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Abstract: To improve the modelling performance, one should either propose a new 

modelling methodology or make the best of existing models. In this paper, the study is 

concentrated on the latter solution, where a structure-free modelling paradigm is 

proposed. It does not rely on a fixed structure and can combine various modelling 

techniques in ‘symbiosis’ using a ‘master fuzzy system’. This approach is shown to be 

able to include the advantages of different modelling techniques altogether by 

requiring less training and by minimising the efforts relating optimisation of the final 

structure. The proposed approach is then successfully applied to the industrial 

problems of predicting machining induced residual stresses for aerospace alloy 

components as well as modelling the mechanical properties of heat-treated alloy steels, 

both representing complex, non-linear and multi-dimensional environments. 
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1. Introduction 

For describing various physical and social systems in nature, different models and 

their associated modelling methodologies have been developed. In order to improve 

the performance of a model, there are two general strategies. The first strategy is to 

develop an entirely new modelling paradigm considering the specific features of an 

object system, which are not coped with by ‘old’ methods. The second strategy relates 

to making the best of existing modelling paradigms. This is usually achieved via two 

ways: further optimisation or systematic combination with other types of models. 

In this paper, the research study is focused on the idea of a systematic combination of 

various models. In reality, one single modelling paradigm cannot always perform well 
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due to the different components, or different characteristics of a complex system 

under different situations. In this case, the combination of various models may cover a 

wider range of model formulations and provides a more flexible modelling structure. 

However, when given a modelling problem without any preliminary knowledge about 

it, it is very difficult to choose the most appropriate modelling approach. In such a 

situation, the systematic combination strategy will automatically find a suitable 

structure, whereby adequate modelling methods will be fully employed while 

inadequate ones will be adjusted to affect the few. 

To achieve a sophisticated combination of different types of models, a linear 

combination is far from enough. In this paper, a fuzzy rule-based system [1, 2] is 

designed as a high-level master system to handle the cooperation of low-level sub-

models, since fuzzy systems are inherently non-linear topologies which are known to 

be universal approximators [3] and can deal with the curse of dimensionality 

effectively [4, 5]. 

The following sections in the paper are organised as follows. Section 2 introduces the 

proposed modelling paradigm in details. In Section 3, the new proposed approach is 

validated using two benchmark problems, one is a problem of static non-linear system 

approximation and the other is a dynamic system identification problem. In Section 4, 

it is further applied to two industrial problems, which aim at modelling machining 

induced residual stresses in aluminium alloy components and the prediction of 

mechanical properties of alloy steels. Finally, Section 5 concludes this paper. 

 

2. The Proposed Paradigm for Combining Various Modelling Methodologies 

2.1 Introduction to fuzzy systems 

Fuzzy rule-based systems [1, 2] are viewed as robust ‘universal approximators’ 

capable of performing non-linear mappings between inputs and outputs. It is an 

approach that allows a system to be represented using a descriptive language 

(linguistic ‘IF-THEN’ rules) [6], which can easily be understood and explained by 

humans in order for them to gain a deeper insight into more often than not uncertain, 

complex, and ill-defined systems. 

Generally, a fuzzy system consists of four fundamental components: fuzzifiers, a 

fuzzy rule-base, a fuzzy inference engine, and defuzzifiers. The central part of a fuzzy 

system is the knowledge-base (rule-base) consisting of fuzzy rules. A fuzzy rule is an 

IF-THEN statement in which some words are characterised by continuous 

membership functions. Specifically, a fuzzy rule-base comprises the following fuzzy 

rules: 

Rulel: IF x1 is A1
l
 AND … AND xi is Ai

l
, THEN y is B

l
, 

where l = 1, 2, …, Nc; Nc is the number of rules in the fuzzy rule-base; Ai
l
 and B

l
 are 
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fuzzy sets in RU i   and RV  , respectively, and x =   Uxxx
T

i 21  and Vy  

are the input and output (linguistic) variables of the fuzzy system, respectively. 

The fuzzifier is defined as a mapping from a real-valued point x
* nRU   to a fuzzy 

set A
*
 in U. In a fuzzy inference engine, fuzzy logic principles direct how to employ 

the fuzzy rules into a mapping from an input fuzzy set A
*
 to an output fuzzy set B

*
. 

The defuzzifier is a mapping from the output fuzzy set B
*
 in RV   to a real-valued 

point Vy *
. Conceptually, the purpose of the defuzzifier is to specify a point in V 

that best represents B
* 
[3]. 

Generally, when constructing a fuzzy system, the fuzzy inference engine and the 

defuzzifiers are predefined. Thus, the primary work will be centred around the idea of 

generating appropriate fuzzifiers (fuzzy sets) and an appropriate fuzzy rule-base. 

 

2.2 Master fuzzy systems 

To handle the combination of different modelling techniques, a singleton fuzzy 

system [7], which is referred to as ‘master fuzzy system’, is designed. As shown in 

Fig. 1, the proposed architecture includes a range of pre-developed sub-models, a 

master fuzzy rule-base, a fuzzy inference engine. A master fuzzy rule is employed to 

‘decide’ which sub-model should be activated in a certain circumstance. When a set 

of inputs are imported to the master fuzzy system, the fuzzy inference engine will 

process the given inputs and the activated sub-models to produce a final combined 

output. 

<Figure 1> 

The general form of the master fuzzy rules is as follows: 

Rule Rn: IF x1 is A1
n
 AND … AND xm is Am

n
, THEN y is Y

n
 (YFM, YANN, YLR, 

etc.), 

where Rn is the label of the nth fuzzy rule; x = [x1 x2 … xm]
T
 U1×U2×…×Um are 

input linguistic variables, m is the number of inputs; Ai
n

 are the antecedent fuzzy sets 

of the universes of discourse Ui, where i = 1, 2, …, m; Vy  is the output linguistic 

variable; Y
n
 is chosen from YFM, YANN, YLR, etc., which are the predicted results using 

various sub-models, such as the Fuzzy Models (FM), the Artificial Neural Network 

(ANN) [8] models, the Linear Regression (LR) [9] models, etc. 

Fig. 2 shows an example of a two-dimensional modelling problem. In this example, 

the modelling space is divided into several parts. For every part, the most appropriate 

systems model(s) is (are) assigned. If a master fuzzy rule is used to describe the 

situation of the upper right sub-space in Fig. 2, then the master fuzzy rule will be as 

follows: 
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IF x1 is big and x2 is big, THEN y is YANN, 

where YANN is the predicted result using the neural-network sub-model. 

<Figure 2> 

 

2.3  An approach of generating master fuzzy systems 

The development of the proposed master fuzzy system can be broadly divided into the 

following two stages: 

1. Constructing several separate data-driven models using different modelling 

strategies, such as fuzzy modelling, artificial neural network, and linear 

regression. All these models work as sub-models of the whole modelling 

framework and they share the same training, validation, and testing data sets. 

2. Constructing the ‘master fuzzy system’. 

For the second stage, one modified hierarchical clustering algorithm [4] is employed, 

which was designed to reduce the computation complexity and improve the efficiency. 

The algorithm has been shown to perform better than other well-known clustering 

algorithms [10], such as the fuzzy c-means (FCM) clustering algorithm [11], in the 

fuzzy model generation. The obtained cluster information is first used to define the 

fuzzy sets of the master fuzzy system and then used to elicit the related master fuzzy 

rules. The details of the whole modelling process can be described as follows: 

 

2.3.1 Obtaining cluster information: 

One should divide the input data of the training set into a set of clusters (sub-space) 

Cn (n = 1, 2, …, Nc, Nc is the number of clusters) using a clustering algorithm [10]. 

For every cluster (sub-space), the input data included in it are {p
n1

, p
n2

, …, p
n(NDn)

}, 

where p
nj

 = [x1
nj

 x2
nj

 … xD
nj

]
T
, j = 1, 2, …, NDn, NDn is the number of data in the nth 

cluster. For these input data, their corresponding output data are {y
n1

, y
n2

, …, y
n(NDn)

}. 

 

2.3.2 Defining fuzzy sets: 

For every master fuzzy rule, the parameters of the fuzzy sets Ai
n 

(n = 1, 2, …, Nc; i = 1, 

2, …, D; D is the number of inputs) are obtained using the following method: 

If Gaussian functions are used as the membership functions [3], i.e. 

,                                     (1) 












 


2

2)(
exp)(

n

i

n

i

A

cx
xn

i 

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then ci
n
 can be calculated using the equation [10, 12] 

.                                                   (2) 

The idea behind this is that the centres of clusters are the centres of membership 

functions. 

σi
n
 can be calculated using the following equation [10, 12]: 

,                                                (3) 

where j = 1, 2, …, NDn, Th is a threshold value. This equation emanates from the 

principle that the membership function should cover all the data contained in its 

corresponding cluster. In other words, for every data included in one cluster, its 

membership degree should be high enough to ensure the data maps into this rule. 

Based on this requirement, the membership parameter σi
n
 is designed to satisfy the 

following equation [10, 12]: 

,        (4) 

where j = 1, 2, …, NDn. This equation means that, for all the data included in the nth 

cluster, the membership degrees are higher than a threshold Th. The value of Th can 

be set to 0.5 without any loss of generality. Equation (4) can be rewritten in the form 

of Equation (3). 

 

2.3.3 Generating the fuzzy rules: 

One master fuzzy rule corresponds to one data cluster. For a master fuzzy rule, its 

antecedent part is determined by the related cluster information [10] and the 

consequent part is generated through an error-oriented method. The principle behind 

lies in that the consequent of a master fuzzy rule is designed to be the prediction of 

the sub-model, which is most accurate in the situation that the premises represent. In 

particular, the consequent part of each rule is determined using the following 

methodology: 

For every cluster (sub-space), the sum of the absolute prediction errors of each 

modelling method is first calculated. For instance, for the nth cluster, the absolute 

error sum of the fuzzy sub-model can be described as follows: 

,                                               (5) 

where 
nj

FMy  is the predicted output using the fuzzy sub-model corresponding to the 

input data p
nj

. 

The output of the sub-model, which has the minimum value of the absolute error sum, 
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is then set as the output of the relevant fuzzy rule. For instance, for the nth fuzzy rule: 

Rn: IF x1 is A1
n
 AND … AND xD is AD

n
, THEN y is Y

n
. 

Y
n
 is calculated using the following method 

,                (6) 

where 
n

FMs , 
n

ANNs  and 
n

LRs  are the sum of the absolute errors of the fuzzy sub-model, 

the neural-network sub-model, and the linear-regression sub-model based on the data 

of the nth cluster, respectively. 

 

2.3.4 Improving accuracy: 

Based on a fixed rule-base, the master fuzzy system is improved in terms of accuracy 

by optimising the parameters of the membership functions (peaks and widths). In this 

paper, the related work is carried out by using a salient nature-inspired optimisation 

algorithm, Reduced Space Searching Algorithm (RSSA) [13, 14]. This algorithm 

originated from an idea which relates to a simple experience when humans search for 

an optimal solution to a ‘real-life’ problem, i.e. when humans search for a candidate 

solution given a certain objective, a large area tends to be scanned first; should one 

succeed in finding clues in relation to the predefined objective, then the search space 

is greatly reduced for a more detailed search. This algorithm has been validated using 

a set of benchmark problems and shown to perform better than some well-known 

heuristic optimisation algorithms, such as the Covariance Matrix Adaptation 

Evolution Strategy (CMA-ES) [15], the Generalised Generation Gap model with the 

Parent-Centric Recombination operator (G3+PCX) [16], and the new structure 

Particle Swarm Optimization (nPSO) with a dynamically varying population [17, 18]. 

 

3. Experimental Studies 

In order to validate the effectiveness of the proposed modelling paradigm, the 

associated strategy was applied to the modelling of two benchmark problems, one is a 

problem of static non-linear system approximation and the other is a dynamic system 

identification problem. 

In the following experiments, the sub-models consist of one fuzzy system, one 

artificial neural network [8], and one linear-regression model [9]. Fuzzy systems and 

artificial neural networks have been widely accepted to be robust techniques for data-

driven modelling. In this paper, some modelling problems studied are clearly not 

linear as a whole, while the linear-regression model was still employed, because these 

problems may include partially linear area, where the linear-regression model 

becomes naturally more suitable. Other types of model architecture can indeed be 
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included if need be within this particular scheme. The fuzzy sub-model is a Takagi-

Sugeno-Kang (TSK) fuzzy system [19], which is generated using a subtractive 

clustering method [20] and trained using a hybrid learning algorithm introduced in 

[21]. The neural-network sub-model is a feed-forward back-propagation network [8]. 

For the optimisation algorithm RSSA, the configuration of parameters is inspired 

from suggestions included in [14]: C1 = D/2 + 8, C2 = 1, K = 0.5, m = 20, where D is 

the dimension of the optimisation problem; the variation operator works as a 

combination of the one-dimensional variation strategy (with the 50% probability of 

usage) and the multi-dimensional variation strategy (with the 50% probability of 

usage). The Root Mean Square Error (RMSE) index works as the performance index 

of modelling accuracy. 

 

3.1 The non-linear function approximation 

In this experiment, the modelling target is to approximate the following two-input 

single-output non-linear system [22, 23]: 

, .                              (7) 

In this case, 50 data points were used for training and another 50 randomly generated 

data points were used for model testing. The master fuzzy system consisted of 20 

fuzzy rules. The fuzzy sub-model includes 6 fuzzy rules and the neural-network sub-

model includes a hidden layer of 2 neurons. The training epochs for both the fuzzy 

and neural-network sub-models were set to be 200. The maximum number of function 

evaluations for RSSA was set to 5,000. 

The experiment was carried out using 20 runs. Table 1 shows the performance index 

values of the sub-models and the final integrated model. It can be seen that, for this 

problem, the proposed paradigm can successfully merge other modelling techniques. 

The result also reveals that the integrated model outperforms any of the sub-models in 

the prediction accuracy, because the integrated model has merged all the ‘elite’ parts 

of the sub-models. 

<Table 1> 

As an example, one set of typical results out of the 20 runs is selected and shown in 

the following figures. Figs. 3 and 4 show the predicted outputs versus the measured 

outputs of the obtained model based on training data and testing data, respectively. 

They also include the performance of the sub-models. From these figures, one can 

observe that, in a certain local area, the integrated model performs similar with one of 

the sub-models, which always performs the best in all sub-models in this local area. 

This property is highly consistent with the initial design aim. 

<Figure 3> 

25.1

2

2

1 )1(   xxy 5,1 21  xx
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<Figure 4> 

For more details about the master fuzzy system, Fig. 5 also shows 5 rules out of the 

rule-base. It can be observed that the neural-network sub-model is fired in most of the 

rules, since it performs best in this particular case. 

<Figure 5> 

 

3.2 The identification of a dynamic system 

In this problem, the modelling target is a non-linear second-order plant, which has 

been studied in [24, 25], 

  )()2(),1()( kukykygky  ,                                (8) 

where 

 
 

)2()1(1

5.0)1()2()1(
)2(),1(

22 




kyky

kykyky
kykyg .  (9) 

where y() is the output of the system; g() is a non-linear component; u() is the input 

signal; k is the index of the input signals. The output of this system depends on both 

its past states and the current input. The modelling purpose is to approximate the non-

linear component g(y(k – 1), y(k – 2)). 

Following the experimental settings in [25], 400 simulated data samples were 

generated from the plant model (8). With the starting equilibrium state (0, 0), the first 

200 samples of training data were obtained by using a random input signal u(k) that is 

uniformly distributed in the interval [-1.5, 1.5] and the rest 200 samples of testing data 

were obtained by using a sinusoidal input signal u(k) = sin(2πk/25). In this case, the 

master fuzzy system consists of 20 fuzzy rules. The fuzzy sub-model includes 4 fuzzy 

rules and the neural-network sub-model includes a hidden layer of 3 neurons. The 

training epochs for both the fuzzy and neural-network sub-models were set to be 200. 

The maximum number of function evaluations for RSSA was set to 5,000. 

This experiment was repeated 20 times. Table 2 shows the performance index values, 

RMSE(s) of the sub-models and the final integrated model. It can be seen that the 

proposed modelling approach can successfully combine different modelling 

techniques and the integrated model outperforms any of the sub-models in accuracy. 

<Table 2> 

One typical model out of the 20 runs is selected as an example. Figs. 6 and 7 show the 

prediction performance of this model based on the training data and the testing data, 

respectively. To provide more details relating to the master fuzzy system, 5 master 

fuzzy rules are shown in Fig. 8. 
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<Figure 6> 

<Figure 7> 

<Figure 8> 

 

4. Applications to Engineering Materials 

In material engineering and mechanical engineering, it is essential to establish 

accurate and reliable prediction models for various material behaviours [26, 27]. But 

it may be ‘tricky’ to precisely describe these behaviours using mathematical models 

alone due to the complexity of materials’ chemical composites and their underlying 

physical processing mechanisms, such as heat treatment and machining. 

In this work, the proposed modelling approach was applied to two such industrial 

problems, the prediction of machining induced residual stresses in aerospace alloy 

components and the prediction of mechanical properties of alloy steels, including 

Ultimate Tensile Strength (UTS) and elongation. In the following experiments, the 

configuration of all the parameters was set to be the same as that used in Section 3, 

where the sub-models consist of one TSK fuzzy system [19, 20, 21], one feed-forward 

neural network [8], and one linear-regression model [9]. 

 

4.1 Prediction of machining induced residual stresses 

The residual stresses induced during shaping and machining play an important role in 

determining the integrity and durability of metal components [28]. Their combination 

with primary loads contributes to changes in the operating performance of mechanical 

parts. Tensile residual stresses enhance the likelihood of fatigue, fracture and 

corrosion induced failures. Conversely, compressive residual stresses are often 

introduced by shot-peening and burnishing to enhance structural integrity and 

durability [29]. An important issue of producing safety critical components is to find 

the machining parameters that create compressive surface stresses or minimise tensile 

surface stresses. 

Metal removal by machining operations such as milling and drilling induces residual 

stresses in the near surface region. These stresses are highly dependent on the 

machining parameters and cannot be accurately described using mathematical models 

because of the high complexity of the processes. Finite Element Methods (FEMs) 

have been widely used to investigate this phenomenon [30]. The drawbacks of FEM 

approaches relate to the long time needed for the solution of complex models and 

their inability to learn from examples. 

In recent years, some intelligent data-driven modelling approaches have been 

considered for the prediction of residual stresses. For instance, artificial neural 



10 
 

networks have been used by Kafkas et al. [31] and Umbrello et al. [32], and fuzzy 

rule-based systems have been employed by Zhang et al. [33, 34]. Compared with 

analytically based methods, such as FEMs, intelligent systems are simpler in structure 

and easier to apply. They are capable of learning from data without needing much 

prior knowledge about the materials and machining processes. They are also 

convenient when combined with optimisation techniques to identify the input 

parameters that will provide a desirable residual stress profile. 

Our research programme proposes to investigate manufacturing induced part 

distortion in aerospace alloy components, where part distortion is a function of 

residual stress and is caused by the complex combination of material processing, or 

the complex interaction between material processing. In aerospace industry, excessive 

distortion may result in the rejection of a part as well as costly and time-consuming 

rework before placement in service. It is reported that tens of millions of Euros are 

spent every year in an attempt to either avoid or remedy distortion in components [35]. 

In this project, the prediction of machining induced residual stresses can be conducted 

using the systems modelling approach introduced in this paper. Fig. 9 shows a 

predicted part distortion under residual stresses using finite element modelling 

combined with the developed prediction models [34]. 

<Figure 9> 

In the following case, the proposed approach was applied to predict the surface and 

near-surface residual stresses (up to 250 μm in depth) in aerospace aluminium parts, 

where experimental tests were conducted by the Institute of Production Engineering 

and Machine Tools (IFW), the University of Hannover using the X-ray diffraction 

measurements. 

In this case, 194 residual stress data were used for training and 49 data were used for 

final testing. System inputs include the profiles of machining parameters, i.e. cutting 

speed, feed per tooth, feed velocity, as well as coolant medium and measurement 

depth. The residual stress in the longitudinal rolling direction of the original 

aluminium billet is the modelling target. 

In the following experiments, the fuzzy sub-model includes 20 fuzzy rules, the neural-

network sub-model includes a hidden layer of 5 neurons, and the master fuzzy system 

includes 50 rules. The training epochs for both the fuzzy and neural-network sub-

models were set to be 200. The maximum number of function evaluations for RSSA 

was set to 5,000. 

The experiment was carried out over 20 runs. Table 3 includes the main parameters of 

the final integrated model as well as three sub-models. One set of results out of the 20 

runs is selected and shown as follows. Fig. 10 shows the predicted outputs versus the 

measured outputs of the obtained model and different sub-models based on the testing 

data. It can be observed that the proposed modelling approach can successfully 

combine other modelling techniques and the integrated model outperforms any of the 
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sub-models. 

<Table 3> 

<Figure 10> 

By exploiting the generated model, residual stress curves can also be obtained. This is 

achieved by plotting one input variable, i.e. measurement depth, against the output, 

residual stress, while keeping other input variables constant. Fig. 11 shows both the 

predicted curves and the measured data.  It allows us to observe the fact that the 

integrated model predicts the residual stress more accurately than the sub-models. 

<Figure 11> 

To provide more information about the above models, Fig. 12 shows 3 master fuzzy 

rules out of the rule-base. It should also be noted that, in this experiment, the sub-

models were not well optimised, while the integrated model shows a clear 

improvement in accuracy performance. This means that the proposed method can save 

a lot of time and effort normally used in models’ training and optimisation. 

<Figure 12> 

 

4.2 Prediction of mechanical properties 

In material engineering, specialist heat treatments consist of two main stages: 

hardening and tempering, are used to develop the required mechanical properties in a 

range of alloy steels [36]. It is not possible to accurately describe the process 

behaviour using mathematical models alone due to the complexity of the underlying 

physical mechanisms. In this work, two typical mechanical properties of heat-treated 

alloy steels are studied, i.e. UTS and elongation [37], both of which are obtained via 

an engineering tension test. The UTS represents a measure of the maximum load that 

a material can withstand. The elongation is a measure of ductility, which is usually 

expressed as a percentage change in the gauge length or diameter of the specimen 

after fracture [37]. In the following experiments, all the data had previously been 

provided by Tata Steel Europe. 

 

4.2.1 Ultimate tensile strength 

In the first case, 3760 UTS data were used for data-driven modelling. 60% of the data 

were used for training, 20% of the data were used for validation, and the remaining 20% 

were used for final testing. These UTS data include 15 inputs and one output, which is 

considered to be a high-dimensional problem for modelling purposes. The inputs 

consist of the weight percentages for the chemical composites, namely Carbon (C), 

Silica (Si), Manganese (Mn), Sulphur (S), Chromium (Cr), Molybdenum (Mo), 
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Nickel (Ni), Aluminium (Al), and Vanadium (V), the test depth, the size and site 

where the processing of the alloy steel took place, the cooling medium, as well as the 

hardening and tempering temperatures. 

In this experiment, the fuzzy sub-model includes 8 fuzzy rules, the neural-network 

sub-model includes a hidden layer of 5 neurons, and the master fuzzy system includes 

50 fuzzy rules. The training epochs for both the fuzzy and neural-network sub-models 

were set to be 200. The maximum number of function evaluation for RSSA was set to 

1,000. 

The experiment was repeated 20 times. Table 4 shows the performance index values 

of the final integrated model as well as the sub-models. One of the 20 models is 

selected and shown in the following figures. Fig. 13 shows the prediction performance 

of the elicited models based on the testing data. 

<Table 4> 

<Figure 13> 

Fig. 14 shows the three-dimensional response surfaces of the obtained UTS model. 

These surfaces are achieved by plotting two varying input variables against the output 

while keeping other input variables constant. The constant variables are set to the 

average values of the dominant steel grade, which is the 1%CrMo steel grade [36]. It 

can be seen that the integrated model shows a combination of the sub-models’ 

characters. This combination may correct any errors of mapping generated by the sub-

models. 

<Figure 14> 

 

4.2.2 Elongation 

In the second case, 3710 Elongation data were used, 60% of the data were used for 

training, 20% of them were used for validation, and the remaining 20% were used for 

final testing. The inputs consist of the weight percentages for Carbon (C), Silica (Si), 

Manganese (Mn), Sulphur (S), Chromium (Cr), Molybdenum (Mo), Nickel (Ni), 

Aluminium (Al), and Vanadium (V), the test depth, the size and site where the 

processing of the alloy steel took place, the cooling medium, the elongation gauge 

length, as well as the hardening, tempering, and impact test temperatures. 

The fuzzy sub-model includes 9 fuzzy rules, the neural-network sub-model includes a 

hidden layer of 20 neurons, and the master fuzzy system includes 50 rules. The 

training epochs for both the fuzzy and neural-network sub-models were set to be 200. 

The maximum number of function evaluation for RSSA was set to 1,000. 

The experiment was run 20 times. Table 5 describes the RMSE values of the sub-

models and the final integrated model. It can be seen that, for this industrial modelling 
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problem, the proposed modelling approach can successfully merge other modelling 

techniques and the integrated model outperforms any of the sub-models in prediction 

accuracy. 

<Table 5> 

One model is selected and shown in the following figures. Fig. 15 shows the 

prediction performance of the obtained models on the testing data. It can be seen that, 

in a certain local area, the integrated model performs similar with one of the sub-

models, which always performs the best in all sub-models in this local area. 

<Figure 15> 

Fig. 16 shows the three-dimensional response surfaces of the elicited elongation 

model, where the constant variables are set to the 1%CrMo steel grade [36]. It can be 

observed that the integrated model shows a combination of the sub-models’ characters, 

which may correct any errors of mapping generated by the sub-models. It should also 

be noted that, in this experiment, the sub-models were also not well optimised, but the 

integrated model shows a clear improvement in accuracy performance. It means that 

the proposed method can save a lot of time and effort used in models’ training and 

optimisation. 

<Figure 16> 

 

5. Conclusions 

In this paper, a new structure-free modelling paradigm was proposed by 

systematically combining various modelling techniques. This new approach does not 

rely on a fixed modelling structure and can include the advantages of different 

modelling techniques. It does not need the involved sub-models to be optimised, 

which can save a lot of time and effort used in training and optimisation. The 

proposed approach has been validated using benchmark problems, and successfully 

applied within the context of eliciting the prediction models for machining induced 

residual stresses and mechanical properties of alloys. In future, the proposed paradigm 

can be further enhanced via the introduction of a heuristic learning mechanism when 

generating master fuzzy rules. By doing so, not only accuracy but reliability can also 

be considered in the control of sub-models’ fusion. 
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Tables: 

 

Table 1. Training and testing errors for the non-linear function approximation 

problem 

 

Root mean square error of 

training 

(mean ± standard 

deviation) 

Root mean square error of 

testing 

(mean ± standard 

deviation) 

Fuzzy Sub-model 0.0554 ± 0.0055 0.1373 ± 0.0226 

Neural-network Sub-

model 
0.1248 ± 0.1386 0.1479 ± 0.1487 

Linear-regression Sub-

model 
0.5521 ± 0.0155 0.5691 ± 0.1613 

Integrated model 0.0473 ± 0.0043 0.0805 ± 0.0315 

 

 

Table 2. Training and testing errors for the dynamical system identification problem 

 

Root mean square error of 

training 

(mean ± standard 

deviation) 

Root mean square error of 

testing 

(mean ± standard 

deviation) 

Fuzzy Sub-model 0.0552 ± 0.0326 0.0497 ± 0.0249 

Neural-network Sub-

model 
0.0576 ± 0.0523 0.0517 ± 0.0351 

Linear-regression Sub-

model 
0.2218 ± 0.0092 0.1708 ± 0.0197 

Integrated model 0.0280 ± 0.0213 0.0219 ± 0.0092 

 

 

Table 3. Training and testing errors for the prediction of the machining induced 

residual stress 

 

Root mean square error of 

training 

(mean ± standard 

deviation) 

Root mean square error of 

testing 

(mean ± standard 

deviation) 

Fuzzy Sub-model 21.2384 ± 3.2833 31.5351 ± 3.4091 

Neural-network Sub-

model 
17.0670 ± 1.7436 27.1175 ± 3.6044 

Linear-regression Sub-

model 
84.6009 ± 40.7627 105.5339 ± 13.4400 

Integrated model 13.4949 ± 0.9315 22.8968 ± 2.0986 
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Table 4. Training and testing errors for the UTS prediction 

 

Root mean square error of 

training 

(mean ± standard 

deviation) 

Root mean square error of 

testing 

(mean ± standard 

deviation) 

Fuzzy Sub-model 35.5840 ± 0 42.4510 ± 0 

Neural-network Sub-

model 
37.0458 ± 1.2144 40.4127 ± 0.8832 

Linear-regression Sub-

model 
55.5079 ± 0 56.9017 ± 0 

Integrated model 33.7989 ± 0.7481 38.4084 ± 0.6668 

 

Table 5. Training and testing errors for the elongation prediction 

 

Root mean square error of 

training 

(mean ± standard 

deviation) 

Root mean square error of 

testing 

(mean ± standard 

deviation) 

Fuzzy Sub-model 1.3431 ± 0 1.5317 ± 0 

Neural-network Sub-

model 
1.2944 ± 0.0971 1.4717 ± 0.0954 

Linear-regression Sub-

model 
2.6149 ± 0 2.2741 ± 0 

Integrated model 1.2707 ± 0.0682 1.4210 ± 0.0332 
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Figures: 

 

Fig. 1. The diagram of the master fuzzy system. 

 

 

Fig. 2. An example of employing various methods in one modelling problem. 
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(a)                                                                          (b) 

 

(c)                                                                          (d) 

Fig. 3. The models’ predicted outputs versus measured outputs based on the training data of 

the non-linear function approximation problem (with the +10% and -10% error bands): (a) 

the fuzzy sub-model, (b) the neural-network sub-model, (c) the linear-regression sub-model, 

and (d) the integrated model of the above sub-models. 
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(a)                                                                          (b) 

 

(c)                                                                          (d) 

Fig. 4. The models’ predicted outputs versus measured outputs based on the testing data of 

the non-linear function approximation problem (with the +10% and -10% error bands): (a) 

the fuzzy sub-model, (b) the neural-network sub-model, (c) the linear-regression sub-model, 

and (d) the integrated model. 
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 IF x1 is AND x2 is THEN y is 

R1 

 

YANN 

R2 YFM 

R3 YANN 

R4 YFM 

R5 YANN 

Fig. 5. Master fuzzy rules for the non-linear function approximation problem. 
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(a)                                                                          (b) 

 

(c)                                                                          (d) 

Fig. 6. The models’ predicted outputs versus measured outputs based on the training data of 

the dynamical system identification problem (with the +10% and -10% error bands): (a) the 

fuzzy sub-model, (b) the neural-network sub-model, (c) the linear-regression sub-model, and 

(d) the integrated model. 
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(a)                                                                          (b) 

 

(c)                                                                          (d) 

Fig. 7. The models’ predicted outputs versus measured outputs based on the testing data of 

the dynamical system identification problem (with the +10% and -10% error bands): (a) the 

fuzzy sub-model, (b) the neural-network sub-model, (c) the linear-regression sub-model, and 

(d) the integrated model. 
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 IF y(k – 1) is AND y(k – 2) is THEN g(k) is 

R1 

 

YANN 

R2 YANN 

R3 YFM 

R4 YFM 

R5 YANN 

Fig. 8. Master fuzzy rules for the dynamical system identification problem. 

 

 

 

Fig. 9. Part distortion of a machined component under residual stresses [34]. 
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(a)                                                                          (b) 

 

(c)                                                                          (d) 

Fig. 10. The residual stress models’ predicted outputs versus measured outputs based on the 

testing data (with the +10% and -10% error bands): (a) the fuzzy sub-model, (b) the neural-

network sub-model, (c) the linear-regression sub-model, and (d) the integrated model. 

 

Fig. 11. The predictive residual stress curves and measured data. 
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 R1 R2 R3 

IF Cutting Speed is 

 

AND Feed per 

Tooth is 

AND Feed Velocity 

is 

AND Coolant is 

AND Test Depth is 

THEN Residual 

Stress is 
YLR YANN YFM 

Fig. 12. Master fuzzy rules of the residual stress model. 
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(a)                                                                          (b) 

 

(c)                                                                          (d) 

Fig. 13. The UTS models’ predicted outputs versus measured outputs based on the testing 

data (with the +10% and -10% error bands): (a) the fuzzy sub-model, (b) the neural-network 

sub-model, (c) the linear-regression sub-model, and (d) the integrated model. 
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(a)                                                                          (b) 

 

(c)                                                                          (d) 

Fig. 14. The UTS models’ response surfaces: (a) the fuzzy sub-model, (b) the neural-network 

sub-model, (c) the linear-regression sub-model, and (d) the integrated model. 
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(a)                                                                          (b) 

 

(c)                                                                          (d) 

Fig. 15. The elongation models’ predicted outputs versus measured outputs based on the 

testing data: (a) the fuzzy sub-model, (b) the neural-network sub-model, (c) the linear-

regression sub-model, and (d) the integrated model. 
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(a)                                                                          (b) 

 

(c)                                                                          (d) 

Fig. 16. The elongation models’ response surfaces: (a) the fuzzy sub-model, (b) the neural-

network sub-model, (c) the linear-regression sub-model, and (d) the integrated model. 

 


