrics
could be the sum of all line bends in degrees for all lines within the schematic,
or the absolute number of line crossings.

The main problem with establishing data sets and evaluation metrics is that
it is not agreed upon which criteria are required for the most effective layout, so
authors often do not even use the same criteria. Different schematic maps also
appear to work well with different criteria and/or criteria weights. A process
would have to be defined for determining the best set of criteria for a specific
schematic, and the best possible layout that can be found via empirical testing
that minimises the metrics. Further, if the defined criteria do not accurately
represent an effective schematic in terms of user comprehension, then the tests
would only serve to illustrate the technical effectiveness of a method in fulfilling
criteria, rather than achieving an improved layout.

Definition of objective evaluation metrics would be very beneficial, however
it is an extremely difficult task as the “best” criteria are not agreed upon and
most likely vary between schematics – possibly even between individuals. Def-
inition of standard data sets is possible, and this would go some way in helping
the task of layout comparisons. The difficulty in this task lies within achieving
both knowledge and adoption of the data sets into the community.
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Appendix

Table 14: Fitness statistics by map.

Schematic Mean Median Mode SD IQR
Washington 5.162 4.983 4.634 0.793 0.923
Vienna 2.608 2.281 2.189 0.945 1.149
Mexico 4.651 4.379 3.073 1.251 1.621
Sydney 22.027 21.949 21.432 1.683 2.581

Table 15: Fitness statistics by parameter value.

Parameters Mean Median Mode Standard Deviation IQR

Grid Spacing
5 9.557 6.272 3.577 7.740 7.069
6 8.575 5.346 3.548 7.261 7.262
7 8.475 4.894 4.379 7.450 5.741
8 7.973 4.588 3.713 7.140 6.320
9 8.207 4.575 4.190 7.347 6.290
10 8.097 4.156 4.759 7.994 7.309
11 8.112 4.185 3.058 7.852 6.057
12 8.690 4.153 3.073 8.852 7.745
13 8.812 4.938 1.819 8.369 7.487
14 9.118 4.637 4.634 8.618 6.380
15 9.114 5.481 2.189 8.216 7.857
Search Distance
5 9.612 5.680 - 8.037 6.900
6 9.261 5.481 - 8.098 7.441
7 9.023 5.308 3.705 7.939 7.465
8 8.669 5.004 5.157 7.878 7.435
9 8.630 4.812 3.957 7.916 7.719
10 8.473 4.806 19.985 7.851 7.212
11 8.414 4.635 19.662 7.857 6.954
12 8.225 4.411 3.713 7.836 6.689
13 8.216 4.396 4.379 7.888 6.787
14 8.130 4.365 19.660 7.871 7.089
15 8.078 4.332 4.327 7.875 6.902
Cooling Schedule
None 8.113 4.386 2.189 7.808 7.210
Linear 8.421 4.657 1.819 7.848 7.880
Exponential 9.301 5.524 5.380 8.012 7.356
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Table 16: Mexico results (1 of 3).

Rank Search Distance Grid Spacing Cooling Iterations Fitness Rank Search Distance Grid Spacing Cooling Iterations Fitness
1 15 12 None 8 2.653 71 6 10 Linear 8 3.631
2 12 14 None 9 2.660 72 6 10 None 7 3.632
3 10 14 None 11 2.667 73 15 13 None 8 3.684
4 15 14 Linear 10 2.667 74 11 8 None 7 3.690
5 8 12 None 8 2.771 75 11 6 None 8 3.699
6 13 12 None 8 2.802 76 7 11 None 10 3.705
7 14 12 None 7 2.828 77 7 11 Linear 10 3.705
8 14 10 Linear 7 2.847 78 5 10 None 7 3.705
9 13 10 Linear 7 2.856 79 12 8 None 5 3.713
10 15 10 None 9 2.896 80 13 8 None 5 3.713
11 8 10 None 14 2.897 81 12 8 Linear 7 3.713
12 12 11 None 5 2.980 82 13 8 Linear 5 3.713
13 13 11 Linear 5 2.980 83 14 8 Linear 5 3.713
14 14 14 None 7 3.029 84 15 8 Linear 5 3.713
15 11 11 None 5 3.041 85 12 15 None 12 3.741
16 11 11 Linear 5 3.041 86 13 15 None 12 3.741
17 12 11 Linear 5 3.041 87 14 15 None 12 3.741
18 15 14 None 6 3.044 88 15 15 None 12 3.741
19 10 11 None 5 3.051 89 7 12 Linear 6 3.743
20 10 11 Linear 5 3.051 90 6 12 None 4 3.761
21 13 11 None 6 3.058 91 12 11 Exponential 4 3.761
22 14 11 None 6 3.058 92 13 11 Exponential 4 3.761
23 15 11 None 6 3.058 93 13 6 None 7 3.789
24 14 11 Linear 6 3.058 94 8 10 Linear 7 3.791
25 15 11 Linear 6 3.058 95 5 12 None 9 3.799
26 10 12 None 6 3.073 96 6 11 None 9 3.803
27 11 12 None 6 3.073 97 9 14 Linear 7 3.816
28 12 12 None 6 3.073 98 14 5 None 9 3.866
29 11 12 Linear 6 3.073 99 6 11 Linear 6 3.877
30 12 12 Linear 6 3.073 100 9 13 None 6 3.879
31 13 12 Linear 6 3.073 101 12 12 Exponential 6 3.879
32 14 12 Linear 6 3.073 102 13 12 Exponential 6 3.879
33 15 12 Linear 6 3.073 103 15 9 None 8 3.885
34 9 12 None 6 3.074 104 14 10 Exponential 5 3.902
35 10 12 Linear 6 3.074 105 15 10 Exponential 5 3.902
36 9 12 Linear 8 3.143 106 5 10 Linear 7 3.918
37 13 14 None 7 3.144 107 7 9 Linear 7 3.926
38 11 14 Linear 8 3.219 108 7 10 None 7 3.933
39 14 11 Exponential 5 3.221 109 8 10 Exponential 9 3.936
40 15 11 Exponential 5 3.221 110 7 10 Linear 9 3.939
41 12 6 None 8 3.236 111 9 10 None 6 3.957
42 11 14 None 5 3.265 112 9 10 Linear 6 3.957
43 14 14 Linear 5 3.265 113 9 11 Exponential 4 3.976
44 8 14 None 8 3.283 114 7 13 Linear 6 3.998
45 9 14 None 8 3.283 115 11 11 Exponential 6 4.002
46 13 14 Linear 6 3.285 116 10 11 Exponential 6 4.011
47 12 14 Linear 7 3.308 117 6 9 None 7 4.024
48 9 11 None 7 3.372 118 11 6 Linear 8 4.030
49 5 11 None 10 3.377 119 12 10 None 6 4.038
50 9 11 Linear 6 3.385 120 6 13 None 5 4.039
51 7 12 None 7 3.407 121 11 10 None 6 4.042
52 8 12 Linear 7 3.407 122 13 13 None 6 4.056
53 15 12 Exponential 7 3.407 123 14 13 Linear 6 4.056
54 13 10 None 6 3.470 124 8 12 Exponential 5 4.060
55 14 10 None 6 3.470 125 9 12 Exponential 5 4.067
56 15 10 Linear 6 3.470 126 8 11 Exponential 6 4.076
57 10 14 Linear 8 3.502 127 13 6 Linear 10 4.077
58 14 8 None 7 3.512 128 5 13 None 6 4.081
59 15 8 None 7 3.512 129 9 10 Exponential 5 4.088
60 11 8 Linear 6 3.522 130 15 9 Linear 6 4.098
61 15 6 None 8 3.525 131 10 10 None 6 4.107
62 12 6 Linear 10 3.528 132 10 10 Linear 6 4.107
63 14 6 Linear 7 3.531 133 11 10 Linear 6 4.107
64 8 11 None 8 3.532 134 12 10 Linear 6 4.107
65 8 11 Linear 8 3.532 135 14 13 None 5 4.110
66 6 12 Linear 6 3.547 136 15 13 Linear 5 4.110
67 14 6 None 8 3.548 137 12 10 Exponential 8 4.113
68 15 6 Linear 8 3.548 138 10 13 None 6 4.119
69 14 12 Exponential 6 3.554 139 12 13 None 6 4.119
70 15 7 None 9 3.624 140 13 13 Linear 6 4.119
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Table 17: Mexico results (2 of 3).

Rank Search Distance Grid Spacing Cooling Iterations Fitness Rank Search Distance Grid Spacing Cooling Iterations Fitness
141 7 11 Exponential 6 4.129 211 11 9 None 7 4.558
142 11 13 None 6 4.132 212 11 9 Linear 7 4.558
143 12 13 Linear 6 4.132 213 12 9 Linear 7 4.558
144 8 8 None 10 4.141 214 13 9 Linear 7 4.558
145 10 12 Exponential 5 4.153 215 15 5 None 9 4.575
146 11 12 Exponential 5 4.153 216 5 14 None 7 4.577
147 10 6 None 7 4.154 217 6 14 Linear 7 4.582
148 6 14 None 6 4.163 218 11 8 Exponential 6 4.586
149 7 13 None 6 4.168 219 6 8 None 7 4.591
150 8 13 None 6 4.168 220 9 9 None 5 4.620
151 8 13 Linear 6 4.168 221 14 15 Linear 9 4.627
152 9 13 Linear 6 4.168 222 13 15 Linear 9 4.628
153 6 10 Exponential 8 4.201 223 13 5 Linear 15 4.632
154 14 7 None 5 4.213 224 9 6 Linear 11 4.650
155 13 10 Exponential 9 4.243 225 10 9 Linear 5 4.656
156 10 10 Exponential 5 4.244 226 9 6 None 7 4.666
157 11 10 Exponential 5 4.244 227 7 10 Exponential 8 4.676
158 10 6 Linear 10 4.260 228 7 12 Exponential 6 4.690
159 12 8 Exponential 8 4.280 229 6 11 Exponential 7 4.740
160 13 8 Exponential 8 4.280 230 15 5 Linear 12 4.741
161 5 10 Exponential 10 4.287 231 10 8 Exponential 6 4.779
162 7 9 None 6 4.294 232 11 7 None 7 4.785
163 12 7 None 11 4.296 233 9 8 Exponential 8 4.805
164 10 8 None 7 4.311 234 8 13 Exponential 5 4.820
165 7 6 None 7 4.312 235 9 13 Exponential 5 4.820
166 5 12 Linear 7 4.330 236 8 7 None 6 4.836
167 8 9 Linear 8 4.336 237 7 8 Linear 8 4.842
168 15 9 Exponential 8 4.337 238 10 14 Exponential 6 4.850
169 12 13 Exponential 6 4.341 239 11 14 Exponential 6 4.850
170 13 13 Exponential 6 4.341 240 10 7 None 8 4.886
171 9 8 Linear 7 4.343 241 6 7 None 7 4.886
172 13 5 None 10 4.343 242 5 14 Linear 6 4.900
173 9 8 None 7 4.343 243 15 6 Exponential 9 4.932
174 5 13 Linear 6 4.351 244 10 5 None 10 4.933
175 14 8 Exponential 7 4.351 245 8 15 None 9 4.938
176 7 8 None 8 4.372 246 14 6 Exponential 8 4.947
177 8 9 None 6 4.377 247 8 6 None 8 4.960
178 9 9 Linear 6 4.377 248 9 14 Exponential 6 4.961
179 13 7 None 6 4.379 249 7 15 None 6 4.984
180 13 7 Linear 6 4.379 250 11 7 Linear 7 4.995
181 14 7 Linear 6 4.379 251 6 8 Linear 10 4.996
182 15 7 Linear 6 4.379 252 8 5 None 12 5.009
183 7 14 Linear 6 4.379 253 7 14 Exponential 8 5.048
184 12 9 None 7 4.392 254 8 8 Exponential 7 5.070
185 13 9 None 7 4.392 255 8 9 Exponential 11 5.076
186 14 9 None 7 4.392 256 12 7 Linear 6 5.097
187 14 9 Linear 7 4.392 257 8 7 Linear 8 5.131
188 10 13 Exponential 5 4.393 258 10 9 Exponential 7 5.138
189 11 13 Exponential 5 4.393 259 11 9 Exponential 7 5.138
190 10 13 Linear 5 4.409 260 9 7 Linear 5 5.168
191 11 13 Linear 5 4.409 261 9 9 Exponential 6 5.181
192 15 13 Exponential 5 4.409 262 8 5 Linear 12 5.233
193 14 5 Linear 9 4.419 263 5 11 Linear 5 5.235
194 8 14 Linear 4 4.421 264 6 8 Exponential 9 5.238
195 15 14 Exponential 4 4.421 265 6 14 Exponential 6 5.241
196 14 14 Exponential 6 4.422 266 5 8 None 7 5.245
197 12 14 Exponential 6 4.431 267 7 15 Linear 6 5.248
198 13 14 Exponential 6 4.431 268 12 7 Exponential 11 5.267
199 12 5 None 10 4.445 269 9 7 None 5 5.277
200 15 8 Exponential 7 4.451 270 5 7 None 6 5.356
201 8 8 Linear 7 4.455 271 7 8 Exponential 10 5.369
202 14 9 Exponential 8 4.483 272 13 6 Exponential 10 5.369
203 7 14 None 8 4.483 273 6 12 Exponential 5 5.395
204 12 5 Linear 11 4.493 274 7 13 Exponential 5 5.402
205 14 13 Exponential 5 4.523 275 10 7 Linear 7 5.421
206 10 8 Linear 6 4.523 276 8 7 Exponential 7 5.428
207 6 13 Linear 5 4.539 277 8 14 Exponential 6 5.434
208 12 9 Exponential 5 4.544 278 5 13 Exponential 4 5.441
209 13 9 Exponential 5 4.544 279 15 7 Exponential 8 5.441
210 10 9 None 7 4.558 280 5 14 Exponential 8 5.444

214



Table 18: Mexico results (3 of 3).

Rank Search Distance Grid Spacing Cooling Iterations Fitness Rank Search Distance Grid Spacing Cooling Iterations Fitness
281 11 5 None 6 5.454 323 6 15 None 6 6.314
282 6 7 Linear 7 5.466 324 6 6 Exponential 10 6.371
283 6 9 Linear 6 5.516 325 5 6 None 8 6.419
284 5 9 None 7 5.526 326 5 5 None 16 6.427
285 5 8 Linear 8 5.533 327 11 7 Exponential 11 6.451
286 7 7 None 7 5.535 328 5 7 Exponential 4 6.462
287 15 15 Linear 7 5.539 329 5 8 Exponential 21 6.527
288 7 7 Linear 6 5.544 330 14 5 Exponential 29 6.586
289 6 13 Exponential 4 5.555 331 9 5 Linear 8 6.642
290 9 15 None 8 5.577 332 8 6 Exponential 10 6.653
291 9 15 Linear 8 5.577 333 10 7 Exponential 5 6.673
292 10 15 Linear 8 5.577 334 12 5 Exponential 13 6.690
293 9 7 Exponential 8 5.611 335 6 15 Linear 6 6.702
294 11 6 Exponential 8 5.621 336 13 5 Exponential 20 6.702
295 7 6 Linear 7 5.669 337 15 5 Exponential 13 6.732
296 14 7 Exponential 10 5.673 338 8 15 Exponential 5 6.821
297 13 7 Exponential 14 5.683 339 14 15 Exponential 4 6.847
298 9 5 None 10 5.690 340 5 9 Linear 7 6.895
299 5 11 Exponential 5 5.700 341 6 15 Exponential 6 6.927
300 12 6 Exponential 10 5.718 342 7 5 None 12 7.014
301 5 12 Exponential 6 5.749 343 5 15 None 9 7.109
302 10 6 Exponential 6 5.753 344 10 15 Exponential 5 7.151
303 7 7 Exponential 12 5.761 345 11 15 Exponential 5 7.151
304 15 15 Exponential 8 5.762 346 9 15 Exponential 5 7.151
305 10 5 Linear 5 5.814 347 5 9 Exponential 6 7.154
306 9 6 Exponential 8 5.830 348 11 5 Exponential 31 7.157
307 6 9 Exponential 7 5.902 349 10 5 Exponential 14 7.211
308 8 15 Linear 6 5.982 350 6 5 None 10 7.253
309 6 6 None 6 6.003 351 7 15 Exponential 3 7.401
310 5 7 Linear 10 6.037 352 5 15 Linear 6 7.645
311 11 5 Linear 6 6.043 353 6 5 Linear 9 7.682
312 12 15 Exponential 7 6.104 354 5 6 Linear 8 7.794
313 13 15 Exponential 7 6.104 355 8 5 Exponential 27 8.104
314 6 6 Linear 6 6.127 356 7 5 Linear 15 8.117
315 10 15 None 6 6.177 357 5 6 Exponential 11 8.129
316 11 15 None 6 6.177 358 9 5 Exponential 5 8.191
317 11 15 Linear 6 6.177 359 5 15 Exponential 6 8.320
318 12 15 Linear 6 6.177 360 5 5 Linear 10 8.422
319 6 7 Exponential 9 6.244 361 5 5 Exponential 15 8.506
320 7 6 Exponential 14 6.281 362 7 5 Exponential 10 8.632
321 7 9 Exponential 16 6.284 363 6 5 Exponential 13 8.712
322 8 6 Linear 5 6.296
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Table 19: Sydney results (1 of 3).

Rank Search Distance Grid Spacing Cooling Iterations Fitness Rank Search Distance Grid Spacing Cooling Iterations Fitness
1 11 11 None 7 19.359 71 6 7 None 9 20.249
2 6 9 None 9 19.362 72 9 6 Linear 4 20.283
3 15 6 None 8 19.435 73 9 7 None 7 20.295
4 11 6 None 13 19.437 74 12 9 None 8 20.320
5 12 6 Linear 11 19.467 75 5 7 None 8 20.329
6 5 9 None 7 19.535 76 11 9 None 9 20.332
7 8 9 None 9 19.542 77 8 9 Exponential 7 20.367
8 10 6 None 8 19.549 78 11 9 Linear 9 20.412
9 11 7 None 9 19.574 79 10 9 None 8 20.419
10 13 11 None 7 19.592 80 12 9 Linear 9 20.447
11 11 6 Linear 6 19.594 81 9 7 Linear 7 20.448
12 10 11 Linear 10 19.595 82 6 8 None 8 20.486
13 8 6 None 11 19.626 83 12 9 Exponential 11 20.495
14 10 11 None 6 19.643 84 6 8 Linear 9 20.505
15 11 11 Linear 6 19.643 85 8 6 Linear 8 20.536
16 15 11 None 6 19.652 86 5 8 None 7 20.550
17 14 8 None 7 19.660 87 7 7 None 8 20.589
18 14 8 Linear 7 19.660 88 12 5 None 9 20.613
19 11 8 None 4 19.662 89 15 9 Exponential 7 20.628
20 12 8 None 4 19.662 90 9 5 None 11 20.663
21 11 8 Linear 4 19.662 91 7 7 Linear 9 20.683
22 12 8 Linear 4 19.662 92 11 5 None 7 20.684
23 13 8 None 7 19.663 93 12 11 Exponential 7 20.685
24 13 8 Linear 7 19.663 94 13 11 Exponential 7 20.685
25 14 8 Exponential 6 19.665 95 14 7 None 8 20.690
26 14 11 None 7 19.675 96 15 7 None 8 20.690
27 12 6 None 9 19.679 97 15 7 Linear 7 20.691
28 10 6 Linear 12 19.703 98 12 7 Linear 7 20.692
29 11 7 Linear 9 19.710 99 14 6 Exponential 12 20.695
30 7 6 None 12 19.711 100 12 7 None 8 20.697
31 15 8 None 6 19.730 101 13 7 None 8 20.697
32 15 8 Linear 6 19.730 102 13 7 Linear 8 20.697
33 15 8 Exponential 6 19.738 103 14 7 Linear 8 20.697
34 14 6 Linear 9 19.740 104 10 9 Linear 8 20.756
35 11 8 Exponential 7 19.746 105 13 9 Exponential 9 20.760
36 14 6 None 7 19.747 106 14 9 Exponential 9 20.769
37 15 6 Linear 7 19.747 107 11 5 Linear 7 20.771
38 8 7 None 8 19.769 108 14 10 None 7 20.808
39 13 8 Exponential 9 19.829 109 8 7 Exponential 12 20.816
40 9 6 None 9 19.829 110 7 8 Linear 7 20.837
41 10 7 None 9 19.850 111 7 9 None 9 20.856
42 8 7 Linear 7 19.914 112 7 9 Linear 12 20.859
43 8 8 Linear 5 19.945 113 9 9 None 8 20.864
44 10 7 Linear 9 19.961 114 10 10 None 8 20.868
45 12 11 None 6 19.975 115 10 9 Exponential 5 20.875
46 12 11 Linear 6 19.975 116 7 8 None 8 20.879
47 13 11 Linear 6 19.975 117 8 5 None 14 20.885
48 14 11 Linear 6 19.975 118 10 5 None 9 20.889
49 15 11 Linear 6 19.975 119 11 9 Exponential 8 20.941
50 8 8 None 3 19.978 120 5 9 Linear 5 20.954
51 9 8 Linear 3 19.978 121 15 10 None 8 20.981
52 9 8 None 3 19.985 122 12 5 Linear 9 20.988
53 10 8 None 3 19.985 123 6 7 Linear 9 20.990
54 10 8 Linear 3 19.985 124 5 8 Linear 8 21.046
55 12 8 Exponential 5 20.021 125 12 10 None 7 21.052
56 10 8 Exponential 6 20.093 126 13 10 None 7 21.052
57 9 8 Exponential 4 20.103 127 12 10 Linear 7 21.052
58 14 11 Exponential 7 20.120 128 13 10 Linear 7 21.052
59 15 11 Exponential 7 20.120 129 14 10 Linear 7 21.102
60 13 9 Linear 9 20.121 130 15 10 Linear 8 21.151
61 8 8 Exponential 4 20.189 131 9 9 Linear 5 21.153
62 13 6 None 4 20.191 132 7 6 Linear 5 21.196
63 8 9 Linear 6 20.208 133 6 8 Exponential 7 21.196
64 6 9 Linear 6 20.215 134 12 6 Exponential 13 21.202
65 15 6 Exponential 7 20.215 135 14 7 Exponential 9 21.211
66 13 6 Linear 4 20.220 136 15 7 Exponential 9 21.211
67 13 9 None 9 20.242 137 15 9 None 4 21.216
68 14 9 None 9 20.242 138 5 7 Linear 11 21.271
69 14 9 Linear 9 20.242 139 13 5 None 9 21.274
70 15 9 Linear 9 20.242 140 10 10 Linear 9 21.295
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Table 20: Sydney results (2 of 3).

Rank Search Distance Grid Spacing Cooling Iterations Fitness Rank Search Distance Grid Spacing Cooling Iterations Fitness
141 7 8 Exponential 14 21.299 211 10 6 Exponential 4 22.275
142 11 10 None 7 21.314 212 9 9 Exponential 5 22.289
143 11 10 Linear 7 21.314 213 9 13 Linear 8 22.364
144 5 6 None 5 21.377 214 5 10 None 9 22.376
145 14 10 Exponential 5 21.401 215 9 15 Linear 7 22.391
146 14 5 None 11 21.416 216 6 5 Linear 12 22.402
147 15 5 Linear 12 21.422 217 9 10 Linear 7 22.416
148 12 15 None 9 21.432 218 9 10 Exponential 7 22.430
149 13 15 None 9 21.432 219 9 6 Exponential 4 22.434
150 14 15 None 9 21.432 220 8 12 Linear 8 22.441
151 15 15 None 9 21.432 221 6 10 Exponential 8 22.482
152 14 15 Linear 9 21.432 222 8 11 None 11 22.519
153 15 15 Linear 9 21.432 223 15 14 None 9 22.573
154 7 10 None 11 21.438 224 9 11 Linear 10 22.590
155 5 6 Linear 12 21.476 225 7 15 None 6 22.603
156 12 10 Exponential 9 21.483 226 8 15 None 6 22.603
157 13 10 Exponential 9 21.483 227 8 15 Linear 6 22.603
158 11 10 Exponential 7 21.557 228 13 14 None 8 22.615
159 13 6 Exponential 10 21.558 229 14 14 None 8 22.615
160 9 10 None 7 21.558 230 15 14 Linear 8 22.615
161 9 12 None 8 21.588 231 10 13 Linear 9 22.632
162 15 10 Exponential 7 21.601 232 6 6 Linear 14 22.633
163 7 12 None 7 21.604 233 5 11 None 7 22.638
164 6 6 None 12 21.649 234 7 15 Linear 6 22.653
165 5 8 Exponential 13 21.651 235 5 10 Linear 9 22.658
166 7 5 Linear 8 21.654 236 8 5 Linear 4 22.689
167 8 12 None 7 21.688 237 10 12 Linear 7 22.750
168 9 11 None 8 21.720 238 10 12 None 9 22.751
169 15 5 None 8 21.747 239 8 11 Linear 8 22.764
170 7 5 None 9 21.824 240 10 5 Linear 10 22.803
171 12 15 Linear 7 21.853 241 10 13 None 5 22.816
172 13 15 Linear 7 21.853 242 5 11 Linear 8 22.833
173 12 13 None 10 21.859 243 6 13 None 9 22.838
174 10 11 Exponential 6 21.861 244 15 15 Exponential 6 22.842
175 11 11 Exponential 6 21.861 245 7 10 Exponential 13 22.880
176 11 13 None 7 21.884 246 8 10 Exponential 10 22.889
177 12 13 Linear 7 21.884 247 5 6 Exponential 4 22.992
178 9 7 Exponential 10 21.890 248 12 15 Exponential 7 23.020
179 10 10 Exponential 7 21.905 249 13 15 Exponential 7 23.020
180 12 7 Exponential 10 21.944 250 14 15 Exponential 7 23.020
181 13 7 Exponential 10 21.944 251 6 11 None 8 23.026
182 10 15 None 7 21.949 252 11 13 Linear 7 23.047
183 11 15 None 7 21.949 253 12 5 Exponential 13 23.053
184 14 5 Linear 11 21.957 254 8 14 None 7 23.066
185 8 10 None 8 21.977 255 5 11 Exponential 15 23.069
186 13 13 None 7 21.982 256 7 11 Linear 7 23.142
187 14 13 None 7 21.982 257 8 13 None 9 23.144
188 14 13 Linear 7 21.982 258 6 13 Linear 13 23.170
189 15 13 Linear 7 21.982 259 8 5 Exponential 16 23.171
190 7 9 Exponential 5 21.998 260 7 13 None 9 23.207
191 10 14 None 11 22.018 261 9 5 Linear 11 23.210
192 15 13 None 6 22.020 262 14 13 Exponential 8 23.228
193 13 13 Linear 7 22.028 263 15 13 Exponential 8 23.228
194 6 9 Exponential 6 22.036 264 11 14 None 9 23.232
195 11 6 Exponential 5 22.062 265 12 14 None 9 23.232
196 9 15 None 9 22.098 266 11 14 Linear 9 23.232
197 9 13 None 8 22.108 267 12 14 Linear 9 23.232
198 6 10 None 6 22.140 268 13 14 Linear 9 23.232
199 11 15 Linear 7 22.146 269 14 14 Linear 9 23.232
200 8 6 Exponential 4 22.147 270 12 13 Exponential 7 23.241
201 13 5 Linear 11 22.156 271 13 13 Exponential 7 23.241
202 8 10 Linear 9 22.162 272 9 12 Exponential 10 23.262
203 5 5 None 8 22.167 273 10 14 Linear 10 23.267
204 6 5 None 7 22.179 274 10 7 Exponential 15 23.287
205 7 10 Linear 12 22.184 275 5 9 Exponential 6 23.350
206 6 10 Linear 6 22.215 276 5 10 Exponential 13 23.369
207 10 15 Linear 7 22.228 277 5 5 Linear 8 23.400
208 7 11 None 6 22.249 278 11 13 Exponential 6 23.420
209 9 12 Linear 7 22.261 279 11 7 Exponential 5 23.437
210 7 6 Exponential 4 22.268 280 10 15 Exponential 13 23.494
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Table 21: Sydney results (3 of 3).

Rank Search Distance Grid Spacing Cooling Iterations Fitness Rank Search Distance Grid Spacing Cooling Iterations Fitness
281 11 15 Exponential 13 23.494 323 6 5 Exponential 10 24.222
282 8 12 Exponential 7 23.495 324 8 14 Linear 10 24.254
283 9 14 Exponential 7 23.518 325 11 12 Linear 7 24.255
284 7 12 Linear 7 23.519 326 10 14 Exponential 6 24.267
285 8 13 Linear 9 23.603 327 11 12 None 5 24.332
286 7 13 Linear 9 23.627 328 12 12 Linear 5 24.332
287 15 14 Exponential 8 23.629 329 13 12 Linear 5 24.332
288 13 12 None 7 23.666 330 11 14 Exponential 6 24.356
289 7 11 Exponential 8 23.675 331 6 15 None 7 24.395
290 15 12 Linear 6 23.678 332 14 5 Exponential 5 24.397
291 7 7 Exponential 15 23.693 333 5 14 None 9 24.491
292 9 13 Exponential 8 23.705 334 8 14 Exponential 6 24.506
293 7 12 Exponential 8 23.712 335 6 6 Exponential 4 24.561
294 14 12 None 5 23.723 336 6 14 None 7 24.568
295 15 12 None 5 23.723 337 9 5 Exponential 7 24.610
296 9 14 None 7 23.729 338 11 5 Exponential 5 24.677
297 6 12 None 8 23.759 339 5 13 Linear 8 24.683
298 7 13 Exponential 8 23.766 340 5 12 Exponential 8 24.741
299 10 13 Exponential 7 23.775 341 8 15 Exponential 5 24.759
300 7 5 Exponential 12 23.776 342 5 15 Linear 5 24.761
301 5 7 Exponential 3 23.829 343 6 11 Exponential 4 24.764
302 15 5 Exponential 9 23.858 344 7 14 Linear 7 24.787
303 8 13 Exponential 8 23.901 345 7 15 Exponential 6 24.806
304 6 12 Linear 6 23.904 346 14 12 Exponential 5 24.919
305 14 12 Linear 7 23.908 347 15 12 Exponential 5 24.919
306 9 15 Exponential 6 23.910 348 6 12 Exponential 7 24.926
307 6 13 Exponential 7 23.933 349 6 14 Linear 6 24.931
308 5 13 None 6 23.960 350 6 15 Linear 6 25.009
309 6 11 Linear 7 23.966 351 5 14 Linear 8 25.092
310 12 14 Exponential 8 23.974 352 5 5 Exponential 9 25.107
311 13 14 Exponential 8 23.974 353 10 12 Exponential 4 25.122
312 9 14 Linear 6 23.980 354 11 12 Exponential 8 25.337
313 5 12 None 7 23.999 355 12 12 Exponential 6 25.361
314 7 14 None 9 24.010 356 13 12 Exponential 6 25.361
315 14 14 Exponential 8 24.043 357 10 5 Exponential 5 25.483
316 8 11 Exponential 11 24.075 358 5 13 Exponential 7 25.719
317 6 7 Exponential 15 24.091 359 6 15 Exponential 9 25.797
318 13 5 Exponential 12 24.101 360 7 14 Exponential 11 25.804
319 12 12 None 6 24.118 361 6 14 Exponential 7 25.973
320 9 11 Exponential 4 24.160 362 5 14 Exponential 9 26.286
321 5 12 Linear 8 24.204 363 5 15 Exponential 8 26.964
322 5 15 None 4 24.220
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Table 22: Vienna results (1 of 3).

Rank Search Distance Grid Spacing Cooling Iterations Fitness Rank Search Distance Grid Spacing Cooling Iterations Fitness
1 15 10 None 9 0.850 71 13 13 None 7 1.819
2 13 10 None 9 0.972 72 14 13 None 7 1.819
3 14 10 None 9 0.986 73 15 13 None 7 1.819
4 15 10 Linear 9 1.037 74 6 10 None 8 1.827
5 14 5 None 15 1.153 75 15 8 None 11 1.831
6 15 5 None 13 1.184 76 13 6 Linear 9 1.836
7 15 7 None 14 1.212 77 14 8 Linear 8 1.838
8 11 10 None 7 1.233 78 7 10 None 9 1.858
9 9 10 None 17 1.276 79 15 9 Linear 7 1.872
10 12 9 None 8 1.284 80 13 8 Linear 8 1.898
11 10 15 Exponential 7 1.341 81 5 9 None 13 1.905
12 11 15 Exponential 7 1.341 82 10 6 None 5 1.911
13 11 10 Linear 6 1.353 83 6 6 None 11 1.914
14 12 10 Linear 7 1.361 84 10 10 Linear 11 1.916
15 13 10 Linear 7 1.380 85 9 8 None 9 1.946
16 14 10 Linear 7 1.380 86 5 15 None 10 1.951
17 15 7 Linear 10 1.411 87 10 8 Linear 10 1.956
18 13 8 None 15 1.427 88 5 12 Linear 9 1.963
19 15 8 Linear 13 1.439 89 10 8 None 8 1.966
20 9 6 None 11 1.458 90 11 5 None 10 1.974
21 14 5 Linear 13 1.467 91 7 9 None 7 1.987
22 8 14 None 7 1.468 92 12 15 Exponential 5 1.999
23 12 5 None 10 1.475 93 13 15 Exponential 5 1.999
24 13 7 None 12 1.477 94 15 11 None 7 2.006
25 13 5 None 10 1.481 95 15 12 None 7 2.015
26 10 10 None 8 1.485 96 8 10 Linear 9 2.025
27 8 6 None 14 1.505 97 14 11 None 8 2.031
28 15 5 Linear 12 1.506 98 12 8 Linear 8 2.033
29 14 7 Linear 10 1.506 99 11 8 Linear 7 2.042
30 8 10 None 9 1.508 100 7 15 None 8 2.059
31 13 5 Linear 12 1.530 101 11 5 Linear 10 2.061
32 12 10 None 8 1.542 102 9 10 Linear 9 2.069
33 11 9 None 10 1.547 103 7 6 None 10 2.072
34 15 9 None 12 1.575 104 14 6 None 8 2.075
35 8 14 Linear 7 1.587 105 8 13 Linear 7 2.077
36 13 9 None 11 1.625 106 12 13 Exponential 7 2.078
37 14 9 None 10 1.625 107 13 13 Exponential 7 2.078
38 10 6 Linear 8 1.646 108 14 13 Exponential 7 2.078
39 11 7 None 13 1.666 109 15 13 Exponential 6 2.078
40 12 5 Linear 13 1.683 110 13 6 None 10 2.086
41 15 6 None 10 1.683 111 8 7 None 11 2.091
42 14 7 None 10 1.689 112 10 5 None 13 2.099
43 7 15 Linear 7 1.699 113 11 9 Linear 9 2.103
44 11 8 None 8 1.705 114 10 9 None 9 2.107
45 8 13 None 6 1.716 115 11 11 None 9 2.113
46 10 7 None 12 1.718 116 7 13 Linear 7 2.115
47 14 6 Linear 11 1.720 117 7 13 None 7 2.115
48 5 12 None 7 1.724 118 10 13 Exponential 6 2.126
49 9 7 None 12 1.735 119 11 13 Exponential 6 2.126
50 12 7 None 11 1.762 120 15 11 Linear 8 2.146
51 15 6 Linear 8 1.765 121 12 11 None 8 2.146
52 9 9 None 8 1.770 122 13 11 None 8 2.157
53 12 8 None 8 1.776 123 6 12 Linear 8 2.161
54 12 7 Linear 9 1.779 124 6 8 None 12 2.162
55 12 9 Linear 7 1.785 125 9 13 Exponential 7 2.165
56 14 12 None 7 1.787 126 8 11 None 7 2.177
57 14 8 None 8 1.792 127 8 8 Linear 9 2.179
58 14 9 Linear 7 1.811 128 15 14 None 8 2.185
59 8 9 None 8 1.814 129 9 14 None 9 2.189
60 9 13 Linear 7 1.819 130 9 15 Linear 7 2.189
61 10 13 Linear 7 1.819 131 10 15 Linear 7 2.189
62 11 13 Linear 7 1.819 132 11 15 Linear 7 2.189
63 12 13 Linear 7 1.819 133 12 15 Linear 7 2.189
64 13 13 Linear 7 1.819 134 13 15 Linear 7 2.189
65 14 13 Linear 7 1.819 135 14 15 Linear 7 2.189
66 15 13 Linear 7 1.819 136 15 15 Linear 7 2.189
67 9 13 None 7 1.819 137 8 15 None 7 2.189
68 10 13 None 7 1.819 138 9 15 None 7 2.189
69 11 13 None 7 1.819 139 10 15 None 7 2.189
70 12 13 None 7 1.819 140 11 15 None 7 2.189
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Table 23: Vienna results (2 of 3).

Rank Search Distance Grid Spacing Cooling Iterations Fitness Rank Search Distance Grid Spacing Cooling Iterations Fitness
141 12 15 None 7 2.189 211 15 7 Exponential 9 2.505
142 13 15 None 7 2.189 212 10 5 Linear 14 2.534
143 14 15 None 7 2.189 213 14 10 Exponential 7 2.536
144 15 15 None 7 2.189 214 15 10 Exponential 7 2.536
145 7 13 Exponential 8 2.189 215 10 7 Linear 10 2.544
146 14 15 Exponential 8 2.195 216 9 5 None 10 2.553
147 15 15 Exponential 8 2.195 217 12 6 Linear 9 2.556
148 8 15 Linear 8 2.195 218 10 10 Exponential 7 2.595
149 13 9 Linear 8 2.216 219 11 10 Exponential 7 2.595
150 6 9 None 11 2.219 220 11 7 Linear 9 2.601
151 8 13 Exponential 7 2.219 221 6 8 Linear 13 2.607
152 8 12 Linear 8 2.220 222 15 8 Exponential 9 2.607
153 9 12 Linear 8 2.220 223 7 10 Exponential 12 2.627
154 10 12 Linear 8 2.220 224 15 9 Exponential 8 2.635
155 6 12 None 8 2.220 225 10 8 Exponential 14 2.638
156 8 12 None 8 2.220 226 11 6 Linear 13 2.675
157 9 12 None 8 2.220 227 9 10 Exponential 5 2.679
158 10 12 None 8 2.220 228 8 6 Linear 10 2.679
159 11 12 Linear 8 2.221 229 6 15 None 5 2.690
160 12 12 Linear 8 2.221 230 6 10 Linear 6 2.717
161 13 12 Linear 8 2.221 231 12 9 Exponential 13 2.805
162 14 12 Linear 8 2.221 232 6 15 Linear 5 2.813
163 15 12 Linear 8 2.221 233 8 12 Exponential 9 2.815
164 11 12 None 8 2.221 234 12 10 Exponential 6 2.816
165 12 12 None 8 2.221 235 13 10 Exponential 6 2.816
166 13 12 None 8 2.221 236 7 10 Linear 6 2.816
167 7 8 Linear 10 2.222 237 9 14 Exponential 9 2.818
168 10 14 Linear 11 2.231 238 7 7 Linear 10 2.820
169 15 12 Exponential 7 2.235 239 8 10 Exponential 4 2.828
170 7 12 Linear 7 2.250 240 8 7 Linear 8 2.852
171 7 12 None 6 2.250 241 6 10 Exponential 6 2.866
172 12 12 Exponential 8 2.251 242 10 11 Exponential 9 2.868
173 13 12 Exponential 8 2.251 243 11 11 Exponential 9 2.868
174 14 12 Exponential 8 2.251 244 11 7 Exponential 17 2.873
175 6 13 None 6 2.254 245 11 6 None 9 2.883
176 12 11 Linear 7 2.258 246 9 11 Exponential 12 2.892
177 13 11 Linear 7 2.258 247 12 8 Exponential 9 2.899
178 14 11 Linear 7 2.258 248 13 8 Exponential 9 2.899
179 7 9 Linear 10 2.259 249 14 8 Exponential 9 2.899
180 5 8 None 11 2.260 250 12 11 Exponential 6 2.918
181 10 9 Linear 7 2.270 251 13 11 Exponential 6 2.918
182 15 11 Exponential 8 2.281 252 6 9 Linear 10 2.948
183 5 13 None 7 2.302 253 11 8 Exponential 7 2.960
184 10 12 Exponential 9 2.305 254 5 11 None 7 2.980
185 11 12 Exponential 8 2.307 255 9 9 Exponential 14 2.985
186 9 8 Linear 9 2.312 256 7 11 None 6 2.996
187 7 8 None 6 2.312 257 7 7 Exponential 13 3.010
188 9 14 Linear 6 2.315 258 7 12 Exponential 9 3.019
189 9 11 None 6 2.328 259 14 9 Exponential 10 3.022
190 10 11 None 6 2.328 260 5 9 Linear 11 3.024
191 8 9 Linear 8 2.329 261 6 12 Exponential 9 3.036
192 9 11 Linear 5 2.339 262 10 7 Exponential 18 3.086
193 14 11 Exponential 7 2.341 263 6 13 Linear 6 3.090
194 10 11 Linear 5 2.342 264 6 6 Linear 10 3.092
195 11 11 Linear 5 2.342 265 15 5 Exponential 18 3.093
196 9 7 Linear 8 2.345 266 5 8 Linear 4 3.099
197 8 11 Linear 7 2.361 267 5 13 Linear 10 3.099
198 8 8 None 8 2.362 268 8 8 Exponential 8 3.100
199 9 6 Linear 9 2.363 269 9 8 Exponential 9 3.100
200 9 12 Exponential 10 2.365 270 9 7 Exponential 13 3.116
201 12 7 Exponential 19 2.397 271 13 9 Exponential 7 3.118
202 13 7 Exponential 19 2.397 272 6 11 None 6 3.143
203 7 7 None 9 2.401 273 6 11 Linear 7 3.144
204 14 7 Exponential 10 2.431 274 7 11 Linear 5 3.145
205 9 9 Linear 9 2.439 275 8 7 Exponential 15 3.148
206 13 7 Linear 9 2.440 276 8 5 None 10 3.152
207 10 9 Exponential 11 2.461 277 5 10 Linear 9 3.199
208 11 9 Exponential 11 2.461 278 14 6 Exponential 17 3.236
209 12 6 None 11 2.463 279 15 6 Exponential 16 3.236
210 5 10 None 9 2.496 280 14 5 Exponential 14 3.240
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Table 24: Vienna results (3 of 3).

Rank Search Distance Grid Spacing Cooling Iterations Fitness Rank Search Distance Grid Spacing Cooling Iterations Fitness
281 5 8 Exponential 15 3.304 323 6 9 Exponential 9 3.782
282 10 6 Exponential 13 3.307 324 6 7 Linear 10 3.874
283 14 14 Exponential 6 3.320 325 6 7 Exponential 16 3.904
284 15 14 Exponential 6 3.320 326 8 6 Exponential 8 3.908
285 11 6 Exponential 11 3.331 327 10 14 Exponential 7 3.912
286 6 14 None 6 3.338 328 11 14 Exponential 7 3.912
287 6 15 Exponential 11 3.349 329 6 14 Linear 7 3.943
288 11 14 Linear 8 3.352 330 9 15 Exponential 6 4.048
289 10 14 None 8 3.352 331 6 11 Exponential 6 4.061
290 5 5 None 18 3.353 332 7 11 Exponential 7 4.096
291 5 15 Linear 6 3.358 333 5 9 Exponential 8 4.101
292 6 8 Exponential 7 3.364 334 11 5 Exponential 23 4.198
293 5 13 Exponential 9 3.377 335 8 5 Linear 4 4.233
294 7 14 None 6 3.381 336 12 14 Linear 8 4.233
295 8 9 Exponential 8 3.384 337 13 14 Linear 8 4.233
296 5 14 None 10 3.408 338 14 14 Linear 8 4.233
297 8 14 Exponential 8 3.412 339 15 14 Linear 8 4.233
298 6 13 Exponential 8 3.415 340 11 14 None 8 4.233
299 12 6 Exponential 8 3.416 341 12 14 None 8 4.233
300 5 12 Exponential 9 3.418 342 13 14 None 8 4.233
301 7 8 Exponential 4 3.426 343 14 14 None 8 4.233
302 6 5 None 14 3.462 344 6 5 Linear 30 4.336
303 5 10 Exponential 9 3.469 345 10 5 Exponential 17 4.344
304 5 11 Linear 5 3.474 346 5 7 Linear 11 4.367
305 7 6 Linear 4 3.479 347 7 15 Exponential 5 4.456
306 5 7 None 7 3.479 348 5 11 Exponential 8 4.464
307 12 14 Exponential 7 3.492 349 8 5 Exponential 21 4.501
308 13 14 Exponential 7 3.492 350 7 6 Exponential 5 4.546
309 5 14 Linear 7 3.502 351 6 6 Exponential 4 4.583
310 8 11 Exponential 7 3.518 352 9 5 Exponential 20 4.642
311 6 7 None 13 3.549 353 5 5 Linear 12 4.699
312 12 5 Exponential 22 3.577 354 5 7 Exponential 29 4.787
313 13 5 Exponential 22 3.577 355 5 6 Linear 12 5.269
314 7 5 None 15 3.608 356 6 5 Exponential 19 5.369
315 7 9 Exponential 11 3.623 357 6 14 Exponential 6 5.423
316 9 6 Exponential 16 3.624 358 7 5 Linear 11 5.465
317 9 5 Linear 8 3.626 359 5 14 Exponential 7 5.582
318 5 15 Exponential 7 3.664 360 5 5 Exponential 5 5.658
319 5 6 None 13 3.674 361 7 14 Exponential 4 5.673
320 13 6 Exponential 9 3.704 362 7 5 Exponential 24 5.761
321 7 14 Linear 4 3.728 363 5 6 Exponential 3 6.694
322 8 15 Exponential 12 3.764

221



Table 25: Washington results (1 of 3).

Rank Search Distance Grid Spacing Cooling Iterations Fitness Rank Search Distance Grid Spacing Cooling Iterations Fitness
1 14 11 None 11 3.844 71 13 8 Linear 9 4.510
2 15 11 Linear 8 3.844 72 12 8 None 7 4.520
3 13 11 None 9 4.021 73 13 8 None 10 4.538
4 12 6 None 13 4.023 74 10 7 None 7 4.548
5 14 6 None 10 4.034 75 9 8 Linear 17 4.549
6 11 12 Linear 9 4.070 76 6 15 None 9 4.562
7 10 8 None 7 4.075 77 12 9 Exponential 12 4.575
8 11 8 None 8 4.084 78 13 9 Exponential 12 4.575
9 11 12 None 7 4.102 79 10 7 Linear 8 4.583
10 12 12 None 7 4.102 80 9 11 Linear 7 4.584
11 12 12 Linear 7 4.102 81 11 14 Linear 7 4.586
12 15 10 Linear 8 4.116 82 14 11 Exponential 14 4.592
13 14 8 None 10 4.122 83 7 11 Linear 10 4.623
14 15 8 Linear 10 4.122 84 15 11 Exponential 9 4.623
15 13 12 None 10 4.132 85 10 14 None 6 4.634
16 11 10 None 8 4.133 86 11 14 None 6 4.634
17 12 10 None 8 4.144 87 12 14 None 6 4.634
18 13 10 None 8 4.144 88 13 14 None 6 4.634
19 13 10 Linear 8 4.144 89 14 14 None 6 4.634
20 14 10 Linear 8 4.144 90 15 14 None 6 4.634
21 15 8 None 10 4.146 91 12 14 Linear 6 4.634
22 14 12 None 8 4.162 92 13 14 Linear 6 4.634
23 14 7 Linear 9 4.163 93 14 14 Linear 6 4.634
24 14 10 None 7 4.168 94 15 14 Linear 6 4.634
25 15 10 None 7 4.168 95 11 6 None 17 4.635
26 14 11 Linear 11 4.175 96 8 7 None 11 4.636
27 13 12 Linear 9 4.175 97 7 7 None 12 4.637
28 12 9 None 6 4.190 98 8 14 None 6 4.639
29 13 9 None 6 4.190 99 14 8 Linear 6 4.641
30 14 9 None 6 4.190 100 6 7 None 12 4.642
31 15 9 None 6 4.190 101 9 7 None 9 4.643
32 13 9 Linear 6 4.190 102 5 7 None 17 4.644
33 14 9 Linear 6 4.190 103 9 14 Linear 7 4.655
34 15 9 Linear 6 4.190 104 13 7 Linear 7 4.658
35 11 11 None 10 4.196 105 7 8 None 9 4.661
36 15 6 Linear 8 4.200 106 9 8 None 8 4.662
37 12 7 None 10 4.206 107 5 10 None 9 4.662
38 15 6 None 11 4.218 108 12 7 Linear 7 4.665
39 10 12 None 9 4.240 109 7 15 None 7 4.667
40 12 9 Linear 8 4.249 110 9 15 None 7 4.667
41 14 12 Linear 9 4.258 111 9 15 Linear 7 4.667
42 15 12 Linear 9 4.258 112 10 15 Linear 7 4.667
43 11 9 None 7 4.269 113 7 14 None 7 4.672
44 12 11 None 7 4.270 114 12 11 Exponential 8 4.686
45 6 11 None 12 4.278 115 13 11 Exponential 8 4.686
46 11 7 None 11 4.289 116 6 10 None 7 4.689
47 13 6 None 9 4.295 117 7 10 None 7 4.689
48 12 10 Linear 7 4.297 118 8 10 Linear 7 4.689
49 11 8 Linear 9 4.317 119 8 15 None 7 4.691
50 10 11 Linear 8 4.327 120 9 14 None 5 4.692
51 14 7 None 9 4.327 121 10 14 Linear 5 4.692
52 15 7 None 9 4.327 122 6 12 None 9 4.699
53 15 7 Linear 9 4.327 123 8 7 Linear 9 4.706
54 9 11 None 7 4.334 124 5 10 Linear 22 4.708
55 10 11 None 7 4.336 125 13 15 None 8 4.712
56 12 11 Linear 7 4.336 126 14 15 None 8 4.712
57 13 11 Linear 8 4.337 127 15 15 None 8 4.712
58 15 12 None 7 4.341 128 14 7 Exponential 13 4.714
59 7 11 None 7 4.346 129 15 7 Exponential 11 4.714
60 12 8 Linear 11 4.348 130 10 15 None 7 4.722
61 10 10 None 7 4.354 131 11 15 None 7 4.722
62 11 11 Linear 8 4.355 132 12 15 None 7 4.722
63 15 11 None 6 4.359 133 11 15 Linear 7 4.722
64 13 7 None 8 4.401 134 12 15 Linear 7 4.722
65 8 10 None 9 4.415 135 13 15 Linear 7 4.722
66 15 9 Exponential 6 4.417 136 13 6 Linear 10 4.724
67 11 7 Linear 10 4.447 137 8 11 Linear 6 4.730
68 8 11 None 7 4.456 138 8 6 None 10 4.739
69 14 6 Linear 8 4.498 139 14 15 Linear 7 4.742
70 14 9 Exponential 8 4.500 140 15 15 Linear 7 4.742
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Table 26: Washington results (2 of 3).

Rank Search Distance Grid Spacing Cooling Iterations Fitness Rank Search Distance Grid Spacing Cooling Iterations Fitness
141 14 5 Linear 9 4.753 211 13 12 Exponential 6 5.210
142 7 10 Linear 9 4.755 212 12 12 Exponential 8 5.216
143 9 12 None 7 4.756 213 7 13 None 8 5.220
144 12 10 Exponential 12 4.759 214 14 13 None 8 5.226
145 13 10 Exponential 12 4.759 215 15 13 None 7 5.226
146 9 10 None 6 4.759 216 10 10 Exponential 8 5.227
147 9 10 Linear 6 4.759 217 11 10 Exponential 8 5.227
148 10 10 Linear 6 4.759 218 6 9 Linear 4 5.229
149 11 10 Linear 6 4.759 219 13 5 Linear 9 5.243
150 14 10 Exponential 6 4.759 220 8 5 None 13 5.244
151 15 10 Exponential 6 4.759 221 6 6 None 15 5.256
152 9 7 Linear 9 4.794 222 12 8 Exponential 7 5.265
153 7 7 Linear 15 4.803 223 13 8 Exponential 7 5.265
154 7 8 Linear 14 4.813 224 10 9 Exponential 4 5.265
155 6 10 Linear 6 4.821 225 11 9 Exponential 4 5.265
156 5 15 None 8 4.827 226 6 15 Linear 9 5.281
157 10 8 Linear 11 4.833 227 14 5 None 9 5.285
158 6 14 None 9 4.842 228 11 5 None 10 5.302
159 14 8 Exponential 21 4.856 229 9 6 Linear 9 5.322
160 8 14 Linear 7 4.867 230 14 12 Exponential 6 5.336
161 15 8 Exponential 12 4.869 231 15 12 Exponential 6 5.336
162 10 9 None 3 4.887 232 11 5 Linear 10 5.369
163 11 9 Linear 3 4.887 233 8 14 Exponential 5 5.380
164 12 7 Exponential 8 4.903 234 9 14 Exponential 5 5.380
165 13 7 Exponential 8 4.903 235 10 14 Exponential 5 5.380
166 15 14 Exponential 7 4.903 236 11 14 Exponential 5 5.380
167 14 14 Exponential 7 4.911 237 9 12 Linear 7 5.394
168 9 6 None 9 4.914 238 9 10 Exponential 6 5.398
169 10 6 None 9 4.924 239 14 13 Linear 5 5.410
170 13 5 None 10 4.925 240 15 15 Exponential 6 5.414
171 9 9 None 3 4.927 241 5 9 None 4 5.418
172 10 9 Linear 3 4.927 242 5 14 Linear 6 5.423
173 11 13 None 9 4.938 243 12 15 Exponential 7 5.437
174 12 13 None 9 4.938 244 13 15 Exponential 7 5.437
175 12 13 Linear 9 4.938 245 10 8 Exponential 16 5.455
176 13 13 Linear 9 4.938 246 15 13 Linear 5 5.462
177 12 6 Linear 9 4.943 247 12 5 Linear 11 5.471
178 8 9 None 3 4.973 248 7 12 None 5 5.474
179 7 9 None 3 4.975 249 7 6 None 10 5.486
180 9 9 Linear 3 4.975 250 12 13 Exponential 8 5.487
181 5 12 None 14 4.976 251 13 13 Exponential 8 5.487
182 5 8 None 11 4.983 252 6 11 Exponential 5 5.496
183 7 15 Linear 8 4.984 253 7 11 Exponential 5 5.496
184 10 12 Linear 8 4.996 254 6 13 Linear 11 5.496
185 6 9 None 3 5.000 255 11 6 Linear 8 5.504
186 7 9 Linear 3 5.000 256 6 8 Linear 7 5.505
187 8 9 Linear 3 5.000 257 5 8 Linear 21 5.507
188 12 14 Exponential 6 5.010 258 6 13 None 7 5.522
189 13 14 Exponential 6 5.010 259 7 13 Linear 7 5.522
190 7 12 Linear 6 5.013 260 8 13 Linear 7 5.522
191 9 5 None 10 5.067 261 15 13 Exponential 7 5.522
192 10 13 None 7 5.090 262 8 15 Exponential 8 5.525
193 11 13 Linear 7 5.090 263 10 13 Exponential 8 5.533
194 8 15 Linear 7 5.097 264 11 13 Exponential 8 5.533
195 6 11 Linear 8 5.104 265 5 11 Exponential 6 5.536
196 8 12 None 7 5.122 266 7 14 Linear 6 5.541
197 8 12 Linear 9 5.127 267 14 13 Exponential 6 5.542
198 10 11 Exponential 7 5.137 268 10 15 Exponential 6 5.543
199 11 11 Exponential 7 5.137 269 11 15 Exponential 6 5.543
200 10 6 Linear 9 5.145 270 5 15 Linear 7 5.553
201 8 8 None 5 5.157 271 9 15 Exponential 7 5.553
202 8 8 Linear 5 5.157 272 5 6 None 11 5.556
203 6 8 None 4 5.166 273 6 14 Exponential 7 5.559
204 8 6 Linear 9 5.166 274 7 14 Exponential 7 5.559
205 5 11 None 7 5.170 275 10 13 Linear 7 5.595
206 8 11 Exponential 13 5.177 276 5 12 Linear 12 5.618
207 13 13 None 8 5.183 277 9 13 Linear 7 5.620
208 5 11 Linear 9 5.186 278 8 13 None 7 5.625
209 9 11 Exponential 9 5.186 279 8 10 Exponential 10 5.629
210 5 14 None 6 5.202 280 6 12 Linear 9 5.638
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Table 27: Washington results (3 of 3).

Rank Search Distance Grid Spacing Cooling Iterations Fitness Rank Search Distance Grid Spacing Cooling Iterations Fitness
281 9 13 None 5 5.652 323 14 6 Exponential 3 6.264
282 6 10 Exponential 13 5.653 324 10 6 Exponential 9 6.266
283 7 10 Exponential 13 5.653 325 11 6 Exponential 9 6.270
284 5 9 Linear 13 5.660 326 6 9 Exponential 3 6.272
285 6 15 Exponential 10 5.675 327 7 9 Exponential 3 6.272
286 7 15 Exponential 10 5.675 328 6 6 Linear 7 6.299
287 6 14 Linear 7 5.676 329 5 6 Linear 11 6.314
288 6 5 None 17 5.680 330 15 5 None 9 6.333
289 8 9 Exponential 9 5.688 331 7 5 Linear 16 6.343
290 9 9 Exponential 7 5.688 332 10 12 Exponential 11 6.343
291 6 7 Linear 11 5.692 333 13 5 Exponential 11 6.376
292 7 6 Linear 8 5.717 334 5 6 Exponential 25 6.417
293 11 8 Exponential 10 5.719 335 6 5 Linear 22 6.421
294 9 8 Exponential 13 5.732 336 6 6 Exponential 18 6.509
295 9 7 Exponential 13 5.758 337 5 9 Exponential 3 6.568
296 7 5 None 13 5.781 338 12 5 Exponential 11 6.630
297 11 12 Exponential 6 5.801 339 5 7 Exponential 19 6.645
298 15 5 Linear 7 5.804 340 9 6 Exponential 11 6.649
299 10 7 Exponential 7 5.829 341 5 10 Exponential 3 6.661
300 11 7 Exponential 7 5.829 342 8 5 Exponential 19 6.692
301 7 7 Exponential 8 5.842 343 9 5 Exponential 31 6.716
302 12 5 None 5 5.894 344 5 7 Linear 4 6.724
303 6 12 Exponential 6 5.930 345 5 5 Linear 24 6.772
304 14 15 Exponential 6 5.954 346 15 5 Exponential 4 6.797
305 9 5 Linear 14 5.955 347 5 15 Exponential 6 6.862
306 8 8 Exponential 11 5.971 348 8 12 Exponential 3 6.893
307 9 12 Exponential 6 6.001 349 7 12 Exponential 9 6.897
308 5 12 Exponential 6 6.012 350 11 5 Exponential 11 6.935
309 5 13 None 6 6.033 351 8 6 Exponential 3 6.981
310 6 8 Exponential 16 6.050 352 7 6 Exponential 3 6.986
311 5 8 Exponential 18 6.061 353 14 5 Exponential 3 6.991
312 7 8 Exponential 9 6.088 354 10 5 Exponential 11 6.993
313 10 5 Linear 11 6.150 355 7 5 Exponential 17 7.071
314 5 5 None 17 6.155 356 5 13 Linear 6 7.077
315 10 5 None 9 6.181 357 6 5 Exponential 16 7.153
316 12 6 Exponential 8 6.181 358 8 13 Exponential 6 7.349
317 13 6 Exponential 8 6.181 359 9 13 Exponential 6 7.349
318 8 5 Linear 9 6.211 360 5 13 Exponential 6 7.499
319 8 7 Exponential 4 6.216 361 6 13 Exponential 7 7.520
320 6 7 Exponential 9 6.222 362 7 13 Exponential 7 7.520
321 5 14 Exponential 3 6.226 363 5 5 Exponential 14 7.547
322 15 6 Exponential 3 6.262
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Figure 121: Mexico – Geographic.

Figure 122: Mexico – Rank 1 (Fitness = 2.653).
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Figure 123: Mexico – Rank 181 (Fitness = 4.379)

Figure 124: Mexico – Rank 363 (Fitness = 8.712)
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Figure 125: Sydney – Geographic.

Figure 126: Sydney – Rank 1 (Fitness = 19.359).
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Figure 127: Sydney – Rank 181 (Fitness = 21.944).

Figure 128: Sydney – Rank 363 (Fitness = 26.964).
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Figure 129: Washington – Geographic.

Figure 130: Washington – Rank 1 (Fitness = 3.844).
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Figure 131: Washington – Rank 181 (Fitness = 4.976).

Figure 132: Washington – Rank 363 (Fitness = 7.547).
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Figure 133: Search distance against mean fitness – Mexico.

Figure 134: Cooling schedule against mean fitness – Mexico.
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Figure 135: Search distance against mean fitness – Sydney.

Figure 136: Cooling schedule against mean fitness – Sydney.
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Figure 137: Search distance against mean fitness – Vienna.

Figure 138: Cooling schedule against mean fitness – Vienna.
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Figure 139: Search distance against mean fitness – Washington.

Figure 140: Cooling schedule against mean fitness – Washington.
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