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SUMMARY

This paper

Q1

considers the stochastic stability and stabilization of discrete-time singular Markovian jump
systems with partially unknown transition probabilities. Firstly, a set of necessary and sufficient conditions
for the stochastic stability is proposed in terms of LMIs, then a set of sufficient conditions is proposed for
the design of a state feedback controller to guarantee that the corresponding closed-loop systems are regular,
causal, and stochastically stable by employing the LMI technique. Finally, some examples are provided to
demonstrate the effectiveness of the proposed approaches. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Singular systems, which are also referred to as descriptor systems, generalized state-space systems,
or differential-algebraic systems, provide convenient and natural representations of practical sys-
tems, for example, economic systems, power systems, and circuits systems. Control of singular
systems has been an attractive field in control theory and applications [1, 2]. Stability of singular sys-
tems is as important as that of normal systems. However, in the singular system, not only asymptotic
stability has to be considered but also the regularity and non-impulsivenessncausality are needed to
be addressed. Many results have been reported on control for the singular systems [1–6].

In recent years, considerable attention has been paid to Markovian jump systems. It is well-known
that the Markovian jump systems are an important class of stochastic systems, which are popular
in modeling many practical systems that may experience random abrupt changes in their structures
and parameters [7–14]. Singular systems with Markovian jump for the discrete-time case have been
studied in [3]. Where the problems of stability, state feedback control and static output feedback
control for a class of discrete-time singular Markovian jump systems with completely known transi-
tion probabilities are investigated. New necessary and sufficient conditions guaranteeing the systems
to be regular, causal, and stochastically stable are proposed in terms of a set of coupled strict LMIs
in [3].

In fact, lots of ideal knowledge for the transition probabilities are expected to predigest system
analysis. However, to obtain such available knowledge of the transition probabilities is actually prob-
lematic, which may be very expensive. For example, in some communication networks, either the
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variation of delays or the packet dropouts can be vague and random in different running periods of
networks. It is very hard or costly to obtain all or even part of the elements in the desired transition
probabilities matrix. The same problems may appear in other practical jump systems. Therefore, it
is meaningful and necessary to further study more general jump systems with partially unknown
transition probabilities from control perspectives, rather than having a large complexity to measure
or estimate all the transition probabilities. So far, some methods have been developed to deal with
the problem of partially unknown transition probabilities [15–20]. The stability and stabilization
problems of a class of continuous-time and discrete-time Markovian jump linear systems with par-
tially unknown transition probabilities are investigated in [16]. The partially mode-dependent H1
filtering problem for discrete-time Markovian jump systems with partially unknown transition prob-
abilities via different techniques is concerned in [17], where the unknown elements are estimated. It
should be noted that only sufficient conditions are given in [16], while the necessary and sufficient
conditions for the stability analysis and stabilization synthesis problems are firstly derived for both
continuous-time and discrete-time cases in [15]. However, up to now, necessary and sufficient con-
ditions on the stochastic stability for discrete-time singular Markovian jump systems with partially
unknown transition probabilities have not been fully investigated.

In this paper, the problem of stochastic stability and stabilization of discrete-time singular
Markovian jumping systems with partially unknown transition probabilities is considered. Firstly,
by the convex combination, a set of necessary and sufficient conditions for the stochastic stability
is proposed in terms of LMIs, such that the stability criterion developed in Theorem 3.1 is less
conservative than the one in Theorem 1 in [18]. Then sufficient conditions are proposed for the
design of a state feedback controller, which guarantees that the closed-loop systems with partially
unknown transition probabilities are regular, causal, and stochastically stable by employing the
LMI technique.

The remainder of this paper is organized as follows. In Section 2, the considered discrete-time sin-
gular Markovian jump systems are formulated, some definitions and lemmas are stated. In Section 3,
necessary and sufficient conditions on the stochastic stability of the unforced systems with partially
unknown transition probabilities are given, and sufficient conditions on the stochastic stability by
LMIs are developed. In Section 4, sufficient conditions on the stochastic stabilization are given to
design a state feedback controller by LMIs. Some numerical examples are provided to illustrate the
validity and the applicability of the developed results in Section 5. Section 6 concludes the paper.

Notation. The notation used in this technical note is standard. Rn stands for the n-dimensional
Euclidean space, and Rm�n represents the set of all m � n real matrices. The superscript ‘T’ stands
for matrix transposition. .�;F ;P/ is the probability space, where � represents the sample space,
F is the ��algebra of subsets of the sample space, and P is the probability measure on F . NC
represents the set of positive integers. kAk1 D max

16j 6n

Pn
iD1 jaij j and kAk1 D max

16i6n

Pn
j D1 jaij j

represent the induced Matrix 1-Norm and Matrix 1-Norm, respectively. The notation P > 0 (P >
0) implies that P is a real symmetric and positive definite (semi-positive definite) matrix. Matrices,
if their dimensions are not explicitly stated, are assumed to be compatible for algebraic operations.
For simplicity, sometimes Ai , Bi , and Ki are used to denote A.rt /, B.rt/, and K.rt /, respectively.

2. PROBLEM FORMULATION AND PRELIMINARIES

Fix the probability space .�;F ;P/ and consider the discrete-time singular Markovian jump systems
described by

Ex.k C 1/ D A.rk/x.k/ C B.rk/u.k/ (1)

where x.k/ 2 Rn is the system state; u.k/ 2 Rm is the control input; The matrix E 2 Rn�n

may be singular, with rank.E/ D r 6 n; A.rt / and B.rt/ are known real constant matri-
ces with appropriate dimensions. ¹rk; k > 0º is the jumping process. ¹rkº is a discrete-time
homogeneous Markovian process with right discrete trajectories, which takes values in a finite set
` D ¹1; 2; : : : ; N º, with transition probability matrix � D Œ�ij �N �N , and �ij > 0 is defined as

�ij D P r¹rkC1 D j j rk D iº

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2014)
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STOCHASTIC STABILITY AND STABILIZATION 3

where
PN

j D1 �i;j D 1, and the

Q2

Markovian process transition probability matrix � is

� D

2
6664

�11 �12 � � � �1N

�21 �22 � � � �2N

:::
:::

: : :
:::

�N1 �N 2 � � � �NN

3
7775

In addition, the transition probabilities of the jumping process are considered to be partially
accessed in this paper, that is, some elements in matrix � are assumed to be unknown. For
instance, for the systems (1) with four operation modes, the transition probability matrix � may be
expressed as

� D

2
64

�11 �12 �13 �14

‹ ‹ ‹ �24

�31 ‹ �33 ‹

‹ ‹ ‹ ‹

3
75 (2)

where "?" represents the inaccessible elements. For notational clarity, 8i 2 `, we denote ` D
`i

� [ `i
�� where

`i
� , ¹j W �ij is knownº

`i
�� , ¹j W �ij is unknownº

Moreover, if `i
� ¤ ¿, it is further described as `i

� D ¹�i
1; �i

2; : : : ; �i
mº; 81 6 m 6 N , where

�i
m 2 NC represent the mth known element with the index �i

m in the i th row of matrix � . BecausePN
j D1 �i;j D 1 and

P
j12`i

�
�i;j1

C P
j22`i

��
�i;j2

D 1, we denote

hi D
X

j22`i
��

�i;j2
D 1 �

X
j12`i

�

�i;j1
(3)

where j1 2 `i
� ; j2 2 `i

�� .

Definition 2.1
I. The discrete-time singular Markovian jump systems in (1) with u.k/ D 0 are said to be regular

if, for each i 2 `; det.´E � Ai / is not identically zero.
II. The discrete-time singular Markovian jump systems in (1) with u.k/ D 0 are said to be causal

if, for each i 2 `; deg.det.´E � Ai // D rank.E/.
III. The discrete-time singular Markovian jump systems in (1) with u.k/ D 0 are said to be

stochastically stable if for any x0 2 Rn and r0 2 `, there exists a scalar M.x0; r0/ such that

E

´ 1X
kD0

k x.k/ k2j x0; r0

μ
< M.x0; r0/

where x.k; x0; r0/ denotes the solution to the systems (1) at time k under the initial conditions
x0 and r0.

IV. The discrete-time singular Markovian jump systems in (1) with u.k/ D 0 are said to be
stochastically admissible if they are regular, causal and stochastically stable.

Definition 2.2
For ƒi 2 Rn�n, and

Pn
iD1 ˛i D 1, where ˛i > 0 are scalars, for i 2 ¹1; 2; : : : ; nº,

Pn
iD1 ˛iƒi is

said to be convex combination of ƒi .
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4 J. WANG ET AL.

Lemma 2.1 ([15])
Consider the discrete-time Markovian jump systems x.k C1/ D A.rk/x.k/ with partially unknown
transition probabilities. The corresponding systems are stochastically stable if and only if there
exists a set of matrices Pi > 0, i 2 `, such that

AT
i

0
@ X

j12`i
�

�i;j1
Pj1

C
0
@1 �

X
j12`i

�

�i;j1

1
A Pj2

1
A Ai � Pi < 0; j2 2 `i

��

Lemma 2.2 ([3])
The discrete-time Markovian jump singular systems (1) with completely known transition
probabilities are stochastically admissible if and only if there exist a set of positive definite matrices
Pi , i 2 `, and a symmetric and nonsingular matrix ˆ, satisfying

AT
i

0
@ NX

j D1

�i;j Pj � RT ˆR

1
A Ai � ET PiE < 0

Define R 2 Rn�n as the matrix with the properties of ET RT D 0 and rank.R/ D n � r , which
are used in all the subsequent lemmas and theorems.

Lemma 2.3 ([3])
Let Li be nonsingular matrices with appropriate dimensions, for i 2 `. Then, the inequalities
AT

i

�PN
j D1 �i;j Pj � RT ˆR

�
Ai � ET Pi E < 0 hold if for

"
…i AT

i Li � LT
i

LT
i Ai � Li

PN
j 2` �i;j Pj � Li � LT

i

#
< 0

where …i D AT
i Li C LT

i Ai � AT
i RT ˆRAi � ET PiE.

Lemma 2.4
Let A be a symmetric and positive definite matrix, and lim

xij !0
kXk1 D 0. Then, we have

lim
kXk1!0

XT AX D 0.

Proof
From A > 0, it is easy to see that there exists a nonsingular matrix C such that A D C T C . Denote
B D XT AX D XT C T CX D .CX/T CX .
It is easy to see that the following matrix norm inequality holds

0 6 kCXk1 6 kCk1kXk1

Applying lim
kXk1!0

kXk1 D 0,

0 6 lim
kXk1!0

kCXk1 6 lim
kXk1!0

kCk1kXk1 D 0;

which implies lim
kXk1!0

kCXk1 D 0. Furthermore,

0 6 lim
kXk1!0

kBk1 D lim
kXk1!0

kXT AXk1 6 lim
kXk1!0

kCXk1kCXk1

Thus, lim
kXk1!0

kBk1 D 0, which implies lim
kXk1!0

bij D 0

Hence, the result lim
kXk1!0

XT AX D 0 follows. �

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2014)
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STOCHASTIC STABILITY AND STABILIZATION 5

3. STABILITY ANALYSIS

In this section, necessary and sufficient conditions on the stochastic stability of the unforced systems
(1) with partially unknown transition probabilities are to be presented.

Theorem 3.1
The discrete-time singular Markovian jump systems (1) with partially unknown transition
probabilities are stochastically admissible if and only if there exist a set of positive definite matrices
Pi ; i 2 `, a symmetric and nonsingular matrix ˆ, satisfying

AT
i

�
P i � RT ˆR

�
Ai � ET Pi E < 0 (4)

where P i D P
j12`i

�
�i;j1

Pj1
C hi Pj2

, hi D P
j22`i

��
�i;j2

D 1 � P
j12`i

�
�i;j1

.

Proof
Sufficiency. At first, we note that if `i

�� ¤ ¿, then
P

j12`i
�

�i;j1
< 1, it means that the elements in

the i th row are partially known.
If the inequalities in (4) hold, thenX

j22`i
��

�i;j2

1 � P
j12`i

�
�i;j1

�
AT

i

�
P i � RT ˆR

�
Ai � ET PiE

�
< 0 (5)

X
j22`i

��

�i;j2

1 � P
j12`i

�
�i;j1

0
@AT

i

0
@ X

j12`i
�

�i;j1
Pj1

C hiPj2
� RT ˆR

1
A Ai � ET PiE

1
A < 0 (6)

X
j22`i

��

�i;j2

1 � P
j12`i

�
�i;j1

0
@AT

i

0
@ X

j12`i
�

�i;j1
Pj1

C
0
@1 �

X
j12`i

�

�i;j1

1
A Pj2

�RT ˆR

1
A Ai � ET PiE

1
A < 0

AT
i

0
@ X

j12`i
�

�i;j1
Pj1

C
0
@1 �

X
j12`i

�

�i;j1

1
A X

j22`i
��

�i;j2

1 � P
j12`i

�
�i;j1

Pj2
� RT ˆR

1
A Ai �ET PiE < 0

AT
i

0
@ X

j12`i
�

�i;j1
Pj1

C
X

j22`i
��

�i;j2
Pj2

� RT ˆR

1
A Ai � ET Pi E < 0

AT
i

0
@ NX

j 2`

�i;j Pj � RT ˆR

1
A Ai � ET PiE < 0 (7)

where 0 6 �i;j2

1�P
j12`i

�
�i;j1

6 1, 8j2 2 `i
�� and

P
j22`i

��

�i;j2

1�P
j12`i

�
�i;j1

D 1.

It is clear that the discrete-time singular Markovian jump systems (1) are stochastically admissible
by applying Lemma 2.2.

Necessity. Suppose that the discrete-time singular Markovian jump systems (1) are stochastically
admissible. Then, we select two nonsingular matrices M and N such that

E D M

�
I 0

0 0

�
N (8)
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Ai D M

�
A1i A2i

A3i A4i

�
N (9)

The regularity and causality of the systems (1) imply that A4i are nonsingular for any i 2 `.
Then, choose nonsingular matrices

�i D
"

I �AT
3iA

�T
4i

0 I

#
(10)

and let ONi D N �1�T
i . It can be verified that

OE D M �1E ONi D
�

I 0

0 0

�
(11)

OAi D M �1Ai
ONi D

� OA1i A2i

0 A4i

�
(12)

where OA1i D A1i � A2i A
�1
4i A3i .

It can be seen that the stochastic stability of the discrete-time singular Markovian jump systems (1)
implies that the discrete Markovian jump systems

�.k C 1/ D OA1i�.k/ (13)

are stochastically stable. Thus, there exist matrices OPi > 0, i 2 `, such that

OAT
1i

OP i
OA1i � OPi < 0

where OP i D P
j 2` �i;j

OPi . So, a sufficiently large scalar � > 0 always exists, such that, for i 2 `,

OAT
i

" OP i 0

0 �I

#
OAi � OET

� OPi 0
0 �I

�
OE �

�
0

AT
4i

�
2�

�
0 A4i

	

D
2
4 OAT

1i
OP i

OA1i � OPi
OAT
1i

OP iA2i

AT
2i

OP i
OA1i AT

2iA2i � �AT
4iA4i

3
5 < 0

(14)

Let M �1 D X D �
XT

1 ; XT
2

	T
. Then X2E D Œ0; 0�; X2Ai

ONi D Œ0; Ai4�. Let Pi D
XT

" OP i 0

0 �I

#
X; R D ZX2; ˆ D 2�Z�T Z�1. Then

ONi
T

0
@AT

i

0
@ NX

j 2`

�i;j Pj � RT ˆR

1
A Ai � ET Pi E

1
A ONi < 0 (15)

If `i
�� ¤ ¿,

P
j12`i

�
�i;j1

< 1, which means that the elements in the i th row are partially known.
Note that

P
j12`i

�
�i;j1

6 1. The inequalities (15) can be rewritten as

ONi
T

0
@AT

i

0
@ X

j12`i
�

�i;j1
Pj1

C
X

j22`i
��

�i;j2
Pj2

� RT ˆR

1
A Ai � ET PiE

1
A ONi < 0

where the elements �i;j1
, j1 2 `i

� are all known and �i;j2
, j2 2 `i

�� are all unknown.
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ONi
T

0
@AT

i

0
@ X

j12`i
�

�i;j1
Pj1

C
0
@1 �

X
j12`i

�

�i;j1

1
A X

j22`i
��

�i;j2

1 � P
j12`i

�
�i;j1

Pj2

�RT ˆR

1
A Ai � ET PiE

1
A ONi < 0

ONi
T

0
@ X

j22`i
��

�i;j2

1 � P
j12`i

�
�i;j1

0
@AT

i

0
@ X

j12`i
�

�i;j1
Pj1

C
0
@1 �

X
j12`i

�

�i;j1

1
A Pj2

�RT ˆR

1
A Ai � ET PiE

1
A

1
A ONi < 0

ONi
T


P
j22`i

��

�i;j2

1�P
j12`i

�
�i;j1

�
AT

i

�P
j12`i

�
�i;j1

Pj1
C hi Pj2

�RT ˆR
�

Ai � ET PiE
� �

ONi < 0

(16)

Therefore, the inequalities (16) are equivalent to the inequalities (4). This completes the proof. �

Remark 3.1
If `i

�� D ¿, then
P

j12`i
�

�i;j1
D 1 for every i 2 `. It means that the elements in every i th row are

all known.

hi D
X

j22`i
��

�i;j2
D 1 �

X
j12`i

�

�i;j1
D 0

So in this case, Theorem 3.1 is degenerated to Lemma 2.2.

Remark 3.2
Necessary and sufficient conditions of the stochastic stability admissible for the systems (1) have
been presented earlier. However, Theorem 1 in [18] is only a sufficient condition. So the stability
admissible criterion developed in Theorem 3.1 is less conservative than that in Theorem 1 in [18].
It is worth to pointing out that the following Theorem is to be derived by Theorem 3.1, which will
be used to derive the main results of next section.

Theorem 3.2
Let E1 and E2 be the given appropriate matrices, the systems (1) with partially unknown transition
probabilities and u.k/ D 0 are regular, causal, and stochastically stable if there exist symmetric and
positive definite matrices Yi , ‰ and nonsingular matrices Gi such that the following set of LMIs
holds for each i 2 `. 2

64
„i GT

i AT
i � Gi 0

AiGi � GT
i �Gi � GT

i W T
i

0 Wi �‚i

3
75 < 0 (17)

where „i D GT
i AT

i C Ai Gi � ET
1 EGi � GT

i ET E1 � ET
2 RAiGi � GT

i AT
i RT E2

CET
1 YiE1 C ET

2 ‰E2, Wi D �p
�i1GT

i ;
p

�i2GT
i ; � � � ;

p
�ij1

GT
i ;

p
hi G

T
i

	T
, ‚i D

diagŒY1 ; Y2 ; � � � ; Yj1
; Yj2

�.
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Proof
By applying Lemma 2.3 to Theorem 3.1 for each i 2 ` , it follows that inequalities (4) hold if"

…i AT
i Li � LT

i

LT
i Ai � Li P i � Li � LT

i

#
< 0 (18)

where …i D AT
i Li C LT

i Ai � AT
i RT ˆRAi � ET PiE, P i D P

j12`i
�

�i;j1
Pj1

C hiPj2
.

Pre-multiplying and post-multiplying (18) by both diag
�
L�1

i L�1
i

	T
and its transpose, it

follows that

"
L�1

i 0

0 L�1
i

#T "
…i AT

i Li � LT
i

LT
i Ai � Li P i � Li � LT

i

# "
L�1

i 0

0 L�1
i

#
< 0

"
‡i GT

i AT
i � Gi

AiGi � GT
i GT

i

�
P �i C hi Pj2

�
Gi � Gi � GT

i

#
< 0 (19)

where L�1
i D Gi , ‡i D GT

i AT
i C AiGi � GT

i AT
i RT ‰�1RAiGi � GT

i ET PiEGi , P �i DP
j12`i

�
�i;j1

Pj1
:

Let Y �1
i D Pi , by using the Schur complement lemma, it is easy to show that2

4 †i GT
i AT

i � Gi 0

AiGi � GT
i �Gi � GT

i W T
i

0 Wi �‚i

3
5 < 0 (20)

where †i D GT
i AT

i C AiGi � GT
i AT

i RT ‰�1RAiGi � GT
i ET Y �1

i EGi ,

Wi D �p
�i1GT

i ;
p

�i2GT
i ; � � � ;

p
�ij1

GT
i ;

p
hiG

T
i

	T
, ‚i D diagŒY1 ; Y2 ; � � � ; Yj1

; Yj2
�.

According to lemma 2.5, choose the appropriate matrices E1 and E2 such that

0 6
�
GT

i ET � ET
1 Yi

�
Y �1

i .EGi � YiE1/

D GT
i ET Y �1

i EGi � ET
1 EGi � GT

i ET E1 C ET
1 Yi E1

(21)

0 6
�
GT

i AT
i RT � ET

2 ‰
�

‰�1.RAiGi � ‰E2/

D GT
i AT

i RT ‰�1RAiGi � ET
2 RAiGi � GT

i AT
i RT E2 C ET

2 ‰E2

(22)

It is easy to show that (21) and (22) can be rewritten as

� GT
i ET Y �1

i EGi 6 �ET
1 EGi � GT

i ET E1 C ET
1 Yi E1 (23)

� GT
i AT

i RT ‰�1RAiGi 6 �ET
2 RAiGi � GT

i AT
i RT E2 C ET

2 ‰E2 (24)

From (20), (23), and (24),2
64

†i GT
i AT

i � Gi 0

AiGi � GT
i �Gi � GT

i W T
i

0 Wi �‚i

3
75 6

2
64

„i GT
i AT

i � Gi 0

AiGi � GT
i �Gi � GT

i W T
i

0 Wi �‚i

3
75 (25)

where †i D GT
i AT

i C AiGi � GT
i AT

i RT ‰�1RAiGi � GT
i ET Y �1

i EGi ,
„i D GT

i AT
i C Ai Gi � ET

1 EGi � GT
i ET E1 � ET

2 RAiGi � GT
i AT

i RT E2 C ET
1 YiE1 C ET

2 ‰E2

Considering inequalities (25). The inequalities (4) hold if2
4 „i GT

i AT
i � Gi 0

AiGi � GT
i �Gi � GT

i W T
i

0 Wi �‚i

3
5 < 0

By Theorem 3.1, the systems (1) with u.k/ D 0 are regular, causal, and stochastically stable.This
completes the proof. �
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Remark 3.3
From the proof of Theorem 3.2, it is easy to see that matrices E1 and E2 can be arbitrary. So the
matrix inequalities in (17) can be viewed as a standard LMI when the matrices E1 and E2 are
property chosen. The remaining problem is how to choose the matrices E1 and E2. Define two
scalars ı and " satisfying

min
ı

kEGi � Yi E1k1 6 ı ; min
"

kRAiGi � ‰E2k1 6 "

s:t:.17/

We have pointed out that in order to fix the matrices E1 and E2, a matrix equality constraint has to
be involved, which forms a minimization problem.
Based on the earlier discussion, the following algorithm is to be presented.
Iterative LMI algorithm:

Step 1: For desired decay rate ı > 0 and " > 0, give the initial matrices E1 and E2, find a
feasible solution for the LMIs (17). Denote the feasible solution as .ı0; "0; Gi0; Yi0; ‰0/.
Take Gi0, Yi0, and ‰0 as the iterative initial values.

Step 2: Given the initial values .ı0; "0; Gi0; Yi0; ‰0/, solve the minimization problem:

min
ı

kEGi0 � Yi0E11k1 6 ı0 ; min
"

kRAiGi0 � ‰0E21k1 6 "0

Denote the minimizing solution as .E11; E21/.

Step 3: Given the initial matrices .E11; E21/, find a feasible solution for the LMIs (17). Denote
the feasible solution as .Gi1; Yi1; ‰1/ and denote

kEGi1 � Yi1E11k1 D ı1

kRAiGi1 � ‰1E21k1 D "1

Step 4: If ı1 > ı0; "1 > "0. Then, stop. Otherwise, go to step 2.

Remark 3.4
In Theorem 3.2, applying Lemma 2.4, appropriate matrices E1 and E2 can guarantee the matrices�
GT

i ET � ET
1 Yi

�
Y �1

i .EGi � Yi E1/ and
�
GT

i AT
i RT � ET

2 ‰
�

‰�1.RAiGi � ‰E2/ in (21) and
(22) close to zero, which has reduced the conservatism. It is not only easy to obtain the solutions
of (17) and the matrix inequalities of the following theorem but also to reduce the conservatism
compared with Theorem 8 in [3], which has used two scalars. Especially, when we choose E1 and
E2 in terms of E1 D diagŒ˛ ; ˛ ; � � � ; ˛� and E2 D diagŒˇ ; ˇ ; � � � ; ˇ�, it can be seen that matrix
parameters play the same role as scalar parameters in handling this problem by applying a set of
matrix operations.

4. STATE FEEDBACK CONTROL

In this section, the state feedback control for the systems (1) with partially unknown transition
probabilities will be studied. Consider the following state feedback controller

u.k/ D K.rk/x.k/ (26)

where K.rk/ is the feedback gain to be determined. Substituting (26) into systems (1) yields the
closed-loop systems

Ex.k C 1/ D .A.rk/ C B.rk/K.rk//x.k/ (27)

Then, by applying Theorem 3.2 to systems (27), the following result can be obtained directly.
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Theorem 4.1
Consider the systems (1) with partially unknown transition probabilities for each i 2 ` and E1

and E2 be chose matrices. There exists a state feedback controller u.k/ D K.rk/x.k/ for systems
(1) such that the corresponding closed-loop systems are regular, causal, and stochastically stable if
there exist positive definite matrices Yi , ‰, nonsingular matrices Gi and Ki satisfying the following
matrix inequalities 2

64 „i GT
i A

T

i � Gi 0

AiGi � GT
i �Gi � GT

i W T
i

0 Wi �‚i

3
75 < 0 (28)

where „i D GT
i A

T

i C AiGi � ET
1 EGi � GT

i ET E1 � ET
2 RAi Gi � GT

i A
T

i RT E2 C ET
1 Yi E1 C

ET
2 ‰E2, Ai D Ai C Bi Ki .

In order to design a state feedback controller u.k/ D K.rk/x.k/ for systems (1) in the form of LMI,
Theorem 4.1 will be replaced by the following theorem.

Theorem 4.2
Let E1 and E2 be given matrices, the closed-loop systems (27) with partially unknown transition
probabilities are regular, causal, and stochastically stable if there exist positive definite matrices
Yi , ‰, nonsingular matrices Gi and Hi , and the gain of the stabilizing state feedback controller
Ki D Hi G

�1
i , such that the following coupled of set of LMIs hold for each i 2 `,2

64
„i GT

i AT
i C H T

i BT
i � Gi 0

AiGi C BiHi � GT
i �Gi � GT

i W T
i

0 Wi �‚i

3
75 < 0 (29)

where „i D GT
i AT

i CAiGi CBi Hi CH T
i BT

i �ET
1 EGi �GT

i ET E1�ET
2 RAiGi �GT

i AT
i RT E2�

ET
2 RBiHi � H T

i BT
i RT E2 C ET

1 YiE1 C ET
2 ‰E2.

Remark 4.1
Analogous to Remark 3.1, when hi D P

j22`i
��

�i;j2
D 1 � P

j12`i
�

�i;j1
D 0 for every i 2

`, the elements of the transition probability matrices are completely known. Then Theorem 3.2,
Theorem 4.1, and Theorem 4.2 are degenerated to Theorem 8, Corollary 10, and Theorem 11 of [3],
respectively, which means that the results developed in this paper are more general than those for
the systems with completely known transition probability matrices.

5. NUMERICAL EXAMPLES

In this section, some numerical examples will be given to show the validity of the developed theo-
retical results.

Example 1
Consider the discrete-time singular Markovian jump systems (1) with the following parameters

E D
�

2 0

0 0

�
; A1 D

� �a �1:25

2:5 �b

�
; A2 D

�
0:25 �0:83

2:5 �3:5

�

A3 D
�

a �0:25

b �3:0

�
; A4 D

�
1:5 �0:56

2:5 �2:75

�
; R D

�
0 0

0 1:5

�
The transition probability matrix of form (2) is given by

� D

2
64

0:2 0:1 0:3 0:4

‹ 0:2 0:3 ‹
‹ ‹ 0:3 0:5

0:1 0:1 0:4 0:4

3
75 (30)
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Figure 1. Admissibility analysis with Theorem 3.1 in this paper (O) and Theorem 1 (+) in [18].

The admissibility of unforced systems (1) can be checked using Theorem 3.1 in this paper and
Theorem 1 in [18], for several values of pairs (a,b), where a 2 Œ1; 4� and b 2 Œ1; 5�. The result is
depicted in Figure 1 and reveals that our theorem is less conservative than the previous result. F1

Example 2
Consider the discrete-time singular Markovian jump systems (1) with the following parameters

E D
2
4 1:45 0:5 0

0 1:2 0
0 0 0

3
5 ; A1 D

2
4 a b 6

5 6 0
4 5 7

3
5 ; A2 D

2
4 9 5 7

�9 a �7
4 5 �b

3
5

R D
2
4 0 0 0

0 0 0

0 0 1:5

3
5 ; B1 D

2
4 0:4 0

0:3 0:6

0:3 0:8

3
5 ; B2 D

2
4 0:5 0

0:3 0:6

0:7 0:1

3
5

The transition probability matrix is given by

� D
�

0:5 0:5

0:4 0:6

�
(31)

According to Remark 3.3, let

E1 D
2
4 1 0 0

0 1:1 0

0 0 1

3
5 ; E2 D

2
4 2 0 0

0 2:1 0

0 0 2:2

3
5

The admissibility of systems (1) can be checked using Theorem 4.2 in this paper and Theorem 11
in [3], for several values of pairs (a,b), where a 2 Œ35; 60� and b 2 Œ59; 63�. The result is depicted
in Figure 2 and reveals that the chosen E1; E2 in terms of matrix in Theorem 4.2 with elements in F2
transition probability matrix � are all known less conservative than the previous result.

Example 3
Consider the discrete-time singular Markovian jump systems (1) with the parameters

E D
2
4 1:45 0:5 0

0 1:2 0

0 0 0

3
5 ; A1 D

2
4 1:5 0:4 0:6

0:5 0:6 0

0:4 0:5 0:7

3
5 ; A2 D

2
4 0:9 0:5 0:7

�0:9 0:5 �0:7

0:4 0:5 �0:2

3
5
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Figure 2. Admissibility analysis with Theorem 4.2 in this paper (O) and Theorem 11 (+) in [3].
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Figure 3. Modes evolution rt .

R D
2
4 0 0 0

0 0 0

0 0 1:5

3
5 ; B1 D

2
4 0:4 0

0:3 0:6

0:3 0:8

3
5 ; B2 D

2
4 0:5 0

0:3 0:6

0:7 0:1

3
5

The

Q3

transition probability matrix of form (2) is given by

� D
�

0:5 0:5

‹ ‹

�
(32)

According to Theorem 4.2, let

E1 D
2
4 1:1 0:1 0

0 1 0
0 0 1

3
5 ; E2 D

2
4 3 0 0

0 2:1 0
0 0 2:3

3
5

Using the LMI toolbox in MATLAB,

‰ D
2
4 4:8341 2:6710 �2:4266

2:6710 3:1340 �1:4381

�2:4266 �1:4381 26:8138

3
5
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Figure 4. State responses of the open-loop system.
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Figure 5. State responses of the closed-loop system.

It is easy to find that ‰ > 0.
The gains of the stabilizing state feedback controller are chosen as

K1 D
� �3:1330 0:2068 �1:6734

0:6422 �0:8082 1:3129

�
; K2 D

� �1:0822 �0:9269 2:5771
2:0982 �0:2526 0:4619

�

The open-loop systems (27) are diverging from Figure 4. However, after applying Theorem 4.2, F4
trajectory simulation for the closed-loop systems shown in Figure 5 is stochastically admissible with F5
the same Markovian jump process under the given initial condition x0 D Œ0:4 ; �0:6 ; 0:2�T .

Example 4
Consider the discrete-time singular Markovian jump systems (1) with the parameters the same as in
Example 2, and the transition probability matrix of form (2) is given by (32)

Compared E1 D
2
4 1 0:1 0

0 1:1 0
0 0 1

3
5 and E2 D

2
4 2 0 0

0 2:1 0
0 0 2:2

3
5 with two scalars E1 D 1 and E2 D

2 in Theorem 4.2, for several values of pairs (a,b), where a 2 Œ31; 43� and b 2 Œ30; 60�. The
result which is depicted in Figure 6 reveals that the chosen matrices E1 and E2 in Theorem 4.2 are F6
less conservative.
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Figure 6. Admissibility analysis matrix parameters (O) and scalar parameters (+) in Theorem 4.2.

6. CONCLUSIONS

The stochastic stability and stabilization of discrete-time singular Markovian jump systems with
partially unknown transition probabilities have been studied in this paper. The considered systems
with partially unknown transition probabilities are more general than the systems with completely
known or completely unknown transition probabilities. We give the necessary and sufficient condi-
tions for the stochastic stability analysis by the convex combination in terms of strict LMIs. And
sufficient conditions have also been proposed for the design of a state feedback controller, which
guarantees that the closed-loop systems are regular, causal, and stochastically stable by employ-
ing the LMIs technique. Numerical examples have shown the validity and the applicability of the
developed results. It should be noted that in this paper, only the stochastic stability and stabilization
problems for discrete-time singular Markovian jump systems without disturbances are considered in
this paper. It is well know that disturbances including parameter uncertainties and mismatched dis-
turbances as discussed in [21–23] widely exist in reality, which may destroy system performance.
The future work will focus on the study of discrete-time singular Markovian jump systems with
mismatched disturbances and partially unknown transition probabilities.

ACKNOWLEDGEMENTS

This work was supported by the Funds of National Science of China under grant 61273008, the Nature
Science of Foundation of Liaoning Province under grant 201202063, and the Royal Academy of Engineering
of the United Kingdom via grant reference 12/13RECI027.

REFERENCES

1. Dai L. Singular Control Systems. Springer: New York, 1989.
2. Xu S, Lam J. Robust Control and Filtering of Singular Systems. Springer: Berlin, 2006.
3. Xia Y, Zhang J, Boukas EK. Control for discrete singular hybrid systems. Automatica 2008; 44(10):2635–2641.
4. Xu S, Song B, Lu J, Lam J. Robust stability of uncertain discrete-time singular fuzzy systems. Fuzzy Sets and Systems

2007; 158(20):2306–2316.
5. Xu S, Lam J, Yang C. Robust H1 control for discrete singular systems with state delay and parameter uncer-

tainty. Dynamics Of Continuous, Discrete And Impulsive Systems Series B: Application And Algorithm 2002; 11(3):
497–506.

6. Ma S, Zhang C, Cheng Z. Delay-dependent robust H1 control for uncertain discrete-time singular systems with
time-delay. Journal of Computational and Applied Mathematics 2008; 217(1):194–211.

7. Boukas EK, Liu Z. Robust H1 control of discrete-time Markov jump linear systems with mode-dependent
timedelays. IEEE Transactions on Automatic Control 2001; 46(12):1918–1924.

8. Boukas EK, Liu Z, Liu G. Delay-dependent robust stability and H1 control of jump linear systems with timedelay.
International Journal of Control 2001; 74(4):329–340.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2014)
DOI: 10.1002/rnc

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54



UN
CO

RR
EC

TE
D

PR
O

O
F

STOCHASTIC STABILITY AND STABILIZATION 15

9. Cao Y, Lam J. Stochastic stabilizability and H1 control for discrete-time jump linear systems with time delay.
Journal of the Franklin Institute 1999; 336(8):1263–1281.

10. Cao Y, Lam J. Robust H1 control of uncertain Markovian jump systems with time-delay. IEEE Transactions on
Automatic Control 2000; 45(1):77–83.

11. Chen W, Guan Z, Yu P. Delay-dependent stability and H1 control of uncertain discrete-time Markovian jump
systems with mode-dependent time delays. Systems & Control Letters 2004; 52(5):361–376.

12. Shi P, Boukas EK, Agarwal RK. Control of Markovian jump discrete-time systems with norm bounded uncertainty
and unknown delay. IEEE Transactions on Automatic Control 1999; 44(11):2139–2144.

13. Shi P, Boukas EK, Agarwal RK. Kalman filtering for continuous-time uncertain systems with Markovian jumping
parameters. IEEE Transactions on Automatic Control 1999; 44(8):1592–1597.

14. Xu S, Chen T, Lam J. Robust H1 filtering for uncertain Markovian jump systems with mode-dependent time-delays.
IEEE Transactions on Automatic Control 2003; 48(5):900–907.

15. Zhang L, Lam J. Necessary and sufficient conditions for analysis and synthesis of Markov jump linear systems with
incomplete transition descriptions. IEEE Transactions on Automatic Control 2010; 55(7):1695–1701.

16. Zhang L, Boukas EK. Stability and stabilization of Markovian jump linear systems with partly unknown transition
probabilities. Automatica 2009; 45(2):463–468.

17. Wang G, Zhang Q, Sreeram V. Partially mode-dependent H1 filtering for discrete-time Markovian jump systems
with partly unknown transition probabilities. Signal Processing 2010; 90(2):548–556.

18. Sheng L, Yang H. Stabilization control of a class of discrete-time Markov jump singular systems. Control and
Decision 2010; 25(8):1189–1194.

19. Zhang Q, Wang G, Liu W, Zhang Y. Stabilization of discrete-time markovian jump systems with partially unknown
transition probabilities. Discrete and Continuous Dynamical Systems - Series B 2011; 16(4):1197–1211.

20. Zhang L, Boukas EK. H1 control for discrete-time Markovian jump linear systems with partly unknown transition
probabilities. International Journal of Robust and Nonlinear Control 2009; 19:868–883.

21. Yang J, Li S, Su J, Yu X. Continuous nonsingular terminal sliding mode control for systems with mismatched
disturbances. Automatica 2013; 49(7):2287–2291.

22. Yang J, Li S, Yu X. Sliding-mode control for systems with mismatched uncertainties via a disturbance observer.
IEEE Transactions on Industrial Electronics 2013; 60(1):160–169.

23. Li S, Yang J, Chen W, Chen X. Generalized extended state observer based control for systems with mismatched
uncertainties. IEEE Transactions on Industrial Electronics 2013; 59(12):4792–4802.

24. Boukas EK. Static output Q4feedback control for stochastic hybrid systems: LMI approach. Automatica 2005;
42(1):183–188.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2014)
DOI: 10.1002/rnc

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54



Author Query Form

Journal: International Journal of Robust and Nonlinear Control

Article: rnc_3146

Dear Author,

During the copyediting of your paper, the following queries arose. Please respond to
these by annotating your proofs with the necessary changes/additions.

� If you intend to annotate your proof electronically, please refer to the E-annotation
guidelines.

� If you intend to annotate your proof by means of hard-copy mark-up, please refer
to the proof mark-up symbols guidelines. If manually writing corrections on your
proof and returning it by fax, do not write too close to the edge of the paper. Please
remember that illegible mark-ups may delay publication.

Whether you opt for hard-copy or electronic annotation of your proofs,
we recommend that you provide additional clarification of answers to queries by
entering your answers on the query sheet, in addition to the text mark-up.

Query No. Query Remark

Q1 AUTHOR: Please check if forename/surname order of
authors is correct.

Q2 AUTHOR: Please check the suitability of the suggested short
title.

Q3 AUTHOR: Figure 3 has not been mentioned in the text.
Please cite the figure in the relevant place in the text.

Q4 AUTHOR: Reference 24 has not been cited in the text.
Please indicate where it should be cited; or delete from the
Reference List.



 

USING e-ANNOTATION TOOLS FOR ELECTRONIC PROOF CORRECTION  

 
Required software to e-Annotate PDFs: Adobe Acrobat Professional or Adobe Reader (version 7.0 or 
above). (Note that this document uses screenshots from Adobe Reader X) 
The latest version of Acrobat Reader can be downloaded for free at: http://get.adobe.com/uk/reader/ 
 

Once you have Acrobat Reader open on your computer, click on the Comment tab at the right of the toolbar:  

 

 
 
 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Replace (Ins) Tool – for replacing text. 

 

Strikes a line through text and opens up a text 
box where replacement text can be entered. 

How to use it 

 Highlight a word or sentence. 

 Click on the Replace (Ins) icon in the Annotations 
section. 

 Type the replacement text into the blue box that 
appears. 

This will open up a panel down the right side of the document. The majority of 
tools you will use for annotating your proof will be in the Annotations section, 
pictured opposite. We’ve picked out some of these tools below: 

2. Strikethrough (Del) Tool – for deleting text. 

 

Strikes a red line through text that is to be 
deleted. 

How to use it 

 Highlight a word or sentence. 

 Click on the Strikethrough (Del) icon in the 
Annotations section. 

 

 

3. Add note to text Tool – for highlighting a section 
to be changed to bold or italic. 

 

Highlights text in yellow and opens up a text 
box where comments can be entered. 

How to use it 

 Highlight the relevant section of text. 

 Click on the Add note to text icon in the 
Annotations section. 

 Type instruction on what should be changed 
regarding the text into the yellow box that 
appears. 

4. Add sticky note Tool – for making notes at 
specific points in the text. 

 

Marks a point in the proof where a comment 
needs to be highlighted. 

How to use it 

 Click on the Add sticky note icon in the 
Annotations section. 

 Click at the point in the proof where the comment 
should be inserted. 

 Type the comment into the yellow box that 
appears. 
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For further information on how to annotate proofs, click on the Help menu to reveal a list of further options: 

5. Attach File Tool – for inserting large amounts of 
text or replacement figures. 

 

Inserts an icon linking to the attached file in the 
appropriate pace in the text. 

How to use it 

 Click on the Attach File icon in the Annotations 
section. 

 Click on the proof to where you’d like the attached 
file to be linked. 

 Select the file to be attached from your computer 
or network. 

 Select the colour and type of icon that will appear 
in the proof. Click OK. 

6. Add stamp Tool – for approving a proof if no 
corrections are required. 

 

Inserts a selected stamp onto an appropriate 
place in the proof. 

How to use it 

 Click on the Add stamp icon in the Annotations 
section. 

 Select the stamp you want to use. (The Approved 
stamp is usually available directly in the menu that 
appears). 

 Click on the proof where you’d like the stamp to 
appear. (Where a proof is to be approved as it is, 
this would normally be on the first page). 

7. Drawing Markups Tools – for drawing shapes, lines and freeform 
annotations on proofs and commenting on these marks. 

Allows shapes, lines and freeform annotations to be drawn on proofs and for 
comment to be made on these marks.. 

How to use it 

 Click on one of the shapes in the Drawing 
Markups section. 

 Click on the proof at the relevant point and 
draw the selected shape with the cursor. 

 To add a comment to the drawn shape, 
move the cursor over the shape until an 
arrowhead appears. 

 Double click on the shape and type any 
text in the red box that appears. 


