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Abstract— In this paper, a decentralised control strategy
based on sliding mode techniques is proposed for a class of
nonlinear interconnected systems. Both matched uncertainties
in the isolated subsystems and mismatched uncertainties asso-
ciated with the interconnections are considered. Under mild
conditions, sliding mode controllers for each subsystem are
designed in a decentralised manner by only employing local
information. Conditions are determined which enable informa-
tion on the interconnections to be employed in decentralised
controller design to reduce conservatism. The developed results
are applied to an automated highway system. Simulation results
pertaining to a high-speed following system are presented to
demonstrate the effectiveness of the approach.

I. INTRODUCTION

For nonlinear interconnected systems, it is well known
that uncertainties or modelling errors may seriously affect
control system performance. Specifically, for large scale
interconnected systems, uncertainties experienced by one
subsystem not only affect its own performance but usually
affect the other subsystems’ performance as well due to
the interactions among subsystems. Sliding mode control
has been recognised as a powerful approach in dealing
with uncertainties. When in the sliding mode, a closed loop
system is completely insensitive to matched uncertainties[3],
[4]. The sliding mode approach can also be used to deal
with the systems in the presence of unmatched uncertainty
[5] although the property of total insensitivity is frequently
lost. However, in contrast to the case of centralised control,
decentralised control can only use local information and
thus the uncertainties within the interconnections may not be
rejected, even if they are matched. Designing a decentralised
control scheme to reject the effect of uncertainties in the
interconnection terms is challenging.

The problem of robust decentralised controller design
has received much attention and many results have been
obtained. In [6], [7], [8], [9], only matched uncertainties
are considered and bounds on the matched uncertainties are
assumed to be linear or polynomial. In terms of mismatched
uncertainties, in order to achieve asymptotic stability, some
limitations are unavoidable. Mismatched uncertainties have
been considered in [5], [10] where centralised dynamical
feedback controllers are designed which need more resources
to exchange information between subsystems. A class of
constraints called integral quadratic constraints is imposed on
the considered systems to limit the structure of the original
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systems [10]. In some cases, adaptive techniques are applied
to estimate an upper bound on the mismatched uncertainty to
counteract the effects [11]. This approach may be powerful
when the uncertainty satisfies a linear growth condition. In
[12], although the uncertainties are assumed to be functions,
the system needs to be transformed into a special triangular
structure. All the literature which considers mismatched
uncertainties mentioned above inevitably requires extra re-
sources and increases the system complexity. This may be
unattractive from the viewpoint of implementation.

In this paper, a decentralised control strategy for a class of
nonlinear interconnected systems is proposed based on a slid-
ing mode control paradigm. In terms of the robustness, both
matched and unknown interconnections with mismatched
uncertainties are considered. Moreover, the uncertainties are
assumed to be bounded by known functions which are
employed within the control design to counteract the effects
of the uncertainties. The bounds on the uncertainties take
more general forms when compared with existing work.
Based on the approach proposed in [3], a sliding surface
for each subsystem is designed which together constitute
a composite sliding surface for the interconnected system.
A set of sufficient conditions is developed such that the
corresponding sliding motion is asymptotically stable when
the system is restricted to the designed sliding surface. Then,
a decentralised sliding mode control is designed to drive the
large-scale interconnected system to the sliding surface in fi-
nite time. It is shown that if the uncertainties/interconnections
possess a superposition property, a decentralised control
scheme may be designed to counteract the effect of the uncer-
tainty. Finally, the developed decentralised control scheme is
applied to an automated highway system. Simulation results
relating to a high-speed car following system shows that the
obtained results are effective.

II. SYSTEM DESCRIPTION

Consider a nonlinear large-scale interconnected system
composed of N subsystems where the i-th subsystem is
described by

ẋi = Aixi +Bi
(
ui + φi(t, xi)

)
+

N∑
j=1

Ξij(t, xj)

+ψi(t, x), i = 1, 2, . . . , N (1)

where xi ∈ Di ⊂ Rni , ui ∈ Rmi denote the state variables
and inputs of the i-th subsystem, respectively. The matrix
pairs (Ai, Bi) are constant with appropriate dimensions. The
matched uncertainties are denoted by φi(t, xi). The term



∑n
j=1 Ξij(t, xj) describes the known interconnection of the

i-th subsystem. The nonlinear functions ψi(t, x) represent the
uncertain interconnections where x = col(x1, x2, . . . , xn). It
is assumed that all the nonlinear functions are sufficiently
smooth such that the unforced system has a unique continu-
ous solution.

It should be noted that
N∑
j=1

Ξij(t, xj) = Ξii(t, xi) +

N∑
j 6=i

j=1

Ξij(t, xj) (2)

In this case, Ξii(t, xi) can be considered as the known non-
linearity in the ith subsystem and the term

∑N
j 6=i

j=1
Ξij(t, xj)

as the known interconnection within the ith subsystem.
Assumption 1. The matrix pairs (Ai, Bi) are controllable
and rank(Bi) = mi for i = 1, 2, . . . , N .

Under the condition that rank(Bi) = mi in Assumption 1,
there exists an invertible matrix T̃i ∈ R(ni×ni) such that
after the following coordinate transformation x̃i = T̃ixi, the
matrix pairs (Ai, Bi) with respect to the new coordinates x̃i
have the following structure

Ãi =

[
Ãi1 Ãi2
Ãi3 Ãi4

]
= T̃iAiT̃

−1
i (3)

B̃i =

[
0

B̃i2

]
= T̃iBi (4)

where Ãi1 ∈ R(ni−mi)×(ni−mi) and the matrix B̃i2 ∈
Rmi×mi is nonsingular for i = 1, 2, . . . , N . It should be
noted that the matrix T̃i can be obtained using basic matrix
theory.

Assume that (Ai, Bi) is controllable. From [3], it fol-
lows that the matrix pair (Ãi1, Ãi2) in (3) is controllable.
Then, there exists a matrix Ki ∈ R(ni−mi)×mi such that
Ãi1 −KiÃi2 is Hurwitz stable. Considering the system (1),
introduce a new transformation matrix as follows:

Ti =

[
Ini−mi 0
Ki Imi

]
T̃i (5)

It is clear that the matrix Ti is nonsingular. Define z =
col(z1, z2, . . . , zN ) where zi = Tixi. Then in this new
coordinate system, system (1) has the following form

żi =

[
Ai1 Ai2
Ai3 Ai4

]
zi +

[
0

B̃i2

] (
ui + gi(t, zi)

)
+

N∑
j=1

Γij(t, zj) + δi(t, z) (6)

where zi ∈ Ti(Di) := Ωi, Ai1 = Ãi1− Ãi2Ki is stable with
Ki given in (5), T−1 ≡: diag{T−1

1 , T−1
2 , . . . , T−1

N } and for
i, j = 1, 2, . . . , N

gi(t, zi) = φi(t, T
−1
i zi) (7)

Γij(t, zj) ,

[
Γaij(t, zj)
Γbij(t, zj)

]
= TiΞij(t, T

−1
j zj) (8)

δi(t, z) ,

[
δai (t, z)
δbi (t, z)

]
= Tiψi(t, T

−1z) (9)

where

Γaij(t, zj), δai (t, z) ∈ R(ni−mi)

Γbij(t, zj), δbi (t, z) ∈ Rmi

For further analysis, now partition zi =col(zai , z
b
i ) where

zai ∈ Rni−mi and zbi ∈ Rmi . Then the system (6) can be
rewritten in the following form

żai = Ai1z
a
i +Ai2z

b
i +

N∑
j=1

Γaij(t, zj) + δai (t, z) (10)

żbi = Ai3z
a
i +Ai4z

b
i + B̃i2

(
ui + gi(t, zi)

)
+

N∑
j=1

Γbij(t, zj) + δbi (t, z) (11)

where the matrix Ai1 in (10) is stable.
Assumption 2. There exist known continuous functions
ρi(t, zi), ηai (t, z) and ηbi (t, z) such that for i, j = 1, 2, . . . , N

(i) ‖gi(t, zi)‖ ≤ ρi(t, zi)
(ii) ‖δai (t, z)‖ ≤ ηai (t, z)‖z‖

(iii) ‖δbi (t, z)‖ ≤ ηbi (t, z)

III. STABILITY ANALYSIS OF THE SLIDING MODE

Choose the local sliding surface for the ith subsystem of
the large-scale interconnected system (6) as follows:

σi(zi) ≡: zbi = 0, i = 1, 2, . . . , N. (12)

Then, the composite sliding surface for the interconnected
system (6) is chosen as

σ(z) = 0 (13)

where σ(z) ≡: col
(
zb1, z

b
2, . . . , z

b
N

)
Since Ai1 in (10) is stable, for any Qi > 0, the following

Lyapunov equation has a unique solution Pi > 0 such that

Aτi1Pi + PiAi1 = −Qi, i = 1, 2, . . . , N. (14)

During sliding motion, zbi = 0 for i = 1, 2, . . . , N .
Then, the sliding mode dynamics for the system (10)-(11)
associated with the designed sliding surface (13) can be
described by

żai = Ai1z
a
i +

n∑
j=1

Γsij(t, z
a
j ) + δsi (t, z

a
1 , z

a
2 , . . . , z

a
N ) (15)

where

Γsij(t, z
a
j ) := Γaij(t, zj)|zbj=0 (16)

δsi (t, z
a
1 , z

a
2 , . . . , z

a
N ) := δai (t, z)|(zb1,zb2,...,zbN )=0 (17)

Here Γaij(t, zj) and δai (t, z) are defined in (8) and (9)
respectively.
Assumption 3. The function Γsij(·) has the following de-
composition:

Γsij(t, z
a
j ) = Γ̃sij(t, z

a
j )zaj (18)



where Γ̃sij(t, z
a
j ) is an appropriately-dimensioned matrix

function for i, j = 1, 2, . . . , N .
Under Assumptions 1-3, a reduced order interconnected

system composed of N subsystems with dimension ni−mi

is obtained as follows

żaj = Ai1z
a
j +

n∑
j=1

Γ̃sij(t, z
a
j )zaj + δsi (t, z

a
1 , z

a
2 , . . . , z

a
N ) (19)

which represents the sliding mode dynamics relating to the
sliding surface (13), where zai ∈ Rni−mi and Γ̃sij(t, z

a
j ) is

defined in (18).
Lemma 1: For terms δsi (t, z

a
1 , z

a
2 , . . . , z

a
N ) in system (19),

if condition (ii) in Assumption 2 holds, then there exist
continuous functions γij(·) such that

‖δsi (t, za1 , za2 , . . . , zaN )‖ ≤
N∑
j=1

γij(t, z
a)‖zaj ‖ (20)

where za = col(za1 , z
a
2 , . . . , z

a
N ).

Proof. From the definition of δsi (·) in (17), it follows that

δsi (t, z
a
1 , z

a
2 , . . . , z

a
N ) = δai (t, za1 , 0, z

a
2 , 0, . . . , z

a
N , 0) (21)

From condition (ii) in Assumption 2,

‖δai (t, z)‖ ≤ ηai (t, z)‖z‖ (22)

From (21) and (22), it follows that

‖δsi (t, za1 , za2 , . . . , zaN )‖
= ‖δai (t, za1 , 0, z

a
2 , 0, . . . , z

a
N , 0)‖

≤ ηai (t, za1 , 0, z
a
2 , 0, . . . , z

a
N , 0)‖za‖

≤
N∑
j=1

ηai (t, za1 , 0, z
a
2 , 0, . . . , z

a
N , 0)‖zaj ‖

≤
N∑
j=1

γij(t, z
a
j )‖zaj ‖ (23)

where γij(t, z
a
j ) = ηai (t, za1 , 0, z

a
2 , 0, . . . , z

a
N , 0) for i =

1, 2, . . . , N . Hence the result follows. �
Theorem 1: Consider the sliding mode dynamics given in

equation (19). Under Assumptions 1-3, the sliding motion
governed by (19) is asymptotically stable if there exists a
domain Ωza of the origin in za ∈ R

∑N
i=1(ni−mi) such that

Mτ +M > 0

in Ωza\{0} where M = (mij)N×N and for i, j =
1, 2, . . . , N

mij =

{
λmin(Qi)− 2‖Pi‖γii(t, zai )− ςii(t, zai ), i = j

−ςij(t, zaj )− 2‖Pi‖γij(t, zaj ), i 6= j

where Pi and Qi satisfy (14), and the functions ςij(·) are
defined by

ςij(t, z
a
j ) :≡ ‖PiΓ̃sij(t, zaj ) + (Γ̃sij)

τ (t, zaj )Pi‖

with Γ̃sij(t, z
a
j ) given by (18), and γij(t, z

a
j ) determined by

(20).

Proof. For system (19), consider the Lyapunov function
candidate

V (t, za1 , z
a
2 , . . . , z

a
N ) =

N∑
i=1

(zaj )τPiz
a
j (24)

where Pi satisfies equation (14)
Then, the time derivative of V (t, za1 , z

a
2 , . . . , z

a
N ) along the

trajectories of system (19) is given by

V̇ =

N∑
i=1

{
− (zaj )τQiz

a
i + 2(zaj )τPiδ

s
i (t, z

a
1 , z

a
2 , . . . , z

a
N )

+

n∑
j=1

(zaj )τ
(
PiΓ̃

s
ij(t, z

a
j )

+(Γ̃sij)
τ (t, zaj )Pi

)
zaj

}
(25)

where (14) is used above. From (20), it follows that

V̇ ≤
N∑
i=1

{
− λmin(Qi)‖zai ‖2

+2‖zai ‖‖Pi‖‖δsi (t, za1 , za2 , . . . , zaN )‖+
N∑
j=1

∥∥∥PiΓ̃si1(t, zaj ) + (Γ̃sij(t, z
a
j ))τzaj Pi

∥∥∥‖zai ‖‖zaj ‖}
≤

N∑
i=1

{
− λmin(Qi)‖zai ‖2 +

N∑
j=1

ςij(t, z
a
j )‖zai ‖‖zaj ‖

+2‖zai ‖‖Pi‖
N∑
j=1

γij(t, z
a
j )‖zaj ‖

}
= −

N∑
i=1

{
λmin(Qi)− 2‖Pi‖γii(t, zai )

−ςii(t, zai )
}
‖zai ‖2 +

N∑
i=1

N∑
j=1

j 6=i

{
ςij(t, z

a
j ) + 2‖Pi‖γij(t, zaj )

}
‖zai ‖‖zaj ‖

= −1

2
Y τ (Mτ +M)Y ≤ 0 (26)

where Y ≡: col(‖za1‖, . . . , ‖zaN‖).
Thus, the conclusion follows from Mτ +M > 0. �

IV. DECENTRALISED SLIDING MODE CONTROL DESIGN

For the nonlinear interconnected system (1), the corre-
sponding condition is described by

N∑
i=1

στi (zi)σ̇i(zi)

‖σi(zi)‖
< 0 (27)

where σi(zi) is defined by (13). It should be noted that the
condition (27) is proposed in [14] and has been widely used
[13].

Consider the expression

ηbi (t, z) =

N∑
j=1

µij(t, zj) + νi(t, z) (28)



where νi(t, z) represents all the coupling terms which cannot
be included in the term

∑N
j=1 µij(t, zj)

For i = 1, 2, . . . , N , the following control scheme is
proposed:

ui = −B̃−1
i2

{
Ai3z

a
i +Ai4z

b
i +

N∑
j=1

Γbji(t, T
−1
i zi)

}
−B̃−1

i2 sgn(zbi )
{
‖B̃i2‖ρi(t, zi)

+

N∑
j=1

µji(t, zi) + ζi(t, zi)
}

(29)

where the ρi(t, zi) are defined in Assumption 2, µji(t, zi)
satisfy (28) and ζi(t, zi) is a reachability function which will
be defined later.

Theorem 2: Consider the nonlinear interconnected system
(6). Under Assumptions 1-3, the decentralised control (29) is
able to drive the system (1) to the composite sliding surface
(13) and maintains a sliding motion on it thereafter if in
the considered domain Ω = Ω1 × Ω2 · · · × Ω, the functions
ζi(t, zi) in (29) satisfy

N∑
i=1

ζi(t, zi) >

N∑
i=1

νi(t, z) (30)

in Ω\{0} for all t > 0 with νi(t, z) defined in (28).
Proof. From (13), for i = 1, 2, . . . , N

σ̇i(zi) = żbi = Ai3z
a
i +Ai4z

b
i

+B̃i2
(
ui + φi(t, T

−1
i zi)

)
+

N∑
j=1

Γbij(t, zj) + δbi (t, z) (31)

Substituting (29) into (31),

N∑
i=1

στi (zi)σ̇i(zi)

‖σi(zi)‖

=

N∑
i=1

{ (zbi )
τ

‖zbi ‖
{
δbi (t, z) + B̃i2φi(t, T

−1
i zi)

}
−‖B̃i2‖ρi(t, zi)−

N∑
j=1

µji(t, zi)− ζi(t, zi)
}

+
(zbi )

τ

‖zbi ‖
{ N∑
i=1

N∑
j=1

Γbij(t, zj)−
N∑
i=1

N∑
j=1

Γbji(t, zi)
}

≤
N∑
i=1

‖B̃i2φi(t, T−1
i zi)‖+

N∑
i=1

‖δbi (t, z)‖

−
N∑
i=1

‖B̃i2‖ρi(t, zi)−
N∑
i=1

N∑
j=1

µji(t, zi)

−
N∑
i=1

ζi(t, zi) (32)

From Assumption 3,

N∑
i=1

‖δbi (t, T−1z)‖

≤
N∑
i=1

N∑
j=1

µij(t, zj) +

N∑
i=1

νi(t, z)

=

N∑
i=1

N∑
j=1

µji(t, zi) +

N∑
i=1

νi(t, z) (33)

and

‖B̃i2φi(t, T−1
i zi)‖ ≤ ‖B̃i2‖‖φi(t, T−1

i zi)‖
≤ ‖B̃i2‖ρi(t, zi) (34)

Substituting inequalities (33) and (34) into (32)

N∑
i=1

στi σ̇i
‖σi‖

≤ −
N∑
i=1

ζi(t, zi) +

N∑
i=1

νi(t, z) < 0 (35)

Then the reachability condition (27) is satisfied. Hence, the
result follows. �

V. SIMULATION EXAMPLE

In order to achieve high traffic flow rates and reduce
congestion, an automated highway system has been devel-
oped [15]. During the automated driving process, vehicles
are driven automatically with both on board lateral and
longitudinal controllers. The lateral controller is used to
steer the vehicle and the longitudinal controller is used to
follow a lead vehicle at a safe distance. The stability and the
robustness of the car-following system will be considered
as case study to demonstrate the theoretical results. The
dynamics of the car-following system is described by [1]

ξ̇i = vi − v(i−1) (36)

v̇i =
1

mi

(
−Aipv2

i − di + fi
)

(37)

ḟi =
1

κi
(−fi + ui) (38)

where ξi represents the distance between the ith and the
(i − 1)th vehicle, vi is the velocity of the ith car and fi
is the force applied to the longitudinal dynamics of the ith
vehicle, where if fi > 0 a forward driving force occurs and
if fi < 0, then a braking force takes place. mi is the mass
of the ith car, di and κi are the constant frictional force
and the engine brake time constant. The signal ui is the
control variable, where if ui > 0, a throttle input results,
and if ui < 0 then a braking input occurs. Choosing the
same parameters as those in [1]:

mi = 1300kg, Aip = 0.3Ns2/m2, di = 100N
κi = 0.2s, v0 = 20m/s

Define ξd = 10 and vd = v0 as the ideal distance between
every adjacent car and an ideal driving velocity, respectively.



Let

xi1 = li − ld (39)
xi2 = vi − vd (40)

xi3 =
fi −Aipv2

0 − di
1000

(41)

for i = 1, 2, 3., and consider the system in the domain

Di = {xi ∈ R3|xi1 ≥ −ξd, |xi2| ≤ 20, |xi3| ≤ 20}

Then, the 3-car following system can be described in the
form of (1) by the following equations

ẋi =

 0 1 0
0 −12

1300
10
13

0 0 −5


︸ ︷︷ ︸

Ai

xi

+

 0
0

0.005


︸ ︷︷ ︸

B

(ui + 220 + φi(xi, t))

+

 −x(i−1)2

0
0


︸ ︷︷ ︸

Ξi(i−1)

+

 0
− 0.3

1300x
2
i2

0


︸ ︷︷ ︸

Ξii

+ψi(t, x), i = 1, 2, 3 (42)

where Ξij = 0 if i 6= j and j 6= i− 1, and

Ξi0 =

 −x02

0
0

 =

 −v0 + vd
0
0

 = 0

The unknown matched uncertainty φi(xi, t) is assumed to
satisfy

‖φ1(x1, t)‖ ≤ 20|x11 + x12|+ 80|x13| (43)
‖φ2(x2, t)‖ ≤ 50|x21 + x22|+ 31|x23| (44)

By using the algorithm in [3], the coordinate transforma-
tion zi = Tixi for i = 1, 2, 3 can be obtained with Ti defined
by

T1 = T2 =

 1 0 0
0 1 0

3.9 3.9 1


T3 =

 1 0 0
0 1 0

3.9 2.6 1


Then the system (42) is transformed into the form (10)-

(11) with[
Ai1 Ai2
Ai3 Ai4

]
=

 0 1 0
−3 −3.0092 0.7692
7.8 11.664 −2



for i = 1, 2 and

[
A31 A32

A33 A34

]
=

 0 1 0
−3 −2.0092 0.7692
11.7 11.676 −3


B1 = B2 = B3 =

 0
0

0.005


Γii(t, zj) =

[
Γaii(t, zj)
Γbii(t, zj)

]
=

 0
− 0.3

1300x
2
i2

− 1.17
1300x

2
i2


for i = 1, 2 and

Γ33(t, z3) =

[
Γa33(t, z3)
Γb33(t, z3)

]
=

 0
− 0.3

1300x
2
32

− 0.78
1300x

2
32


Γi(i−1) =

[
Γai(i−1)(t, zj)

Γbi(i−1)(t, zj)

]

=

 −x(i−1)2

0
−3.9x(i−1)2

 , i = 2, 3

From (43) and (44) the unknown interconnections satisfy

δa1 (t, z) ≤ 0.16 cos2(z11)‖z1‖
δb1(t, z) ≤ 0.8825 cos2(z11)‖z1‖︸ ︷︷ ︸

µ11(t,z1)

+ 0.7|z22|︸ ︷︷ ︸
µ12(t,z2)

δa2 (t, z) ≤ 0.08 sin2(z22)‖z‖
δb2(t, z) ≤ 0.4412 sin2(z22)‖z2‖︸ ︷︷ ︸

µ22(t,z2)

+

0.4412 sin2(z22)‖z1‖+0.4412 sin2(z22)‖z3‖︸ ︷︷ ︸
ν2(t,z)

δb3(t, z) ≤ 0.6|z21 + z22|+ 0.4|z23|︸ ︷︷ ︸
µ32(t,z2)

It is clear that the known nonlinear interconnections
Γij(t, zj) in equation (18) can be expressed as

Γsii =

 0 0 0
0 − 0.3

1300xi2 0
0 − 1.17

1300xi2 0

 , i = 1, 2

Γs33 =

 0 0 0
0 − 0.3

1300x32 0
0 − 0.78

1300x32 0


Γs21 = Γs32 =

 0 −1 0
0 0 0
0 −3.9 0


which, by direct verification, satisfy (18). Now define the
sliding surface as

σ(zi) = zi3, i = 1, 2, 3



Then, when the sliding motion take place, from Lemma 1

δa1 (t, za1 , z
a
2 , z

a
3 ) ≤ 0.16 cos2(z11)‖za1‖

δa2 (t, za1 , z
a
2 , z

a
3 ) ≤

3∑
j=1

0.08 sin2(z22)‖zaj ‖

Choosing Q1 = 8I2, Q2 = Q3 = I2 and solving the
Lyapunov equation (14) yields

P1 =

[
5.7846 −4
−4 5.3170

]
P2 =

[
0.7231 −0.5
−0.5 0.6646

]
P3 =

[
0.6667 −0.5
−0.5 0.9954

]
Then, the matrix function M of the entire system can be

obtained. It is straightforward to verify that in the domain
Ω,

Mτ +M > 0

It follows from Theorem 1 that the designed sliding mode
is asymptotically stable.
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Fig. 1. The time responses of state variable of system (42)

From (29), the controller ui for i = 1, 2, 3 where ζ1 =
20 + 0.4413‖z1‖, ζ2 = 30, ζ3 = 20 + 0.4413‖z3‖ are well

defined and the condition (30) in Theorem 2 is satisfied
in the domain Ω. The time responses of the system states
is shown in Fig.1. The simulation results show that the
proposed approach is effective.

VI. CONCLUSION

A decentralised state feedback sliding mode control law
has been proposed to stabilise a class of nonlinear intercon-
nected systems with known and unknown interconnections
asymptotically in the considered domain. Both matched and
mismatched uncertainties are considered. The bounds on the
uncertainty can be functions instead of constants or poly-
nomial bounds as have been considered in previous work.
Both known interconnections and the bounds on the unknown
interconnections have been fully considered in the control
design to reduce the conservatism. The developed results
are applicable to a wide class of interconnected systems.
Simulations based on a car-following systems have been
presented to shows that the results obtained are effective.
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