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Abstract

The paper Ran and Hu (2014, Neurocomputing) examines identifiability and

parameter redundancy in classes of models used in machine learning. This note

discusses the results on global identifiability and also clarifies that the paper’s

results on parameter redundancy already exist in the paper Cole et al. (2010,

Mathematical Biosciences).
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1. Introduction

There is a long history of testing for identifiability of models by testing the

rank of a matrix formed by differentiating some representation of a model with

respect to the parameters of the models; for example, see [1, 2, 3, 4]. However

this test only distinguishes whether a model is at least locally identifiable or non-

identifiable, and not whether a model is globally identifiable. The exception is

for exponential family models, where the model will either be non-identifiable

or globally identifiable [1]. However Ran and Hu [5] uses a similar test to

distinguish between non-identifiable or globally identifiable in cases where the

model is not necessarily from the exponential family. In this note we provide
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counter examples which are locally identifiable, but which Ran and Hu [5]’s

theorems would classify as globally identifiable. Maple code for the examples of

this note are provided in the supplementary material.

Ran and Hu [5] also discuss the concept of an exhaustive summary, which is

a unique representation of a model. This term is used for continuous state-space

models in [3] and then extended to any model with an explicit representation in

[6]. One reason a model can be non-identifiable is because it is overparameterised

and could be reparameterised in terms of a smaller number of parameters. This

is known as parameter redundancy; for example, see [4, 6]. Section 5 in [5]

provides results on parameter redundancy which are already provided in [6].

2. Parameter Redundancy

A model, M(θ), with p parameters θ = [θ1, . . . , θp], is parameter redun-

dant if it can be reparameterised as M(β), with q parameters β = [β1, . . . , βq],

where β = f(θ), for some function f and where q < p. Theorem 2a of Cole

et al. [6] states that for any exhaustive summary of a model, κ, it can be de-

termined whether or not a model is parameter redundant by calculating the

rank of the derivative matrix D = [∂κj/∂θi]. If the rank is less than p then

the model is parameter redundant. This is identical to Theorem 6 of [5] but

published four years earlier. Theorem 2b of [6] generalises results from [7, 8, 9]

to allow for a reparameterisation that results in a model that is no longer pa-

rameter redundant. Such a reparameterisation is known as locally identifiable

reparameterisations [8, 9] or estimable parameter combinations [7].

The rank of the derivative matrix can be found using a symbolic algebra

package such as Maple. In this paper, Maple version 18 was used. Maple

can theoretically be used to check for parameter redundancy in any model,

with an explicit exhaustive summary. However in structurally complex models

this becomes computationally infeasible. Examples are given in Cole et al.

[6]. This problem can be solved by using a structurally simpler exhaustive

summary which can be seen in example 7 and 8 of [5]. Further results in Cole
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et al. [6] provide a framework for finding simpler exhaustive summaries using

reparameterisation. Primarily the use of this framework has been in ecological

models, see for example [10, 11], however [6] also demonstrates the use of this

method in compartment models.

3. Local and Global Identifiability

A model, M(θ), is globally identifiable if M(θ1) = M(θ2) implies that

θ1 = θ2, is locally identifiable if there exists an open neighbourhood of any

θ such that this is true. Otherwise M(θ) is non-identifiable. A parameter

redundant model will be non-identifiable [4, 6].

The first class of models examined in [5] are Multiple-Input Multiple-Output

(MIMO) models, which are defined by yi = fi(x,θ), where x = [x1, . . . , xn] is

the input vector of length n, y = [y1, . . . , ym] is the output vector of length m

and θ = [θ1, . . . , θk] is a vector of k parameters. Theorem 1 of [5] states that the

MIMO model is globally identifiable if and only if the partial derivative matrix

D = [∂fi/∂θj ] is of full column rank.

Consider an example where y1 = a2x1 +b2x2 and y2 = ax1, with parameters

θ = [a, b]. If a = 1 and b = 2 then the output is y1 = x1 + 4x2 and y2 = x1.

If a = 1 and b = −2 then the output is identical. As two different values of

the parameter b give the same output the model is locally identifiable unless

the parameter space is restricted. Using Theorem 1 of [5] the partial derivative

matrix

D =

[
∂fi
∂θj

]
=

 2ax1 2bx2

x1 0

 (1)

is of full column rank 2, which leads to the incorrect conclusion that the model

is globally identifiable. Using the methods of [6] with exhaustive summary

κ = [a2x1 + b2x2, ax1]T the resulting derivative matrix is the transpose of

(1). However this is only used to distinguish whether or not a model is non-

identifiable. Theorem 9 of [6] gives a test for global identifiability by solving

the set of equations κi = ηi. A unique solution indicates the model is globally
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identifiable, otherwise a model with a full rank derivative matrix would be lo-

cally identifiable. There is a unique solution for a of η2/x1 however there are

two solutions for b of ±
√

(η1x1 − η22)/(x1x2), unless η1x1 = η22 . Except when

η1x1 = η22 , the model is not globally identifiable and is only locally identifiable.

Theorem 4 of [5] tests identifiability of a stochastic model, using an exhaus-

tive summary, s(θ). If the Jacobian matrix J = ∂s/∂θ is full rank, then under

certain conditions the model is globally identifiable. Example 4 of [5] considers

a second-order state-space model with x1(t+ 1)

x2(t+ 1)

 =

 θ1 0

1 θ2

 x1(t)

x2(t)

 , y(t) = x2(t), x1(0) = x2(0) = 0,

where the parameters are θ = [θ1, θ2] and ε(t) follows a Gaussian distribution

with mean 0 and variance 1. Theorem 4 of [5] is used to show the model is

globally identifiable. However this model is in fact locally identifiable. Consider

the output given by equation (57) of [5], which is
y(1)

y(2)

y(3)

y(4)

 =


0

ε(0)

(θ1 + θ2)ε(0) + ε(1)

(θ21 + θ1θ2 + θ22)ε(0) + (θ1 + θ2)ε(1) + ε(2)

 .

If θ1 = 0 and θ2 = 2 or θ1 = 2 and θ2 = 0 then y(3) = 2ε(0) + ε(1) and

y(4) = 4ε(0)+2ε(1)+ε(2). As there are two parameter values that give identical

output this model is locally not globally identifiable. To use the methods of [6]

for detecting global identifiability we first find a simpler exhaustive summary.

The original exhaustive summary used in [5] is

κ(θ) =



θ1 + θ2

θ21 + θ1θ2 + θ22

(θ1 + θ2)2 + 1

(θ1 + θ2)(θ21 + θ1θ2 + θ22 + 1)

(θ21 + θ1θ2 + θ22)2 + (θ1 + θ2)2 + 1


,

with parameters θ = [θ1, θ2]. A reparameterisation is s = [s1, s2]T = [θ1 +

θ2, θ
2
1 + θ1θ2 + θ22]T . The original exhaustive summary can be rewritten as
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κ(s) = [s1, s2, s
2
1 + 1, s1(s2 + 1), s21 + s22 + 1]T . The derivative matrix

∂κ(s)

∂s
=

 1 0 2s1 s2 + 1 2s1

0 1 0 s1 2s2


is of full rank 2, therefore by Theorem 8 of [6] s is an exhaustive summary and

the model is at least locally identifiable. However there are two solution to the

equation s = η, θ1 = η1/2 −
√

4η2 − 3η21/2, θ2 = η1/2 +
√

4η2 − 3η21/2 and

θ1 = η1/2 +
√

4η2 − 3η21/2, θ2 = η1/2−
√

4η2 − 3η21/2, except when 4η2 = 3η21 .

By Theorem 9 of [6], this model is only locally identifiable, if 4η2 6= 3η21 .

4. Discussion

Ran and Hu [5] provide theorems for checking whether a model is locally

identifiability in models used in machine learning. Global identifiability cannot

generally be checked by calculating the rank of an appropriate Jacobian or

derivative matrix.
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