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SUMMARY

This paper considers the stochastic stability and stabilization of discrete-time singular Markovian jump
systems with partially unknown transition probabilities. Firstly, a set of necessary and sufficient conditions
for the stochastic stability is proposed in terms of LMIs, then a set of sufficient conditions is proposed for
the design of a state feedback controller to guarantee that the corresponding closed-loop systems are regular,
causal, and stochastically stable by employing the LMI technique. Finally, some examples are provided to
demonstrate the effectiveness of the proposed approaches. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Singular systems, which are also referred to as descriptor systems, generalized state-space systems,
or differential-algebraic systems, provide convenient and natural representations of practical sys-
tems, for example, economic systems, power systems, and circuits systems. Control of singular
systems has been an attractive field in control theory and applications [1, 2]. Stability of singular sys-
tems is as important as that of normal systems. However, in the singular system, not only asymptotic
stability has to be considered but also the regularity and non-impulsiveness\causality are needed to
be addressed. Many results have been reported on control for the singular systems [1-6].

In recent years, considerable attention has been paid to Markovian jump systems. It is well-known
that the Markovian jump systems are an important class of stochastic systems, which are popular
in modeling many practical systems that may experience random abrupt changes in their structures
and parameters [7—14]. Singular systems with Markovian jump for the discrete-time case have been
studied in [3]. Where the problems of stability, state feedback control and static output feedback
control for a class of discrete-time singular Markovian jump systems with completely known transi-
tion probabilities are investigated. New necessary and sufficient conditions guaranteeing the systems
to be regular, causal, and stochastically stable are proposed in terms of a set of coupled strict LMIs
in [3].

In fact, lots of ideal knowledge for the transition probabilities are expected to predigest system
analysis. However, to obtain such available knowledge of the transition probabilities is actually prob-
lematic, which may be very expensive. For example, in some communication networks, either the
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2 J. WANG ET AL.

variation of delays or the packet dropouts can be vague and random in different running periods of
networks. It is very hard or costly to obtain all or even part of the elements in the desired transition
probabilities matrix. The same problems may appear in other practical jump systems. Therefore, it
is meaningful and necessary to further study more general jump systems with partially unknown
transition probabilities from control perspectives, rather than having a large complexity to measure
or estimate all the transition probabilities. So far, some methods have been developed to deal with
the problem of partially unknown transition probabilities [15-20]. The stability and stabilization
problems of a class of continuous-time and discrete-time Markovian jump linear systems with par-
tially unknown transition probabilities are investigated in [16]. The partially mode-dependent Hoo
filtering problem for discrete-time Markovian jump systems with partially unknown transition prob-
abilities via different techniques is concerned in [17], where the unknown elements are estimated. It
should be noted that only sufficient conditions are given in [16], while the necessary and sufficient
conditions for the stability analysis and stabilization synthesis problems are firstly derived for both
continuous-time and discrete-time cases in [15]. However, up to now, necessary and sufficient con-
ditions on the stochastic stability for discrete-time singular Markovian jump systems with partially
unknown transition probabilities have not been fully investigated.

In this paper, the problem of stochastic stability and stabilization of discrete-time singular
Markovian jumping systems with partially unknown transition probabilities is considered. Firstly,
by the convex combination, a set of necessary and sufficient conditions for the stochastic stability
is proposed in terms of LMIs, such that the stability criterion developed in Theorem 3.1 is less
conservative than the one in Theorem 1 in [18]. Then sufficient conditions are proposed for the
design of a state feedback controller, which guarantees that the closed-loop systems with partially
unknown transition probabilities are regular, causal, and stochastically stable by employing the
LMI technique.

The remainder of this paper is organized as follows. In Section 2, the considered discrete-time sin-
gular Markovian jump systems are formulated, some definitions and lemmas are stated. In Section 3,
necessary and sufficient conditions on the stochastic stability of the unforced systems with partially
unknown transition probabilities are given, and sufficient conditions on the stochastic stability by
LMIs are developed. In Section 4, sufficient conditions on the stochastic stabilization are given to
design a state feedback controller by LMIs. Some numerical examples are provided to illustrate the
validity and the applicability of the developed results in Section 5. Section 6 concludes the paper.

Notation. The notation used in this technical note is standard. R” stands for the n#-dimensional
Euclidean space, and R™*” represents the set of all m X n real matrices. The superscript ‘T’ stands
for matrix transposition. (€2, F, P) is the probability space, where 2 represents the sample space,
F is the o—algebra of subsets of the sample space, and P is the probability measure on F. N*
represents the set of positive integers. ||A|; = max Y ;_; |aij| and [|A]c = max Z'}Zl |a;j|

1<j<n 1<i<n
represent the induced Matrix 1-Norm and Matrix co-Norm, respectively. The notation P > 0 (P =
0) implies that P is a real symmetric and positive definite (semi-positive definite) matrix. Matrices,
if their dimensions are not explicitly stated, are assumed to be compatible for algebraic operations.
For simplicity, sometimes A4;, B;, and K; are used to denote A(r;), B(r;), and K(r;), respectively.

2. PROBLEM FORMULATION AND PRELIMINARIES
Fix the probability space (2, F, P) and consider the discrete-time singular Markovian jump systems
described by
Ex(k +1) = A(rp)x(k) + B(rp)u(k) (1)

where x(k) € R” is the system state; u(k) € R™ is the control input; The matrix £ € R™*"
may be singular, with rank(E) = r < n; A(r;) and B(r;) are known real constant matri-
ces with appropriate dimensions. {ryp,k = 0} is the jumping process. {rr} is a discrete-time
homogeneous Markovian process with right discrete trajectories, which takes values in a finite set
£ =1{1,2,..., N}, with transition probability matrix 7 = [m;;]nyxn, and 7;; = 0 is defined as

JTij=PV{Vk+1=j|Vk=i}

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2014)
DOI: 10.1002/rnc



STOCHASTIC STABILITY AND STABILIZATION 3

where Zjv:l m;,; = 1, and the Markovian process transition probability matrix 7 is

11 12 ccc TIN
21 722 °°° T2N

JTN1 TN2 ** TINN

In addition, the transition probabilities of the jumping process are considered to be partially
accessed in this paper, that is, some elements in matrix 7 are assumed to be unknown. For
instance, for the systems (1) with four operation modes, the transition probability matrix 7 may be
expressed as

11 12 13 14
? ? ? 24

= 2
31 ? 33 ? ( )
? 0?7 7 ?
where "?" represents the inaccessible elements. For notational clarity, Vi € £, we denote { =
£, UL, where
N ;
L, ={j :miisknown}
i A .
O, =4{j i isunknown}
Moreover, if Efc # @, it is further described as Kfc = {Ki,l(é, .. ,/cfn}, V1 < m < N, where

k. € NT represent the mth known element with the index «?, in the ith row of matrix 7. Because
SN mij=1landY, i wip + Y e 7 = 1, we denot
j=17 ) = Land 2_; epi T, jy jaetl, i, 2 = 1, We denote

hi = Z Tij, = 1 — E i, ) 3)

J2€lik J1€bic
; i i
where j; € £}, j» € £},

Definition 2.1
I. The discrete-time singular Markovian jump systems in (1) with (k) = 0 are said to be regular
if, for each i € £, det(zE — A;) is not identically zero.
II. The discrete-time singular Markovian jump systems in (1) with u (k) = 0 are said to be causal
if, for each i € £, deg(det(z E — A;)) = rank(E).
III. The discrete-time singular Markovian jump systems in (1) with u(k) = 0 are said to be
stochastically stable if for any xo € R” and r¢ € £, there exists a scalar M (xo, ro) such that

o0
E{Y [ x(k) 117 xo.70 p < M(xo0.70)
k=0

where x (k, xg, ro) denotes the solution to the systems (1) at time k under the initial conditions
Xo and ry.

IV. The discrete-time singular Markovian jump systems in (1) with u(k) = O are said to be
stochastically admissible if they are regular, causal and stochastically stable.

Definition 2.2
For A; € R™", and Y 7_, o; = 1, where o; > 0 are scalars, fori € {1,2,...,n}, Y i_, a;A; is
said to be convex combination of A;.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2014)
DOI: 10.1002/rnc



4 J. WANG ET AL.

Lemma 2.1 ([15])

Consider the discrete-time Markovian jump systems x (k + 1) = A(r¢)x (k) with partially unknown
transition probabilities. The corresponding systems are stochastically stable if and only if there
exists a set of matrices P; > 0, i € £, such that

Al-T Zniaijfl'i_ 1— Zni’jl Py, | Ai — P; <0, jzeﬁim
jreti jreti
Lemma 2.2 ([3])
The discrete-time Markovian jump singular systems (1) with completely known transition

probabilities are stochastically admissible if and only if there exist a set of positive definite matrices
P;,i € £, and a symmetric and nonsingular matrix ®, satisfying

N
AT Y mijPj—RTOR | 4 —ETP,E <0
ji=1

Define R € R™*" as the matrix with the properties of ET RT = 0 and rank(R) = n — r, which
are used in all the subsequent lemmas and theorems.

Lemma 2.3 ([3])
Let L; be nonsingular matrices with appropriate dimensions, for i € £. Then, the inequalities

AT (X)_y iy P — RTOR) A; = ET PiE < 0 hold i for

I; ATL; —LT
<0
LT Ai = Li YjepmijPy—Li— LT

where IT; = ATL; + LT A; — ATRT®RA; — ET P,E.

Lemma 2.4
Let A be a symmetric and positive definite matrix, and lim0||X l1 = 0. Then, we have
Xij—>
lim XTAX =0.
IXl1—0
Proof

From A > 0, it is easy to see that there exists a nonsingular matrix C such that 4 = CT C. Denote
B=XTAx =XxTcTcx = (cx)Tcx.
It is easy to see that the following matrix norm inequality holds

0<[CX[li < [ICl1lIX

Applying lim . X =0,

1
X1 =

0< lim [CX[; < lim [C[[|X[l; =0,
1X1h—0 IX 1 —0

which implies lim ||CX|; = 0. Furthermore,
IXli—~o

0< lim [Bli= lim [XTAX|;< lim [CX|ellCX]}x
1X -0 1Xlh—0 1Xlh—o0

Thus, lim |[B]|; =0, whichimplies lim b;; =0
IXli—o

Ixli—o
Hence, theresult  lim X7 AX = 0 follows. O
Xl —o0
Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2014)
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STOCHASTIC STABILITY AND STABILIZATION 5

3. STABILITY ANALYSIS

In this section, necessary and sufficient conditions on the stochastic stability of the unforced systems
(1) with partially unknown transition probabilities are to be presented.

Theorem 3.1

The discrete-time singular Markovian jump systems (1) with partially unknown transition
probabilities are stochastically admissible if and only if there exist a set of positive definite matrices
P;,i € £, a symmetric and nonsingular matrix ®, satisfying

AT (P; —R"®R) A; —ETP,E <0 )

where Pi =3 o mijy Pjy +hi Py hi =30 i Tijy =1 =32 cqi Ti gy

Proof
Sufficiency. At first, we note that if £/ # @, then )" jreei. Wi jy <1, 1tmeans that the elements in
the i th row are partially known.

If the inequalities in (4) hold, then

S b (AT (P — RTOR) 4 — ETP,E) <0 5)
Joell, a Zjl et T
2 i Zn.i,jzi S AT > mipy Py +hiPpy —RTOR | 4 —ETPE| <0 (6)
J2€ll Jrebie Th jret
Ti,j T
> o | Yo min P+ (1= mig | P
Jaell Jreb T jreli jrel
~RTOR | A4 —ETPE| <0
.
AT Y mp P+ 1= mi | D 1—2.1—’]2»71--10"2 —RTOR| A;—ETP,E <0
jret Jjreti J2 €l Jrebic Tha
AT 7P+ Y. mipPp—RTOR| A —ETPE <0
jr€bi J2€lhe
N
AT mijPj—RTO®R | 4, — ETPE <0 (7)
Jjel
where 0 < 1_# <1,Vj, e, and Y et T,

Z./'leéf( iy v I_Z/’lea} iy
It is clear that the discrete-time singular Markovian jump systems (1) are stochastically admissible
by applying Lemma 2.2.

Necessity. Suppose that the discrete-time singular Markovian jump systems (1) are stochastically
admissible. Then, we select two nonsingular matrices M and N such that

10
E=M|:OO}N ®)

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2014)
DOI: 10.1002/rnc



6 J. WANG ET AL.
Ay As;

A =M N 9

! |:A3i A4i:| ©)

The regularity and causality of the systems (1) imply that A4; are nonsingular for any i € £.
Then, choose nonsingular matrices

I —AT. AT
Q= [o 3’1 4 } (10)
and let N; = N7IQT Tt can be verified that
E:M_IENiz[ég] (11)
A= M7 A, = [AO” jﬂ (12)
1

where Ay; = Ay — Az A7 Asi.
It can be seen that the stochastic stability of the discrete-time singular Markovian jump systems (1)
implies that the discrete Markovian jump systems

n(k +1) = Ayn(k) (13)

are stochastically stable. Thus, there exist matrices 13,- > 0,7 € £, such that

AT ?A,-O 1. pT ﬁ,’O r 0 -
Af {0 M:|A, E [o i | E Al 22[0 Ay |

_ A{,-Fif:liA_ISi I‘IIT,-FiAzi -0
ALP Ay AT Ay — AAT Ay,

(14)

= X = [XI.XT]". Then X,E = [0.0] XoA;N; = [0, Aq]. Let P =

Let M™
{1(’) 01:|XR ZX,. ® =2)Z"TZ" . Then

AN Zn,, _RTOR | A, —ETPE|N: <0 (15)
jet

e, +a,>. e Tijy < 1, which means that the elements in the i th row are partially known.
Note that 2ie ¢ Ti.jy < 1. The inequalities (15) can be rewritten as

AT ~
N AT > mp P+ Y mipPyp—RTOR| A —ETPE|N; <0

1

et 2l
where the elements 7; ;,, j1 € £% are all known and 7; j,, j» € £}, are all unknown.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2014)
DOI: 10.1002/rnc



STOCHASTIC STABILITY AND STABILIZATION 7

N AT D> P+ (1= D mn | DD L

: : < 1= i T
Jretl Jretl ol Jrebe T

—RTOR| 4, —ETP,E|N; <0

o T i, ja T

Ni > =S AT Y m P+ | 1= > mig | Pa,
g J1€lic "1 g i
J2€l J1€bi J1€bic

—RTOR | 4; —ETPE||N; <0

~ T fr,g_,-z T
Ni (ijeéém Y o m (Ai (Z e Wi Pjy + hi Py
J1€

) (16)
—RchR) A; — ETP,E) ) N <0

Therefore, the inequalities (16) are equivalent to the inequalities (4). This completes the proof. O

Remark 3.1
If ¢, = @, then ) e Wi jy = 1foreveryi € £.1t means that the elements in every i th row are
all known.

h,'= Z JTi,j2=1— Z JTi,jIZO

jaelh jr1eti
So in this case, Theorem 3.1 is degenerated to Lemma 2.2.

Remark 3.2

Necessary and sufficient conditions of the stochastic stability admissible for the systems (1) have
been presented earlier. However, Theorem 1 in [18] is only a sufficient condition. So the stability
admissible criterion developed in Theorem 3.1 is less conservative than that in Theorem 1 in [18].
It is worth to pointing out that the following Theorem is to be derived by Theorem 3.1, which will
be used to derive the main results of next section.

Theorem 3.2
Let E; and E, be the given appropriate matrices, the systems (1) with partially unknown transition
probabilities and u(k) = 0 are regular, causal, and stochastically stable if there exist symmetric and

positive definite matrices Y;, ¥ and nonsingular matrices G; such that the following set of LMIs
holds for each i € .

i GIrar -G, o

A;iG;i -Gl —-G; -G wT | <0 (17)
0 W; —0;
where B; = GIAT + A4,Gi — ETEG, — GI'ETE, — EITRA;G; — GI'ATRTE,
T
+ETY;E\ + EIVE,, W, = [JauGl . ym2Gl .-+ 7 Gl . ViG], ©; =
diag[Y1 ,Yz,--- ,le ,sz].
Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2014)
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8 J. WANG ET AL.

Proof
By applying Lemma 2.3 to Theorem 3.1 for each i € £, it follows that inequalities (4) hold if

I1; AT, — LT
T 5 r| <9 (18)

L;Ai—L; Pi—L;—1L;
where IT; = ATL; + LT A; — ATRT®RA; —ETP,E,P; =Y
Pre-multiplying and post-multiplying (18) by both diag [Li_l Li_l]T and its transpose, it

follows that
T
L7' 0 I; AL, — LT L7' 0 0
— <
0 L;! LfA;—L; Pi—L;— LT 0 Lj!

i GIar —¢;
T AT (5 r | < 0 19)
A;Gi — G; Gi (PKi-f—hinz)Gi—Gi—Gi

1

ned. Wiy Pjy + hiPj,.

where L7! = G;, ¥; = GI'AT + 4,G; — GTATRTV"'RA;G; — GTETP,EG;, P; =
Zjleﬁf( T[isjl le'
Let Yl-_1 = P; , by using the Schur complement lemma, it is easy to show that
T GIrar -G; o
A;G; -Gl —-G;-GI' wT | <0 (20)
0 Wi —0;
where 3; = GT AT + 4;G; — GTATRTW™'RA; G, —GTETY'EG;,

T .
w/lz[\/n_llGlT»\/n_ﬂGlT»”"mGtT’\/EGlT] 7®i=dlag[Y1 ’YZ"”’YJII’YJIZ]'
According to lemma 2.5, choose the appropriate matrices £ and E, such that

0<(GIE" —E[Y;) YT (EG; — Y E1)

21
=G ETY,'EG; — ETEG, —GTETE, + ETY,E, @b
0< (G,.T ATRT — T \11) U~ (RA; G; — WE,) o)
=Gl ATRTW'RA;G; — ETRA,G; — G ATRTE, + ETVE,
It is easy to show that (21) and (22) can be rewritten as
~GIETY'EG; < —ETEG;, —GI'ETE, + ETYE, (23)
—~GIATRTYU™'RA;G; < —ETRA;G; — G ATRTE, + ETVE, (24)
From (20), (23), and (24),
;i GFal —G; o E; GFaT —G; o
AiG; —GI -G;-GI wT | <| 4G, -Gl -G, -GcI wT (25)
0 W; —0; 0 W; —0;

where 3, = GT AT + 4;G; — GTAT RTWU™'RA;G; — GTETY'EG; ,
Ei=GIAT + A;Gi—ETEG,—GITETE, —EI'RA;Gi — G ATRTE, + ETY,E, + ET VE,
Considering inequalities (25). The inequalities (4) hold if
of GFal —G; o
A,’Gi — GiT —G,' — GiT VViT <0

0 W; —0;
By Theorem 3.1, the systems (1) with u(k) = 0 are regular, causal, and stochastically stable.This
completes the proof. O
Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2014)

DOI: 10.1002/rnc
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Remark 3.3

From the proof of Theorem 3.2, it is easy to see that matrices £, and E, can be arbitrary. So the
matrix inequalities in (17) can be viewed as a standard LMI when the matrices E; and E, are
property chosen. The remaining problem is how to choose the matrices E; and E,. Define two
scalars § and ¢ satisfying

n%in IEG; — YiEq||; <6, min|RA;G; — VE;||; <e
&

s.t.(17)

We have pointed out that in order to fix the matrices £, and E,, a matrix equality constraint has to
be involved, which forms a minimization problem.

Based on the earlier discussion, the following algorithm is to be presented.

Iterative LMI algorithm:

Step I For desired decay rate § = 0 and ¢ > 0, give the initial matrices £; and E;, find a
feasible solution for the LMIs (17). Denote the feasible solution as (8¢, €9, Gio, Yio. Vo).
Take Gig, Y;o, and ¥ as the iterative initial values.

Step 2: Given the initial values (8o, €0, Gio, Yio, Yo), solve the minimization problem:

rrgin IEGio — YioEnilli < o , min [RA; Gio — WoEai1 < €0
Denote the minimizing solution as (E11, E21).

Step 3: Given the initial matrices (E11, E1), find a feasible solution for the LMIs (17). Denote
the feasible solution as (G;1, Y;1, ¥1) and denote

|EGii — Y Enlli = 6
(RAiGi1 — Vi Ex|1 = &

Step 4: If §; = 89, €1 = &¢. Then, stop. Otherwise, go to step 2.

Remark 3.4

In Theorem 3.2, applying Lemma 2.4, appropriate matrices £; and E; can guarantee the matrices
(GTET —ETY:)YTWEG; — Y;E1) and (GT AT RT — ETW) U™1(RA;G; — VE,) in (21) and
(22) close to zero, which has reduced the conservatism. It is not only easy to obtain the solutions
of (17) and the matrix inequalities of the following theorem but also to reduce the conservatism
compared with Theorem 8 in [3], which has used two scalars. Especially, when we choose E; and
E, in terms of £y = diagle ,« ,--- ,«] and Ey = diag[B ,B ,--- , B], it can be seen that matrix
parameters play the same role as scalar parameters in handling this problem by applying a set of
matrix operations.

4. STATE FEEDBACK CONTROL

In this section, the state feedback control for the systems (1) with partially unknown transition
probabilities will be studied. Consider the following state feedback controller

u(k) = K(re)x (k) (26)

where K(ry) is the feedback gain to be determined. Substituting (26) into systems (1) yields the
closed-loop systems

Ex(k+1) = (A(re) + B(r) K (ri))x (k) 27)

Then, by applying Theorem 3.2 to systems (27), the following result can be obtained directly.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2014)
DOI: 10.1002/rnc



10 J.WANG ET AL.

Theorem 4.1

Consider the systems (1) with partially unknown transition probabilities for each i € ¢ and E;
and E, be chose matrices. There exists a state feedback controller u(k) = K(ry)x (k) for systems
(1) such that the corresponding closed-loop systems are regular, causal, and stochastically stable if
there exist positive definite matrices Y;, W, nonsingular matrices G; and K; satisfying the following
matrix inequalities

T

B GI'a, —G; o0
4;G; —-GI —-G;—-GI wT | <0 (28)
0 W; ~0;

where B; = GT4, + 4;G; — ETEG, — GTETE, — ETR4,G; — GT4; RTE, + ETY,Ey +
EIVE, A; = A; + BiK;.

In order to design a state feedback controller u(k) = K(rg)x (k) for systems (1) in the form of LMI,
Theorem 4.1 will be replaced by the following theorem.

Theorem 4.2

Let E; and E, be given matrices, the closed-loop systems (27) with partially unknown transition
probabilities are regular, causal, and stochastically stable if there exist positive definite matrices
Y;, W, nonsingular matrices G; and H;, and the gain of the stabilizing state feedback controller
K; = H;G 1, such that the following coupled of set of LMIs hold for each i € ¢,

E; GIAl + HFBI —G; 0
AiG; + BiH; — GT —G; = GT wl | <0 (29)
0 Wi -0;

where B; = GT AT +A;G;+B;H;+H' BT—ETEG,—~GT ETE\—ET RA;G;—GT AT RTE,—
EIRB;H; — HI BTRTE, + ETY,Ey + ETVE,.

Remark 4.1

Analogous to Remark 3.1, when h; = >7 i mij, = 1 =3 cpi mij = 0 forevery i €
£, the elements of the transition probability matrices are completely known. Then Theorem 3.2,
Theorem 4.1, and Theorem 4.2 are degenerated to Theorem 8, Corollary 10, and Theorem 11 of [3],

respectively, which means that the results developed in this paper are more general than those for
the systems with completely known transition probability matrices.

5. NUMERICAL EXAMPLES

In this section, some numerical examples will be given to show the validity of the developed theo-
retical results.

Example 1
Consider the discrete-time singular Markovian jump systems (1) with the following parameters

20 —a —1.25 0.25 —0.83
E= [0 0]’A1 - [2.5 —b ]’A2 - [ 2.5 —35 }

a —0.25 1.5 —0.56 00
As = [b -3.0 ]’A“ B [2.5 —2.75]R B [0 1.5}

The transition probability matrix of form (2) is given by

0.20.1030.4
? 0203 7?
T=1 9 20305 (30)
0.10.1040.4
Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2014)
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Figure 1. Admissibility analysis with Theorem 3.1 in this paper (O) and Theorem 1 (+) in [18].

The admissibility of unforced systems (1) can be checked using Theorem 3.1 in this paper and
Theorem 1 in [18], for several values of pairs (a,b), where @ € [1,4] and b € [1,5]. The result is
depicted in Figure 1 and reveals that our theorem is less conservative than the previous result.

Example 2

Consider the discrete-time singular Markovian jump systems (1) with the following parameters

E =

R =

The transition probability matrix is given by

According to Remark 3.3, let

1.45 0.5 0 ab 6] 9 5 7
0 120, 4,={560|,4,=|-9a —7
0 00 457 | | 4 5D
00 0 0.4 0 0.5 0
000 |,By=|03061|,B,=1030.6
001.5 0.3 0.8 | [ 0.7 0.1
0.50.5
=104 0.6} G
1 00 20 0
E;=|0110|,E,=[021 0
00 1| 00 22

The admissibility of systems (1) can be checked using Theorem 4.2 in this paper and Theorem 11
in [3], for several values of pairs (a,b), where a € [35,60] and b € [59, 63]. The result is depicted
in Figure 2 and reveals that the chosen E, E; in terms of matrix in Theorem 4.2 with elements in
transition probability matrix s are all known less conservative than the previous result.

Consider the discrete-time singular Markovian jump systems (1) with the parameters

Example 3
1.450.50
E = 0 120
0 00

Copyright © 2014 John Wiley & Sons, Ltd.

1.50.4 0.6 0.9 05 0.7
,Ai;=10506 0 [,4, =] —-090.5 -0.7
0.4 0.5 0.7 0.4 0.5-0.2
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Figure 2. Admissibility analysis with Theorem 4.2 in this paper (O) and Theorem 11 (+) in [3].
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00 O 04 0 05 0

R=]0020 (,Bi=]10306|,B,=1]030.6

0015 0.3 0.8 0.7 0.1

The transition probability matrix of form (2) is given by

0.50.57
T=1 g (32)
According to Theorem 4.2, let
1.10.10 30 0
Ei=| 0 1 0|,E,=(021 0
0 01 _0 0 23

Using the LMI toolbox in MATLAB,

4.8341 2.6710 —2.4266
W= 2.6710 3.1340 —1.4381
—2.4266 —1.4381 26.8138

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2014)
DOI: 10.1002/rnc



STOCHASTIC STABILITY AND STABILIZATION 13

3000

2000

1000

-1000

—-2000

-3000 . . . . . . .
0 10 20 30 40 50 60 70 80

Figure 4. State responses of the open-loop system.
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Figure 5. State responses of the closed-loop system.

It is easy to find that W > 0.
The gains of the stabilizing state feedback controller are chosen as

K. — —3.1330 0.2068 —1.6734 K, — —1.0822 —0.9269 2.5771
17 10,6422 —0.8082 1.3129 |* ™2 7 | 2.0982 —0.2526 0.4619

The open-loop systems (27) are diverging from Figure 4. However, after applying Theorem 4.2,
trajectory simulation for the closed-loop systems shown in Figure 5 is stochastically admissible with
the same Markovian jump process under the given initial condition xo = [0.4 , —0.6,0.2]7.

Example 4
Consider the discrete-time singular Markovian jump systems (1) with the parameters the same as in
Example 2, and the transition probability matrix of form (2) is given by (32)

1010 2 0 0
Compared £y = | 01.10 | and E, = [ 02.1 O with two scalars £y = 1 and E, =
001 00 22

2 in Theorem 4.2, for several values of pairs (a,b), where a € [31,43] and b € [30,60]. The
result which is depicted in Figure 6 reveals that the chosen matrices £ and E; in Theorem 4.2 are
less conservative.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2014)
DOI: 10.1002/rnc
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Figure 6. Admissibility analysis matrix parameters (O) and scalar parameters (+) in Theorem 4.2.

6. CONCLUSIONS

The stochastic stability and stabilization of discrete-time singular Markovian jump systems with
partially unknown transition probabilities have been studied in this paper. The considered systems
with partially unknown transition probabilities are more general than the systems with completely
known or completely unknown transition probabilities. We give the necessary and sufficient condi-
tions for the stochastic stability analysis by the convex combination in terms of strict LMIs. And
sufficient conditions have also been proposed for the design of a state feedback controller, which
guarantees that the closed-loop systems are regular, causal, and stochastically stable by employ-
ing the LMIs technique. Numerical examples have shown the validity and the applicability of the
developed results. It should be noted that in this paper, only the stochastic stability and stabilization
problems for discrete-time singular Markovian jump systems without disturbances are considered in
this paper. It is well know that disturbances including parameter uncertainties and mismatched dis-
turbances as discussed in [21-23] widely exist in reality, which may destroy system performance.
The future work will focus on the study of discrete-time singular Markovian jump systems with
mismatched disturbances and partially unknown transition probabilities.
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