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Abstract

We consider mixtures of stick–breaking processes as a generalization of the

mixture of Dirichlet process model. We provide a sampling algorithm which

covers all such models provide specific reasons for using particular choices of

prior. Numerical illustrations involving real data sets are presented.

Keywords: Dirichlet process; Stick–breaking process; Markov chain Monte

Carlo; Mixture model.

1. INTRODUCTION.

The well known and widely used mixture of Dirichlet process (MDP) model was

first introduced by Lo (1984). Since the advent of Markov chain Monte Carlo methods

within the mainstream statistics literature (Smith and Roberts, 1993), and the specific

application to the MDP model (Escobar, 1988; Escobar, 1994; Escobar and West,

1995), the model has become one of the most popular in Bayesian nonparametrics.

Variations of the original algorithm of Escobar have been numerous; for example,

MacEachern (1994); Müller and MacEachern (1998); and Neal (2000). All of these

algorithms rely on integrating out the random distribution function from the model,

removing the infinite dimensional problem. Recent ideas have left the infinite dimen-

sional distribution in the model and found ways of sampling a sufficient but finite

number of variables at each iteration of a Markov chain with the correct stationary

distribution. See Papaspiliopoulos and Roberts (2008), Walker (2007), and Kalli,

Griffin and Walker (2008).

In this paper we consider mixtures of stick–breaking processes and establish rea-

sons for selecting a particular type of process. This shift away from the Dirichlet

process has been impossible in the past due to the lack of sampling algorithms which
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can deal with general stick–breaking processes. However, the algorithm described is

able to handle the more general set–up.

The lay–out of the paper is as follows. In Section 2 we describe some preliminaries

to help with later sections. In Section 3 we provide details of our ideas for choosing

particular stick–breaking processes and Section 4 describes the sampling algorithm for

mixture of stick–breaking process models. Section 5 contains numerical illustrations

and, finally, in Section 6, we provide a brief discussion.

2. PRELIMINARIES.

We write P ∼ D(ϑ, P0) to denote that P is a Dirichlet process (Ferguson, 1973)

with parameters ϑ > 0, the scale parameter, and P0, a distribution on the real line.

It is well known that P has a stick–breaking representation (Sethuraman, 1994) given

by

P =
∞∑

j=1

wj δθj
,

where the {θj} are independent and identically distributed from P0 and

w1 = v1, wj = vj

∏

l<j

(1− vl)

with the {vj} being independent and identically distributed from beta(1, ϑ).

The MDP model, with kernel K(y; θ), is given by

fP (y) =

∫
K(y; θ) dP (θ)

with P ∼ D(ϑ, P0). It is possible to remove P from this model via simple integration

and so the stick–breaking representation of P is not used in this case. However, the

stick–breaking representation is essential to estimation via the non–marginal models

of Papaspiliopoulos and Roberts (2008) and Walker (2007). The idea is that we can

write

fv,θ(y) =
∞∑

j=1

wj K(y; θj)

and the key is to find exactly which (finite number of) variables need to be sampled

to produce a valid Markov chain with correct stationary distribution.

As a prior for a distribution function, the Dirichlet process has a number of at-

tractive properties which make it highly suitable for the mixture model. The key
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property is the connection with the Pólya–urn scheme (Blackwell and MacQueen,

1973). However, none of these “nice” mathematical properties are to do with the

model and the suitability for using it as a prior for P . The weights of the mixture;

that is, the {wj} are quite simplistic, and has a distribution which depends on the

single parameter ϑ. This can easily be generalized to vj ∼ beta(aj, bj).

The reason why little progress has been made beyond the Dirichlet process is

due to the absence of a sampling algorithm. It is not possible to integrate out the

random distribution function and hence it is necessary to use one of the non–marginal

algorithms. The algorithm described in Walker (2007) is actually no more complicated

for general stick–breaking processes than it is for the Dirichlet process.

The details are given in Walker (2007) but we briefly describe the basis for the

algorithm. The joint density

fv,θ(y, u) =
∞∑

j=1

1(u < wj) K(y; θj)

is the starting point. Given u, the number of mixtures is finite, the indices being

Au = {k : wk > u}. One has

fv,θ(y|u) = N−1
u

∑
j∈Au

K(y; θj),

and the size of Au is Nu =
∑∞

j=1 1(wj > u).

One can then introduce a further latent variable which indicates which of these

finite number of mixtures provides the observation to give the joint density

fv,θ(y, u, d) = 1(u < wd) K(y; θd).

Hence, a complete likelihood function for (v, θ) is available as a simple product of

terms and, crucially, the choice of d is finite. Without the u the choice would be

infinite and so would lead to difficulties in the implementation of a Markov chain

Monte Carlo algorithm.

Now that it is possible to work with general stick–breaking processes it is in-

cumbent to understand how to choose the distribution of the {vj}. We want to use

vj ∼ beta(aj, bj) independently and so it is a matter of selecting the {aj, bj}. For P

to be a proper random distribution function it is sufficient that
∞∑

j=1

log(1 + aj/bj) = +∞;
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see Ishwaran and James (2001).

3. PRIOR SETTING.

It is a difficult task to know exactly how to determine values for the {aj, bj}. Our

idea is to understand the weights via a Bayesian parametric model; say w̃j(φ) and

with a probability on φ, say π(φ). We then compute

ξj = E(w̃j(φ)) =

∫
w̃j(φ) π(dφ).

We will now ensure that our weights for the mixture model are such that E(wj) =

E(w̃j) hence providing a motivation for the selection of the {aj, bj}. If we write

τj = aj/(aj + bj) then we require the {τj} to satisfy τ1 = ξ1 and for j > 1

τj

∏

l<j

(1− τl) = ξj.

The result is that we set, for j > 1,

τj =

(
1−

∑

l<j

ξl

)−1

ξj.

It is clear that τj < 1 since ξj < 1−∑
l<j ξl which follows since

∑
l ξl = 1. It is easy

to check that in this way we satisfy the condition

∞∑
j=1

log(1 + aj/bj) = +∞.

For aj/bj = τj/(1− τj) and log(1 + τj/(1− τj)) = − log(1− τj) so

M∑
j=1

− log(1− τj) = − log
M∏

j=1

(1− τj) = − log

(
1−

M∑
j=1

ξj

)
→ +∞.

Re–parameterizing aj = cjτj and bj = cj(1− τj), we need to be able to specify the

{cj}. We look at E(w2
j ) and this is given, after some routine algebra, by (Ew2

j ) = ξj Hj,

where

Hj =
1 + cjτj

1 + cj

∏

l<j

(
1− clτl

1 + cl

)
.

Hence, writing cl/(1 + cl) = ql, we have

Var(wj) = ξj [(1− qj) + qjτj]
∏

l<j

(1− qlτl)− ξ2
j .
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This gives us the means to control the variance of the {wj} and hence determine how

close in probability the weights are to the {ξj}. For a particular choice of variances,

we can select the {qj} to satisfy

qj = (1− τj)
−1

[
1− Var(wj) + ξ2

j

ξj

∏
l<j(1− qlτl)

]
.

It is not possible to take arbitrary parametric Vj = Var(wj(φ)) in order to establish

the {qj}, since there are some constraints. Clearly, since 0 < qj < 1 we need

0 < 1− Vj + ξ2
j

ξj

∏
l<j(1− qlτl)

< 1− τj

and hence we need

τjCj < Vj < Cj,

where Cj = ξj

∏
l<j(1− qlτl)− ξ2

j .

One particular idea, which we shall rely on for the numerical illustrations, is to

take large variances in an attempt to be non–informative. This amounts to choosing

qj to be small, but not zero, and hence we take cj = ε, for some small ε, for all j.

This follows since Var(wj) < ξj(1− ξj) and we obtain this limit as qj ↓ 0.

Example 1. The example we will consider first is a geometric–beta model where

w̃j(φ) = φ(1− φ)j−1, so for φ ∼ beta(a, b) we have

ξj = E(w̃j) =
Γ(a + b) Γ(a + 1) Γ(b + j − 1)

Γ(a) Γ(b) Γ(a + b + j)
.

In the special case that a = b = 1 then ξj = 1/[j(j + 1)]. This is an interesting

example, since we match with the Dirichlet process expected weights, which are

E(wj) = ρ(1− ρ)j−1,

with ρ = 1/(1 + ϑ), when we take φ = ρ a.s.

Example 2. Here we consider a Poisson–gamma model so that, for j ≥ 1,

w̃j(φ) =
φj−1

(j − 1)!
e−φ
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and φ ∼ Ga(a, b). Hence,

ξj = E(w̃j) =
ba

Γ(a) (j − 1)!

∫
φj−1e−φφa−1 e−bφ dφ =

ba Γ(a + j − 1)

(j − 1)! Γ(a) (b + 1)a+j−1
.

In the special case that a = b = 1 we have ξj = 2−j and then it is easy to see that

τj = 1/2 for all j. Hence, taking cj = ε for all j, this results in aj = bj = ε/2, which

fits neither the Dirichlet process nor the two–parameter Pitman–Yor process (Pitman

and Yor, 1996), which has aj = 1− σ and bj = ϑ + jσ for some σ < 1.

Example 3. Another possibility is to match the expected weights with those that

are commonly employed in a normal mixture model: that is given a random integer

M ≥ 1, the mixture model has M components with weights {w̃1M , . . . , w̃MM}. Hence,

ξj =
∑
M≥j

E(w̃jM) P (M).

For example, if E(w̃jM) = 1/M and P (M) = e−ψψM−1/(M − 1)! then

ξj = ψ−1 e−ψ
∑
M≥j

ψM/M ! = ψ−1S(j; ψ),

where S(j; ψ) is the probability a Poisson random variable with parameter ψ is greater

than or equal to j.

4. SIMULATION ALGORITHM

We briefly describe the simulation algorithm, but only provide the sampling pro-

cedure without derivation since this has appeared elsewhere (Kalli, Griffin and Walker

2008). We sample one of the full conditionals in a different and more efficient manner

than that in Walker (2007). We sample π(v, u| · · · ) as a block and this involves sam-

pling π(v| · · · exclude u) and then π(u|v, · · · ), where π(v| · · · exclude u) is obtained

by integrating out u from π(v, u| · · · ). The distribution π(v| · · · exclude u) will be

the standard full conditional for a stick-breaking process (see Ishwaran and James

(2001)). Standard MCMC theory on blocking suggests that this should lead to a

more efficient sampler.

Recall that we have the model

f(y) =
∞∑

j=1

wj K(y; θj),
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where the θj are independent and identically distributed from p0, the {wj} have a

stick–breaking process based on the Dirichlet process, described in Section 2.

The variables that need to be sampled at each sweep of a Gibbs sampler are

{(θj, vj), j = 1, 2, . . . ; (di, ui), i = 1, . . . , n}.

1. π(θj| · · · ) ∝ p0(θj)
∏

di=j K(yi; θj).

2. π(vj| · · · exclude u) ∝ beta(vj; aj, bj), where

aj = 1 +
n∑

i=1

1(di = j)

and

bj = ϑ +
n∑

i=1

1(di > j).

3. π(ui| · · · ) ∝ 1(0 < ui < wdi
).

4. P(di = k| · · · ) ∝ 1(k : wk > ui) K(yi; θk).

Obviously, we can not sample all of the (θj, vj). But it is not required to in order

to proceed with the chain. We only need to sample up to the integer N for which

we have found all the appropriate wk in order to do step 4 exactly. Since the weights

sum to 1 if we find Ni such that
∑Ni

k=1 wk > 1 − ui then it is not possible for any of

the wk, for k > Ni, to be greater than ui.

There are some important points to make here. First, it is a trivial extension to

consider more general stick–breaking processes for which vj ∼ beta(αj, βj) indepen-

dently. Then, in this case, we would have

aj → aj +
n∑

i=1

1(di = j)

and

bj → bj +
n∑

i=1

1(di > j).

This easy extension to more general priors is not a feature of alternative sampling

algorithms. Secondly, the algorithm is remarkably simple to implement; all full con-

ditionals are standard.
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5. NUMERICAL ILLUSTRATIONS.

First, in Section 5.1, we will look at the effect different choices of (a, b, ε), for the

Poisson–gamma and geometric–beta models, have on the mean E(wj) and variance

Var(wj) of the stick-breaking weights.

Then, in Section 5.2, we consider the effect of (a, b, ε) on the density estimate of

f(y). In these illustration, plots of the predictive density f(y) are provided. The data

sets we chose for this study are:

(1) the galaxy data set, which consists of the velocities of 82 distant galaxies diverging

from our own galaxy. This is the most commonly used data set in density

estimation studies see Escobar and West (1995) and Green and Richardson

(2001).

(2) the S&P 500 index daily returns data set (as described in Section 5.2)

We chose the galaxy data set as it has a small sample size yet is multi–modal. The

S&P 500 data set, on the other hand, is a large data set and is uni–modal; thus it

would be interesting to see how (a, b, ε) effect density estimation in these cases. We

will produce plots of the predictive density for both data sets and for the S&P 500

data set we provide additional tables of the median, skewness and kurtosis of the

predictive density which we compare with the values of the empirical distribution.

For the analysis of both data sets we use the normal kernel K(y|θ) with com-

ponents θ = (µ, λ), and P0(µ, λ) = N(µ|ν, ξ2) × G(λ|γ, β); where G(γ, β) denotes

the gamma distribution. Hence, for the parameters of our MDP mixture we take

ν = median(y), ξ = R, γ = 2, and β = 1 and R = range of the data, which is similar

to the Escobar and West (1995) choice. We use the geometric-beta model setting

exclusively in this sub–section.

5.1 Prior means and variance of weights

Figure 1 displays the effect of changes in b under the geometric-beta prior setting,

while (a, ε) are kept constant. We begin with b = 2 and double it each time to 4, 8,

and 16. In the case when a = 2 and ε = 2, we observe that the smaller the value of

b, the higher the starting values of E(wj) and Var(wj). Also, at smaller values of b

the decay in both mean and variance of the stick-breaking weights is much sharper

8



than at higher values. This means that we have more significant weights the larger

the value of b is. Once we increase a to 8, the only change we observe is the increase

in the starting value of E(wj); the change in Var(wj is marginal, and the decay is

exactly the same as in the case of a = 2 and ε = 2.

Figure 2 displays the effect of changes in b, under the Poisson-gamma prior setting,

while (a, ε) are kept constant. Concentrating on E(wj), we see that the effect of an

increase in b has the opposite effect to that of the geometric-beta prior setting; that

is the starting value of E(wj) increases as b increases. The decay is also much sharper

the bigger b gets, which leads to the conclusion that in the Poisson-gamma case we

get more significant weights in terms of E(wj) when b is kept small. The same is

valid when we increase a to 8. What we would like to comment on in this case is the

change in behavior of the {E(wj)}. They do not always decay as was the case with

a = 2; As b gets bigger, the first few values of the {E(wj)} sequence increase and

then decrease. Moving to the {Var(wj)} sequence, the effect of an increase in b is the

same regardless the choice of a. The effect is also the same as with the geometric-beta

prior setting, the sequence decays much sharply the bigger b is, resulting in only the

first few Var(wj) to be significant. Finally the increase of a to 8 has the same effect

on Var(wj) as that of E(wj).

Figure 3 studies the effect of ε on {Var(wj)} under both prior settings. As ε

gets larger, we see that Var(wj) gets smaller. The point to make is that under the

Poisson-gamma model the decay in the variance sequence is less smooth than that of

the geometric-beta model. In both cases we have more significant variance values the

smaller ε is.

Parameter ε has no effect on E(wj), only on Var(wj). To study the effect in

relation to changes in (a, b) we compared the first four values of the aforementioned

moments when ε = 4 and ε = 16. The results are shown in Tables 1and 2. Form these

tables we can see that as a increases and b decreases the decay in all three moments

slows down. The Var(wj) increases the closer the values of these parameters are; for

instance, a quick look at table 1 shows that when (a = 2, b = 8), Var(w1) = 0.032

and when (a = 4, b = 6), Var(w1) = 0.048. Keeping b constant and increasing a slows

the decay; whereas keeping a constant and increasing b speeds the decay. The effect

of ε then is rather obvious; the smaller it is the greater Var(wj).
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5.2 Density estimation

Figure 4 studies the effect of changes in b, under the geometric-beta prior setting,

on the density estimate of f(y). The plots of the predictive density are produced for

the galaxy and S&P 500 data sets. The effect of changes in b is more evident on the

galaxy data set. As (a, ε) are kept constant while b increases, the number of modes

of f̂(y) decreases. We started out with 6 modes at b = 4 and dropped to 3 modes

at b = 20. Clearly the value of b effects the clustering structure, as it impacts on

the variability of the stick-breaking weights. The effect of b is not that evident when

we look at the estimated density of the S&P 500 data set. However, in this case we

are not looking at the number of modes, we are interested in the tail behavior and

skewness of of f̂(y). Daily stock index returns are characterized by heavy/fat tails

and slight negative skewness and we would like to see if our choice of prior will result

in capturing these characteristics. Figure 8 shows the effect of b by looking at the

tail of f̂(y) on the log scale. Again, we see that the smaller b is the more the clusters

around the tail and the heavier the tail is; a look at the kurtosis estimates of Table

3 confirms this. The skewness estimate that seems closer to that of the data set is

that obtained when b = 12. Again, we see that as b increases, the skewness estimate

increases.

Figure 5 studies the effect of changes in a under the geometric-beta prior setting,

on f̂(y). The plots of the predictive density are produced for the galaxy and the S&P

500 data sets. From the galaxy data we can see that a has less of an effect on the

number of modes of f̂(y) than b. It does effect the clustering structure but not as

much as b does. What is more, it has the opposite effect; that is as a increases the

number of modes increases. The effect is less abrupt as we go from 4 modes when

a = 4 to 5 modes when a = 20. The S&P 500 plot of 5 do not actually say a lot;

however the tail- effect of a can been seen in Figure 7 where we plot the estimated

density on the log scale. Clearly the clustering at the tail increases as a increases, but

the tails are not as heavy as those of Figure 8, where we study the effect of increases

in b. Table 4 confirms this tail observation, the kurtosis estimates decrease as a

increases. Regarding the skewness estimates, those tend to oscillate from negative to

positive.

Figure 6 studies the effect of changes in ε under the geometric-beta prior setting.
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The plots of the predictive density are produced for the galaxy and the S&P 500 data

sets. The effect ε has on f̂(y) is similar to that of a, however it is more obvious.

Looking at the plots of the galaxy data, we see that the number of modes increases

as ε increases, from 3 modes to 5, but up to a point. As ε jumps from 10 to 20 these

modes appear to decrease again from 5 to 4. For the S&P 500 data it would be best

to look at Figure 9, showing the clustering effect at the tail, on log scale. We appear

to have more clusters at the tail as ε increases; an effect similar to that of the galaxy

data set. The tails are more heavy than those of Figure 7, but they appear less heavy

than those of Figure 8 when in fact they are not as the kurtosis estimates in Table 5

increase as ε increases. This is probably due to the different normals that are formed

within our mixture. The skewness increases with ε, and exhibits the same behavior

as the modes; that is it starts to decrease at some point. Although some of these

figures are not close to the statistics obtained form the data set, they hint to same

conclusion; The choice of prior matters and does have an effect on the end result,

therefore it is preferable to incorporate this knowledge in the prior from the start.

6. DISCUSSION.

The class of mixtures of stick–breaking processes is rich and extends beyond the

well known Dirichlet process mixture model. Fortunately, we can now provide an

algorithm which covers all these models and which are all one and the same. In this

respect the Dirichlet case is no longer special. It does have special mathematical

properties, but none of these are persuasive from a modeling perspective. Now there

is the real possibility of choosing a model based on qualitative prior information and

this we suggest is best done by matching the means of the random weights with those

which arise from some simple, and hence well understood, parametric model. A bound

for the variances has been given and hence it is possible to allow arbitrary uncertainty

within the constraints. One idea is to allow for maximum variance possible, which

is in keeping with the philosophy of a nonparametric model. We have shown using

Poisson–gamma and geometric–beta models that a rich variety of mean weights can

be obtained.

The prior has been seen to have an important effect on the results (e.g. density

estimation) and so it is incumbent on Bayesian nonparametric modelers to incorporate

knowledge in the right way, without recourse to restrictions (i.e. the Dirichlet model)
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or guessing appropriate specifications in general stick–breaking processes.
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Table 1: Effect of parameter ε on E(w2
j ) and V ar(wj)

ε = 4

(a = 2, b = 8) (a = 3, b = 7) (a = 4, b = 6)

E(w2
j )

j = 1 0.6720 0.5320 0.4080
j = 2 0.0409 0.0596 0.0722
j = 3 0.0040 0.0092 0.0159
j = 4 0.0005 0.0018 0.0042

V(wj)

j = 1 0.0320 0.0420 0.0480
j = 2 0.0197 0.0231 0.0246
j = 3 0.0027 0.0052 0.0077
j = 4 0.0004 0.0012 0.0024

Table 2: Effect of parameter ε on E(w2
j ) and V ar(wj)

ε = 16

(a = 2, b = 8) (a = 3, b = 7) (a = 4, b = 6)

E(w2
j )

j = 1 0.6494 0.5024 0.3741
j = 2 0.0267 0.0429 0.0544
j = 3 0.0019 0.0053 0.0102
j = 4 0.0002 0.0009 0.0023

V(wj)

j = 1 0.0094 0.0124 0.0141
j = 2 0.0055 0.0064 0.0070
j = 3 0.0006 0.0013 0.0019
j = 4 0.0001 0.0003 0.0006
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Table 3: S&P 500 geometric-beta model - changes in b

Actual (2, 4, 10) (2, 8, 10) (2, 12, 10) (2,20,10)

median 0.0440 0.0444 0.0419 0.0379 0.0307

st.dev 1.1303 1.5606 1.3177 1.3769 1.1801

skewness -4.1290 7.4382 -5.0690 -4.8293 -3.6073

kurtosis 90.3710 333.9853 247.0066 186.3995 118.8424

Table 4: S&P 500 geometric-beta model - changes in a

Actual (4, 8, 4) (8, 8, 4) (12, 8, 4) (20,8,4)

median 0.0440 0.0502 0.0439 0.0371 0.0424

st.dev 1.1303 1.6502 1.8182 1.4871 1.7829

skewness -4.1290 -16.8005 0.1554 -4.6809 0.6542

kurtosis 90.3710 801.0859 825.1846 306.4145 264.5234

Table 5: S&P 500 geometric-beta model - changes in ε

Actual (4, 8, 0.1) (4, 8, 1) (4, 810) (4,8,20)

median 0.0440 0.0392 0.0548 0.0525 0.0507

st.dev 1.1303 1.1306 1.1791 1.6506 1.3879

skewness -4.1290 -3.9127 5.8531 9.7297 2.1671

kurtosis 90.3710 84.116 359.2197 782.5149 440.7116
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Figure 1: Effects of changes in b on E(wj) and V ar(wj) under the geometric-beta prior

setting. Graphs on left are for a = 2, ε = 2 and graphs on right are for a = 8, ε = 2.

For b = 2 (blue), for b = 4 (cyan), for b = 8 (green) and for b = 16 (magenta)
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Figure 2: Effects of changes in b on E(wj) and V ar(wj) under the poisson-gamma

prior setting. Graphs on left are for a = 2 ε = 2 and graphs on right are for a = 8, ε =

2. For b = 2 (blue), for b = 4 (cyan), for b = 8 (green) and for b = 16 (magenta)
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Figure 3: Effects of changes in ε on V ar(wj) under the geometric-beta prior setting

(left) and poisson-gamma prior setting (right). For both settings a = 4 and b = 8.

For ε = 0.1 (blue), for ε = 1 (cyan), for ε = 10 (green) and for ε = 100 (magenta)
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Figure 4: Effects of changes in b on f(y) under the geometric-beta prior setting, using

the G0 prior of Escobar and West (1995). The values of a, and, ε are kept constant

at 2, and, 10 respectively. For b = 4 (blue), for b = 8 (cyan), for b = 12 (green) and

for b = 20 (red)
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Figure 5: Effects of changes in a on f(y) under the geometric-beta prior setting, using

the G0 prior of Escobar and West (1995). The values of b, and, ε are kept constant

at 8, and, 4 respectively. For a = 4 (blue), for a = 8 (cyan), for a = 12 (green) and

for a = 20 (red)
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Figure 6: Effects of changes in c on f(y) under the geometric-beta prior setting, using

the G0 prior of Escobar and West (1995). The values of a, and, b are kept constant

at 4, and, 8 respectively. For ε = 0.1 (blue), for ε = 1 (cyan), for ε = 10 (green) and

for ε = 20 (red)
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The plots of thee effect of changes in (a, b, ε), under the geometric beta prior

setting, on the tail of the S&P 500 estimated density, f̂(y) are on a log scale. (Figures

7, 8 and 9)
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Figure 7: S&P 500: tails as a changes - geometric–beta model
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Figure 8: S&P 500: tails as b changes - geometric–beta model
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Figure 9: S&P 500: tails as ε changes - geometric–beta model
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