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This paper is concerned with the stability and stabilisation problems for continuous-time descriptor Markovian jump systems
with partially unknown transition probabilities. In terms of a set of coupled linear matrix inequalities (LMIs), a necessary
and sufficient condition is firstly proposed, which ensures the systems to be regular, impulse-free and stochastically stable.
Moreover, the corresponding necessary and sufficient condition on the existence of a mode-dependent state-feedback
controller, which guarantees the closed-loop systems stochastically admissible by employing the LMI technique, is derived;
the stabilizing state-feedback gain can also be expressed via solutions of the LMIs. Finally, numerical examples are given to
demonstrate the validity of the proposed methods.

Keywords: stability and stabilisation; descriptor Markovian jump systems; partially unknown transition probabilities; linear
matrix inqualities

1. Introduction

During the past decades, Markovian jump systems have
been catching the attention of researchers and scholars all
over the world, and many valuable results have been ob-
tained. Markovian jump systems are modelled by many
stochastic systems, which arise abrupt random changes in
their structure, such as component failures or repairs, unex-
pected environmental changes, and so forth (Xu and Lam
2006; Boukas 2008). Stability and H∞ control problems for
standard state-space Markovian jump systems with partially
unknown and fully known transition probabilities have been
extensively explored in the past years (see Xu, Chen, and
Lam 2003; Xiong, Lam, Gao, and Ho 2005; de Souza 2006;
Xu and Mao 2007; Zhang, Boukas, and Lam 2008; Wang,
Zhang, and Sreeram 2009, 2010; Zhang 2009; Zhang and
Boukas 2009a, 2009b; Feng, Lam, and Shu 2010; Zhang
and Lam 2010; Wang, Zhang, and Yang 2011; Zhang, He,
Wu, and Zhang 2011; Guo and Zhu 2012).

Descriptor systems are also referred to as singular sys-
tems, semi-state systems, which are a natural representation
of dynamical systems and describe a more wide range of
systems than standard state-space systems (Dai 1989; Xu
and Lam 2006). Stability and stabilisation of descriptor sys-
tems have been extensively explored in Dai (1989), Ishihara
and Terra (2002), Xu and Lam (2004), Xu and Lam (2006)
and references therein. More recently, stability criterions
for descriptor Markovian jump systems, whose transition
probabilities are fully known, have been widely proposed
by Xu and Lam (2006), Boukas (2008), Xia, Zhang, and

∗Corresponding author. Email: qlzhang@mail.neu.edu.cn

Boukas (2008), Xia, Boukas, Shi, and Zhang (2009) and
Wu, Su, and Chu (2010). However, for descriptor Marko-
vian jump systems with partially unknown transition prob-
abilities, which contain the fully known and fully unknown
as special cases, there have been not too much literatures
to address (Sheng and Yang 2010; Chang, Fang, Lou, and
Chen 2012).

The preceding facts motivate us to explore stability
and stabilisation problems for continuous-time descriptor
Markovian jump systems with partially unknown transition
probabilities. In this paper, we shall first present a neces-
sary and sufficient condition for the systems with partially
unknown transition probabilities to be regular, impulse-free
and stochastically stable, by prescribing a lower bound for
the unknown diagonal elements in transition rate matrix.
Then when the lower bound is unavailable, a sufficient con-
dition for the stochastic admissibility is derived. All the
results are formulated in terms of linear matrix inequali-
ties (LMIs). Based on these statements, we then propose
a necessary and sufficient condition and a sufficient con-
dition for the closed-loop systems to be stochastically ad-
missible by virtue of LMI technique. The stabilising state-
feedback controller gain can be expressed by solutions of
a set of LMIs. Compared with the existing results for stan-
dard state-space Markovian jump systems with partially un-
known transition probabilities, this paper can be regarded
as an extension to descriptor Markovian jump systems case.

The rest of this paper is organised as follows. Section 2
gives problem description and some lemmas. Section 3

C© 2013 Taylor & Francis
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focuses on stochastic stability and stochastic stabilisation.
Necessary and sufficient conditions and sufficient condi-
tions for stochastic stability analysis and stochastic stabili-
sation synthesis problems are proposed. Section 4 provides
numerical examples to illustrate the effectiveness of our
methods, and Section 5 concludes the paper.

1.1. Notation

In this paper, Rn stands for the n-dimensional Euclidean
space and Rm×n represents the set of all m × n real ma-
trices. The superscript T stands for matrix transposition;
(�,F ,P) is the probability space. E{·} is the expecta-
tion operator with respect to some probability measure.
N+ represents the set of positive integers. The notation
P > 0 (P ≥ 0) implies that P is a real symmetric and
positive definite (semi-positive definite) matrix. Matrices,
if their dimensions are not explicitly stated, are assumed
to be compatible for algebraic operations. For simplicity,
sometimes we use Mi to denote M(i).

2. Problem formulation and preliminaries

Fix the probability space (�,F ,P) and consider the fol-
lowing continuous-time descriptor Markovian jump sys-
tems described by

Eẋ(t) = A(rt )x(t) + B(rt )u(t), (1)

where A(rt ) ∈ Rn×n and B(rt ) ∈ Rn×m are known real con-
stant matrices, x ∈ Rn is the state vector and u(t) ∈ Rm

is the input vector. The matrix E ∈ Rn×n may be sin-
gular, without loss of generality, we can assume that
rank(E) = r ≤ n. The jumping process {rt, t ≥ 0}, which

takes values in a finite set �
�= {1, 2, . . . , N}, is a right-

continuous Markov process with the following mode
transition probabilities:

P (rt+h = j | rt = i) =
{

λij + o(h), if j 	= i

1 + λijh + o(h), if j = i,

where h > 0, limt → 0(o(h)/h) = 0 and λij ≥ 0 (i, j ∈ �, j 	=
i), satisfying λii = −∑j ∈ �, j 	= iλij, represents the switching
rate from mode i at time t to mode j at time t + h for all i
∈ �. For the sake of simplicity, when rt = i ∈ �, the system
matrices of the ith mode (A(rt), B(rt)) are denoted by (Ai,
Bi). In this paper, not all the transition rates are considered
to be available, namely some elements in transition rate
matrix are unknown. More specifically, the transition rate

matrix � can be expressed as

� =

⎡
⎢⎢⎢⎢⎢⎣

λ11 ? · · · ? λ1N

? λ22 · · · ? λ2N

...
...

. . .
...

...
? ? · · · ? ?

λN1 λN2 · · · λN(N−1) ?

⎤
⎥⎥⎥⎥⎥⎦ , (2)

where ‘?’ denotes the unknown elements. For notational
clarity, ∀i ∈ �, we denote � = �i

k + �i
uk with �i

k � {j :
λij is known}, and �i

uk � {j : λij is unknown}, besides, we
denote λi

k �
∑

j∈�i
k
λij throughout the paper. Generally,

when λii is not exactly known, it is required that we give a
lower bound λi for it.

Now we recall the following definition for the
continuous-time descriptor Markovian jump system (1),
which will be used in the rest of the paper.

Definition 2.1 (Xu and Lam 2006)

(1) The continuous-time descriptor Markovian jump
system (1) is said to be regular if det(sE − Ai) is
not identically zero for every i ∈ �.

(2) The continuous-time descriptor Markovian jump
system (1) is said to be impulse-free if
deg(det(sE − Ai)) = rank(E) for every i ∈ �.

(3) The continuous-time descriptor Markovian jump
system (1) is said to be stochastically stable if for
any x0 ∈ Rn and r0 ∈ S, there exists a scalar M(x0,
r0) > 0 such that

lim
t→∞ E

{∫ t

0
xT (s, x0, r0)x(s, x0, r0)ds|x0, r0

}
≤ M(x0, r0),

where x(t, x0, r0) denotes the solution to system (1)
at time t under the initial conditions x0 and r0.

(4) The continuous-time descriptor Markovian jump
system (1) is said to be stochastically admissible if
it is regular, impulse-free and stochastically stable.

In this paper, our aim is to develop a necessary and
sufficient condition such that the unforced continuous-time
descriptor Markovian jump system (1) with partially un-
known transition rates (2) is stochastically admissible and
to design a linear state-feedback controller for system (1)
with partially unknown transition rates (2) such that the
resulting closed-loop system is stochastically admissible.

The following lemma presents a necessary and suffi-
cient condition for the unforce system (1) to be stochasti-
cally admissible.

Lemma 2.2 (Xu and Lam 2006): The continuous-time
descriptor Markovian jump system (1) is stochastically
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admissible if and only if there exist a set of matrices
Yi ∈ Rn×n, i ∈ �, such that

EYi = Y T
i ET ≥ 0 (3)

AiYi + Y T
i AT

i +
∑
j∈�

λijEYj < 0. (4)

It is noted that the conditions in Lemma 2.2 contain
equality constraints, which may suffer from numerical prob-
lems readily. Therefore, strict LMIs conditions are more de-
sirable to be obtained. The following lemma, which gives
a necessary and sufficient condition for system (1) to be
stochastically admissible in terms of strict LMIs, can be
regarded as the dual form of lemma 2 proposed by Wu
et al. (2010). Considering its important role in this paper,
we prove it with other different methods.

Lemma 2.3: The unforced system (1) (u(t) = 0) is stochas-
tically admissible if and only if there exist a set of positive
definite matrices Pi ∈ Rn×n and matrices �i ∈ R(n−r)×n, i
∈ �, which satisfy for each i ∈ �:

Ai(PiE
T + V �i) + (PiE

T + V �i)
T AT

i

+
∑
j∈�

λijEPjE
T < 0, (5)

where V ∈ Rn×(n−r) is of full column rank and satisfies EV
= 0.

Proof: (Sufficiency) Assume that there exist a set of
positive definite matrices Pi ∈ Rn×n and matrices �i ∈
R(n−r)×n, i ∈ � such that (5) holds. Set

Yi = PiE
T + V �i.

Then, by (5), it is easy to show

EYi = Y T
i ET = EPiE

T ≥ 0

AiYi + Y T
i AT

i +
∑
j∈�

λijEYj < 0.

Therefore, by Lemma 2.2, we have that the unforced system
(1) is stochastically admissible.

(Necessity) Assume that the unforced system (1) is
stochastically admissible, then there exist nonsingular ma-
trices M and N such that

MEN =
[

Ir 0
0 0

]
,MAiN =

[
Ai1 Ai2

Ai3 Ai4

]
,

where Ai4 is nonsingular for any i ∈ �. Then, we can select

Mi =
[

I −Ai2A
−1
i4

0 I

]
M.

Then, it is easy to see

Ê = MiEN =
[

Ir 0
0 0

]
, Âi = MiAiN =

[
Âi1 0
Ai3 Ai4

]
,

(6)
where Âi1 = Ai1 − Ai2A

−1
i4 Ai3. It is easy to see that the

stochastic stability of the unforced system (1) implies the
following standard state-space Markovian jump system is
stochastically stable

ξ̇ = Âi1ξ,

where ξ ∈ Rr . Therefore, from Xu and Lam (2006), we
can readily have that there exist a set of positive definite
matrices P̂i ∈ Rr×r , i ∈ �, such that

Âi1P̂i + P̂iÂ
T
i1 +

∑
j∈�

λij P̂j < 0.

Thus, we can always find a sufficiently large scalar ρ > 0
such that for any i ∈ �

Âi

[
P̂i 0
0 −ρA−1

i4

]
+
[

P̂i 0
0 −ρA−1

i4

]T

ÂT
i

+
N∑

j=1

λij Ê

[
P̂j 0
0 ρI

]
ÊT

=
[

Âi1P̂i + P̂iÂ
T
i1 +∑

j∈� λij P̂j P̂iA
T
i3

Ai3P̂i −2ρI

]
< 0. (7)

It is easy to see that

[
P̂i 0
0 −ρA−1

i4

]
=
[

P̂i 0
0 ρI

]
ÊT +

[
0

−I

] [
0 ρA−1

i4

]
. (8)

Substituting (8) into (7) and pre- and post-multiplying (7)
by Mi and MT

i , we have

MiÂiN

(
N−1

[
P̂i 0
0 ρI

]
N−T NT ÊT MT

i

+N−1

[
0

−I

]
HH−1

[
0 ρA−1

i4

]
MT

i

)
(

N−1

[
P̂i 0
0 ρI

]
N−T NT ÊT MT

i + N−1

[
0

−I

]

×HH−1
[

0 ρA−1
i4

]
MT

i

)T

NT ÂT
i MT

i
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4 J. Li et al.

+
N∑

j=1

λijMiÊNN−1

[
P̂j 0
0 ρI

]
N−T NT ÊT MT

i < 0,

(9)

where H ∈ R(n−r)×(n−r) is an arbitrary nonsingular matrix.
Now define

Pi = N−1

[
P̂i 0
0 ρI

]
N−T ,�i = H−1

[
0 ρA−1

i4

]
MT

i ,

V = N−1

[
0

−I

]
H. (10)

Then, it follows from (6), (9) and (10) that a set of positive
definite matrices Pi ∈ Rn×n and matrices �i ∈ R(n−r)×n, i
∈ � defined in (10) satisfy (5). This completes the proof.

Remark 1: Compared with lemma 2 in Wu et al. (2010),
Lemma 2.3 in this paper provides a much easier method to
prove the stochastic admissibility and is more profitable to
design the state-feedback controller, which will be encoun-
tered in the following.

3. Main Results

In this section, motivated by Zhang and Lam (2010), based
on Lemma 2.3, we first present a necessary and suffi-
cient criterion which ensures the unforced system (1) to
be stochastically admissible.

Theorem 3.1: The unforced continuous-time descriptor
Markovian jump system (1) with partially unknown tran-
sition rates (2) and bounded diagonal elements is stochas-
tically admissible if and only if there exist a set of positive
definite matrices Pi ∈ Rn×n and matrices �i ∈ R(n−r)×n,
i ∈ �, such that the following LMIs hold for each i ∈ �:

If i 	∈ �i
k ,

	i + P i
k + λiEPiE

T − λiEPjE
T

− λi
kEPjE

T < 0, ∀j ∈ �i
uk. (11)

If i ∈ �i
k ,

	i + P i
k − λi

kEPjE
T < 0, ∀j ∈ �i

uk, (12)

where P i
k = ∑

j∈�i
k
λijEPjE

T and 	i = Ai(PiE
T +

V �i) + (PiE
T + V �i)T AT

i .

Proof: Case 1 (i /∈ �i
k): Note that in this case, λii is un-

known and λii ≤ −λi
k . Assume that λii = −λi

k , this to-
gether with

∑
j ∈ �λij = 0, implies that all the transition

rates in the ith row are fully known, which contradicts
with the condition that λii is unknown. Therefore, we have
λii < −λi

k . The left side of (5) can be rewritten as


i = 	i + P i
k + λiiEPiE

T +
∑

j∈�i
uk,j 	=i

λijEPjE
T

= 	i + P i
k + λiiEPiE

T + (−λii − λi
k)

×
∑

j∈�i
uk,j 	=i

λij

(−λii − λi
k)

EPjE
T . (13)

Since λij ≥ 0,∀j ∈ �i
uk, j 	= i, and

∑
j∈�i

uk,j 	=i λij =
−λii − λi

k > 0, we have 0 ≤ λij /(−λii − λi
k) ≤ 1, ∀j ∈

�i
uk, j 	= i and

∑
j∈�i

uk,j 	=i λij /(−λii − λi
k) = 1, then we can

transform 
i to


i =
∑

j∈�i
uk,j 	=i

λij

(−λii − λi
k)

(
	i + P i

k + λiiEPiE
T

−λiiEPjE
T − λi

kEPjE
T
)
.

When λij ≥ 0,∀j ∈ �i
uk, j 	= i is unknown, we can know

that λij /(−λii − λi
k),∀j ∈ �i

uk, j 	= i can achieve the arbi-
trary value in [0, 1]; then by virtue of properties of convex
combination, it is clear that 
i < 0 holds if and only if

	i + P i
k + λiiEPiE

T − λiiEPjE
T

−λi
kEPjE

T < 0,∀j ∈ �i
uk, j 	= i. (14)

Since λi is the lower bound of λii, we have

λi ≤ λii < −λi
k,

which means that there exists a sufficiently small scalar
ε > 0 such that λii takes value in [λi,−λi

k − ε]; then λii can
be expressed by a convex combination of λi and −λi

k − ε.
Consequently, (14) is equivalent to the following two LMIs
hold simultaneously;

	i + P i
k + λiEPiE

T − λiEPjE
T

−λi
kEPjE

T < 0,∀j ∈ �i
uk, j 	= i (15)

and

	i + P i
k − λi

kEPiE
T − ε(Pi − Pj ) < 0,∀j ∈ �i

uk, j 	= i.

(16)
Since ε is arbitrary, (16) is equivalent to

	i + P i
k − λi

kEPiE
T < 0.

Therefore, when i /∈ �i
k , we have the equivalency between

(5) and (11).
Case 2 (i ∈ �i

k): Note that in this case, λii is known,
then λi

k < 0. Since when λi
k = 0, transition rates turn to

be the fully known case. Thus, the left side of (5) can be
rewritten as
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i = 	i + P i
k +

∑
j∈�i

uk

λijEPjE
T

= 	i + P i
k − λi

k

∑
j∈�i

uk

λij

−λi
k

EPjE
T .

Due to 0 ≤ λij /−λi
k ≤ 1 and

∑
j∈�i

uk
λij /−λi

k = 1, then 
i

can be transformed to


i =
∑
j∈�i

uk

λij

−λi
k

(	i + P i
k − λi

kEPjE
T ).

Similarly, by properties of convex combination, it is clear
that 
i < 0 is equivalent to

	i + P i
k − λi

kEPjE
T < 0.

This completes the proof. �

Remark 1: This theorem provides a necessary and suf-
ficient criterion for continuous-time descriptor Markovian
jump systems to be stochastically admissible. Noting that
if �i

uk = φ, all the elements in transition rate matrix (2) are
known, then system (1) becomes the one with fully known
transition probabilities; conditions in Theorem 3.1 can also
be transformed to those in Lemma 2.3. In the case when E
= I, after some matrix manipulations, we can readily have
that Theorem 3.1 reduces to theorem 1 in Zhang and Lam
(2010).

When λi is unavailable, that is, the unknown diagonal λii

may take value in ( − ∞, 0], then we can obtain a sufficient
condition for system (1) with arbitrarily reasonable λii.

Corollary 3.2: The unforced continuous-time descriptor
Markovian jump system (1) with partially unknown tran-
sition rates (2) is stochastically admissible if there exist
a set of positive definite matrices Pi ∈ Rn×n and matrices
�i ∈ R(n−r)×n, i ∈ �, such that the following LMIs hold for
each i ∈ �:

If i 	∈ �i
k ,

	i + P i
k − λi

kEPiE
T < 0, (17)

EPiE
T ≥ EPjE

T , ∀j ∈ �i
uk, j 	= i. (18)

If i ∈ �i
k ,

	i + P i
k − λi

kEPjE
T < 0, ∀j ∈ �i

uk, (19)

where P i
k = ∑

j∈�i
k
λijEPjE

T and 	i = Ai(PiE
T +

V �i) + (PiE
T + V �i)T AT

i .

Proof: Assume that there exist a set of positive definite
matrices Pi ∈ Rn×n and matrices �i ∈ R(n−r)×n, i ∈ � such

that (17), (18) and (19) hold. It is not hard to see that (19)
and (12) are the same; thus, it suffices to prove that (17) and
(18) imply (11).

In Theorem 3.1, we can have that the unforced system
(1) is stochastically admissible if and only if (13) holds.
Here we recall (13) again and consider (17) and (18), then
we can have


i = 	i + P i
k + λiiEPiE

T + (−λii − λi
k)

×
∑

j∈�i
uk,j 	=i

λij

(−λii − λi
k)

EPjE
T

≤ 	i + P i
k + λiiEPiE

T + (−λii − λi
k)EPiE

T

= 	i + P i
k − λi

kEPiE
T < 0. (20)

Therefore, the unforced system (1) is stochastically admis-
sible. This completes the proof. �
Remark 2: In the case when E = I, it is easy to show that V
= 0, then Corollary 3.2 reduces to theorem 3.1 in Guo and
Zhu (2012). Therefore, Corollary 3.2 can be regarded as
an extension of stability criterion for standard state-space
Markovian jump systems to that for descriptor Markovian
jump systems.

In the following, the stabilisation problem of system (1)
with control input u(t) is considered. The mode-dependent
controller with the following form is designed:

u(t) = K(rt )x(t), (21)

where K(rt) for all rt ∈ � are the controller gains to be de-
termined. Using (1), the closed-loop system is represented
as

Eẋ(t) = [A(rt ) + B(rt )K(rt )]x(t). (22)

According to Theorem 3.1, in the next, we will design
the mode-dependent controller of form (21) such that the
closed-loop system (22) is stochastically admissible.

Theorem 3.3: The closed-loop system (22) with partially
unknown transition rates (2) and bounded diagonal ele-
ments is stochastically admissible if and only if there ex-
ist a set of positive definite matrices Pi ∈ Rn×n, matrices
�i ∈ R(n−r)×n and Hi ∈ Rm×n, ∀i ∈ �, such that the follow-
ing LMIs hold for each i ∈ �:

If i 	∈ �i
k ,

	i + �i + P i
k + λiEPiE

T − λiEPjE
T

− λi
kEPjE

T < 0, ∀j ∈ �i
uk. (23)

If i ∈ �i
k ,

	i + �i + P i
k − λi

kEPjE
T < 0, ∀j ∈ �i

uk, (24)
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6 J. Li et al.

where P i
k = ∑

j∈�i
k
λijEPjE

T , 	i = Ai(PiE
T + V �i) +

(PiE
T + V �i)T AT

i and �i = BiHi + HT
i BT

i . Moreover,
if the above LMIs are true, the stabilising controller gain is
given by K(i) = Hi(PiET + V�i)−1.

Proof: Considering the closed-loop system (22), based on
Theorem 3.1, it is easy to see that the closed-loop system
(22) is stochastically admissible if and only if the following
LMIs hold.

If i 	∈ �i
k ,

	i + P i
k + λiEPiE

T − λiEPjE
T

− λi
kEPjE

T < 0, ∀j ∈ �i
uk. (25)

If i ∈ �i
k ,

	i + P i
k − λi

kEPjE
T < 0, ∀j ∈ �i

uk, (26)

where 	i = (Ai + BiKi)(PiE
T + V �i) + (PiE

T +
V �i)T (Ai + BiKi)T . Now we prove that (25) and (26)
guarantee that (23) and (24) hold and vice versa.

(Sufficiency) Substituting K(i) = Hi(PiET + V�i)−1

into the closed-loop system (22), we have

Eẋ(t) = [Ai + BiHi(PiE
T + V �i)

−1]x(t).

It is easy to see that (23) and (24) can be rewritten as follows.
If i 	∈ �i

k ,

	i + 	i
T + P i

k + λiEPiE
T − λiEPjE

T

− λi
kEPjE

T < 0, ∀j ∈ �i
uk.

If i ∈ �i
k ,

	i + 	i
T + P i

k − λi
kEPjE

T < 0, ∀j ∈ �i
uk,

where 	i = (Ai + BiHi(PiE
T + V �i)−1)(PiE

T + V �i),
then we have (25) and (26) hold. Thus, the closed-loop
system (22) is stochastically admissible.

(Necessity) Setting K(i) = Hi(PiET + V�i)−1, from
(25) and (26), it is straightforward that (23) and (24) hold.

This completes the proof. �
When we cannot have a lower bound for the unknown

diagonal elements in the transition rate matrix (2), similarly
to corollary 3.2, then we have the following corollary.

Corollary 3.4: The closed-loop system (22) with partially
unknown transition rates (2) is stochastically admissible if
there exist a set of positive definite matrices Pi ∈ Rn×n,
matrices �i ∈ R(n−r)×n and Hi ∈ Rm×n, ∀i ∈ �, such that
the following LMIs hold for each i ∈ �.

If i 	∈ �i
k ,

	i + �i + P i
k − λi

kE
T PiE < 0 (27)

ET PiE ≥ ET PjE, ∀j ∈ �i
uk, j 	= i. (28)

If i ∈ �i
k ,

	i + �i + P i
k − λi

kE
T PjE < 0, ∀j ∈ �i

uk, (29)

where P i
k = ∑

j∈�i
k
λijEPjE

T , 	i = Ai(PiE
T + V �i) +

(PiE
T + V �i)T AT

i and �i = BiHi + HT
i BT

i . Moreover,
if the above LMIs are true, the stabilising controller gain is
given by K(i) = Hi(PiET + V�i)−1.

In the case when �i
uk = φ, system (22) becomes the one

with fully known transition rates, and then Theorem 3.3
reduces to the following corollary.

Corollary 3.5: The closed-loop system (22) with fully
known transition rates is stochastically admissible if and
only if there exist a set of positive definite matrices Pi ∈
Rn×n, matrices �i ∈ R(n−r)×n and Hi ∈ Rm×n, ∀i ∈ �, such
that the following LMIs holds for each i ∈ �:

	i + �i + P i < 0 (30)

where P i = ∑
j∈� λijEPjE

T , 	i = Ai(PiE
T + V �i) +

(PiE
T + V �i)T AT

i and �i = BiHi + HT
i BT

i . Moreover,
if the above LMIs are true, the stabilising controller gain is
given by K(i) = Hi(PiET + V�i)−1.

Assume that the transition probabilities are fully known.
It can be verified that Corollary 3.5 can be obtained from
Theorem 3.3; thus, the proof is omitted here.

Remark 3: It is noted that Corollary 3.5 can be obtained
as a special case of Theorem 3.3, when �i

uk = φ. Our results
do not involve any matrix decomposition, correspondingly
numerical problems, which may arise in matrix decompo-
sition, can be avoided. In the case when �i

uk 	= φ, we are
not able to deal with such stabilising problems by theorem
6 in Xia et al. (2009), while we can also have a feasible
solution by using the method presented in Theorem 3.3 or
Corollary 3.4. Hence, our methods are more effective and
much easier to be accomplished.

4. Numerical examples

In this section, two numerical examples are provided to
show the validity of our results.

Example 4.1: (Xia et al. 2009) Consider the following
continuous-time descriptor Markovian jump system (1)
with two operation modes and the following data:

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
K

en
t]

 a
t 1

1:
27

 1
4 

M
ar

ch
 2

01
3 



International Journal of Systems Science 7

Figure 1. System response with transition rate matrix in Case 1.

E =
⎡
⎣2 0 0

0 0.6 0
0 0 0

⎤
⎦ , A(1) =

⎡
⎣ 1.5 −1.4 1.6

−2.5 −0.6 −1.1
0.4 0.5 −0.8

⎤
⎦ ,

A(2) =
⎡
⎣0.5 0.7 1.3

0.1 0.9 0.7
0.4 0.5 0.2

⎤
⎦

B(1) =
⎡
⎣2.4 0.5

0 0.6
0.5 0

⎤
⎦ , B(2) =

⎡
⎣ 0 0.9

−0.7 0.6
0.1 0

⎤
⎦ , S =

⎡
⎣ 0

0
0.8

⎤
⎦ .

The transition rate matrices that we consider are shown in
Table 1.

Our purpose here is to design a mode-dependent stabil-
ising controller of the form of (21) such that the resulting
closed-loop system (22) is stochastically admissible with
the transition rates in Table 1. Using the LMI toolbox in
MATLAB, solving (27)–(29) in Corollary 3.4 in this pa-
per, the controller gains are calculated, which are shown in
Table 2. With these controller, system responses for Case 1
and Case 2 are shown in Figure 1 and Figure 2, respectively.

As we can see from Figure 2 , open-loop system is
diverging. After applying the controller in Case 2, trajec-
tory simulation for the closed-loop system shown in the

Table 1. Two different transition rate matrices.

Case 1 Case 2

Mode 1 2 Mode 1 2
1 −0.8 0.8 1 −0.8 0.8
2 −0.5 0.5 2 ? ?

Figure 2. System response with transition rate matrix in Case 2.

third subfigure is stochastically admissible with the same
Markovian jump process under the given initial condition
x0 = [

0.7, 0.5, −3.5
]T

. Compared with theorem 7 in Xia
et al. (2009), Corollary 3.4 can not only deal with the fully
known case, but can also cope with the partially unknown
case. Therefore, our methods are more effective.

Remark 1: As we have noted, our method can deal with
continuous-time descriptor jump systems with partially
known transition matrix effectively. In this example, for
the ease of programming, the non-strict LMIs in Corollary
3.4 have been taken as strict ones to deal with. Through this
example, it is obvious that Corollary 3.4 is much easier to
be achieved and no matrix decomposition is involved.

Next, we will provide another example with bounded
diagonal elements in transition rate matrix.

Example 4.2: Consider continuous-time descriptor
Markovian jump systems with three modes and the
following system matrices:

E =
[

1 0
0 0

]
, A(1) =

[
0.5 −0.75

1 2

]
, A(2) =

[
3.4 −2

1 −3

]
,

A(3) =
[

0.2 1
1 −0.5

]

B(1) =
[

0.5
1

]
, B(2) =

[
2
0

]
, B(3) =

[
1
3

]
, V =

[
0
1

]
.

The transition rate matrix (2) is shown in Table 3 .
It is noted that the (2,2) block of transition rate matrix

in Table 3 is unknown; thus, we can assume that it has a
lower bound as 2, namely λ2 = 2. Applying Theorem 3.3,

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
K

en
t]

 a
t 1

1:
27

 1
4 

M
ar

ch
 2

01
3 



8 J. Li et al.

Table 2. Controllers for the two cases.

Case 1: K(1) =
[−1.16 3.99 − 1.68

−0.44 2.60 − 1.41

]
K(2) =

[−0.43 2.14 − 0.19
−0.80 − 0.24 − 1.18

]

Case 2: K(1) =
[−0.96 2.09 − 1.32

−0.86 2.53 − 2.64

]
K(2) =

[−0.51 2.85 0.19
−0.91 − 0.17 − 1.25

]

Figure 3. System response with transition rate matrix in
Table 3.

a stabilising controller gain can be solved as

K(1) = [−1.58 2.08
]
,K(2) = [−34.80 12.12

]
,

K(3) = [
1.55 0.32

]
.

Figure 3 shows the state response for the open-loop and
closed-loop systems with the same Markovian jump process
under the given initial condition x0 = [

0.7, −8.52
]T

. As
shown in Figure 3, the open-loop system is unstable. After
applying the controller to the open-loop system, we can
see from the third subfigure that the closed-loop systems
is stochastically admissible. Therefore, it is clear that the
designed controller in this paper is feasible and effective.

Table 3. Transition rate matrix.

Mode 1 2 3

1 −1.3 ? ?
2 ? ? 1.1
3 0.2 0.3 −0.5

5. Conclusion

This paper has considered the stochastic stability and stabil-
isation problems for continuous-time descriptor Markovian
jump systems. A new necessary and sufficient condition and
a sufficient condition for stochastic admissibility have been
proposed by virtue of LMI technique. Based on those sta-
bility results, the stabilising state-feedback controllers are
constructed through the explicit solutions of LMIs. At last,
numerical examples are given to illustrate the effectiveness
of our results.
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