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Abstract This paper considers the H∞ filtering prob-
lem for stochastic singular fuzzy systems with time-
varying delay. We assume that the state and measure-
ment are corrupted by stochastic uncertain exogenous
disturbance and that the system dynamic is modeled
by Ito-type stochastic differential equations. Based on
an auxiliary vector and an integral inequality, a set of
delay-dependent sufficient conditions is established,
which ensures that the filtering error system is eλt -
weighted integral input-to-state stable in mean (iIS-
SiM). A fuzzy filter is designed such that the filtering
error system is impulse-free, eλt -weighted iISSiM and
the H∞ attenuation level from disturbance to estima-
tion error is below a prescribed scalar. A set of sufficient
conditions for the solvability of the H∞ filtering prob-
lem is obtained in terms of a new type of Lyapunov
function and a set of linear matrix inequalities. Simu-
lation examples are provided to illustrate the effective-
ness of the proposed filtering approach developed in
this paper.
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1 Introduction

In recent years, there has been increasing research inter-
est in state estimation due to its theoretical and prac-
tical significance in control design and signal process-
ing. One of the most celebrated estimation methods is
Kalman filtering, which provides an optimal estimation
of the state variables. However, it should be pointed out
that one main shortcoming of Kalman filtering is that
the priori statistical information of the external noise
on the considered systems must be known. In view of
this, an alternative estimation method based on H∞ fil-
tering technique has been proposed recently [1–4]. One
of the main advantages of H∞ filtering is that it is not
necessary to exactly know the statistical properties of
the external disturbance, but the external disturbance
is assumed to have bounded energy. The objective of
this paper was to design a filter such that the associated
filtering error system satisfies a prescribed disturbance
attenuation level.

On the other hand, with the growing complexity
of dynamic systems, nonlinear systems have become
popular research topics and have gained extensive
attention. In nonlinear control theory, the T–S fuzzy
approach that was first proposed by Takagi and Sugeno
[5] has received increasing attention because the T–S
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fuzzy system is a systematic representation for nonlin-
ear systems. It is well-known that, by using the T–S
fuzzy model, the global behavior of a nonlinear system
can be represented by a weighted sum of some locally
simple linear subsystems. Many issues related to the
stability analysis and control synthesis of T–S fuzzy
systems have been studied [6–11] in the past decades.
Recently, a class of fuzzy systems which is described
by the singular form have been considered [12–14],
where the model is an extension of T–S fuzzy model.
A singular system is also called a descriptor system, dif-
ferential algebraic system or a generalized state-space
system, which arises from a convenient and natural
modeling process in characterizing a class of practical
systems. In [12], the problem of stability analysis for
nonlinear singular systems with Markovian jumping
parameters and mode-dependent interval time-varying
delay was studied. New delay-dependent stability con-
ditions were derived by constructing a mode-dependent
Lyapunov function and using integral inequalities. A
robust observer-based output feedback control for sin-
gular fuzzy systems in the presence of immeasurable
states, approximation errors and uncertainty was pro-
posed in [14]. Time-delay phenomena were first discov-
ered in biological systems [40] and were later found in
various practical systems, such as networked systems
[41,42], population dynamics [43] and communica-
tion systems. They are often a source of instability and
poor control performance. In the above actual systems,
there is a phenomenon that the random and time-delay
are presented at the same time. In order to accurately
describe the dynamic characteristics of the systems, the
stochastic time-delay systems are established and have
attracted the attention of many researchers [34–37]. A
large variety of important and interesting methods have
been proposed for the analysis and design of singular
fuzzy systems with time-delay [15,16].

The H∞ filtering problem for singular systems has
been of continuous interest because of its wide applica-
tions [17,18]. Based on the fact that T–S fuzzy model
is a powerful tool to describe a nonlinear system, some
authors used fuzzy approach to investigate the filter-
ing problem for nonlinear singular systems with time-
delay [19]. By applying T–S fuzzy model, a nonlinear
dynamic system can be transformed to a set of lin-
ear subsystems via fuzzy rules. In this type of fuzzy
model, local dynamics in different state-space regions
are represented by linear models. So we can study the
filtering problem of nonlinear systems by employing

these methods which are used to deal with the filtering
problem for linear systems. It should be noted that the
H∞ filtering problem of linear systems has been stud-
ied, and a great number of results have been reported
(see [20–22]). However, compared with linear systems,
the H∞ filtering problem for nonlinear systems has not
been fully investigated although it is important in con-
trol design and signal processing [23,24].

The term of input-to-state stable (ISS) was proposed
by Sontag [25]. It plays an important role in stabil-
ity analysis and controller design of deterministic non-
linear systems. The ISS of control systems has been
widely studied, and many results have been obtained.
Meanwhile, there have been various extensions for ISS,
such as integral input-to-state stable (iISS), input-to-
state stable in mean (ISSiM), eλt -weighted iISSiM and
so on [26,27].

In addition, there is H∞ filtering problem reported
for a class of special nonlinear systems [38,39]. In [38],
the H∞ filtering problem was considered for a class of
stochastic nonlinear systems with time-delay and the
nonlinear term satisfying a Lipschitz constraint. We
know that a T–S fuzzy system is a systematic repre-
sentation for general nonlinear systems. Different from
the special nonlinear systems, the H∞ filtering problem
is considered for general nonlinear systems which are
descried by T–S fuzzy method in this paper. The focus is
on the design of a fuzzy filter such that the correspond-
ing filtering error system is eλt -weighted iISSiM and
the H∞ attenuation level from noise to estimation error
is below a prescribed scalar. Based on an auxiliary vec-
tor, an integral inequality and a linear matrix inequal-
ities (LMIs) technique, a set of sufficient conditions
is proposed to ensure that the filtering error system is
eλt -weighted iISSiM. The desired fuzzy filter is estab-
lished in terms of a set of linear matrix inequalities.
Three examples are provided to illustrate the effective-
ness of the proposed fuzzy filter design method.

Notations The symbols R and R
+ denote the set of

real numbers and the set of nonnegative real numbers,
respectively. R

n denotes the n-dimensional Euclidean
space. The superscript ‘T ’ stands for matrix transpo-
sition. ε{·} denotes the expectation. The expression
α ∈ K∞ denotes that α is a K∞ function. L2[0,∞)

is the space of square-integrable vector functions over
[0,∞). I denotes the identity matrix. The expression
A < B means that the matrix B − A is positive defi-
nite. λmax(A) and λmin(A) are used to denote the max-
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imum and minimum eigenvalue of A, respectively. In
symmetric block matrices, ‘∗’ is used as an ellipsis for
terms induced by symmetry. ‖x‖ denotes the Euclid-

ean norm defined by ‖x‖ =
√∑n

i=1 x2
i for every

x = (x1, x2, . . . , xn)T ∈ R
n . L∞ denotes the set of all

functions endowed with the essential supremum norm
defined by |u| = sup{‖u‖ , t ≥ 0, u ∈ R

q} < ∞.

2 Problem formulation

Consider the following continuous-time T–S model
with time-varying delay:
Plant rule i : IF μ1(t) is Fi1, and μ2(t) is Fi2, and . . .

and μp(t) is Fip, THEN

Edx(t) = (Ai x(t) + Adi x(t − d(t)) + Bi u(t))dt

+ Mi x(t)dω

dy(t) = (Ci x(t) + Di u(t))dt

z(t) = Li x(t)

x(t) = ϕ(t), t ∈ [−d̄, 0], i = 1, 2, . . . , r

(1)

where μ1(t), μ2(t), . . . , μp(t) are the premise vari-
ables and measurable, Fi1, . . . , Fip are the fuzzy sets,
r is the number of IF-THEN rules, x(t) ∈ R

n is the sys-
tem state, u(t) ∈ L∞ is the input, y(t) ∈ R

m is the mea-
surement output, ω(t) is a one-dimensional Brown-
ian motion satisfying ε{dω} = 0 and ε{dω2} = dt ,
z(t) ∈ R

q is a linear combination of state variables to
be estimated, ϕ(t) is the initial condition relating to the
time-varying delay d(t), which satisfies for all t ≥ 0

0 < d(t) ≤ d̄

where d̄ is a scalar. The matrix E ∈ R
n×n may be sin-

gular. The matrices Ai , Adi , Bi , Mi , Ci , Di and Li are
known constant matrices with compatible dimensions.

By using a center-average defuzzifier, product infer-
ence and singleton fuzzier, the dynamic fuzzy model
(1) can be represented by

Edx(t) =
r∑

i=1

hi (μ(t))[(Ai x(t) + Adi x(t − d(t))

+ Bi u(t))dt + Mi x(t)dω]
dy(t) =

r∑

i=1

hi (μ(t))[(Ci x(t) + Di u(t))dt]

z(t) =
r∑

i=1

hi (μ(t))Li x(t)

x(t) = ϕ(t), t ∈ [−d̄, 0] (2)

where μ(t) = [μ1(t), μ2(t), . . . , μp(t)], for i =
1, 2, . . . , r ,

hi (μ(t)) = ϑ̄i (μ(t))
r∑

j=1
ϑ̄ j (μ(t))

,

ϑ̄i (μ(t)) =
p∏

j=1

Fi j (μ j (t)) (3)

and Fi j (μ j (t)) is the grade of membership function of
μ j (t) in Fi j . It is assumed that

ϑ̄i (μ(t)) ≥ 0,

r∑

i=1

ϑ̄i (μ(t)) > 0

Therefore,

hi (μ(t)) ≥ 0,

r∑

i=1

hi (μ(t)) = 1 (4)

Consider the following singular fuzzy filter:
Filter rule i : IF μ1(t) is Fi1, and μ2(t) is Fi2, and . . .

and μp(t) is Fip, THEN

Edx f (t) = A f i x f (t)dt + B f i dy(t)

z f (t) = L f i x f (t)

where x f (t) ∈ R
n , z f (t) ∈ R

q , and A f i , B f i and L f i

are matrices to be determined. Then, the overall fuzzy
filter can be inferred by

Edx f (t) =
r∑

i=1

hi (μ(t))[A f i x f (t)dt + B f i dy(t)]

z f (t) =
r∑

i=1

hi (μ(t))L f i x f (t) (5)

From (2) and (5), the filtering error system can be
obtained as follows:

Ēdξ(t)=
r∑

i=1

r∑

j=1

hi (μ(t))h j (μ(t))[( Āi jξ(t)

+ Ādi jξ(t−d(t))+ B̄i j u(t))dt+M̄i jξ(t)dω]

z̄(t)=
r∑

i=1

r∑

j=1

hi (μ(t))h j (μ(t))L̄i jξ(t) (6)
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where

ξ(t)=
[

x(t)
x f (t)

]
, z̄(t)= z(t) − z f (t), Ē =

[
E 0
0 E

]

Āi j =
[

Ai 0
B f j Ci A f j

]
, Ādi j =

[
Adi 0
0 0

]
,

B̄i j =
[

Bi

B f j Di

]
M̄i j =

[
Mi 0
0 0

]
, L̄i j =

[
Li −L f j

]

Introduce an auxiliary vector function η(t) such that

dη(t)=
r∑

i=1

r∑

j=1

hi (μ(t))h j (μ(t))[( Āi jξ(t)

+ Ādi jξ(t − d(t)) + B̄i j u(t))dt]
(7)

Using Eq. (6), the following equality is obtained:

Ēdξ(t) = dη(t) +
r∑

i=1

r∑

j=1

hi (μ(t))h j (μ(t))M̄i jξ(t)dω

that is

Ēξ(t) − Ēξ(t − d(t)) = η(t) − η(t − d(t))

+
r∑

i=1

r∑

j=1

hi (μ(t))h j (μ(t))

[∫ t

t−d(t)
M̄i jξ(t)dω

]

(8)

Definition 1 [26] System (2) is eλt -weighted iISSiM
for some λ > 0 if there exist functions α1, α2, γ̄ ∈ K∞
such that for any u(t) ∈ L∞, x0 ∈ R

n ,

eλtε[α1(‖x(t)‖)] ≤ α2(‖x0‖) +
∫ t

0
eλs γ̄ (|u(s)|)ds

(9)

Remark 1 The iISS property that was introduced by
Sontag [28] is weaker than the ISS. The iISS property
has been shown to be a natural extension of ISS, and
it is as useful as ISS in analysis of nonlinear control
systems. The concept named as iISSiM was introduced
in [29].

Assumption 1 rank( Ē M̄ ) = rank(Ē) and the pair

(Ē, Ā) is regular, where Ā =
r∑

i=1

r∑
j=1

hi (μ(t))h j (μ(t))

Āi j and M̄ =
r∑

i=1

r∑
j=1

hi (μ(t))h j (μ(t))M̄i j .

Remark 2 Under the assumption above, the Ito sto-
chastic term does not affect the system structure. It
should be noted that the pair (Ē, Ā) is regular if

det(s Ē − Ā) is not identically zero, which can guar-
antee the existence of solution to the singular system
(6). At the same time, impulsive behavior may exist at
initial time which may damage the singular system. It
is necessary to deal with the impulsive behavior when
a singular system is considered.

Lemma 1 [30] The pair (Ē, Ā) is impulse-free if and
only if Ā4 is nonsingular, where there are nonsingular
matrices M2 and N2 such that

M2 Ē N2 =
[

I 0
0 0

]
, M2 ĀN2 =

[
Ā1 Ā2

Ā3 Ā4

]

Lemma 2 [2] If the following conditions hold:

Ωi i < 0, i = 1, 2, . . . , r
1

r −1
Ωi i + 1

2
(Ωi j +Ω j i )<0, i �= j, i, j =1, 2,. . . ,r

then the following inequality holds:

r∑

i=1

r∑

j=1

hi (μ(t))h j (μ(t))Ωi j < 0

where Ωi j is an affine matrix-valued function, hi (μ(t))
satisfy (3) and (4), i, j = 1, 2, . . . , r .

The fuzzy H∞ filtering problem addressed in this
paper can be formulated as follows: given the fuzzy sin-
gular system (2) and a prescribed level of noise atten-
uation γ > 0, determine a filter in form (5) such that
the following requirements are satisfied:

(a) the filtering error system (6) is impulse-free and
eλt -weighted iISSiM;

(b) under the zero initial condition, the filtering error
system (6) satisfies

‖z̄‖ε2 ≤ γ ‖u‖2

where

‖z̄‖ε2 =
(

ε

{∫ ∞

0
|z̄|2dt

}) 1
2

for all nonzero u(t) ∈ L2[0,∞).

3 Main results

In this section, an LMI approach will be proposed to
solve the fuzzy H∞ filtering problem for system (6).
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Theorem 1 Given a scalar γ > 0, the filtering error
system (6) is impulse-free and eλt -weighted iISSiM with
the H∞ performance γ > 0, if there exist matrices
P, Q1 > 0, R > 0, H > 0, S1i j , S2i j , S3i j , S4i j

and S5i j for i, j = 1, 2, . . . , r , such that the follow-
ing inequalities hold:

ĒT P = PT Ē ≥ 0 (10)

Πi i < 0, i = 1, 2, . . . , r (11)
1

r − 1
Πi i + 1

2
(Πi j + Π j i ) < 0,

i �= j, i, j = 1, 2, . . . , r (12)

where

Πi j =
[

Φ1i j Φ2i j

∗ Φ3i j

]

Φ1i j =

⎡
⎢⎢⎣

ϕ11i j ϕ12i j ĒT S3i j PT B̄i j

∗ ϕ22i j −ĒTS3i j ST
5i j B̄i j

∗ ∗ −Q1 0
∗ ∗ ∗ −γ 2 I

⎤
⎥⎥⎦

Φ2i j =

⎡
⎢⎢⎢⎣

−ST
1i j ĀT

i j S4i j L̄T
i j

−ST
2i j ϕ26i j 0

−ST
3i j 0 0

0 B̄T
i j S4i j 0

⎤
⎥⎥⎥⎦ , Φ3i j =

⎡
⎣

−R 0 0
∗ ϕ66i j 0
∗ ∗ −I

⎤
⎦

ϕ11i j = PT Āi j + ĀT
i j P + M̄T

i j (Ē+)T ĒT P Ē+ M̄i j + Q1

+ ST
1i j Ē + ĒTS1i j + H

ϕ12i j = PT Ādi j + ĀT
i j S5i j − ST

1i j Ē + ĒTS2i j

ϕ22i j = ST
5i j Ādi j + ĀT

di j S5i j − ST
2i j Ē − ĒTS2i j

ϕ26i j = ĀT
di j S4i j − ST

5i j

ϕ66i j = d̄2 R − S4i j − ST
4i j

Proof We first show that the system (6) is impulse-free.
Under the Assumption 1, the pair (Ē, Ā) is regular.
Then, there are nonsingular matrices G and K such
that

G Ē K =
[

I 0
0 0

]
, G ĀK =

[
Ā1 Ā2

Ā3 Ā4

]

G−T P K =
[

P11 P12

P21 P22

]

From (10), it follows that

K T ĒTGTG−T P K = K T PTG−1G Ē K ≥ 0

that is
[

I 0
0 0

] [
P11 P12

P21 P22

]
=

[
PT

11 PT
21

PT
12 PT

22

] [
I 0
0 0

]
≥ 0

then P11 = PT
11, P12 = 0.

From (11) and (12), the following inequality holds:

r∑

i=1

r∑

j=1

hi (μ(t))h j (μ(t)){PT Āi j + ĀT
i j P + Q1 + H

+M̄T
i j (Ē+)T ĒT P Ē+M̄i j + ĒTS1i j + ST

1i j Ē} < 0

It implies that

r∑

i=1

r∑

j=1

hi (μ(t))h j (μ(t)){PT Āi j + ĀT
i j P

+ M̄T
i j (Ē+)T ĒT P Ē+M̄i j + ĒTS1i j + ST

1i j Ē} < 0

Thus,

r∑

i=1

r∑

j=1

hi (μ(t))h j (μ(t)){K T PTG−1G Āi j K

+K T ĀT
i j G

TG−T P K +K T(M̄T
i j (Ē+)T ĒT P Ē+M̄i j

+ ĒTS1i j + ST
1i j Ē)K } < 0

that is
[∗ ∗

∗ PT
22 Ā4 + ĀT

4 P22

]
< 0

It is easy to see that

PT
22 Ā4 + ĀT

4 P22 < 0 (13)

which implies that Ā4 is nonsingular. According to
Lemma 1 1, it is easy to find that the pair (Ē, Ā) is
impulse-free.

Next we show that the system (6) is eλt -weighted
iISSiM. Choose a Lyapunov function as follows:

V = V1 + V2 + V3 (14)

where

V1 = ξT(t)ĒT Pξ(t) (15)

V2 =
∫ t

t−d̄
ξT(s)Q1ξ(s)ds (16)

V3 = d̄
∫ 0

−d̄

∫ t

t+θ

η̇T(s)Rη̇(s)dsdθ (17)

Let Λ be the weak infinitesimal operator. Using the Ito
differential formula and the following inequality
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−
∫ t

t−d̄
η̇T(s)Rη̇(s)ds

≤ − 1

d̄

∫ t

t−d(t)
η̇T(s)ds R

∫ t

t−d(t)
η̇(s)ds

then we can obtain

ΛV1 = 2
r∑

i=1

r∑

j=1

hi (μ(t))h j (μ(t))
{
ξT(t)PT( Āi j ξ(t)

+ Ādi j ξ(t − d(t)) + B̄i j u(t))
}

+
r∑

i=1

r∑

j=1

r∑

m=1

r∑

n=1

hi (μ(t))h j (μ(t))hm(μ(t))hn(μ(t))

×ξT(t)M̄i j (Ē+)
T

ĒT P Ē+M̄mnξ(t)

≤
r∑

i=1

r∑

j=1

hi (μ(t))h j (μ(t))
{
ξT(t)( ĀT

i j P + PT Āi j

+M̄i j (Ē+)
T

ĒT PT Ē+M̄i j )ξ(t)

+ 2ξT(t)PT Ādi j ξ(t −d(t))+2ξT(t)PT B̄i j u(t)
}

(18)

ΛV2 = ξT(t)Q1ξ(t) − ξT(t − d̄)Q1ξ(t − d̄) (19)
ΛV3 ≤ d̄2η̇T(t)Rη̇(t)

−(η(t) − η(t − d(t)))T R(η(t) − η(t − d(t))) (20)

where

ζ(t) = [
ξT(t) ξT(t − d(t)) ξT(t − d̄) uT(t)

η̇T(t) ηT(t) − ηT(t − d(t))
]T

From (7) and (8), for appropriate matrices Ski j , k =
1, 2, . . . , 5,

2
r∑

i=1

r∑

j=1

hi (μ(t))h j (μ(t))ζT(t)S̄T
i j [Ēξ(t)− Ēξ(t−d(t))

− (η(t) − η(t − d(t))) −
∫ t

t−d(t)
M̄i jξ(s)dω] = 0

(21)

2
r∑

i=1

r∑

j=1

hi (μ(t))h j (μ(t))ζT(t)S̃T
i j [ Āi jξ(t)

+ Ādi jξ(t − d(t)) + B̄i j u(t) − η̇(t)] = 0

(22)

where

S̄i j = [
S1i j S2i j S3i j 0 0 0

]

S̃i j = [
0 S5i j 0 0 S4i j 0

]

By direct calculation, it is easy to obtain

ΛV ≤
r∑

i=1

r∑

j=1

hi (μ(t))h j (μ(t))ζT(t)�1i jζ(t)

+ ρuT(t)u(t) − ξT(t)Hξ(t)

(23)

where

Π1i j =
[

�̄1i j �̄2i j

∗ �̄3i j

]

�̄1i j =

⎡
⎢⎢⎣

ϕ11i j ϕ12i j ĒT S3i j PT B̄i j

∗ ϕ22i j −ĒT S3i j ST
5i j B̄i j

∗ ∗ −Q1 0
∗ ∗ ∗ −ρ I

⎤
⎥⎥⎦

�̄2i j =

⎡
⎢⎢⎢⎣

−ST
1i j ĀT

i j S4i j

−ST
2i j ϕ26i j

−ST
3i j 0

0 B̄T
i j S4i j

⎤
⎥⎥⎥⎦ , �̄3i j =

[−R 0
∗ ϕ66i j

]

Let ρ = γ 2. Using (11)–(12),
r∑

i=1

r∑

j=1

hi (μ(t))h j (μ(t))Π1i j < 0

Then,

ΛV ≤ ρuT(t)u(t) − ξT(t)Hξ(t) (24)

By the definition of Lyapunov function V in (14), there
exist scalars λ1, λ2 and λ3 satisfying

V ≤ λ1ξ
T(t)ξ(t) + λ2

∫ t

t−d̄
ξT(s)ξ(s)ds

+ λ3

∫ t

t−d̄
ξT(s − d(s))ξ(s − d(s))ds + ρ̄uT(t)u(t)

Define a new function

W (t) = eλt V (ξ(t))

where λ > 0 is a scalar.
Then, the following relationship is true:

ε
{
eλt V

} = ε {V0} + ε

{∫ t

0
eλs(λV + ΛV )ds

}

≤ ε {V0} + ε

{∫ t

0
eλs[λ(λ1ξ

T(s)ξ(s)

+λ2

∫ s

s−d̄
ξT(θ)ξ(θ)dθ+ρ̄uT(t)u(t)

+λ3

∫ s

s−d̄
ξT(θ − d(θ))ξ(θ − d(θ))dθ)+ΛV ]ds

}

(25)
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Taking into account the following integral inequality:∫ t

0

∫ s

s−d̄
eλsξT(θ)ξ(θ)dθds ≤ d̄eλd̄

∫ t

0
eλsξT(s)ξ(s)ds

it follows that

ε
{
eλt V

} ≤ ε {V0}
+ ε

{∫ t

0
λ(λ1 + λ2d̄eλd̄ + λ3d̄e2λd̄ )eλsξT(s)ξ(s)ds

+
∫ t

0
eλs(λρ̄uT(s)u(s) + ΛV )ds

}

= ε {V0}
+ ε

{∫ t

0
eλs(λ̂ξT(s)ξ(s) + λρ̄uT(s)u(s) + ΛV )ds

}

(26)

where λ̂ = λ(λ1 + λ2d̄eλd̄ + λ3d̄e2λd̄).
Using the (24), it is easy to see that

ΛV + ξT(t)Hξ(t) ≤ ρuT(t)u(t)

It is clear that there exists a scalar λ̂ > 0, such that
λ̂ = λmin(H). Then

ε
{
eλt V

} ≤ ε {V0} + ε

{∫ t

0
eλs(ρ + λρ̄)uT(s)u(s)ds

}

= ε {V0} + ε

{∫ t

0
eλs β̄uT(s)u(s)ds

}

≤ ε {ᾱ(‖x0‖)} + ε

{∫ t

0
eλs β̄uT(s)u(s)ds

}

which implies that

eλtε
{
α̂(‖x‖)} ≤ ᾱ(‖x0‖) +

∫ t

0
eλs β̄( |u(s)|)ds

where α̂, ᾱ, β̄ ∈ K∞.
From Definition 1, the system (6) is eλt -weighted iIS-
SiM.

Finally, consider the H∞ performance of the system
(6). Define the following index for system (6):

J = ε

{∫ t

0
(z̄T(s)z̄(s) − γ 2uT(s)u(s))ds

}

= ε

{∫ t

0
(z̄T(s)z̄(s) − γ 2uT(s)u(s) + ΛV )ds

}

− ε(V )

≤ε

{∫ t

0
(z̄T(s)z̄(s) − γ 2uT(s)u(s) + ΛV )ds

}

≤ε

⎧
⎨
⎩

r∑

i=1

r∑

j=1

hi (μ(t))h j (μ(t))

×
∫ t

0
(ζT(s)Πi jζ(s) − ξT(s)Hξ(s))ds

}

(27)

By inequalities (11)–(12),

r∑

i=1

r∑

j=1

hi (μ(t))h j (μ(t))Πi j < 0

Then,

J ≤ ε

{∫ t

0
(−ξT(s)Hξ(s))ds

}
< 0

Therefore, under zero initial condition, ‖z̄‖ε2 ≤ γ ‖u‖2
for any nonzero u(t) ∈ L∞. This completes the proof.

Remark 3 Theorem 1 provides a set of sufficient con-
ditions under which the filtering error system (6) is
impulse-free and eλt -weighted iISSiM based on the
auxiliary vector method. When the Ito stochastic term
is zero, the system (6) reduces to a deterministic sin-
gular system with time-varying delay, and in this case,
the auxiliary vector dη(t) = dξ(t).

Remark 4 Many of the results existing in the litera-
ture usually demand the upper bound of the derivative
of time-delay to be known. However, in this paper, the
time-delay d(t)need not to be differentiable or although
d(t) is differentiable, the upper bound of derivative
of time-delay need not to be known that is the time-
delay d(t) only satisfies the condition 0 < d(t) ≤ d̄.
So this criterion includes some existing results as its
special cases. Furthermore, in the proof of Theorem 1,
the fuzzy-rule-dependent matrices Ski j are introduced,
which make the result be less conservative.

The main result on the solvability of the fuzzy fil-
tering problem is ready to be presented.

Theorem 2 Consider the singular fuzzy system (2).
Let γ > 0 be a constant scalar. The H∞ fuzzy
filtering problem is solvable, if there exist matrices
X, Y, Q11 > 0, H1 > 0, H2 > 0, R11 >

0, AFi , BFi , L Fi , S11i j , S21i j , S31i j , S41i j and S51i j

for i, j = 1, 2, . . . , r such that the following inequali-
ties hold:

ET X = XT E ≥ 0 (28)

ETY = Y T E ≥ 0 (29)

ET(X − Y ) ≥ 0 (30)

Ξi i < 0, i = 1, 2, . . . , r (31)
1

r − 1
Ξi i + 1

2
(Ξi j + Ξ j i ) < 0,

i �= j, i, j = 1, 2, . . . , r (32)

123



F. Zhao et al.

where

Ξi i =
[

Ξ1i i Ξ2i i

∗ Ξ3i i

]
, Ξi j =

[
Ξ1i j Ξ2i j

∗ Ξ3i j

]

Ξ1i j =

⎡
⎢⎢⎣

Ω1i j Ω2i j Ω3i j ETS31i j

∗ Ω4i j Ω5i j ETS31i j

∗ ∗ Ω6i j −ETS31i j

∗ ∗ ∗ −Q11

⎤
⎥⎥⎦

Ξ2i j =

⎡
⎢⎢⎢⎣

Y T Bi −ST
11i j AT

i S41i j LT
i − LT

F j
Ω7i j −ST

11i j AT
i S41i j LT

i
ST

51i j Bi −ST
21i j Ω8i j 0

0 −ST
31i j 0 0

⎤
⎥⎥⎥⎦

Ξ3i j =

⎡
⎢⎢⎣

−γ 2 I 0 BT
i S41i j 0

∗ −R11 0 0
∗ ∗ Ω9i j 0
∗ ∗ ∗ −I

⎤
⎥⎥⎦

Ω1i j = Y T Ai + AT
i Y + MT

i (E+)T ET X E+Mi

+ Q11 + ST
11i j E + ETS11i j + H1 + H2

Ω2i j = Y T Ai + AT
i X + CT

i BF j + AF j + Q11 + ST
11i j E

+ ETS11i j + H1 + MT
i (E+)T ET X E+Mi

Ω3i j = Y T Adi + AT
i S51i j − ST

11i j E + ETS21i j

Ω4i j = XT Ai + BT
F j Ci + CT

i BF j + AT
i X + Q11 + H1

+ ETS11i j + ST
11i j E + MT

i (E+)T ET X E+Mi

Ω5i j = XT Adi + AT
i S51i j − ST

11i j E + ETS21i j

Ω6i j = ST
51i j Adi + AT

di S51i j − ST
21i j E − ETS21i j

Ω7i j = XT Bi + BF j Di

Ω8i j = − ST
51i j + AT

di S41i j

Ω9i j = d̄2 R11 − ST
41i j − S41i j

In this case, there exist nonsingular matrices U, Ū ,

W, W̄ such that

ETŪ = U T E, EW = W̄ T ET

XY −1 = I − Ū W, Y −1 X = I − W̄U

Then, the desired filter can be chosen as in (5) with the
following parameters:

AT
f i = W −T Y −T AFiU

−1, BT
f i = BFiU

−1

L f i = L Fi Y
−1W −1

(33)

Proof Define

Δ1 =
[

Y −1 I
W 0

]
, Δ2 =

[
I X
0 U

]
, Δ3 =

[
Y 0
0 I

]

Q1 =
[

Q11 0
0 δQ12

]
, R =

[
R11 0
0 δR12

]
, H =

[
H1 0
0 H̄2

]

P = Δ2Δ−1
1 =

[
X Ū
U −UY −1W−1

]

Ski j =
[

Sk1i j 0
0 δSk2i j

]
, k = 1, 2, . . . , 5

Using the method in [31] and substituting P into (10),
it is straight forward to see that (28)–(30) hold.
At the same time, set

Δ = diag
{
Δ1Δ3, I, I, I, I, I, I

}
(34)

AFi = Y TW T A f iU, BFi = BT
f iU, L Fi = L f i W Y

H2 = Y TW T H̄2W Y

Assuming that δ approaches 0. Using the Schur com-
plement, and pre- and post-multiplying (11) and (12)
by ΔT and Δ, respectively, then (31) and (32) hold.
This completes the proof.

In the case when rank(E) = n in the singular sys-
tem (2), from Theorem 2, the following fuzzy H∞ fil-
tering result can be obtained directly.

Corollary 1 Consider fuzzy system (2) with E = I .
Let γ > 0 be a constant scalar. The H∞ fuzzy filter-
ing problem is solvable, if there exist matrices X >

0, Y > 0, Q11 > 0, H1 > 0, H2 > 0, R11 >

0, AFi , BFi , L Fi , S11i j , S21i j , S31i j , S41i j and S51i j

for i, j = 1, 2, . . . , r such that the following inequali-
ties hold:

Ξi i < 0, i = 1, 2, . . . , r (35)
1

r −1
Ξi i + 1

2
(Ξi j +Ξ j i )<0, i �= j, i, j =1, 2, . . . , r

(36)

where

Ξi i =
[

Ξ1i i Ξ2i i

∗ Ξ3i i

]
, Ξi j =

[
Ξ1i j Ξ2i j

∗ Ξ3i j

]

Ξ1i j =

⎡
⎢⎢⎣

Ω1i j Ω2i j Ω3i j S31i j

∗ Ω4i j Ω5i j S31i j

∗ ∗ Ω6i j −S31i j

∗ ∗ ∗ −Q11

⎤
⎥⎥⎦
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Ξ2i j =

⎡
⎢⎢⎢⎣

Y T Bi −ST
11i j AT

i S4i j LT
i − LT

F j
Ω7i j −ST

11i j AT
i S4i j LT

i
ST

51i j Bi −ST
21i j Ω8i j 0

0 −ST
31i j 0 0

⎤
⎥⎥⎥⎦

Ξ3i j =

⎡
⎢⎢⎣

−γ 2 I 0 BT
i S41i j 0

∗ −R11 0 0
∗ ∗ Ω9i j 0
∗ ∗ ∗ −I

⎤
⎥⎥⎦

Ω1i j =Y T Ai + AT
i Y + MT

i X Mi + Q11 + ST
11i j

+ S11i j + H1 + H2

Ω2i j =Y T Ai + AT
i X + CT

i BF j + AF j + Q11 + ST
11i j

+ S11i j + H1 + MT
i X Mi

Ω3i j =Y T Adi + AT
i S51i j − ST

11i j + S21i j

Ω4i j =XT Ai + BT
F j Ci + CT

i BF j + AT
i X + Q11

+ ST
11i j + S11i j + H1 + MT

i X Mi

Ω5i j =XT Adi + AT
i S51i j − ST

11i j + S21i j

Ω6i j =ST
51i j Adi + AT

di S51i j − ST
21i j − S21i j

Ω7i j =XT Bi + BF j Di

Ω8i j = − ST
51i j + AT

di S41i j

Ω9i j =d̄2 R11 − ST
41i j − S41i j

In this case, there exist nonsingular matrices U and
W such that

U TW = I − XY −1

Then, the designed filter can be chosen as in (5) with
the following parameters:

AT
f i = W −T Y −T AFiU

−1, BT
f i = BFiU

−1

L f i = L Fi Y
−1W −1

(37)

4 Simulation examples

In this section, three examples are to be presented to
illustrate the effectiveness of the proposed filter design
method.

Example 1 Consider the stochastic singular T–S fuzzy
system (2) with the following parameters:

Subsystems 1:

E =
⎡
⎣

1 0 0
0 1 0
0 0 0

⎤
⎦ , A1 =

⎡
⎣

−6.3 0.2 0.4
0.3 −3.4 1.2
0.2 0.5 −4.5

⎤
⎦

Ad1 =
⎡
⎣

0.2 0 0.2
0.1 0.3 0.1
0.1 0.2 0.1

⎤
⎦ , M1 =

⎡
⎣

0.2 0 0.1
0.1 0.1 0.2
0 0.1 0.2

⎤
⎦

B1 =
⎡
⎣

0.3
0.2
0.5

⎤
⎦ , C1 = [−2.1 0.6 1.3

]

L1 = [
0.7 0.8 1.5

]
, D1 = 0.3

Subsystems 2:

E =
⎡
⎣

1 0 0
0 1 0
0 0 0

⎤
⎦ , A2 =

⎡
⎣

−5.5 0.3 0.6
0.2 −4.6 0.5
0.3 0.8 −3.9

⎤
⎦

Ad2 =
⎡
⎣

0.3 0.2 0.1
0 0.1 0.1
0.2 0.1 0.1

⎤
⎦ , M2 =

⎡
⎣

0.2 0.0 0.1
0.1 0.1 0.2
0 0.1 0.2

⎤
⎦

B2 =
⎡
⎣

1.5
0.6
0.2

⎤
⎦ , C2 = [

0.6 0.3 0.7
]

L2 = [−0.5 0.2 0.6
]
, D2 = 0.2

The delay is assumed as d(t) = 1.2 |sin t |, and a
straightforward calculation gives d̄ = 1.2. The mem-
bership functions are selected as follows:

h1 = 1 − sin(x1)

2
, h2 = 1 + sin(x1)

2

The disturbance attenuation level is chosen to be γ =
0.9. By using the Matlab LMI Control Toolbox in The-
orem 2, the filter parameters can be obtained as follows:

A f 1 =
⎡
⎣

−87.2088 −85.6361 16.4673
−30.1708 −44.9864 7.7489
−10.8685 −36.6665 −7.5161

⎤
⎦

B f 1 =
⎡
⎣

4.7756
2.2538
−0.5894

⎤
⎦

L f 1 = [
10.4019 25.1335 3.0337

]

A f 2 =
⎡
⎣

−36.7414 −25.8057 5.5603
−14.5264 −14.0861 2.6494
−32.0722 −28.7182 −5.1419

⎤
⎦

B f 2 =
⎡
⎣

−3.0647
−2.2366
−1.1250

⎤
⎦

L f 2 = [
3.1201 −2.0513 1.3006

]
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Fig. 1 State responses of the plant (2)

The simulation results of the state responses of the
plant (2) and filter (5) are given in Figs. 1 and 2, respec-
tively, which implied that the filtering error system is
stable. Figure 3 gives the signals z(t) and z f (t). Fig-
ure 4 shows the simulation result of the filtering error
z̄(t) = z(t) − z f (t). From the Figs. 1, 2, 3 and 4, it
follows that the designed H∞ filter has the desired per-
formance.

In many literatures about H∞ filtering for time-delay
systems, the time-delay usually satisfies the following
condition:

d1 ≤ ḋ(t) ≤ d2

This means that the time-delay function must be differ-
entiable. But in many practical applications, the time-
delay function is often not differentiable. This condi-
tion limits the application for estimation methods of
many literatures. In this paper, we do not need to con-
sider whether the time-delay function is differentiable
or not. In this example, we can find that the time-delay
d(t) = 1.2 |sin t | is not differentiable at the point 0. So
the approaches that have been introduced in [17,24] are
unavailable. This example shows that signal z(t) can be
well estimated by the filter and the filtering error sys-
tem is impulse-free, eλt -weighted iISSiM and the H∞
attenuation level from disturbance to estimation error
is below a prescribed scalar.

Example 2 Consider the following stochastic system
borrowed from [32]:

dx(t) = (Ax(t) + Ad x(t − d) + Bu(t))dt + Mx(t)dω

dy(t) = (Cx(t) + Du(t))dt

z(t) = Lx(t)
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3
xf1
xf2
xf3

Fig. 2 State responses of the filter (5)
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Fig. 3 Signals z(t) and z f (t)

0 1 2 3 4 5 6 7 8 9 10
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0

1

Fig. 4 Response of filtering error z̄

which is the special case r = 1 of stochastic T–S fuzzy
system (2). where

A =
[−5 0

1 −10

]
, Ad =

[
2 1
1 1

]
, B =

[
2 1
1 3

]

M =
[

0.5 0.5
0.5 1.5

]
, C =

[−0.2 0.2
0.1 −0.3

]
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Fig. 5 Range of the feasible solutions

D =
[

0.1 0.2
0.1 0.03

]
, L =

[
1 0.2
0.1 0.3

]

The delay is assumed as d̄ = 1.1. The disturbance
attenuation level is chosen as γ = 0.8. Using Corol-
lary 1, the filter that is the special case r = 1 of system
(5) can be obtained. The parameters of the filter are as
follows:

A f =
[−45.5682 10.5861

−179.3650 44.8778

]
,

B f =
[

2.5608 45.7382
−9.2081 123.8466

]
C f =

[
8.3546 −2.9553
1.9372 −0.7882

]

In addition, when the range of parameters is expanded,
that is

A =
[−5 0

i −10

]
, Ad =

[
2 0.5
1 j

]

where i ∈ [0.1, 2], j ∈ [0.1, 2], Fig. 5 shows the range
of the feasible solutions for Corollary 1 of this paper
and Theorem 2 of [32]. In Fig. 5, ‘o’ represents the
range of the feasible solutions using Corollary 1 of this
paper, and ‘∗’ represents the range of the feasible solu-
tions using Theorem 2 of [32]. It is clear to see from
Fig. 5 that the range of feasible solutions for Corol-
lary 1 of this paper is wider than the result in [32].
Through this example, we can find that our results can
be also used in the case of constant time-delay and
the range of feasible solutions is wider than the result
of [32].

Example 3 Consider a continuous stirred tank reactor
(CSTR) in which the first-order irreversible exother-
mic reaction A → B occurs. Similar as the discussion
in [33], the model of CSTR can be described by the
following ordinary differential dynamic equation

V̂
d Â

dt
= λq Â0 + q(1 − λ) Â(t − α) − q Â(t)

− V̂ K0 exp

[
−Ê

R̂T (t)

]
Â(t)

V̂ Ĉ ρ̂
dT

dt
= qĈ ρ̂ [λT0 + (1 − λ)T (t − α) − T (t)]

+ V̂ (−�Ĥ(t))K0 exp

[
−Ê

R̂T (t)

]

× Â(t) − U (T (t) − Tω)

where Â(t) is the concentration of chemical A, T (t)
is reactor temperature, α is recycle delay time, V̂ is
reactor volume, λ is coefficient of recirculation, q is
feed flow rate, Â0 is feed concentration, K0 is reaction
velocity constant, Ê/R̂ is ratio of Arrhenius activation
energy to the gas constant, ρ̂ is density, l̂ is specific
heat, −�Ĥ(t) is heat of reaction, U is heat transfer
coefficient times the surface area of reactor, T0 is feed
temperature, and Tω is average coolant temperature in
reactor cooling coil. When calorimeter is used to mea-
sure the heat of reaction, suppose that it is affected by
the environment. In this case, the state-space represen-
tation of this model is given by

dx1 =(
−1

λ
x1(t) + Dα(1 − x1(t)) exp

(
x2(t)

1+x2(t)
γ0

)

+
(

1

λ
− 1

)
x1(t − α))dt

dx2 =
((

1

λ
+β

)
x2(t)+

(
1

λ
−1

)
x2(t−α)+βu(t)

+H0 Dα(1−x1(t)) exp

(
x2(t)
1+x2(t)

γ0

))
dt + Mxdω

where ω(t) is a standard one-dimensional Wiener
process.

Assume that only the temperature can be measured
on line, that is

dy(t) = [ 0 1 ]xdt
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Now, taking the IF-THEN rules as follows:

Rule 1: IF x2 is F12, THEN

dx(t) =(A1x(t) + Ad1x(t − α) + B1u(t))dt

+ M1x(t)dω

dy(t) =C1xdt

z(t) = L1x(t)

Rule 2: IF x2 is F22, THEN

dx(t) =(A2x(t) + Ad2x(t − α) + B2u(t))dt

+ M2x(t)dω

dy(t) =C2xdt

z(t) = L2x(t)

Rule 3: IF x2 is F32, THEN

dx(t) =(A3x(t) + Ad3x(t − α) + B3u(t))dt

+ M3x(t)dω

dy(t) =C3xdt

z(t) = L3x(t)

where

A1 =
[−1.4274 0.0757

−1.4189 −0.9442

]
, Ad1 =

[
0.25 0
0 0.25

]

B1 =
[

0
0.3

]
, M1 =

[
0 0
0.0350 0.0150

]

C1 = [
0 1

]
, L1 = [

1 0
]

A2 =
[−2.0508 0.3958

−6.4066 −1.6268

]
, Ad2 =

[
0.25 0
0 0.25

]

B2 =
[

0
0.3

]
, M2 =

[
0 0
−0.0316 0.0131

]

C2 = [
0 1

]
, L2 = [

1 0
]

A3 =
[−4.5279 0.3167

−26.2228 −0.9387

]
, Ad3 =

[
0.25 0
0 0.25

]

B3 =
[

0
0.3

]
, M3 =

[
0 0
−0.6556 0.0633

]

C3 = [
0 1

]
, L3 = [

1 0
]
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Fig. 6 Membership functions

Three corresponding membership functions (Fig. 6)
are, respectively

h1(x2)=
⎧
⎨
⎩

1 ,

1 − x2−0.8862
2.7520−0.8862 ,

0,

x2 ≤ 0.8862
0.8862 < x2 < 2.7520
x2 ≥ 2.7520

h2(x2) =
{

1 − h1(x2),

1 − h3(x2),

x2 < 2.7520
x2 ≥ 2.7520

h3(x2)=
⎧
⎨
⎩

0 ,

1 − x2−2.7520
4.7052−2.7520 ,

1,

x2 ≤ 2.7520
2.7520 < x2 < 4.7052
x2 ≥ 4.7052

F12, F22 and F32 are fuzzy sets; the corresponding
membership functions are h1, h2 and h3, respectively.
The delay is assumed as α = 0.5. The disturbance
attenuation level is chosen as γ = 0.5. Using Corollary
1 with Di = 0, the H∞ filter (5) can be obtained with
the parameters as follows:

A f 1 =
[−3.0704 −0.1743

−5.9197 −17.4737

]
, B f 1 =

[−0.3583
−4.2071

]

L f 1 = [−0.6021 0.7930
]

A f 2 =
[

0.9161 3.8561
14.5598 −12.4149

]
, B f 2 =

[−0.1935
−3.7545

]

L f 2 = [−0.6025 0.7931
]

A f 3 =
[

8.7156 17.4908
27.1725 −10.4298

]
, B f 3 =

[
1.0837
−2.4210

]

L f 3 = [−0.5890 0.8088
]
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Fig. 7 Response of the estimation error

The response of the filtering error is denoted as z̄ =
z − z f which is shown in Fig. 7. This example gives
the application of H∞ filtering for a CSTR and shows
the effectiveness of the proposed approach.

5 Conclusions

In this paper, the H∞ filtering problem for Ito stochas-
tic singular fuzzy systems with time-varying delay has
been studied. By using an auxiliary vector and an inte-
gral inequality, a delay-dependent sufficient condition
has been proposed to guarantee eλt -weighted iISSiM
and the H∞ attenuation level for filtering error sys-
tem. Then, the corresponding solvability condition for
the fuzzy H∞ filtering problem has been established
by LMI, and fuzzy-rule-independent filter has been
designed. For the time-varying delay in this paper, there
is no limit on the bound of delay derivative that is the
delay d(t) need not to be differentiable or although d(t)
is differentiable, the upper bound of derivative need not
to be known. Three examples have been provided to
illustrate the effectiveness of the proposed fuzzy filter
design method.
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