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Abstract

A well known result in the theory of linear positive systems is the existence of positive definite diagonal
matrix (PDDM) solutions to some well known linear matrix inequalities (LMIs). In this paper, based on the
positivity characterization, a novel bounded real lemma for continuous positive descriptor systems in terms
of strict LMI is first established by the separating hyperplane theorem. The result developed here provides a
necessary and sufficient condition for systems to possess H1 norm less than γ and shows the existence of
PDDM solution. Moreover, under certain condition, a simple model reduction method is introduced, which
can preserve positivity, stability and H1 norm of the original systems. An advantage of such method is that
systems' matrices of the reduced order systems do not involve solving of LMIs conditions. Then, the
obtained results are extended to discrete case. Finally, a numerical example is given to illustrate the
effectiveness of the obtained results.
& 2014 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Positive systems are dynamical systems whose state and output variables remain nonnegative
for all future time whenever their initial conditions and inputs are nonnegative. Such systems can
be found in different areas, such as economics [1], biology [2,33] physiology [3], and
epidemiology [4]. In general, the variables chosen in these systems can only take nonnegative
rg/10.1016/j.jfranklin.2014.10.019
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values, which may represent quantities of goods, densities of species, chemical concentrations.
The theory of nonnegative matrices is a basic mathematical tool for analysis and synthesis of
linear positive systems, which leads to many novel results in this field. During recent decades,
positive systems have been of great interest to many researchers and a large number of theoretical
results have been reported see [5–8], for more detail, refer to the two monographs, see [9,10].
Amongst many new results for linear positive systems, one is the existence of PPDM solutions to
some well-known results for linear general systems. Another one is linear co-positive Lyapunov
functions available for linear positive systems only, which has resulted in many remarkable and
simpler results. For details of the literature related to PPDM solutions and linear co-positive
Lyapunov functions, the reader is referred to [3,9,11–13] and the references cited therein.

However, in practice, descriptor systems are of more widespread applications than standard
systems. It is necessary to guarantee positivity of systems in economics, biology and chemical
reaction, which can be modeled more accurately using descriptor systems. It is well known that
the Leontief model is a representative example of linear positive descriptor systems. Therefore,
the study on positive descriptor systems is of great importance and far reaching practical
significance. Due to singularity of the derivative matrix and nonnegativity restriction on systems'
variables, compared to linear positive standard systems, analysis and synthesis for linear positive
descriptor systems are more complicated and therefore much of the developed theory for such
systems is still not up to a quantitative level. Although some topics of linear positive descriptor
systems have been available, for instance, positivity and stability [14–17], reachability and
controllability [18], positive preserving balanced truncation [19], admissibility [20], there are a
lot of open problems in the study of such systems, such as stabilization, optimal control,
dissipativity and systems subject to uncertainty.

It is well known that linear positive systems are defined on cones, to be more exact, convex cones,
rather than linear space. Therefore, convex optimization is a powerful tool for analysis of linear
positive systems. Relevant published results by convex optimization can be found in [21,22]. On the
other hand, the problem of H1 control has been a topic of recurring interest for several decades.
Great efforts have been made on H1 control and many results on such a topic for general standard
systems as well as general descriptor systems have been reported. In recent years, increasing attention
has been devoted to H1 analysis for linear positive standard systems by means of convex
optimization. The KYP Lemma for linear continuous positive standard systems is proved using
semidefinite programming duality in [23]. In [24], the alternative proofs along the line of the rank-one
separable property are given to several remarkable results for linear positive standard systems and
main result given in [23]. The KYP Lemma for linear discrete positive standard systems is studied by
a theorem of alternatives on the feasibility of LMIs in [25]. At the same time, H1 model reduction
has received considerable attention. Positivity-preserving H1 model reduction for continuous
positive systems is investigated in [26]. Shen and Lam [27] study the H1 model reduction problems
for the discrete positive systems with inhomogeneous initial conditions and the output error between
the original system and the reduced-order one is bounded by a weighted sum of the magnitude of the
input and that of the initial condition. Zhang et al. [19] are concerned with positivity preserving
model reduction method of balanced truncation for descriptor systems. Unfortunately, to the best of
authors' knowledge, little attempt has been made on H1 analysis for positive descriptor systems, and
little attention has been paid to analysis for descriptor systems by means of convex analysis, which
motivates the present work.

The objective of this paper is to study bounded real lemmas of linear positive descriptor
systems. By virtue of the separating hyperplane theorem, a novel bounded real lemma is first
established to check H1 norm less than γ for continuous positive descriptor systems. An elegant
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feature of this obtained result is the existence of PPDM solution, which is one of the important
properties of positive systems. Moreover, this result in terms of strict LMI can be solved directly
by standard LMI solvers. At the same time, the exact value of H1 norm can be calculated. On
the other hand, under certain condition, a simple model reduction method is introduced, which
can preserve positivity, stability and H1 norm. Such method does not involve solving of LMIs
conditions and therefore is easy to deal with. Then, the obtained results are extended to
discrete case.
This paper is organized as follows. In Section 2, some necessary preliminaries are introduced.

Section 3 is devoted to bounded real lemma of continuous positive descriptor systems and
positivity-H1 norm-preserving model reduction. The obtained results in Section 3 are extended
to discrete case in Section 4. A numerical example is provided to show the effectiveness of the
theoretical results in Section 5. Section 6 concludes this paper.
2. Preliminaries

In this section, some necessary preliminaries and results are to be presented, which are helpful
for the proofs of main results and understanding of subsequent sections.
At first, the following notations will be used throughout this paper.
C is the set of complex number. Rn is the space of column vectors of dimension n. Rn

þ is the
nonnegative orthant of Rn. Sn is the space of all real symmetric matrices with dimension n� n.
Rn�m is the space of n� m matrices with real numbers. Dn�n

þ denotes the set of all positive
definite diagonal matrices. Aij denotes the ijth entry of matrix A. Aci and Ari denote the ith column
and row of A, respectively. For A;BARn�m, AZB, A4B, Ac ð{ÞB mean that AijZBij,
AijZBij but AaB, Aij4ðoÞBij, 8 i; j, respectively. For AARn�n, A≽0 and A!0 mean that A is
a positive semidefinite matrix and a negative definite matrix, respectively. AD denotes the Drazin
inverse of A which satisfies ADAAD ¼ AD, ADA¼ AAD, ADAkþ1 ¼ Ak . rankðAÞ represents the rank
of A and tr(A) is the trace of A. ρðAÞ and μðAÞ denote the spectral radius and maximal real part of
eigenvalues of A, respectively. λðE;AÞ is the set of all finite eigenvalues of matrix pair (E, A).
Index of (E, A) is denoted by indðE;AÞ. μðE;AÞ and ρðE;AÞ represent the maximal real part and
spectral radius of finite eigenvalues of (E, A), respectively. D(A) is the vector which is composed
of the diagonal entries of AARn�n. 〈X;Y〉¼ trðXYÞ is the inner product on Sn. For AARn�m,
imðAÞ denotes the image space of A. We use I and 0m;n refer to the identity matrix of appropriate
dimensions and m� n zero matrix, respectively. Sometimes, for simplicity, 0 is used to refer to
zero matrix with appropriate dimensions.
As known, for matrices E;AARn�n, if there exists a scalar λAC such that detðλE�AÞa0, the

matrix pair (E, A) is said to be regular. In this case, there exist two nonsingular matrices
P;QARn�n such that

PEQ¼ Ir 0

0 N

� �
; PAQ¼

J 0

0 In� r

" #
;

where J and N are matrices in the Jordan canonical form, and specifically, N is a nilpotent matrix.
This transformation is called the Weierstrass canonical form transformation. Index of the matrix
pair ðE;AÞ is defined as the nilpotent index of matrix N in the Weierstrass canonical form [28]. In
particular, indðE;AÞ ¼ 0 if E is nonsingular, indðE;AÞ ¼ 1 if rankðEÞ ¼ ron and N¼0.
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For a given matrix AARn�n, it is said to be Hurwitz stable if μðAÞo0. It is said to be Schur
stable if ρðAÞo1. It is called a Metzler matrix if AijZ0 for all i; j with ia j, then eAtZ0; 8 tZ0.
A matrix AARn�m is called nonnegative on a subset Ω�Rm if AxARn

þ for all xAΩ \ Rm
þ [14].

Definition 1 (Ebihara [24]). For a given matrix HASn with H≽0, the vector hARn
þ is defined

by hi≔
ffiffiffiffiffiffi
Hii

p
; i¼ 1; 2;…; n.

Lemma 1 (Mason [22], Ebihara [24]). For a given Metzler matrix AARn�n and HASn with
H≽0, the following statements hold:
(i)
 ðhhT Þii ¼Hii; ðhhT ÞijZHij; ia j.

(ii)
 DðhhTAÞZDðHAÞ.
where hARn
þ is defined from H as in Definition 1.

This lemma is very useful in the proofs of the main results developed in this paper. We now
recall the following lemma named separating hyperplane theorem which plays a key role in the
proofs in the following sections.

Lemma 2 (Boyd [29]). Suppose that Ω1 and Ω2 are two convex sets that do not intersect, that
is, Ω1 \ Ω2 ¼∅. Then there exist aa0 and b such that 〈a; x〉rb for all xAΩ1 and 〈a; x〉Zb
for all xAΩ2.

It should be noted that, in this paper, if Ω1 and Ω2 are two convex subsets in Rn�n, then
aARn�n 0 and 〈a; x〉¼ trðaxÞ.
3. Bounded real lemma for continuous case

3.1. Analysis for bounded real lemma

In this subsection, basic characteristics of linear continuous positive descriptor systems are
introduced at first. Then some lemmas needed for later analysis are given. Finally, a necessary
and sufficient condition in terms of strict LMI to check H1 norm less than γ is proposed.

Consider the following linear continuous descriptor system

Ec _xðtÞ ¼ AcxðtÞ þ BcuðtÞ; ð1aÞ

yðtÞ ¼ CcxðtÞ þ DcuðtÞ; ð1bÞ
where xðtÞARn, uðtÞARm, yðtÞARp are the state, input and output vectors, respectively.
Ec;Ac;Bc;Cc;Dc are real matrices with compatible dimensions, and rankðEcÞ ¼ rrn. System (1)
is called a linear continuous standard system if Ec ¼ I.

A scalar λAC is a finite eigenvalue of a matrix pair ðEc;AcÞ if detðλEc�AcÞ ¼ 0. System (1) is
said to be stable if μðEc;AcÞo0; it is said to be impulse-free if indðEc;AcÞ ¼ 1; it is said to be
admissible if it is regular, impulse-free and stable [30].

Suppose that ðEc;AcÞ is regular and indðEc;AcÞ ¼ ν, λ̂ is a complex number such that
ðλ̂Ec�AcÞ�1 exists, then an explicit solution to Eq. (1a) in the form of Drazin inverses [28] is
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given by

xðtÞ ¼ eÊ
D
c ÂctÊ

D
c Êcxð0Þ þ

Z t

0
eÊ

D
c Âcðt� τÞÊ

D
c B̂cuðτÞ dτ�ðI� Ê

D
c ÊcÞ ∑

ν�1

i ¼ 0
ðÊcÂ

D
c ÞiÂ

D
c B̂cu

ðiÞðtÞ;

where Êc ¼ ðλ̂Ec�AcÞ�1Ec, Âc ¼ ðλ̂Ec�AcÞ�1Ac, B̂c ¼ ðλ̂Ec�AcÞ�1Bc, xð0Þ is an admissible
initial condition, uðiÞ is the ith derivative of u, i¼ 0; 1;…; ν�1. The admissible initial condition
xð0Þ satisfies

xð0Þ ¼ Ê
D
Êw�ðI� Ê

D
c ÊcÞ ∑

ν�1

i ¼ 0
ðÊcÂ

D
c ÞiÂ

D
c B̂cu

ðiÞð0Þ;

where wARn.
Transforming ðEc;AcÞ into the Weierstrass canonical form by Pc;QcARn�n leads to

Êc ¼Qc

ðλ̂I�JcÞ�1 0

0 ðλ̂Nc� IÞ�1Nc

" #
Q�1

c ; Ê
D
c ¼Qc

λ̂I�Jc 0

0 0

" #
Q�1

c ;

Âc ¼Qc

ðλ̂I�JcÞ�1Jc 0

0 ðλ̂Nc� IÞ�1

" #
Q�1

c ; Â
D
c ¼Qc

JDc ðλ̂I�JcÞ 0

0 λ̂Nc� I

" #
Q�1

c :

Bc;Cc are partitioned accordingly,

PcBc ¼
Bc1

Bc2

" #
; CcQc ¼ ½Cc1 Cc2�:

Then by computation,

ÊcÊ
D
c ¼ Ê

D
c Êc ¼Qc

I 0

0 0

� �
Q�1

c ; Ê
D
c Âc ¼ ÂcÊ

D
c ¼Qc

Jc 0

0 0

� �
Q�1

c ;

Â
D
c Êc ¼ ÊcÂ

D
c ¼Qc

JDc 0

0 Nc

" #
Q�1

c ; Ê
D
c B̂c ¼Qc

Bc1

0

� �
;

Â
D
c B̂c ¼Qc

JDc Bc1

Bc2

" #
; CcÊ

D
c Êc ¼ ½Cc1 0�Q�1

c :

Definition 2 (Virnik [14]). System (1) is said to be positive if xðtÞZ0; yðtÞZ0; tZ0 for
any admissible initial condition xð0ÞZ0 and any input satisfying uðiÞðτÞZ0, 0rτr t; i¼
0; 1;…; v�1.

Lemma 3 (Virnik [14]). Suppose that ðEc;AcÞ is regular, indðEc;AcÞ ¼ ν and

Ê
D
c ÊcZ0; ðI� Ê

D
c ÊcÞðÊcÂ

D
c ÞiÂ

D
c B̂cr0; i¼ 0; 1;…; v�1: ð2Þ

Then system (1) with Dc¼0 is positive if and only if the following conditions hold:
(i)
 there exists a scalar αZ0 such that M≔Ê
D
c Âc�αI þ αÊ

D
c Êc is a Metzler matrix,

D

(ii)
 Êc B̂cZ0,



Q. Zhang et al. / Journal of the Franklin Institute 352 (2015) 346–368 351
(iii)
 Cc is nonnegative on the subspace χc defined as

χc≔imþ Ê
D
c Êc �ðI� Ê

D
c ÊcÞÂD

c B̂c ⋯ �ðI� Ê
D
c ÊcÞðÊcÂ

D
c Þv�1Â

D
c B̂c

h i
;

where for a matrix AARn�m, imþ A≔ w1ARnj(w2ARm
þ : Aw2 ¼w1

� �
.

Throughout this section, it is assumed that DcZ0 unless explicitly stated otherwise.
Obviously, such assumption does not spoil positivity since only nonnegative input is allowed.

The transfer function matrix of system (1) is given by

GcðsÞ ¼ CcðsEc�AcÞ�1Bc þ Dc; sAC∖λðEc;AcÞ; ð3Þ
and its H1 norm is defined as JGc J1≔supωARσðGcðjωÞÞ, where σðGcðjωÞÞ denotes the
maximal singular value of GcðjωÞ.

Taking into account the Weierstrass canonical form transformation of ðEc;AcÞ, the transfer
function matrix (3) can be rewritten as

GcðsÞ ¼ CcðsEc�AcÞ�1Bc þ Dc

¼CcQc

sI�Jc 0

0 sN� I

� ��1 Bc1

Bc2

" #
þ Dc

¼Cc1ðsI�JcÞ�1Bc1 þ Cc2ðsN� IÞ�1Bc2 þ Dc:

As shown in [14], matrix (3) can be decomposed as

GcðsÞ ¼GcspðsÞ þ GcpðsÞ;
where

GcspðsÞ ¼CcÊ
D
c ÊcðsI� Ê

D
c ÂcÞ�1Ê

D
c B̂c

is the strictly proper part and

GcpðsÞ ¼ CcðI� Ê
D
c ÊcÞðsðI� Ê

D
c ÊcÞÊcÂ

D
c � IÞ�1ðI� Ê

D
c ÊcÞÂD

c B̂c þ Dc

is the polynomial part. In fact, by computation, we have

GcspðsÞ ¼CcÊ
D
c ÊcðsI� Ê

D
c ÂcÞ�1Ê

D
c B̂c

¼ ½Cc1 0� sI�Jc 0

0 sI

� ��1 Bc1

0

� �
¼Cc1ðsI�JcÞ�1Bc1

¼ ½Cc1 0�
sI�Jc 0

0 ðsþ αÞI

" #�1
Bc1

0

� �

¼CcÊ
D
c ÊcðsI�MÞ�1Ê

D
c B̂c;

GcpðsÞ ¼ CcðI� Ê
D
c ÊcÞðsðI� Ê

D
c ÊcÞÊcÂ

D
c � IÞ�1Â

D
c B̂c þ Dc

¼ ½Cc1 0�
� I 0

0 ðsN� IÞ�1

" #
JDc Bc1

Bc2

" #
þ Dc

¼Cc2ðsN� IÞ�1Bc2 þ Dc:
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Note that ðsN� IÞ�1 ¼ �∑ν�1
i ¼ 0s

iNi, if ν41, which implies that system (1) has impulse, then
lims-1Cc2ðsN� IÞ�1Bc2 ¼1. Hence, when the H1 norm of system (1) is considered, ν¼ 1 is
a desired condition.
For convenience, the following matrix expressions are introduced:

Ac ¼ Ê
D
c Âc; ~Bc ¼ Ê

D
c B̂c; Cc ¼ CcÊ

D
c Êc; Dc ¼Dc�CcðI� Ê

D
c ÊcÞðÂD

c B̂cÞ;
B
0
c ¼ �ðI� Ê

D
c ÊcÞÂD

c B̂:

Therefore, if system (1) is impulse-free, then GcðsÞ ¼GcðsÞ, where GcðsÞ ¼ CcðsI�M Þ�1Bc þ Dc.
It has been pointed out in [14] that all finite eigenvalues of ðEc;AcÞ are also eigenvalues of M

and the eigenvalue1 of ðEc;AcÞ is mapped to the eigenvalue �α ofM . Therefore, it is natural to
assume α40 such that M is a Metzler matrix due to the following two facts:
(i)
 If αZ0 such that M is a Metzler matrix, then for any α4αZ0, M is Metzler.

(ii)
 For any α40, M is Hurwitz stable if and only if system (1) is stable.
Throughout this section, it is always assumed that α40 such that M is a Metzler matrix unless
otherwise stated.
Before stating the main result, two lemmas which is helpful for the proof of main result are to

be presented.

Lemma 4. For a given HASnþm with H≽0, if ðEc;AcÞ is regular, condition (2) holds and system
(1) is positive, then tr hhTW

� �
Z tr HWð Þ, where

W ¼
C

T
c Cc C

T
c Dc

D
T
c Cc D

T
c Dc� I

2
4

3
5;

hARnþm
þ is defined from H as in Definition 1.

Proof. Since hARnþm
þ is defined from H as in Definition 1, then it follows from Lemma 1 that

H ¼ hhT�HZ0; Hii ¼ 0; 8 i¼ 1; 2;…; nþ m;

which yields

tr H
0 0

0 I

� �	 

¼ 0:

Thus,

tr HWÞ ¼ tr H W Þ ¼ tr ∑
nþm

i ¼ 1
∑
nþm

j ¼ 1
Hijeie

T
j W

 !
¼ ∑

nþm

i ¼ 1
∑
nþm

j ¼ 1
Hije

T
j Wei;

  

where

W ¼
C

T
c Cc C

T
c Dc

D
T
c Cc D

T
c Dc

2
4

3
5;

ei; i¼ 1; 2;…; nþ m, denotes the ith vector of the canonical basis in Rnþm. Since system (1) is
positive, it is easy to see that HijeTj WeiZ0. Hence, tr hhTW

� �
Z tr HWð Þ. □
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Lemma 5. Suppose that ðEc;AcÞ is regular, condition (2) holds and system (1) is positive.
Consider a linear system in the form of

_xðtÞ ¼MxðtÞ þ BcuðtÞ; ð4Þ
under feedback uðtÞ ¼KCcxðtÞ, where KZ0 with appropriate dimension. Then the following
statements hold:
(i)
 The corresponding closed-loop system is positive.

(ii)
 The corresponding closed-loop system is Hurwitz stable if and only if there exists a PDDM X

such that ðM þ BcKCcÞTX þ XðM þ BcKCcÞ!0.
Proof. (i) Since system (1) is positive, so is system (4). Under feedback uðtÞ ¼ KCcxðtÞ, the
following closed-loop system is obtained:

_xðtÞ ¼ ðM þ BcKCcÞxðtÞ:
Since Cc is nonnegative on the subspace χc,

xðtÞ ¼ eðMþBcKCcÞtxð0Þ ¼ eMtðI þ BcKCct þ⋯Þxð0ÞZ0; 8 tZ0:

Therefore, the corresponding closed-loop system is positive.
(ii) The proof is similar to that of Theorem 2 in [24]. □

It has been proved in [23] that there exists a PDDM solution to the existed condition for
JGJ1o1. In [14], it has been pointed out that the existence of PDDM solution can be
generalized to stability criterion for positive system (1). It is natural to ask whether a similar
result is available for bounded real lemma of positive system (1). Next, we give a positive answer
to this question.

Theorem 1. Suppose that ðEc;AcÞ is regular, condition (2) holds, system (1) is positive and
indðEc;AcÞ ¼ 1. Then the following statements are equivalent:
(i)
 System (1) is stable and JGc J1oγ.

(ii)
 There exists a PDDM X such that

M
T
X þ XM þ C

T
c Cc

XBc þ C
T
c Dc

B
T
c X þ D

T
c Cc D

T
c Dc�γ2I

2
4

3
5!0: ð5Þ
Proof. From the existed condition to check JGc J1oγ for linear general systems, (ii) ) (i) is
immediately obtained. Now we will show that there exists XADn�n

þ such that Eq. (5) holds in the
case that Cc is nonnegative on the subspace χc. It is noted that JGc J1oγ is equivalent to
Jð1=γÞGc J1o1. Set GcðsÞ ¼ ð1=γÞGcðsÞ, which is the transfer function matrix of the following
system:

_x tð Þ ¼Mx tð Þ þ Bcu tð Þ;
y tð Þ ¼ 1

γ
Ccx tð Þ þ 1

γ
Dcu tð Þ: ð6Þ

It is obvious that positivity and stability of system (6) is equivalent to these of system (1). To the
contrary, suppose that there does not exist any PDDM X such that LMI (5) holds, define the



Fig. 1. A four-mesh circuit.
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following two sets fPjP!0;PASnþmg and

M
T
X þ XM þ C

T
c Cc XBc þ C

T
c Dc

B
T
c X þ D

T
c Cc D

T
c Dc�γ2I

2
4

3
5jXADn�n

þ

8<
:

9=
;

which are both convex and do not intersect each other, then from the separating hyperplane
theorem, there exists a nonzero matrix H such that

tr HPð Þr0; 8P!0;

tr H
M

T
X þ XM þ C

T
c Cc XBc þ C

T
c Dc

B
T
c X þ D

T
c Cc D

T
c Dc�γ2I

2
4

3
5

0
@

1
AZ0; 8XADn�n

þ :

Then we can conclude that there exists nonzero H≽0 such that

tr H
M

T
X þ XM þ C

T
c Cc XBc þ C

T
c Dc

B
T
c X þ D

T
c Cc D

T
c Dc�γ2I

2
4

3
5

0
@

1
AZ0; 8XADn�n

þ ;

from which it follows that

tr H
M

T
X þ XM XBc

B
T
c X 0

" # !
Z0; 8XADn�n

þ ; ð7Þ

tr H

1
γ2 C

T
c Cc

1
γ2 C

T
c Dc

1
γ2 D

T
c Cc

1
γ2 D

T
c Dc� I

2
4

3
5

0
@

1
AZ0: ð8Þ

Since M is a Metzler matrix and BcZ0, it is easy to check that XM is also Metzler and XBcZ0.
Then, according to Lemmas 1 and 4, it follows from conditions (7) and (8) that

tr hhT
M

T
X þ XM XBc

B
T
c X 0

" # !
Z0; 8XADn�n

þ ;
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tr hhT
1
γ2 C

T
c Cc

1
γ2 C

T
c Dc

1
γ2 D

T
c Cc

1
γ2 D

T
c Dc� I

2
4

3
5

0
@

1
AZ0;

where hARnþm
þ is defined as in Definition 1. Now h is partitioned as h≔½hT1 hT2 �T . The two above

inequalities can be rewritten in the equivalent form as follows:

hT1 ðM
T
X þ XM Þh1 þ hT2B

TXh1 þ hT1XBh2Z0; 8XADn�n
þ ; ð9Þ

1
γ
Cch1 þ

1
γ
Dch2

	 
T 1
γ
Cch1 þ

1
γ
Dch2

	 

ZhT2h2: ð10Þ

Note that system (1) is stable. Then matrix M is Hurwitz stable. Inasmuch as h is nonzero, the
following three cases are considered:
(1)
 h1a0; h2 ¼ 0. It follows from condition (9) that hT1 ðM
T
X þ XM Þh1Z0,

that is to say, there does not exist any PDDM X such that M
T
X þ XM!0,

which contradicts the fact that M is Hurwitz stable.

(2)
 h1 ¼ 0; h2a0. By condition (10), ð1=γ2ÞhT2D

T
c Dch2ZhT2h2

which violates the fact that JGc J1o1.

(3)
 h1a0; h2a0. It is easy to check that ð1=γÞCch1 þ ð1=γÞDch2a0. Define

Δ¼ h2
1
γ
Cch1 þ

1
γ
Dch2

	 
T 1
γ
Cch1 þ

1
γ
Dch2

	 
T 1
γ
Cch1 þ

1
γ
Dch2

	 

:

,
ð11Þ

It can be easily seen that ΔZ0, σðΔÞr1 and h2 ¼ ðI�Δð1=γÞDcÞ�1Δð1=γÞCch1Z0 since
Cc is nonnegative on the subspace χc. It follows from Eq. (9) that

hT1 M þ Bc I�Δ
1
γ
Dc

	 
�1

Δ
1
γ
Cc

 !T

X
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þ M þ Bc I�Δ
1
γ
Dc

	 
�1

Δ
1
γ
Cc

 !
X

!
h1Z0; 8XADn�n

þ :

According to Lemma 5, the above condition implies that M þ BcðI�Δð1=γÞDcÞ�1Δð1=γÞCc

is unstable which contradicts the fact that JGc J1o1. □
Remark 1. If Ec ¼ I, γ ¼ 1, LMI (5) in Theorem 1 is exactly LMI (6) presented in [23]. On the
other hand, it has been pointed out in [24] that JGc J1 ¼ JGcð0ÞJ if system (1) with E¼ I is
positive and Hurwitz stable. We can obtain JGc J1 ¼ JGcð0ÞJ following the same method for
Corollary 2 in [24]. Therefore, for system (1) with indðEc;AcÞ ¼ 1, based on the positivity and
stability characteristics, the exact value of H1 norm is given by JGc J1 ¼ JGcð0ÞJ . It is
worthwhile to note that Theorem 1 can be extended to general descriptor systems. If PDDM in
LMI (5) is substituted for positive definite matrix, then Theorem 1 is an H1 criterion for system
(1) without positivity restriction.

Remark 2. It is important to mention that the magnitude of α has nothing to do with H1 norm
of positive system (1). It is easy to see from aforementioned discussion that the transfer function
matrix G(s) is independent of α.

Remark 3. In general, whether a descriptor system is in normal operation largely depends on
impulse. For a regular continuous descriptor system, the internal stability contains not only
stability, but also impulse-free. Necessary and sufficient conditions for stability and impulse-free
of positive system (1) have been established in [14,20]. However, in practice, it is not possible to
be stable or impulse-free for any continuous descriptor system. Therefore, it is necessary to
develop stabilization problem for system (1) with positivity preserved, which has not been well
studied in the literature and is the subject of ongoing work. The greatest difficulty of this problem
is checking positivity of the closed-loop system which involves the computation of Drazin
inverses of the closed-loop systems' matrices.
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The following algorithm can be proposed to check H1 norm of positive system (1).
Step 1: Check the regularity of matrix pair ðEc;AcÞ. If it is regular, go to the next step,

otherwise, go to end.
Step 2: Compute the index of matrix pair ðEc;AcÞ. If indðEc;AcÞ ¼ 1, then continue,

otherwise, stop.
Step 3: Compute matrices Ê

D
c Êc; �ðI� Ê

D
c ÊcÞÂD

c B̂c. If both are nonnegative matrices, then
go to step 4, if not, go to end.

Step 4: Compute matrices Ê
D
c Âc; Ê

D
c B̂c, then check the positivity of system (1) using Lemma 3.

If system (1) is positive, go to step 5, otherwise, go to end.
Step 5: Choose a scalar α40 arbitrarily such that M is a Metzler matrix, then solve the LMI

(5) in Theorem 1. If there exists a feasible solution, positive system (1) is stable and JGc J1oγ.
End.

3.2. Positivity-H1 norm-preserving model reduction

In this subsection, a simple model reduction which can preserve the positivity, stability and
H1 norm of positive system (1) is to be introduced.

It has been pointed out in [10] that state equation (1a) and the following equation

_xðtÞ ¼ AcxðtÞ þ BcuðtÞ�ðI� Ê
D
c ÊcÞ ∑

ν

i ¼ 1
ðÊcÂ

D
c ÞiÂ

D
c B̂cu

ðiÞðtÞ

have the same solution (2) for any admissible initial condition xð0Þ of system (1) and a given u(t).
If indðEc;AcÞ ¼ 1, it is easy to verify that system (1) and the following system

_xðtÞ ¼ AcxðtÞ þ BcuðtÞ þ B
0
c _uðtÞ;

yðtÞ ¼ CcxðtÞ þ DcuðtÞ ð12Þ
have the same transfer function matrix, solution and output for any admissible initial condition
xð0Þ and a given u(t).

Note that Ê
D
c ÊcAc ¼ AcÊ

D
c Êc ¼ Ac. If ðÊD

c ÊcÞci ¼ 0, then it immediately follows by
computation that ðAcÞci ¼ 0, ðCcÞci ¼ 0. In such case, from system (12), we can observe that
the state variable xi(t) has no impact on other state variables and output. Set
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Z ¼ i
���ðÊD

c ÊcÞci ¼ 0
n o

, delete the ith row and ith column of Ê
D
c Êc and Ac,the ith column of Cc,

the ith row of Bc and B
0
c, then the reduced order system is given by

_xcrðtÞ ¼ ðAcÞroxcrðtÞ þ ðBcÞrouðtÞ þ ðB0
cÞro _uðtÞ; ð13aÞ

ycrðtÞ ¼ ðCcÞroxcrðtÞ þ DcuðtÞ; ð13bÞ
where ðAcÞro, ðBcÞro, ðB0

cÞro, ðCcÞro are the reduced order matrices. The admissible initial
condition is given by xcrð0Þ ¼ ðÊD

c ÊcÞrowþ ðB0
cÞrouð0Þ.

Next, we will show that the model reduction introduced above can preserve positivity, stability
and H1 norm of positive system (1). At first, projector is introduced which is used in the proof of
next theorem.
A matrix AARn�n is called a projector if A2 ¼ A. If A is a projector, then there exists a

nonsingular matrix T such that [14]

A¼ T �1 I 0

0 0

� �
T :

Theorem 2. Suppose that ðEc;AcÞ is regular, condition (2) holds, indðEc;AcÞ ¼ 1, system (1) is
positive, stable and JGc J1oγ. If the set Z is nonempty, then the reduced order system (13) is
also positive, stable and JGcr J1oγ, moreover, JGc J1 ¼ JGcr J1 ¼ JGcrð0ÞJ .
Proof. Since condition (2) holds and system (1) is positive, then the reduced order matrices

ðÊD
c ÊcÞroZ0; ðBcÞroZ0; ðB0

cÞroZ0;

which leads to xcrð0ÞZ0. If α40 such that M is a Metzler matrix, it is easy to check that
Mro≔ðAcÞro þ αðÊD

c ÊcÞro�αI, 8αZα40, is also a Metzler matrix. Suppose that the set Z has
only one element, without loss of generality, ðÊD

c ÊcÞc1 ¼ 0, which implies that ðAcÞc1 ¼ 0,
ðCcÞc1 ¼ 0. Set

Ê
D
c Êc ¼

01;1 ðÊD
c ÊcÞ1;n�1

0n�1;1 ðÊD
c ÊcÞro

2
4

3
5; Ac ¼

01;1 ðAcÞ1;n�1

0n�1;1 ðAcÞro

" #
;
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Cc ¼ ½0p;1 ðCcÞro�; Bc ¼ ½ðBcÞTr1 ðBcÞTro�T ; B
0
c ¼ ½ðB0

cÞTr1 ðB0
cÞÞTro�T :

Inasmuch as Ê
D
c ÊcÊ

D
c Êc ¼ Ê

D
c Êc, we have

Ê
D
c ÊcÊ

D
c Êc ¼

01;1 ðÊD
c ÊcÞ1;n�1ðÊ

D
c ÊcÞro

0n�1;1 ðÊD
c ÊcÞroðÊ

D
c ÊcÞro

2
4

3
5¼

01;1 ðÊD
c ÊcÞ1;n�1

0n�1;1 ðÊD
c ÊcÞro

2
4

3
5;

which implies ðÊD
c ÊcÞroðÊ

D
c ÊcÞro ¼ ðÊD

c ÊcÞro. In a similar way, we can conclude that
ðAcÞroðÊ

D
c ÊcÞro ¼ ðÊD

c ÊcÞroðAcÞro ¼ ðAcÞro, ðCcÞro ¼ ðCcÞroðÊ
D
c ÊcÞro, ðBcÞro ¼ ðÊD

c ÊcÞroðBcÞro,
ðAcÞroðB0

cÞro ¼ 0, ðCcÞroðB0
cÞro ¼ 0. Then it is easy to check that

xðtÞ ¼ eðAcÞrotðÊD
c ÊcÞroxð0Þ þ

Z t

0
eðAcÞroðt� τÞðBcÞrouðτÞ dτ þ ðB0

cÞrouðtÞ

is a solution of state equation (13a). If ðÊD
c ÊcÞro is nonsingular, it follows from

ðÊD
c ÊcÞroðÊ

D
c ÊcÞro ¼ ðÊD

c ÊcÞro that ðÊD
c ÊcÞro ¼ I, that is, system (13) is a standard system.

Then, it is easy to see that xcrðtÞZ0, tZ0. On the other hand, we obtain ðCcÞroxcrðtÞ ¼ CcxðtÞ,
this is due to the fact that ðCcÞc1 ¼ 0 which implies that x1 has no impact on output. Therefore,

according to Lemma 3, ycrðtÞZ0; tZ0. If ðÊD
c ÊcÞro is singular, from Taylor expansion,

eMrotðÊD
c ÊcÞro ¼ ðÊD

c ÊcÞroeMrotðÊD
c ÊcÞro ¼ eðAcÞrotðÊD

c ÊcÞro ¼ ðÊD
c ÊcÞroeðAcÞrotðÊD

c ÊcÞro:
Thus, it can be easily verified from Lemma 3 that xcrðtÞZ0, ycrðtÞZ0; tZ0.

Since system (1) is stable and impulse-free, from the aforementioned discussion, the number
of finite eigenvalues and eigenvalue 1 of ðEc;AcÞ are r and n�r, respectively, which means that
Ac has r finite eigenvalues with negative real parts and n�r eigenvalue 0, or equivalently, M has
r finite eigenvalues with negative real parts and n�r eigenvalue �α. Define

M ¼
01;1 M1;n�1

0n�1;1 Mro

" #
:
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Fig. 7. The output error trajectory between the original system and the reduced order system.
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Then expanding the determinant of sI�M by column, we have

detðsI�M Þ ¼ det
s M 1;n�1

0n�1;1 sI�Mro

" # !
¼ s detðsI�MroÞ;

from which one can observe that the reduced order matrix Mro preserves the finite eigenvalues of
ðEc;AcÞ, in other words, Mro has r finite eigenvalues with negative real parts and n�r�1
eigenvalue �α. Therefore, the reduced order system (13) is stable.
According to the aforementioned analysis, the transfer function matrix of system (13) is given

by

GcrðsÞ ¼ Cc

� �
ro

sI� Ac

� �
ro

� �1
Bc

� �
ro
þ Dc:

On the other hand, since ðÊD
c ÊcÞro is a projector, then there exists a nonsingular matrix T such

that

ðÊD
c ÊcÞro ¼ T �1 I 0

0 0

� �
T :

Matrix ðAcÞro is partitioned accordingly,

ðAcÞro ¼ T �1
A1 A2

A3 A4

" #
T ;

from which it follows that A2 ¼ 0, A3 ¼ 0, A4 ¼ 0. Hence, we have

GcðsÞ ¼ CcðsI�MÞ�1Bc þ Dc

¼ ½01;1 ðCcÞro� sI�
�α M 1;n�1

0n�1;1 ðAcÞro þ αðÊD
c ÊcÞro�αI

" # !�1 ðBcÞc1
ðBcÞro

" #
þ Dc

¼ Cc

� �
ro

sI�Mro

� ��1
Bc

� �
ro
þ Dc

¼ Cc

� �
ro sI� Ac

� �
ro

� �1
Bc

� �
ro þ Dc

¼GcrðsÞ:
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Therefore, JGc J1 ¼ JGcr J1oγ, furthermore, JGcr J1 ¼ JGcrð0ÞJ . If the set Z has two or
more than two elements, in the same way, we can conclude that the reduced order system (13) is
positive, stable and JGcr J1oγ. □

Remark 4. If ðÊD
c ÊcÞro is nonsingular, then the reduced order system (13) is a standard system,

conversely, it is a descriptor system, although it is described in the form of a standard system. It
is should be stressed here that this model reduction method can be applied to not only positive
descriptor systems, but also general descriptor systems. However, for general descriptor systems,
we cannot derive the result JGcr J1 ¼ JGcrð0ÞJ . On the other hand, this method cannot be
applied to standard systems, although state variable xi has no impact on other state variables, it
may exercise a great influence on output.

Remark 5. A class of descriptor systems with some zero rows and zero columns in matrix E can
be found in many practical models, such as DC motor [32], circuit network [10,30,31], and
biological complex systems [32]. It is easy to check by computation that if there exists ðEcÞci ¼ 0,
then ðÊD

c ÊcÞci ¼ 0. In this case, the introduced model reduction above is available. When high-
order positive descriptor models are concerned, such method can be reduced order easily and
efficiently, which leads to simpler analysis.

4. Bounded real lemma for discrete case

In this section, the results presented in Section 3 will be extended to discrete case.
Consider a linear discrete descriptor system of the form

Edxðk þ 1Þ ¼ AdxðkÞ þ BduðkÞ; ð14aÞ

yðkÞ ¼CdxðkÞ þ DduðkÞ; ð14bÞ
where xðkÞARn, uðkÞARm, yðkÞARp are the state, input and output vectors, respectively.
Ed;Ad ;Bd;Cd;Dd are real matrices with compatible dimensions, and rankðEdÞ ¼ rrn. System
(14) is called a linear discrete standard system if Ed ¼ I.

Suppose that ðEd;AdÞ is regular and indðEd ;AdÞ ¼ ν. An explicit solution in terms of Drazin
inverses to Eq. (14a) is given by [28]

xðkÞ ¼ ðÊD
d ÂdÞkÊD

d Êdxð0Þ

þ ∑
k�1

i ¼ 0
ðÊD

d ÂdÞk�1� iÊ
D
d B̂duðiÞ�ðI� Ê

D
d ÊdÞ ∑

ν�1

i ¼ 0
ðÊdÂ

D
d ÞiÂ

D
d B̂duðk þ iÞ; ð15Þ

where Êd ¼ ðλEd�AdÞ�1Ed, Âd ¼ ðλEd�AdÞ�1Ad, B̂d ¼ ðλEd�AdÞ�1Bd, and xð0Þ is an
admissible initial condition. For system (14), it is said to be stable if ρðEd;AdÞo1; it is said
to be causal if indðEd;AdÞ ¼ 1; it is said to be admissible if it is regular, causal and stable [30].

It has been pointed out in [14] that all finite eigenvalues of ðEd;AdÞ are also eigenvalues of Ad

and the eigenvalue 1 of ðEd ;AdÞ is mapped to the eigenvalue 0 of Ad. In other words, system
(14) is stable if and only if matrix Ad is Schur stable.

Definition 3 (Virnik [14]). System (14) is said to be positive if xðkÞZ0; yðkÞZ0; kZ0 for any
admissible initial condition xð0ÞZ0 and any input uðτÞZ0; 0rτrk þ v�1.

Lemma 6 (Virnik [14]). Suppose that ðEd;AdÞ is regular, indðEd;AdÞ ¼ ν and Ê
D
d ÊdZ0. Then

system (14) with Dd ¼ 0 is positive if and only if Ê
D
d ÂdZ0, Ê

D
d B̂dZ0,
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ðI� Ê
D
d ÊdÞðÊdÂ

D
d ÞiÂ

D
d B̂dr0; i¼ 0;…; v�1, and Cd are nonnegative on the subspace χd defined

by χd≔imþ½ÊD
d Êd �ðI� Ê

D
d ÊdÞÂD

d B̂d ⋯ �ðI� Ê
D
d ÊdÞðÊdÂ

D
d Þv�1Â

D
d B̂d�.

For convenience, define

Ad ¼ Ê
D
d Âd ; Bd ¼ Ê

D
d B̂d; B

0
d ¼ �ðI� Ê

D
d ÊdÞðÂD

d B̂dÞ;
Cd ¼ CdÊ

D
d Êd; Dd ¼Dd�CdðI� Ê

D
d ÊdÞðÂD

d B̂dÞ:
Suppose that ðEd;AdÞ is regular, Ê

D
d ÊdZ0 and system (14) is positive. Consider a linear

system given by

xðk þ 1Þ ¼ AdxðkÞ þ BduðkÞ;
under feedback uðkÞ ¼ KCdxðkÞ, where KZ0. Then the corresponding closed-loop system is
also positive. Furthermore, it is Schur stable if and only if there exists XADn�n

þ such that
ðAd þ BdKCdÞTXðAd þ BdKCdÞ�X!0.
The transfer function matrix of system (14) is given by

GdðzÞ ¼ CdðzEd�AdÞ�1Bd þ Dd; sAC=λðEd;AdÞ;
and its H1 norm is defined as JGd J1≔sup σðGdðejθÞÞ; θA ½0; 2πÞ. Similarly, if system (14) is
admissible, then GdðsÞ ¼GdðsÞ, where GdðsÞ ¼ CdðsI�AdÞ�1Bd þ Dd.
Throughout this section, it is assumed that DdZ0 unless otherwise specified. Then the

following result is obtained.

Theorem 3. Suppose that ðEd;AdÞ is regular, Ê
D
d ÊdZ0, system (14) is positive and

indðEd;AdÞ ¼ 1. The following statements are equivalent:
(i)
 System (14) is stable and JGd J1oγ.

(ii)
 There exists a PDDM X such that

A
T
dXAd�X þ C

T
dCd A

T
dXBd þ C

T
dDd

B
T
dXAd þ D

T
dCd B

T
dXBd þ D

T
dDd�γ2I

2
4

3
5!0: ð16Þ
Proof. The proof is similar to that of Theorem 1. To the contrary, suppose that Eq. (16) does not
hold for any PPDM X. Then there exists a nonzero matrix H≽0 such that

tr hhT
A
T
dXAd�X A

T
dXBd

B
T
dXAd B

T
dXBd

2
4

3
5

0
@

1
AZ tr H

A
T
dXAd�X A

T
dXBd

B
T
dXAd B

T
dXBd

2
4

3
5

0
@

1
AZ0; 8XADn�n

þ ;

tr hhT
1
γ2 C

T
dCd

1
γ2 C

T
dDd

1
γ2 D

T
dCd

1
γ2 D

T
dDd� I

2
4

3
5

0
@

1
AZ tr H

1
γ2 C

T
dCd

1
γ2 C

T
dDd

1
γ2 D

T
dCd

1
γ2 D

T
dDd� I

2
4

3
5

0
@

1
AZ0:

Partition h≔½hT1 hT2 �T , where h1ARn
þ, h2ARm

þ, the two above conditions can be rewritten as
follows:

hT1 ðA
T
dXAd�XÞh1 þ hT2B

T
dXAd þ hT1A

T
dXBdh2 þ hT2B

T
dXBh2Z0; 8XADn�n

þ ; ð17Þ
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1
γ
Cdh1 þ

1
γ
Ddh2

	 
T 1
γ
Cdh1 þ

1
γ
Ddh2

	 

ZhT2h2: ð18Þ

Since H is nonzero, it only needs to consider the following three cases:
(1)
 h1 ¼ 0; h2a0. Condition (18) violates JGd J1oγ.

(2)
 h1a0; h2 ¼ 0. From Eq. (17), hT1 ðA

T
dXAd�XÞh1Z0; 8XADn�n

þ , which means that there is
no PDDM X such that A

T
dXAd�X!0. This is a contradiction.
(3)
 h1a0; h2a0 . Define Δ as in Eq. (11). Then from Eq. (17), it follows that

hT1 ~A
T
dX ~Ad�X

� 
h1Z0; 8XADn�n

þ ;

where ~Ad≔Ad þ BdðI�Δð1=γÞDdÞ�1Δð1=γÞCd. Then ρð ~AdÞZ1 which contradicts
JGd J1oγ. □
Remark 6. If Ed ¼ I, γ ¼ 1, LMI (16) in Theorem 3 is exactly LMI condition to check
JGd J1o1 given in [25]. Similar to continuous case, the exact value of H1 norm of positive
system (14) can be computed directly by JGdð1ÞJ , in other words, JGd J1 ¼ JGdð1ÞJ .

In [25], a necessary and sufficient condition in the form of linear programming to check
JGd J1o1 for positive standard systems has been presented if m¼p. Such result can also be
extended to positive descriptor system (14).

Corollary 1. Suppose that ðEd;AdÞ is regular, Ê
D
d ÊdZ0, system (14) is positive and

indðEd;AdÞ ¼ 1. If m¼p, then the following statements are equivalent:
(i)
 System (14) is stable and JGd J1oγ.

(ii)
 There exists a vector βc0 such that

Ad� I Bd

Cd Dd�γI

" #T
β{0:
As shown in [31], system (14) and the following system

xðk þ 1Þ ¼ AdxðkÞ þ BduðkÞ þ B
0
duðk þ 1Þ;

yðkÞ ¼CdxðkÞ þ DduðkÞ;
have the same transfer function matrix, solution (15) and output for any admissible initial
condition xð0Þ and a given u(k).

If Zd≔fijðÊD
c ÊcÞci ¼ 0g is nonempty, applying the same method for continuous case, the

reduced order system is described as

xdrðk þ 1Þ ¼ ðAdÞroxdrðkÞ þ ðBdÞrouðkÞ þ ðB0
dÞrouðk þ 1Þ;

ydrðkÞ ¼ ðCdÞroxdrðkÞ þ DduðkÞ: ð19Þ
The transfer function matrix of system (19) is given by

GdrðsÞ ¼ ðCdÞro sI� Ad

� �
ro

� �1
ðBdÞro þ Dd :
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Theorem 4. Suppose that ðEd;AdÞ is regular, Ê
D
d ÊdZ0, system (14) is positive,

indðEd;AdÞ ¼ 1, stable and JGd J1oγ. If the set Zd is nonempty, then the reduced order
system (19) is also positive, stable and JGdr J1oγ, moreover, JGd J1 ¼ JGdr J1 ¼ JGdrð1ÞJ .

Proof. It follows exactly the same line of Theorem 2. □

Remark 7. Compared with the classical model reduction technique [27] which tackles positive
standard systems, our model reduction method is only applicable to positive descriptor systems
in that the set Zd≔ ijðÊD

c ÊcÞci ¼ 0
n o

must be nonempty. Even though we cannot give a
numerical comparison between the method in [27] and that in this paper, the numerical example
in the next section also shows that under the assumption that the initial condition of the original
system and the reduced order system are different and the input vector is the same, the output
vector of reduced order system asymptotically approaches that of the original system. It should
also be mentioned that using our proposed method, the norm of the transfer function matrix of
the original system equals to that of the reduced order system, which means under the same input
vector, the norms of the output vector of the two systems are equal. In the classical H1 model
reduction setting, an additional performance index JyðtÞ�yroðtÞJoγ JuðtÞJ needs to be
satisfied, while using our method, when Jy tð ÞJo 1

2 γ Ju tð ÞJ and Jyro tð ÞJo 1
2 γ Ju tð ÞJ hold, it

suffices to prove JyðtÞ�yroðtÞJoγ JuðtÞJ . In fact, based on the norm inequality
JyðtÞ�yroðtÞJr JyðtÞJ þ JyroðtÞJ , we have JyðtÞ�yroðtÞJr JyðtÞJ þ JyroðtÞJoγ JuðtÞJ
which is the classical performance index.
5. Numerical example

In this section, a numerical example is given to illustrate the effectiveness of the obtained
results.
Now consider a linear electrical circuit consisting of resistances, inductances and source

voltages (see Fig. 1) which is introduced in [10] as an example of weakly positive descriptor
systems. As pointed out in [10], using the mesh method, the following equations can be derived:

L1
di1
dt

¼ � R1 þ R3 þ R5ð Þi1 þ R3i3 þ R5i4;

L2
di2
dt

¼ � R4 þ R6 þ R7ð Þi2 þ R4i3 þ R7i4;

0¼ R3i1 þ R4i2�ðR2 þ R3 þ R4Þi3 þ e1;
0¼ R5i1 þ R7i2�ðR5 þ R7 þ R8Þi3 þ e2:

The mesh currents x1 ¼ i1; x2 ¼ i2; x3 ¼ i3; x4 ¼ i4 are chosen as the state variables, and the
voltages u1 ¼ e1, u2 ¼ e2 and y1 ¼ Ldi1=dt þ R11i1; y2 ¼ R6i2 are chosen as the input and output
variables, respectively, then the system can be written in the form of system (1) with

Ec ¼

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

2
6664

3
7775; Ac ¼

�R11=L1 0 R13=L1 R14=L1
0 �R22=L2 R23=L2 R24=L2
R31 R32 �R33 0

R41 R42 0 �R44

2
6664

3
7775;
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Bc ¼

0 0

0 0

1 0

0 1

2
6664

3
7775; Cc ¼

0 0

0 R6

R3 0

R5 0

2
6664

3
7775
T

; Dc ¼ 0;

R11 ¼ R1 þ R3 þ R5; R13 ¼ R31 ¼ R3; R14 ¼ R41 ¼ R5;

R22 ¼ R4 þ R6 þ R7; R23 ¼ R32 ¼ R4; R24 ¼ R42 ¼ R7;

R33 ¼ R2 þ R3 þ R4; R44 ¼ R5 þ R7 þ R8:

Let R1 ¼ R2 ¼ R3 ¼ R4 ¼ R5 ¼ R6 ¼ R7 ¼ R8 ¼ 1; L1 ¼ L2 ¼ 3. Then by computation, ðEc;AcÞ is
regular, indðEc;AcÞ ¼ 1 and

Ê
D
c Êc ¼

1 0 0 0

0 1 0 0
1
3

1
3 0 0

1
3

1
3 0 0

2
66664

3
77775; � I� Ê

D
c Êc

� 
Â
D
c B̂c

� 
¼

0 0

0 0
1
3 0

0 1
3

2
66664

3
77775;

Ê
D
c Âc ¼

�7
9

2
9 0 0

2
9

�7
9 0 0

�5
27

�5
27 0 0

�5
27

�5
27 0 0

2
66664

3
77775Bc ¼

1
9

1
9

1
9

1
9

2
27

2
27

2
27

2
27

2
66664

3
77775;

Cc ¼
2
3

2
3 0 0

0 1 0 0

" #
; �Cc I� Ê

D
c Êc

� 
Â
D
c B̂c

� 
¼

1
3

1
3

0 0

" #
:

It is straightforward to see that M≔Ê
D
c Âc þ αÊ

D
c Êc�αI is a Metzler matrix for any αZ 5

9.
According to Lemma 3, the system is a positive descriptor system. Then choosing α¼ 1 and
solving condition (5) in Theorem 1, one feasible solution can be obtained as

γ ¼ 0:8945; X ¼

4:4728 0 0 0

0 5:5908 0 0

0 0 0:0021 0

0 0 0 0:0021

2
6664

3
7775:

By computation, JGcð0ÞJ ¼ JGcð0ÞJ ¼ 0:8944, which shows that the exact value of JGc J1 is
closed to the optimal value γ in LMI (5). Let α¼ 3, the following feasible solution to LMI (6) is
obtained:

γ ¼ 0:8945; X ¼

4:4738 0 0 0

0 5:5919 0 0

0 0 0:0005 0

0 0 0 0:0005

2
6664

3
7775:

Direct computation shows that JGcð0ÞJ ¼ JGcð0ÞJ ¼ 0:8944. For α¼ 8, one feasible solution
to LMI (5) is
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γ ¼ 0:8945; X ¼

4:4736 0 0 0

0 5:5914 0 0

0 0 0:0002 0

0 0 0 00002

2
6664

3
7775:

JGcð0ÞJ ¼ JGcð0ÞJ ¼ 0:8944 also holds. From the obtained feasible solutions, one can see that
the magnitude of α has nothing to do with H1 norm of this system. However, it has impact on
the diagonal entries of X. It can be easily seen that the bigger the magnitude of α, the smaller the
last two diagonal entries of X. Therefore, the above facts illustrate the effectiveness of the
theoretical results presented in this paper.
Note that ðÊD

c ÊcÞc3 ¼ 0; ðÊD
c ÊcÞc4 ¼ 0, then we have

ðÊD
c ÊcÞro ¼

1 0

0 1

� �
; ðAcÞro ¼

�7
9

2
9

2
9

�7
9

" #
;

ðBcÞro ¼
1
9

1
9

1
9

1
9

" #
; ðB0

cÞro ¼ 0; ðCcÞro ¼
2
3

2
3

0 1

" #
:

The positive descriptor system can be reduced to the following system:

_xro tð Þ ¼
�7
9

2
9

2
9

�7
9

" #
xro tð Þ þ

1
9

1
9

1
9

1
9

" #
u tð Þ;

yro tð Þ ¼
2
3

2
3

0 1

" #
xro tð Þ þ

1
3

1
3

0 0

" #
u tð Þ;

Obviously, the reduced order system is a positive standard system. Solving the LMI in Theorem 1,
one feasible solution is

γ ¼ 0:8945; X ¼ 4:4721 0

0 5:5902

� �
:

Direct computation also shows that JGcr J1 ¼ JGcrð0ÞJ ¼ 0:8944. Fig. 2 shows the
maximum singular values of GcðjωÞ and GcrðjωÞ, ωA ½�10; 10�, from which we can see that
all the maximum singular values are smaller than 0.8945 and plots of original system and the
reduced order system overlap completely. This fact shows that this model reduction method can
be used to simplify analysis for high-order positive descriptor systems with some zero columns
in derivative matrix E. Suppose that the initial state vector of the original system and that of the
reduced order system are x0 ¼ ½0:5 0:2 0:57 0:57�T and x0 ¼ ½0:6 0:1�T respectively, the voltages
u1 ¼ u2 ¼ 1, then simulation results are present in Figs. 3–7. Among them, Figs. 3 and 4 show
the state trajectory of the original system and that of the reduced order system, Figs. 5 and 6
depict the output trajectory of the original system and that of the reduced order system, the output
error between the original system and the reduced order system is also provided in Fig. 7.

6. Conclusion

In this paper, bounded real lemmas for linear continuous and discrete positive descriptor
systems have been investigated. By using the separating hyperplane theorem, necessary and
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sufficient conditions to check JGc J1oγ have been presented, which show that under the
assumption of positivity characteristics, there exist PDDM solutions to the obtained LMIs
conditions. Moreover, a simple model reduction which can preserve positivity, stability and H1
norm of original systems is proposed. Finally, an example is provided to demonstrate the
effectiveness of the theoretical results. However, we have only restricted our attention to the
analysis of H1 norm in this paper, an open problem is the development of stabilization of
positive descriptor systems with positivity preserved, which is left for future research.
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