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Dynamic network model of banking system stability 

Mengyang Wei1, Miguel Leon-Ledesma2, Gianluca Marcelli1 and Sarah Spurgeon1 

 

Abstract 

This paper presents a dynamic model of banking interactions, which uses interbank connections to 
study the stability of the banking system. The dynamic model extends previous work on network 
models of the banking system taking inspiration from large scale, complex, interconnected systems 
studied within the domain of engineering. The banking system is represented as a network where 
nodes are individual banks and the links between any two banks consist of interbank loans and 
borrowing. The dynamic structure of the model is represented as a set of differential equations, 
which, to the best of our knowledge, is an original characteristic of our approach. This dynamic 
structure not only allows us to analyse systemic risk but also to incorporate an analysis of control 
mechanisms. Uncertainty is introduced in the system by applying stochastic shocks to the bank 
deposits, which are assigned as an exogenous signal. The behaviour of the system can be analysed 
for different initial conditions and parameter sets. This paper shows some preliminary results under 
different combinations of bank reserve ratios, bank capital sizes and different degrees of bank inter-
connectedness. The results show that both reserve ratio and link rate have a positive effect on the 
stability of the system in the presence of moderate shocks. However, for high values of the shocks, 
high reserve ratios may have a detrimental effect on the survival of banks. In future work, we will 
apply strategies from the domain of control engineering to the dynamic model to characterise more 
formally the stability of the banking network.  
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1. Introduction 
 

The financial crisis that occurred in 2008-2009 has driven financial regulators (e.g. central banks) and 
researchers to revisit ways of modelling the banking system. Traditionally, financial regulation was 
primarily focused on managing the risk of individual banks by requiring them to keep sufficient 
reserves to safeguard against the inherent risk of their own investments. Since the systemic risk 
arising from links between banks (e.g. interbank borrowing and lending) are ignored, a failure of 
even a small number of banks may spread systemically causing paralysis of the banking system. Thus, 
it has been suggested that to improve financial stability through regulation, more attention should 
be given to systemic risk, rather than to each individual institution (John Kay, 2012)(Andrew Haldane, 
2012). The work published in Basel III: A global regulatory framework for more resilient banks and 
banking systems (2010) (“Basel III,” 2011), points out the importance of the stability of the banking 
sector. As banks are at the centre of the credit intermediation process between savers and investors, 
a strong and resilient banking system is a foundation for sustainable economic growth. 

The need for managing systemic risk has persuaded financial operators to consider a new framework 
that recognizes the interconnected nature of the banking system. Many central banks and other 
financial regulators have started to improve their financial management from a macro-prudential 
perspective, which aims to mitigate the risk of the financial system as a whole (Kern, 2012). Research 
effect on macro prudential policies has grown, mainly focusing on its implementation, effectiveness 
and relationship with monetary policy. A summary literature review can be can found in (Galati and 
Moessner, 2013), which concludes that there are limited analytical tools and data available to check 
the effectiveness of macro prudential policies. A recent IMF Working Paper (Eugenio Cerutti et al., 
2015) gives new evidence that macro-prudential policies can have a significant effect on credit 
developments, but the effectiveness is instrument and country specific and is less effective in 
financial bust. 

One key issue about systemic risk management is how to measure the systemic risk. Different kinds 
of research has been done. One approach uses balance sheet data to establish links between banks 
or to derive banking system loss. Davies et al., 2010 assesses risks to financial stability by assessing a 
small number of key vulnerabilities in the UK financial system and suggests actions that might be 
undertaken to mitigate their potential impact. As the balance sheet linkages between banks are 
assigned a priori, when an event affects the system, it is not possible to account for changes in the 
network structure of the banking system. Hence, they become of limited relevance in predicting 
losses. Another approach to assess systemic risk in the banking system seeks to build indexes of 
systemic risk based on two criteria: too big to fail (TBTF) and too interconnected to fail (TITF). Work 
based on these types of indexes tries to assess the role that particular institutions play in aggregate 
financial risk due either to their size, or to their connectedness with other banks. Measures such as 
MES (Marginal Expected Shortfall) or SRISK (systemic risk) have been proposed (Acharya et al., 
2010)(Acharya et al., 2012)(Brownlees and Engle, 2010)(Greenwood et al., 2012)(F. S. Board, 2011). 
Benoit et al., 2013 made a comparison of these measurements. Its findings show that these 
measures fall short in capturing the multifaceted nature of systemic risk and the quest for a suitable 
measure of systemic risk is ongoing. 

From the above review, it can be seen that there is still great potential for improving the 
management and measurement of systemic risk. The study in this paper looks at systemic risk from 
the control engineering perspective. Control engineering applies known theoretical frameworks to 
design systems with desired behaviours (Malik, 1998). Such designed systems are called closed loop 
systems. Historically the major application of control theory has been in engineering, which primarily 
deals with the design of control systems for industry. However nowadays as a general theory, 
control theory can be useful wherever feedback occurs. Successful application areas include 
ecosystems, physiology, climate modelling, and neural networks as well as finance. Many financial 



problems have been studied using stochastic control (Fleming and Pang, 2004)(Pham, 2009) and 
optimal control (Kamien and Schwartz, 1991), such as portfolio allocation, quadratic hedging of 
options and the optimal selling of an asset. Optimal control in stochastic settings is at the very heart 
of most macroeconomic models. Most dynamic stochastic general equilibrium models are models of 
dynamic optimisation used to suggest the setting regulatory policies (Kendrick, 1976)(Kaas, 1998). 
The study in this paper plans to apply control theory tools to a dynamic network models of the 
banking system, aiming at minimizing the systemic risk.  

Related literature 

In order to apply control theory, a model of the banking system has to be developed appropriately, 
so that stability analysis can be implemented. Network models of systemic risk in macroeconomics in 
general are becoming increasingly important nowadays. (Iori et al., 2006) developed a network 
model and showed that size and connectivity of banks and the nature of their interconnectedness 
will affect the potential for contagion. When banks are homogeneous (i.e. of similar size), interbank 
lending plays an insurance role in stabilising the system while when the banks are heterogeneous, 
contagion effects may arise and systematically increase with connectivity. (Nier et al., 2007) 
developed a banking-system model composed of a number of banks that are connected by interbank 
linkages and studied how the likelihood of contagious (knock-on) defaults is affected by the level of 
capitalization, the degree of connectivity, the size of interbank exposures and the degree of 
concentration of the system. This work indicates that the connectivity improves the ability to buffer 
shocks when it is above a certain threshold, but will increase contagion when it is below a threshold. 
The effect of capitalization on contagious defaults is non-linear and the size of interbank liabilities 
tends to increase the risk of knock-on default. Work by May and Arinaminpathy, 2010 and Haldane 
and May, 2011 explores the interplay between complexity and stability in deliberately simplified 
models of financial networks by drawing analogies with the dynamics of ecological food webs and 
with networks within which infectious diseases spread. In this work, banks are nodes in the network 
and bank activities are classified into four categories: deposit, external assets, borrowing and lending.  
The borrowing and lending are the links between the banks. This structure will be extended and 
used in this paper, as explained later in section 2. In a recent paper (Acemoglu et al., 2015), a unified 
framework is developed for the study of how network interactions can function as a mechanism for 
propagation and amplification of microeconomic shocks. A fairly complete characterization of the 
structure of equilibrium is provided to enable ranking of different networks in terms of their 
aggregate performance. 

Another line of literature is the interconnected system paradigm in control engineering, which 
consists of a collection of subsystems with interconnections between them and the interconnections 
are modelled within the dynamical equations. Such an interconnected system is suitable to model 
the banking system. The banking system can be seen as a network of nodes with interconnections 
between them. When using the interconnected systems approach to represent the banking system, 
and as the banks are characterized by geographical separation, the interconnected systems tend to 
operate in a decentralized manner. The purpose of applying control theory is to minimize the effect 
of uncertainty on the overall system behaviour.  Decentralized output feedback control for 
interconnected systems is very topical. Since the dynamics of interconnected systems are usually 
highly nonlinear, a specific control tool called sliding mode control has also received much attention 
in the literature due to its capacity to deal with uncertain, nonlinear scenarios. Works by Yan et 
al.(2004, 2005, 2007, 2013) encompasses nonlinear system representations, uncertainty and 
unknown perturbations as well as limited available information in the framework. And looks at 
stability including conditions to investigate the effect of the structure of the interconnections on the 
overall system stability. 

The existing literature shows that network models can simulate different network structures with 
different degrees of size, connectivity and concentration, which can address the issue of having 



uncertainty and changing connectivity in the system, as opposed to macro-prudential management. 
Nevertheless, real banking systems are characterised by a more dynamic behaviour where feedback 
mechanisms may play an important role in preserving the system’s stability. For this reason, the 
novel contribution is introducing a control systems engineering approach as a tool to monitor a 
dynamical/interconnected system and to assess the impact of feedback mechanisms on system 
stability. 

This paper shows the details and the preliminary results of a banking-system model based on a set of 
differential equations, which has been designed to accommodate the application of control theory. 
The rest of paper is organized as follows. In Section 2, the dynamic network model extended from 
previous network model in the literature is introduced. Implementation and some simulations 
results of this dynamic model are shown in Section 3. Section 4 draws conclusions and highlights the 
future work. 

2. Dynamic model  
 

Extending the structure in Haldane and May, 2011, each bank in the model is characterised by six 
categories of activities as shown in Figure 1:  deposits, D, interbank borrowings, B, interbank loans, L, 
investment, I, cash, C, and net-worth, N=I+C+L−D−B. The links between any two banks, i and j, 
are made by the interbank loans and borrowings, Lij and 𝐵ij see Figure 2. The banks and links 
between different banks will form the network. The differential equations characterising the model 
contain the time derivatives of the quantities Di, Ci, Ii, Lij and 𝐵ij which prescribe the dynamics of the 
system. The differential equations are solved using Matlab Simulink in the form of a computer 
simulation (see below for details).  

A set of differential equations have been developed to assign the dynamics of the different banks’ 

activities. These equations will be introduced and explained in the following subsections. 

Cash 

The differential equation governing the change in time of the cash, 
𝑑𝐶𝑖

𝑑𝑡
, of bank 𝑖 is reported in 

equation 1:  
𝑑𝐶𝑖

𝑑𝑡
=  

𝑑𝐷𝑖

𝑑𝑡
−  

𝑑𝐼𝑖

𝑑𝑡
−  𝑔𝑖𝐷𝑖 +  𝑝𝑖𝐼𝑖 + ∑ 𝑏𝑖𝑗𝑖≠𝑗 − ∑ ℎ𝑖𝑗𝐵𝑖𝑗𝑖≠𝑗 − ∑ 𝑙𝑖𝑗𝑖≠𝑗 + ∑ 𝑘𝑖𝑗𝐿𝑖𝑗𝑖≠𝑗    (1) 

In equation 1,  
𝑑𝐷𝑖

𝑑𝑡
 represents the change in cash of bank 𝑖 over time 𝑑𝑡 due to a change in deposits, 

while − 𝑔𝑖𝐷𝑖 represents the reduction in cash over time 𝑑𝑡 due to the payment of interest to 

depositors. Similarly, − 
𝑑𝐼𝑖

𝑑𝑡
  represents the reduction in cash due to new investments and  𝑝𝑖𝐼𝑖 

represents the increase in cash due to the receipt of interest from investments. ∑ 𝑏𝑖𝑗𝑖≠𝑗  represents 

the increase in cash, per unit time, due to borrowings from others banks and − ∑ ℎ𝑖𝑗𝐵𝑖𝑗𝑖≠𝑗  is the 

reduction in cash due to the payment of interests to lending banks. − ∑ 𝑙𝑖𝑗𝑖≠𝑗  represents the 

reduction in cash, per unit time, due to loans to other banks and ∑ 𝑘𝑖𝑗𝐿𝑖𝑗𝑖≠𝑗  is the increase of cash 

due to the receipt of interest from borrowing banks. 𝑔𝑖, 𝑝𝑖, ℎ𝑖𝑗  and 𝑘𝑖𝑗 represent interest rates. 

Importantly, when 𝐶𝑖 becomes negative, bank 𝑖 fails and is removed from the system. 

Deposits 

The deposits, 𝐷𝑖, are assumed to be assigned by an exogenous signal. Following Iori et al., the 

deposit signal for each bank at time t is set as: 

𝐷𝑖 =  |𝐷̅ + 𝐷̅𝜎𝐷𝜀𝑡|     (2) 



Eq.2 models the case in which fluctuations (shocks) in the deposit are caused by random but 
mutually uncorrelated payments/withdrawals of deposits. 𝐷̅ represents an average size of the 
deposits; in the homogeneous case, 𝐷̅ is the same for each bank, while in the heterogeneous case 
different values of 𝐷̅ are assigned to the banks by sampling from a Gaussian distribution. 
𝜎𝐷 represents the amplitude of the shocks, while 𝜀𝑡 is a random variable (𝜀𝑡~𝑁(0,1)). In this paper, 
only results of the homogeneous case (i.e. banks have similar sizes) will be presented.  

Investments 

Eq.3 below describes the investment behaviour of bank 𝑖; each bank makes its investment at time 𝑡 
depending on two factors: one is the availability of cash above the value required by the reserve 
ratio, (𝐶𝑖 − 𝑟𝐷𝑖 )+; where (𝑥)+ stands for max {𝑥, 0}.  r is the reserve ratio that is the portion of the 
total deposit that banks must have on hand as cash. The second factor is the stochastic investment 
opportunity at time t, 𝑜𝑝𝑝𝑖; this is described in Eq.4 where  𝑜𝑝𝑝̅̅ ̅̅ ̅ = 𝛿𝐷̅ (with 1 < 𝛿 < 0 and  
𝜂𝑡~𝑁(0,1)), which means that the investment opportunity is affected by the size of the bank. 
Therefore, taking these two factors into consideration, a bank invests only when it has money, as 
well as opportunity.  

𝑑𝐼𝑖

𝑑𝑡
= min[(𝐶𝑖 − 𝑟𝐷𝑖 )+, 𝑜𝑝𝑝𝑖] − 𝑤𝐼𝑖 − 𝑣𝐼𝑖                                       (3) 

𝑜𝑝𝑝𝑖 =  |𝑜𝑝𝑝̅̅ ̅̅ ̅ + 𝜎𝑜𝑝𝑝𝜂𝑡|                                                      (4) 

In eq. 3, −𝑤𝐼𝑖 represents the proportion of total investment, per unit time, that has matured. −𝑣𝐼𝑖 
represents the proportion of total investments that has been lost, per unit time,  due to defaults. It 
must be stressed that min[(𝐶𝑖 − 𝑟 ∗ 𝐷𝑖 )+, 𝑜𝑝𝑝𝑖] is intended to be the amount of money invested 
per unit time. 

Interbank borrowing and lending 

To build the interconnection between banks, borrowing and lending activities are introduced into 
the model. Due to fluctuations in deposits, the cash of any given bank may become less than the 
required amount dictated by the reserve ratio. In this case that bank will need to borrow money 
from other banks. Eq.5 shows the change per unit time of borrowing/lending between two banks. 
Bank 𝑖 borrows just enough to meet the reserve ratio requirements. Bank 𝑗 will only lend cash that 
is above its required reserve.  

𝑑𝑏𝑖𝑗 =  𝑑𝑙𝑗𝑖 =  𝑚𝑖𝑛[ (𝑟𝐷𝑖 − 𝐶𝑖)+,  (𝐶𝑗 − 𝑟𝐷𝑗)
+

]                   (5) 

𝑑𝐵𝑖𝑗

𝑑𝑡
= 𝑏𝑖𝑗 +  𝜎𝑖𝑗𝐵𝑖𝑗𝛼𝑖𝑗       (6) 

Eq. 6 shows how the total borrowing is updated. The first term in the right-hand-side of the 
equation is the change in borrowing previously explained. The second term is the proportion (𝛼𝑖𝑗) of 

the total borrowing repaid, per unit time, by bank  𝑖 to bank 𝑗 at the current time step.  σij 
represents the link between bank  𝑖 and bank 𝑗. 𝜎𝑖𝑗 can be 0, which means that there is no link 

between the two banks, or 1, which means that the two bank are connected and can exchange 
money. All the  𝜎𝑖𝑗 are generated at the beginning of the simulation according to the choice of the 

link rate, 𝑙𝑟, which can get values from 0 to 1 and represents the degree of connectivity of the 
system. The closer the link rate to 1, the more connected the system will be.  

Interest rates 

In our model the interest rates for borrowing and lending, ℎ𝑖𝑗 and 𝑘𝑗𝑖, change with time according to 

the following equation :  



 

ℎ𝑖𝑗 =   𝑘𝑗𝑖 = ℎ0 +
𝑎

𝑒
(𝑦−

𝐵𝑖𝑗
𝐶𝑗

)𝑧
+1

                                                           (7) 

 

In Eq.7, ℎ0 is the basic interest rate applied for lending and borrowing. The term, 
𝑎

𝑒
(𝑦−

𝐵𝑖𝑗
𝐶𝑗

)𝑧
+1

, is the 

extra interest, which is charged depending on the health of both borrowing and lending banks. 

When 
𝐵𝑖𝑗

𝐶𝑗
= 0, the interest rate is close to ℎ0 . When  

𝐵𝑖𝑗

𝐶𝑗
= 𝑦 , the rate becomes ℎ𝑖𝑗 = ℎ0 +

𝑎

2
. When 

𝐵𝑖𝑗

𝐶𝑗
 →+ infinity, the rate becomes ℎ𝑖𝑗 = ℎ0 + 𝑎, which is the maximum value possible. In Eq. 7, 𝑧 is 

the speed of transition between the states ℎ𝑖𝑗 = ℎ0 +
𝑎

2
 and ℎ𝑖𝑗 = ℎ0 + 𝑎. Once the interest rates 

are set, the interbank borrowing and lending process works as follows: the bank with greatest net 
worth can first choose the bank to borrow money from. The borrowing bank will choose the bank 
with the lowest lending interest rate and if the available finds are not enough it will move to the 
bank with the second lowest lending rate. When the first bank has finished borrowing, the bank with 
the second greatest net worth starts to borrow according to the same rule.  
 
Simulation of the model  
 
Figure 3 shows the flowchart of the model illustrating how the banks’ activities take place during 
each step of the computer simulation. At the beginning of the step, the banks’ cash changes due to 
interest payments to depositors and changes of deposits due to stochastic shocks. If the cash of a 
bank falls below the value required by the reserve ratio that bank has to borrow from other banks. 
After this step, each bank repays creditors in cash. Those banks that cannot meet the repayment 
obligations will need to borrow from other banks. Banks that still have extra cash will invest. Those 
banks that are left with negative cash, as they could not borrow enough cash, are deemed to be in 
default. These banks are removed from the system. Their remaining assets are distributed to 
depositors and to lending banks. After any default liquidation a new simulation step will start. At the 
end of the simulation, i.e. after a chosen number of steps, the banks that survived are counted and 
other relevant quantities are calculated.    

  

3. Preliminary results  
 

This section shows the simulation results generated by the model described in Section 2. It is 
implemented using Matlab and Simulink, which is a powerful design tool frequently used for control 
design and analysis. The number of banks in the system at the beginning of simulations is 50. This 
number of banks is sufficient to exhibit rich dynamics. The unit time is one day and the total 
simulation time is 1000 days. The results are analysed here for only the homogenous case, in which 
all banks have a similar size; shocks are introduced into the system via deposit fluctuations.  
Simulations with different values for link rate and reserve ratio, representing different scenarios, are 
run and the number of surviving banks is calculated.  

The chosen values for the parameters in Eq. 2 are  𝐷̅ =1000 and 𝜎𝐷= 0.3-0.5, which are similar to the 
values used in Iori’s work(Iori et al., 2006). The values of the link rate, lr , are 0, 0.3, 0.5, 0.8 and 1. 
The reserve ratio, r, values are taken as 0.1, 0.2, 0.4 and 0.7 in this study. So there are thus 40 
different combinations in total, corresponding to 40 different scenarios/simulations.  



Figure 4 shows how the number of surviving banks is affected by different reserve ratios when the 
link rate, lr , is fixed, and 𝜎𝐷= 0.3. Figure 4(a) reports the results corresponding to lr = 0; this figure 
shows that when there is no interbank lending, the reserve ratio definitely plays a positive role to 
preserve the stability of the system. In fact, as the reserve ratio increases, more banks survive at the 
end of the simulation period. This trend is present also when the link rate increases as shown in 
Figure 4 (b) (c) and (d); from these figures it can be seen that with a higher link rate the number of 
surviving banks increases. However, when the amplitude of the shocks, 𝜎𝐷, is increased to 0.5 as in 
Figure 7, the effect of the reserve ratio is different. Figure 5(a), for which lr = 0, all the banks will fail 
very quickly (at day 60), which means the banks cannot buffer large shocks on the deposits by only 
holding the required reserve. However, when the link rate increases to 0.3, 0.8 and 1 as Figure 5(b), 
(c) and (d), bank failure is slower. Interestingly, an increase in the reserve ratio causes more banks to 
fail which may appear counterintuitive. The explanation is as follows: high reserve ratios discourage 
banks from lending, which is a problem when some banks experience high negative shocks in their 
deposits.  

Figure 6 shows the effect of the link rate on the number of surviving banks, when the reserve ratio is 
fixed. In Figure 8(a) (r=0.1), more banks survive as the link rate increases. Figures 6(b) and (c), 
corresponding to higher reserve ratios, show similar trends. In Figure 6 (d), in which the reserve ratio 
is 0.7, as the link rate increases from 0 to 0.3, more banks survive. However, with further increases 
of the link rate only a few additional banks survive. This indicates that, when the reserve ratio is 
high, the increase in the link rate does not help improving any further the stability of the system. The 
trends shown in Figures 4, 5 and 6 can be observed also in Figure 7, which reports a waterfall plot of 
the number of surviving banks at day 1000 as a function of both link rate and reserve ratio.  

Another important way to analyse how reserve ration and link rate affect the stability of the system 
is to see how the two quantities affect the time at which failure occurs. More specifically, during 
each simulation we recorded the times at which the first and the second bank failure happen for 
different values of reserve ratio and link rate. Preliminary results are reported in figure 8 and 9. In 
Figure 8, the first and the second failure times have been reported as function of the reserve ratio, 
at fixed values of the link rate and for two different values of the amplitude of the shock (𝜎𝐷= 0.3 
and 0.5). From the two subplots in the first column, when lr = 0, the increase of the reserve ratio 
does not delay the first default time. But as the link rate increases, low reserve ratios seem to 
perform better than the high reserve ratios in postponing the default occurrence. Since high reserve 
ratios force the banks to keep more cash, this inhibits interbank borrowing. In Figure 9, the first and 
the second failure times have been reported as function of the link rate, at fixed values of the 
reserve ratio and for two different values of the amplitude of the shock (𝜎𝐷= 0.3 and 0.5). In the last 
column when reserve ratio is 0.7, no changes are observed when the link rate changes. As the 
reserve ratio decreases, instead, a high link rate will make the first or second default time occur 
later; this seems to suggest that the link rate has a positive role for the bank’s stability when the 
reserve ratio is not high. 

Another interesting aspect of the model is the analysis of the effect of contagion through the 

interbank borrowing and lending. In this paper, the effect of contagion is quantified in the following 

way: when a bank fails, the model verifies whether that bank has unpaid loans from the banks that 

failed earlier. At the end of the simulation, the proportion of failed banks with unpaid loans, as 

compared to the total number of failed banks, is calculated; the higher this proportion, the higher 

the effect of contagion. Figure 10(a) reports the proportion of failed banks with unpaid loans as a 

function of both link rate and reserve ratio, for σD = 0.3. When the link rate is below 0.4, the 

reserve ratio seems not to affect contagion significantly. When the link rate is above 0.4, the 

increase in reserve ratio seems to favour contagion. A possible explanation for this is that since 

banks need to keep enough cash to reach the required reserve ratio, they have to borrow money. 

This increases the interbank activities and enhances opportunities for contagion. In figure 10(b), 



reports the results for contagion, when 𝜎𝐷 = 0.5. In this case, when the link rate is above 0.4, the 

increase in reserve ratio seems to reduce the occurrence of contagion, which is the opposite of what 

shown in figure 10(a). More work needs to be done to analyse this behaviour in more detail.     

4. Conclusion and further work 
 

The dynamic model presented in this paper allows the study of the stability of the modelled banking 

system as a function of different quantities, such as link rate, reserve ratio and the amplitude of 

deposit shocks. The results show that for moderate shocks, both reserve ratio and link rate have a 

positive effect on the stability of the system. However, for high values of shock, high reserve ratios 

may have a detrimental effect on the survival of banks. The model also allows the quantification of 

contagion, and it shows how this is affected by the reserve ratio and link rate. An important further 

work is to formally apply control-theory which will permit a greater range of scenarios to be 

considered.  
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Figure 1. Bank’s activities used in the model: N=net-worth, D=deposits, B=interbank borrowings, L=interbank loans, C=cash 
and I=investment. 

 

 

 

Figure 2. Links between banks forming the network: the links between banks are made by the loans/borrowings. 



 

 

                    

Figure 3. Flowchart showing activities taking place during one simulation step. 

 

 

 

Figure 4. Number of surviving banks with 𝜎𝐷 = 0.3, 𝜎𝑜𝑝𝑝 = 0.5 and different reserve ratios: r =0.1 (dark blue line), r 

=0.2(dark green line), r =0.4 (red line), r =0.7 (light blue line), under different link rates, lr= 0 (a), lr = 0.3 (b), lr = 0.8 (c), lr = 1 

(d). 
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Figure 5. Number of surviving banks with 𝜎𝐷 = 0.5, 𝜎𝑜𝑝𝑝 = 0.5 and different reserve ratios: r =0.1 (dark blue line), r 

=0.2(dark green line), r =0.4 (red line), r =0.7 (light blue line), under different link rates, lr= 0 (a), lr = 0.3 (b), lr = 0.8 (c), lr = 1 

(d). 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 6. Number of surviving banks with 𝜎𝐷 = 0.3, 𝜎𝑜𝑝𝑝 = 0.5, and different link rates, lr = 0 (dark blue line), lr = 0.3 (green 

line), lr = 0.5 (red line), lr = 0.8 (light blue line), lr = 1 (purple line) under different reserve ratios r=0.1(a), r=0.2(b), r=0.4 (c), 
r=0.7 (d). 

 

 

 

 

 

 

 

 

 

 

 

 



  

Figure 7. Waterfall plot showing the number of surviving banks at day 1000 as function of both link rate and reserve ratio.  
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Figure 8. First (blue line) and second (green line) time of failure as function of reserve ratio, at fixed link rate and 
amplitudes of the shocks (𝜎𝐷 = 0.3 , first row, and 𝜎𝐷 = 0.5, second row). 

 

 

 

Figure 9. First (blue line) and second (green line) time of failure as function of link rate, at fixed reserve ratio and 
amplitudes of the shocks (𝜎𝐷 = 0.3 , first row, and 𝜎𝐷 = 0.5, second row). 

 



 

Figure 10. Coutour plot reporting the proportion (in different colours) of failed banks with unpaid loans as function of link 
rate and reserve ratios, at day 1000 and 𝜎𝐷 = 0.3 (a), 𝜎𝐷 = 0.5 (b). 

 

 


