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Abstract 

 

The residual stresses induced during shaping and machining play an important role in 

determining the integrity and durability of metal components. An important issue of 

producing safety critical components is to find the machining parameters that create 

compressive surface stresses or minimise tensile surface stresses. In this paper, a 

systematic data-driven fuzzy modelling methodology is proposed, which allows 

constructing transparent fuzzy models considering both accuracy and interpretability 

attributes of fuzzy systems. The new method employs a hierarchical optimisation 

structure to improve the modelling efficiency, where two learning mechanisms 

cooperate together: NSGA-II is used to improve the model’s structure while the 

gradient descent method is used to optimise the numerical parameters. This hybrid 

approach is then successfully applied to the problem that concerns the prediction of 

machining induced residual stresses in aerospace aluminium alloys. Based on the 

developed reliable prediction models, NSGA-II is further applied to the multi-

objective optimal design of aluminium alloys in a ‘reverse-engineering’ fashion. It is 

revealed that the optimal machining regimes to minimise the residual stress and the 

machining cost simultaneously can be successfully located. 

 

1. Introduction 

 

In material engineering and mechanical engineering, residual stresses (or secondary 

stresses) play an important role in the integrity of a structure [1]. Their combination 

with primary loads contributes to changes in the operating performance of mechanical 

parts. Tensile residual stresses enhance the likelihood of fatigue, fracture and 

corrosion induced failures. Conversely, compressive residual stresses are often 

introduced by shot-peening and burnishing to enhance structural integrity and 

durability [2]. 

 

Metal removal by machining operations such as milling and drilling induces residual 
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stresses in the near surface region. These stresses are highly dependent on the 

machining parameters and cannot be accurately described using mathematical models 

because of the high complexity of the processes. Finite Element Methods (FEMs) 

have been widely used to investigate this phenomenon [3]. The drawbacks of FEM 

approaches relate to the long time needed for the solution of complex models and 

their inability to learn from examples. In recent years, some intelligent data-driven 

modelling approaches have been considered for the prediction of residual stresses. For 

instance, Artificial Neural Networks (ANNs) have been used by Kafkas et al. [4] and 

Umbrello et al. [5]. 

 

In this paper, a systematic data-driven modelling methodology, based on fuzzy 

systems, is proposed to model machining induced residual stresses. Compared with 

analytically based methods, such as FEMs, fuzzy systems are simpler in structure and 

easier to apply. They are capable of learning from data without needing much prior 

knowledge about the materials and machining processes. Fuzzy models are also 

convenient when combined with optimisation techniques to identify the input 

parameters that will provide a desirable residual stress profile. On the other hand, 

compared with black-box modelling approaches, such as ANNs, fuzzy systems have 

transparent characteristics and the relationships between inputs and outputs are more 

interpretable, because of their use of descriptive language, such as linguistic ‘IF-

THEN’ rules. 

 

The proposed fuzzy modelling methodology allows to generate fuzzy models 

considering not only accuracy (precision) but also transparency (interpretability) of 

fuzzy systems via applying multi-objective optimisation techniques. As a result, a set 

of so-called ‘Pareto-optimal’ [6] models, in terms of different accuracy and 

interpretability levels, are constructed, which provide a wide range of choices for 

practitioners or users. In the previously proposed modelling strategy [7, 8], all the 

elements relating to the models, both the structure and parameters, were included in 

the multi-objective optimisation scheme. This method met some level of difficulty 

when dealing with high-dimensional problems, where hundreds of decision variables 

may need to be optimised simultaneously. In this paper, a hierarchical optimisation 

structure is proposed to improve the modelling efficiency, where two learning 

methods are systematically combined in order to improve various attributes of fuzzy 

systems: One multi-objective optimisation algorithm, the Non-dominated Sorting 

Genetic Algorithm II (NSGA-II) [9], is used to optimise the model’s structure; Based 

on a fixed model structure, the other single-objective learning paradigm, the Gradient 

Descent (GD) method is employed to improve the model’s parameters. 

 

Once the prediction models of residual stresses are successfully elicited, they are 

further exploited for multi-objective optimal design of aluminium alloys, which aims 

at determining the optimal machining regime(s) to obtain the desired residual stress 

profile while minimising the machining cost. For this application, the NSGA-II is 

used again to produce a range of well-spread Pareto-optimal solutions, which have 
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little residual stresses while maintaining reasonable production costs. 

 

This paper is organised as follows. Section 2 introduces the details about the related 

material and manufacturing process. Section 3 describes the details of the proposed 

modelling framework. In Section 4, the experimental studies for modelling the 

machining induced residual stresses in aluminium alloys are presented. In Section 5, 

the experiments relating to the multi-objective optimal design of aluminium alloys are 

conducted. Finally, concluding remarks are given in Section 6. 

 

2. The COMPACT project and machining induced residual stresses 

 

Part distortion is a function of residual stress and is caused by the complex 

combination of material processing, or the complex interaction between material 

processing. In aerospace industry, excessive distortion may result in the rejection of a 

part as well as costly and time-consuming rework before placement in service. It is 

reported that tens of millions of Euros are spent every year in an attempt to either 

avoid or remedy distortion in components [10]. 

 

COMPACT (COncurrent approach for Manufacturing induced Part distortion in 

Aerospace ComponenTs) is a research programme that proposes to investigate 

manufacturing induced part distortion in aerospace alloy components. This project 

was funded by the European Union under the Framework 6 initiative, led by Airbus 

UK and included 12 industrial and academic partners from across Europe. The 

University of Sheffield focused on the simulation and prediction of part distortion of 

residually stressed parts using finite element modelling combined with a systems 

modelling approach. 

 

As an example, the following shows various phases of a part fabrication process as 

well as the related modelling simulation. 

1. Material preparation: A billet of the aluminium alloy Al7449 was obtained 

through a rolling process. In this case, a rectangular section of the billet, from 

which a component is to be fabricated, is considered. The geometry is shown in 

Figure 1, where the relevant axes are defined as: 1 – transverse rolling direction 

(LT); 2 – through-thickness direction (ST); 3 – rolling direction (L). 

2. Machining: Some material was removed from this rectangular section using a 

milling machine to form a multi-channel specimen consisting of three linear 

channels. To simulate the removal of material and the effect due to machining 

efforts, thermal effects and the contact with cutting tool, the FEM method needs 

the profile of the surface and near-surface machining induced residual stresses. 

The prediction of the machining induced residual stresses was conducted using the 

systems modelling approach introduced in this paper, where the training data for 

the prediction models were measured using a X-ray diffraction technique by the 

University of Hannover [11]. 
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3. Part distortion due to material removal: After the machining operation, the work 

piece was unclamped, which means that the component is free to relax and is 

allowed to distort and attain its final equilibrium state. Figure 2 shows the 

predicted distortion under residual stresses [12]. 

 

Besides the above instance, other specimens with different geometries were also 

studied, such as those shown in Figure 3. In the following sections, the systems 

modelling approach, which was employed in the prediction of machining induced 

residual stresses (Step 2 of last paragraph), as well as the relevant experiments, will be 

introduced in detail. 

 

3. The proposed hierarchical multi-objective fuzzy modelling approach 

3.1 Introduction to fuzzy systems 

 

Fuzzy rule-based systems are viewed as robust ‘universal approximators’ [13] capable 

of performing nonlinear mappings between inputs and outputs. It is an approach that 

allows a system to be represented using a descriptive language (linguistic ‘IF-THEN’ 

rules), which can easily be understood and explained by humans to allow them to gain 

a deeper insight into uncertain, complex and ill-defined systems. 

 

Generally, a fuzzy system consists of four fundamental components: fuzzy rule-base, 

fuzzy inference engine, fuzzifier and defuzzifier. Figure 4 shows the diagram of a 

fuzzy system. The central part of a fuzzy system is the knowledge-base (rule-base) 

consisting of the fuzzy rules. A fuzzy rule is an IF-THEN statement in which some 

words are characterised by continuous membership functions. Specifically, the fuzzy 

rule-base comprises the following fuzzy rules: 

Rulel: IF x1 is A1
l
 AND … AND xn is An

l
, THEN y is B

l
, 

where l = 1, 2, …, m; m is the number of rules in the fuzzy rule-base; Ai
l
 and B

l
 are 

fuzzy sets in RU i   and RV  , respectively, and x = Uxxx T

n ),,,( 21   and 

Vy  are the input and output (linguistic) variables of the fuzzy system, respectively. 

 

The fuzzifier is defined as a mapping from a real-valued point x* nRU   to a fuzzy 

set A* in U. Normally, three types of fuzzifiers are used, which are singleton fuzzifier, 

Gaussian fuzzifier and triangular fuzzifier. They correspond to three types of fuzzy 

sets with different shapes of membership functions. In a fuzzy inference engine, fuzzy 

logic principles direct how to employ the fuzzy rules into a mapping from an input 

fuzzy set A* to an output fuzzy set B*. The defuzzifier is a mapping from the output 

fuzzy set B* in RV   to a real-valued point Vy * . Conceptually, the purpose of 

the defuzzifier is to specify a point in V that best represents B*. Three widely used 

defuzzifiers are centre of gravity defuzzifier, centre average defuzzifier and maximum 

defuzzifier. For more details about fuzzy systems, please refer to [14]. 

 

Fuzzy modelling is a systems modelling approach with fuzzy rule-based systems. In 
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most of the fuzzy modelling methods, the fuzzy inference engine and the defuzzifier 

are predefined. Thus, the primary work is to generate appropriate fuzzy sets and right 

fuzzy rules. 

 

3.2 A fast hierarchical multi-objective fuzzy modelling approach 

 

Generally, data-driven fuzzy modelling can be viewed as a two-step process. The first 

step aims to generate a ‘crude’ approximation of the fuzzy model. The second step 

consists of optimising the initial fuzzy rules and fuzzy sets to lead to a final 

‘optimised’ fuzzy model. 

 

For the first step, it can be achieved via two different methods: the grid-partitioning 

based method or the clustering based method. For the first method, the grid-

partitioning defines a number of evenly distributed fuzzy sets for each variable. These 

fuzzy sets are shared by all the fuzzy rules. The big disadvantage of this method is its 

huge number of fuzzy rules for high-dimensional modelling problem. In contrast, the 

second method employs data clustering information to define fuzzy sets. The fuzzy 

sets are not shared by all the rules, but each set is only mapped into one particular 

fuzzy rule. In this method, each fuzzy rule is associated to one cluster. In this paper, 

the clustering based method is employed, which includes a previously developed 

high-performance clustering algorithm, an agglomerative complete-link clustering 

algorithm [15]. 

 

For the second step, the main learning and optimisation techniques include linear least 

squares, gradient descent methods, neuro-fuzzy training methods, and some 

evolutionary optimisation techniques (evolutionary fuzzy systems). Compared with 

the fuzzy systems using other learning techniques, evolutionary fuzzy systems are 

able to realise improvements on not only the parameters but also the structure of the 

fuzzy systems. Moreover, multi-objective optimisation techniques within the 

evolutionary computation can prove very helpful in studying the trade-off between the 

accuracy and the interpretability of fuzzy systems. Some recent works in the literature 

[16; 17] have employed multi-objective optimisation techniques to tackle the trade-off 

issue of fuzzy models. But most of them were carried out based on grid-partitioning-

type fuzzy sets and cannot avoid the difficulty associated with the curse of 

dimensionality. 

 

In the previously proposed modelling approach [7, 15], a multi-objective optimisation 

algorithm was used to improve fuzzy models’ structure and tune their parameters at 

the same time. This method would use relatively more calculation and would take 

longer to converge when dealing with high-dimensional modelling problems, where a 

large number of decision variables need to be adjusted and optimised simultaneously. 

 

In this paper, a hierarchical optimisation structure is proposed, where two learning 

techniques conduct sequentially and iteratively to improve the different aspects of 
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fuzzy systems: the multi-objective optimisation algorithm NSGA-II [9] is mainly 

employed to optimise the model’s structure; while the gradient descent method is 

employed to improve the model’s parameters. The NSGA-II algorithm has been 

demonstrated as one of the most efficient algorithms for multi-objective optimisation 

on a number of benchmark problems and applications. Two of the most important 

features in NSGA-II lie in its fast non-dominated sorting procedure and an elitist 

strategy. The detailed implementation procedure can be found in [9]. Gradient descent 

is a first-order optimisation algorithm that can quickly find a local minimum of a 

function. It has widely been employed in fuzzy modelling for tuning the membership 

functions [14] and shown to perform efficiently in improving the accuracy of fuzzy 

models. 

 

Figure 5 illustrates the proposed fuzzy modelling approach. This approach will be 

referred to throughout as a Fast Hierarchical Multi-Objective Fuzzy Modelling 

(FHMO-FM) approach. It can be divided into several components and the execution 

steps can be described as follows: 

1. Data clustering: A modified agglomerative complete-link clustering algorithm [15] 

is employed to process training data in order to obtain the information relating to 

clusters. This algorithm has been shown to be more efficient and perform better 

than other well-known clustering algorithms, such as the fuzzy c-means (FCM) 

clustering algorithm [8]. 

2. Initial model construction: The information that these clusters provide is then 

used to construct an initial fuzzy model. In this approach, one cluster corresponds 

directly to one fuzzy rule; the centres of membership functions are defined using 

the information of their corresponding clusters’ centre positions; other parameters 

relating to the membership functions are defined under the principle that one 

membership function must cover all the training data, which are included in its 

corresponding cluster. More details about this step have been introduced in [7]. 

3. Interpretability improvement: The fuzzy system is improved in structure, 

including the variation of the fuzzy rules and fuzzy sets, considering the 

interpretability issue. This task can be achieved using a four-step operation, 

including (1) removing redundant fuzzy rules, (2) merging similar fuzzy rules, (3) 

removing redundant fuzzy sets and (4) merging similar fuzzy sets. These four 

steps are controlled by 4 threshold parameters, Th1 – Th4. The details relating to 

the whole operation have been explained in [15]. 

4. Accuracy improvement: The fuzzy models are improved by the gradient descent 

method [14] in terms of accuracy based on a fixed modelling structure. 

5. Non-dominated sorting and crowed sorting: The non-dominated fuzzy models 

with a good diversity are found using the non-dominated sorting and crowed 

sorting mechanism, which are introduced in the algorithm NSGA-II [9]. 

6. Termination check: If the termination criterion is achieved, the modelling process 

is stopped and the final Pareto-optimal solutions are obtained; if not, all the 

modelling and performance information are passed to the algorithm NSGA-II. 

Normally, the termination criteria are designed so that the number of function 
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evaluations achieves a predefined value. 

7. Multi-objective optimisation using NSGA-II: The algorithm generates new 

control parameters (Th1 – Th4) for interpretability improvement based on the 

multi-objective optimisation strategy, then return to Step 3. It should been noted 

that the structure of a fuzzy model is not directly coded into the optimisation 

procedure, but is rather varied and optimised via controlling the thresholds. The 

accuracy of a fuzzy model can be evaluated using the Root Mean Square Error 

(RMSE) index, which is described as follows: 

 

N

yy

RMSE

N

l

p

l

m

l




 1

2

                                                                 (1) 

where yl
m
 is the measured output data and yl

p
 is the predicted output data, l = 1, 

2, …, N; N is the total number of data. The interpretability of a fuzzy model is 

affected by the number of fuzzy rules (Nrule), the number of fuzzy sets (Nset) and 

the total length of fuzzy rules (Lrule). To normalise these two objectives and make 

them similar and comparable in scale, they are formulated as follows: 

Objective 1: 
IRMSE

RMSE
 

Objective 2: 
III Lrule

Lrule

Nset

Nset

Nrule

Nrule
                                           (2) 

where RMSEI  is the root mean square error of the fuzzy model that is not 

optimised using the multi-objective optimisation mechanism; NruleI, NsetI and 

LruleI represent the number of fuzzy rules, the number of fuzzy sets and the total 

rule length of this fuzzy model, respectively. 

 

4. Experimental results of modelling residual stresses 

 

Residual stress is that stress which remains in a material body that is stationary and at equilibrium with 

its surroundings [18]. Normally, residual stresses originate from thermal or elastic misfits either 

between different regions or between different phases within a material [18], caused by heat treatment, 

machining, welding or combinations thereof. Residual stress can be very detrimental to the 

performance of a material or the life of a component, since it may [19]: 

 Induce premature failure through cracking 

 Reduce fatigue strength 

 Induce stress corrosion or hydrogen cracking 

 Cause distortion and dimensional variation 

 

Under the framework of the COMPACT project, the multi-objective evolutionary algorithm NSGA-II 

is implemented into the systems modelling of machining induced residual stresses. In materials science 

and engineering, similar ideas have been widely explored. For example, Evolutionary Strategy (ES) has 

been employed to assess the coefficients of the Barlat yield criterion for anisotropic alloy sheets [20] 

and Particle Swarm Optimisation (PSO) has been applied to the optimal design of the mechanical 

properties of alloy steels [21] (For more state of the art information about the applications of 

evolutionary algorithms and multi-objective optimisation techniques in the area of materials 

processing, refer to the following two review articles [22, 6]). 

 

Extensive experimental tests relating to the machining induced surface residual stresses in aluminium 

alloys have been conducted by the Institute of Production Engineering and Machine Tools (IFW), the 
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University of Hannover. These surface and near-surface residual stresses (up to 250 μm in depth) in 

aerospace aluminium parts were obtained using the X-ray diffraction measurements and include the 

profiles of a wide range of machining parameters, such as cutting tool geometry, cutting speed, feed 

velocity, feed per tooth etc. Two typical sets of such residual stress measurements are used in the 

following modelling experiments, which includes 5 and 13 input variables, respectively. 

 

4.1 Experiment 1: the 5-dimensional modelling problem 

 

In the first case, 207 residual stress data were used for training and 36 data were used 

for final testing. System inputs include cutting speed, feed per tooth, feed velocity, 

coolant medium and measurement depth. The residual stress in the longitudinal 

rolling direction of the original aluminium billet is the modelling target. 

 

In this experiment, the initial fuzzy model was obtained using 15 clusters, resulting in a model with 15 

rules and 90 fuzzy sets. For the NSGA-II algorithm, the population size and the archive size were set to 

be 50 and the number of generation was set to be 200, all other parameter settings were as same as 

those in [9]. 

 

The experiment was carried out over 20 runs. One set of results out of the 20 runs is randomly selected 

and shown in the following paragraphs. Figure 6 demonstrates the trade-offs among the Pareto-optimal 

models respect to the multiple objectives and various criteria, including the RMSE, the number of 

fuzzy rules, the number of fuzzy sets and the total length of fuzzy rules. 

 

Table 1 includes the main parameters of the initial model as well as three optimised fuzzy models, 

which are selected from all the Pareto-optimal models and with 15, 14 and 12 rules respectively. Figure 

7 shows the prediction performance of these models. It can be seen that, for these optimised models, 

more rules and more parameters will bring more accuracy while the models with fewer rules and 

parameters are simpler in structure and easier to understand. 

 

To provide more details about the obtained fuzzy models, Figure 8 shows an example of two fuzzy 

rules out of the rule-base for the optimised 14-rule model. For these fuzzy rules, they can be rewritten 

as the following approximate linguistic rules using the linguistic hedges approach [23]: 

Rule R5: IF Feed per Tooth is more or less medium large AND Coolant is the first type (dry) AND Test 

Depth is medium small, THEN Residual Stress is medium small. 

Rule R14: IF Cutting Speed is more or less medium small AND Feed Velocity is more or less medium 

small AND Coolant is the second type (emulsion) AND Test Depth is quite medium small, THEN 

Residual Stress is small. 

 

By using the generated models, the residual stress curves can also be obtained. They are achieved by 

plotting one input variable, measurement depth, against the output, residual stress, while keeping other 

input variables constant. Figure 9 shows both the predicted and the measured residual stress curves 

based on the testing data, where the predicted curves were elicited using the optimised 15-rule model.  

It can be seen that the obtained model can predict the residual stress very accurately. 

 

To verify the physical interpretation of the obtained model, Figure 10 shows two three-dimensional 

response surfaces of the obtained 15-rule residual stress model. These surfaces are achieved by plotting 

two varying input variables against the output while keeping other input variables constant. From the 

first surface, it can be seen that, with increasing measurement depth, the absolute value of the residual 

stress is first increasing and then decreasing. This trend is consistent with the expected behaviour as 

predicted by the knowledge experts. 

 

4.2 Experiment 2: the 13-dimensional modelling problem 

 

In the second modelling problem, 265 residual stress data were used for training and 

19 data were used for testing. There are 13 system inputs in total, which are rotational 

speed, feed per tooth, feed velocity, width of cut, measurement depth as well as 
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geometry information about the machining tool: clearance angle flank, rake angle 

flank, helix angle, width of chamfer flank, clearance angle end, axial angle, width of 

chamfer end and tool corner radius. In this experiment, the initial number of clusters 

was set to 15, which means that the initial fuzzy model was generated using 15 rules. 

For NSGA-II, the configuration of all the parameters was set the same as those used 

in Section 4.1. 

 

The experiment was repeated 20 times. One set of models out of the 20 runs is randomly chosen and 

discussed next. Figure 11 demonstrates the trade-offs among the multiple objectives and criteria within 

50 Pareto-optimal fuzzy models. Table 2 includes the main parameters of the initial model and three 

selected optimised models, which are with 15, 13 and 12 rules respectively. Figure 12 shows the 

prediction performance of these models. It can be observed that these Pareto-optimal models exhibit 

fuzzy sets pattern behaviour, which means that they provide a wider choice of different solutions to 

users. 

 

To provide more details about the obtained fuzzy models, Figure 13 shows two fuzzy rules out of the 

rule-base of the optimised 13-rule model. For these fuzzy rules, the linguistic hedges approach [23] can 

be employed to derive linguistic rules of the following form: 

Rule R9: IF Rotational Speed is large AND Feed per Tooth is medium small AND Feed Velocity is 

medium small AND Rake Angle Flank is medium small AND Width of Chamfer Flank is medium large 

AND Axial Angle is medium small AND Width of Chamfer End is medium small AND Tool Corner 

Radius is very small AND Width of Cut is more or less medium large AND Test Depth is medium 

small, THEN Residual Stress is medium small. 

Rule R10: IF Rotational Speed is large AND Feed per Tooth medium AND Feed Velocity is medium 

AND Clearance Angle Flank is medium large AND Rake Angle Flank is more or less medium large 

AND Helix Angle is large AND Clearance Angle End is more or less medium large AND Axial Angle 

is very small AND Tool Corner Radius is very small AND Width of Cut is medium AND Test Depth is 

more or less medium small, THEN Residual Stress is medium. 

 

Based on such obtained fuzzy models, the residual stress curves as a function of depth below the 

machined surface can be generated. Figure 14 compares the measured residual stress curves with the 

ones that are predicted by the optimised 15-rule model. It can be seen that the fuzzy models can predict 

the shape and the trend of the experimental residual stress curves very well. 

 

Figure 15 shows two three-dimensional response surfaces for the obtained 15-rule residual stress 

models. From the first surface, it can be seen that, with an increasing feed velocity, the absolute value 

of the residual stress tends to increase. This behaviour is consistent with the one which would have 

been predicted by ‘experts’. It is also worth noting that this fuzzy model represents a nonlinear 

mapping with a good generalisation ability, which is evidenced by the smooth input-output response 

surface. 

 

5. Optimal design of aluminium alloys 

 

After the accurate and reliable prediction models have been developed, they can be 

further applied to facilitate the optimal design of aluminium alloys for achieving the 

overarching aim of ‘right-first-time production’ of metals [24] as a stand-alone 

application. Figure 16 illustrates the strategy how to exploit a prediction model in a 

‘reverse-engineering’ fashion to identify optimal recipes for system design. 

 

In recent years, multi-objective optimisation techniques have been applied to the 

design of alloys, including steels [25], superalloys [26], bulk metallic glasses [27], 

based on the developed intelligent models. In this work, NSGA-II was further applied 

to the optimal design, which aims to find the optimal machining regime to minimising 
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the residual stress in the aluminium alloy while minimising the machining cost. The 

paradigm and obtained solutions may further be used in controlling the real machining 

operations. 

 

Based on the analysis in [28], the main cost of a machined piece is the sum of two 

costs: 

TLU CCC                                                                                   (3) 

where CU is the total unit (per piece) cost, CL is the labour cost per piece and CT is the 

tool cost per piece. The labour cost per piece can be expressed as follows: 

FV

LmLL
x

L
KtKC                                                                       (4) 

where KL is the total labour cost per unit time, tm is the machining time per piece, L is 

the length of cut, and xFV represents the feed velocity. The tool cost per piece can be 

expressed as follows: 

tx

L
K

t

t
KC

FV

T

m

TT                                                                     (5) 

where KT is the cost of a cutting edge, t is the tool life for the cutting edge, and tm / t 

means the number of tool consumed per piece. 

 

The Taylor equation for tool life can be written as follows: 

Ktx n

CS                                                                                         (6) 

where xCS represents the cutting speed; n and K are constants for a certain cutting tool. 

Thus, the total unit cost can be rewritten as follows: 

n

FV

n

CS
T

FV

LTLU
Kx

Lx
K

x

L
KCCC

/1

/1

 .                                       (7) 

 

To describe the surface and near surface residual stress of a machined piece precisely, 

the average value of the residual stresses at various test depths (up to 250 μm) is 

considered. It can be expressed as follows: 

 
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J                               (8) 

where fFS() represents the output of the residual stress model; xCS, xFT, xFV ,xCM ,xMD 

are the input variables of this model, relating to cutting speed, feed per tooth, feed 

velocity, coolant medium and measurement depth, respectively. 

 

In the following, two experiments were conducted based on the previously developed 

model, which is the optimised 15-fule fuzzy model introduced in Section 4.1. For the 

optimisation tool NSGA-II, the population size was set to be 50 and the number of 

generation was set to be 500, all other parameter settings followed the experiments in 

[9]. The factors contributing to the machining cost are summarised in Table 3, which 

are approximate values without any loss of generality. 
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5.1 Experiment 1 

 

In this experiment, the decision variable is cutting speed. The feed per tooth was set to 

be a constant value 0.2 and the coolant medium was fixed to be ‘emulsion’. For feed 

velocity, it can be expressed using the following equation 

D

x
xnx CS

FTtFV


                                                                              (9) 

where nt is the number of teeth (nt = 4 in all the following experiments), xFT represents 

the feed per tooth, and D is the tool diameter (D = 63mm in all the following 

experiments). As xFT = 0.2 in this case, Equation (9) can be written as 

CSFV xx 0441.4 .                                                                            (10) 

 

Thus, two objective functions can be designed as follows: 

Minimise

 

10

25)(,2,0441.4,2.0,
10

1

1






 i

MDCMCSFVFTCSFS iixxxxxxf

J  

Minimise 
n

n

CS
T

CS

L
K

Lx
K

x

L
KJ

/1

1/1

2
0441.40441.4



                            (11) 

where J1 and J2 represent the mean absolute residual stress and the machining cost, 

respectively. 

 

The optimisation experiment was carried out in multiple runs and very consistent and 

similar results were obtained in different runs. Figure 17 shows one set of the 

obtained Pareto-optimal solutions in the objective space. Ten various solutions are 

selected from the Pareto-optimal solutions and listed in Table 4. For those users who 

tend to prioritise ‘quality’ more, they could choose a design with lower residual stress. 

For those users who are more concerned with production cost, they may choose a 

design with lower machining cost. Finally, for those users who have no preference 

between quality and cost, a ‘median’ design may be the suitable choice. 

 

5.2 Experiment 2 

 

In this case, the decision variables consist of cutting speed, feed per tooth and coolant 

medium. Based on Equation (9), the feed velocity can be written as follows: 

CSFTFV xxx 220.20                                                                        (12) 

when nt = 4 and D = 63mm. 

 

Two objective functions in this experiment are designed as follows: 

Minimise 

 

10

25)(,,220.20,,
10

1

1






 i

MDCMCSFTFVFTCSFS iixxxxxxxf

J  
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Minimise 
n

FT

n

CS
T

CSFT

L
Kx

Lx
K

xx

L
KJ

/1

1/1

2
220.20220.20



                 (13) 

where J1 and J2 represent the mean absolute residual stress and the machining cost, 

respectively. 

 

This optimisation experiment was repeated for multiple runs and very consistent 

results were obtained. One set of the obtained Pareto-optimal solutions is shown in 

Figure 18. Ten different solutions are selected and their details are provided in Table 

5. From this latter table, it can be observed that the generated solutions are consistent 

with our understanding about the relevant system in its physical and economic 

behaviours. For instance, a high cutting speed normally brings more residual stress. 

For a solution with a high cutting speed and a large value of feed per tooth, the feed 

velocity should be very high. This shortens the machining time for a single 

component, and therefore decreases its machining costs, and as a result also labour 

costs. 

 

From the above two experiments, it can be seen that, for the optimal design problems 

that consider both the machining quality and the economical factor, NSGA-II is able 

to obtain a set of optional solutions (Pareto-optimal solutions), which provide various 

levels of residual stress profiles and machining costs. 

 

6. Conclusions 

 

Residual stresses are very essential in determining the integrity and durability of metal 

components. To simulate the manufacturing induced part distortion in aerospace alloy 

components, a systems-modelling approach has been developed and employed to 

predict the machining induced residual stresses. In this paper, a systems modelling 

framework, named FHMO-FM, has been proposed, where the multi-objective 

optimisation technique has been employed to improve both the accuracy and the 

interpretability attributes of fuzzy models, and a hierarchical optimisation structure, 

including two learning techniques (NSGA-II and gradient descent), has also been 

included to improve the modelling efficiency. As a result, the proposed approach has 

been successfully applied to the prediction of the machining induced residual stresses 

in aerospace aluminium alloys. The physical interpretation of the obtained models has 

been shown to be consistent with the expected behaviour as predicted by theory and 

by knowledge experts. Furthermore, the elicited models have been successfully 

exploited in a ‘reverse-engineering’ fashion via the multi-objective optimal design of 

aluminium alloys, which aims at determining the optimal machining regimes to 

minimise the residual stress by taking into account economical factors. Simulation 

results have shown that NSGA-II is able to produce a range of well-spread optional 

solutions with low residual stresses while maintaining reasonable production costs. 
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Figure 1. The initial geometry of a specimen with clamping holes 

 

 
Figure 2. Final distortion of the machined component 

 

 
(a)                                                               (b) 

Figure 3. Geometry of two machined specimens: (a) a single channel specimen 

machined from both sides and (b) a nine-pocket specimen 
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Figure 5. The flow chart of the proposed fuzzy modelling approach 
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Figure 6. The performance of one set of optimised Pareto-optimal fuzzy models for the 5-dimensional 

residual stress modelling problem 
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Figure 7. The residual stress models’ predicted outputs versus measured outputs: (a) the initial model, 

(b) an optimised model with 15 rules, (c) an optimised model with 14 rules, and (d) an optimised model 

with 12 rules; the green and red lines represent the +10% and -10% error bands respectively 
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IF Cutting Speed is 

 

AND Feed per Tooth is 

AND Feed Velocity is 

AND Coolant is 

AND Test Depth is 

THEN Residual Stress is 

Figure 8. Two fuzzy rules of the optimised 14-rule residual stress model 
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(a)                                                               (b) 

Figure 9. Comparison between the optimised 15-rule model’s predicted residual stress curve and the 

measured residual stress curve: (a) test data set 1 and (b) test data set 2 

 

 
Figure 10. Response surfaces of the optimised 15-rule residual stress model 
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Figure 11. The performance of one set of optimised Pareto-optimal fuzzy models for the 13-

dimensional residual stress modelling problem 
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Figure 12. The residual stress models’ predicted outputs versus measured outputs: (a) the initial model, 

(b) an optimised model with 15 rules, (c) an optimised model with 13 rules, and (d) an optimised model 

with 12 rules; the green and red lines represent the +10% and -10% error bands respectively 
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Figure 13. Two fuzzy rules of the optimised 13-rule residual stress model 
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(a)                                                               (b) 

Figure 14. Comparison between the optimised 15-rule model’s predicted residual stress curve and the 

measured residual stress curve: (a) test data set 1 and (b) test data set 2 

 

 
Figure 15. Response surfaces of the optimised 15-rule residual stress model 
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Figure 16. Optimal machining process design via reverse-engineering 
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Figure 17. The performance of one set of Pareto-optimal solutions for the first optimal 

design problem 
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Figure 18. The performance of one set of Pareto-optimal solutions for the second 

optimal design problem 
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Table 1. Main parameters of some obtained residual stress models 

Fuzzy model 

Number of 

fuzzy sets for 

each variable 

Rule length of 

each fuzzy rule 

RMSE of all the 

training data 

RMSE of the 

testing data 

Initial model 

with 15 rules 

Inputs: [15; 15; 

15; 15; 15] 

Output: 15 

[5; 5; 5; 5; 5; 5; 

5; 5; 5; 5; 5; 5; 

5; 5; 5] 

52.98 65.35 

Optimised 

model with 15 

rules 

Inputs: [14; 15; 

14; 3; 12] 

Output: 12 

[5; 5; 5; 5; 5; 5; 

5; 5; 5; 5; 5; 5; 

5; 5; 5] 

18.89 29.16 

Optimised 

model with 14 

rules 

Inputs: [8; 6; 7; 

2; 6] 

Output: 6 

[5; 5; 5; 3; 3; 5; 

5; 4; 5; 5; 5; 5; 

5; 4] 

25.21 35.57 

Optimised 

model with 12 

rules 

Inputs: [7; 5; 6; 

2; 6] 

Output: 6 

[5; 5; 3; 3; 5; 5; 

4; 5; 5; 5; 5; 4] 
29.12 35.66 

 

Table 2. Main parameters of some obtained residual stress models 

Fuzzy model 

Number of 

fuzzy sets for 

each variable 

Rule length of 

each fuzzy rule 

RMSE of all the 

training data 

RMSE of the 

testing data 

Initial model 

with 15 rules 

Inputs: [15; 15; 

15; 15; 15; 15; 

15; 15; 15; 15; 

15; 15; 15] 

Output: 15 

[13; 13; 13; 13; 

13; 13; 13; 13; 

13; 13; 13; 13; 

13; 13; 13] 

42.93 54.48 

Optimised 

model with 15 

rules 

Inputs: [6; 9; 9; 

6; 7; 7; 6; 6; 5; 

5; 3; 8; 12] 

Output: 14 

[13; 13; 13; 13; 

13; 13; 13; 13; 

13; 13; 13; 13; 

13; 13; 13] 

16.53 16.83 

Optimised 

model with 13 

rules 

Inputs: [4; 6; 7; 

4; 4; 5; 5; 4; 4; 

4; 3; 7; 8] 

Output: 11 

[13; 13; 12; 11; 

13; 12; 12; 13; 

10; 11; 13; 13; 

12] 

20.73 18.44 

Optimised 

model with 12 

rules 

Inputs: [4; 5; 7; 

3; 3; 4; 5; 3; 3; 

4; 2; 5; 6] 

Output: 5 

[13; 13; 12; 10; 

13; 9; 11; 12; 9; 

8; 12; 12] 

25.56 24.21 

 

Table 3. Parameter values for the machining cost 

Parameter KL (£/min) L (mm) KT (£) K n 

Value 1 100 2000 5544 0.15 
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Table 4. Ten of the Pareto-optimal solutions for the first optimal design problem 

Solutions 1 2 3 4 5 6 7 8 9 10 

Cutting 

speed 

(m/min) 

316.87 396.28 461.43 538.93 635.21 764.66 861.40 1019.7 1201.9 1333.0 

Feed 

velocity 

(mm/min) 

1281.5 1602.6 1866.1 2179.5 2568.9 3092.3 3483.6 4123.6 4860.7 5390.8 

Mean 

Absolute 

Residual 

Stress 

(MPa) 

107.69 107.75 107.85 108.04 108.35 108.90 109.39 110.31 111.46 112.34 

Machining 

cost (£) 
0.0780 0.0624 0.0536 0.0459 0.0390 0.0325 0.0289 0.0249 0.0221 0.0213 

 

Table 5. Ten of the Pareto-optimal solutions for the second optimal design problem 

Solutions 1 2 3 4 5 6 7 8 9 10 

Cutting 

speed 

(m/min) 

253.93 250.00 250.04 250.08 250.00 344.41 527.90 757.31 1325.8 1340.4 

Feed per 

tooth 
0.0500 0.0593 0.0810 0.1118 0.2403 0.2828 0.2912 0.2805 0.3057 0.3500 

Feed 

velocity 

(mm/min) 

256.72 299.73 409.43 565.30 1214.7 1969.2 3107.9 4295.6 8195.1 9485.7 

Coolant 

medium 
dry dry dry dry dry dry dry dry emulsion emulsion 

Mean 

Absolute 

Residual 

Stress 

(MPa) 

51.016 52.377 55.405 58.341 60.312 70.052 83.136 95.251 120.00 129.35 

Machining 

cost (£) 
0.3895 0.3336 0.2442 0.1769 0.0823 0.0508 0.0322 0.0234 0.0140 0.0122 

 

 


