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Abstract

This thesis is concerned with liveness detection for biometric systems and in

particular for face recognition systems. Biometric systems are well studied and

have the potential to provide satisfactory solutions for a variety of applications.

However, presentation attacks (spoofing), where an attempt is made at subvert-

ing them system by making a deliberate presentation at the sensor is a serious

challenge to their use in unattended applications. Liveness detection techniques

can help with protecting biometric systems from attacks made through the pre-

sentation of artefacts and recordings at the sensor. In this work novel techniques

for liveness detection are presented using gaze information.

The notion of natural gaze stability is introduced and used to develop a number

of novel features that rely on directing the gaze of the user and establishing its

behaviour. These features are then used to develop systems for detecting spoofing

attempts. The attack scenarios considered in this work include the use of hand

held photos and photo masks as well as video reply to subvert the system. The

proposed features and systems based on them were evaluated extensively using

data captured from genuine and fake attempts.

The results of the evaluations indicate that gaze-based features can be used to

discriminate between genuine and imposter. Combining features through feature

selection and score fusion substantially improved the performance of the proposed

features.
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CHAPTER 1

Introduction

This thesis is concerned with liveness detection for biometric systems. Biomet-

ric systems have the potential to provide security for a variety of applications.

Biometric systems are vulnerable to certain attacks. Security countermeasure is,

therefore, required to be incorporated to protect a biometric system from attacks.

Examples of security measures include liveness detection which can detect fake

biometric samples. Liveness detection is a challenging area and requires an in-

depth understanding of the subtle differences between genuine and fake attempts,

and the exploitation of that information to prevent such impostor attacks 1. This

thesis suggests a challenge/response gaze-based novel features scheme which can

overcome sophisticated impostor attacks in face recognition systems. Unlike ex-

isting work described in the literature, this study does not focus on a particular

type of attack but aims to deal with a collection of attack modes (photo, photo

mask and video).

In this thesis terms such as impostor attack, presentation attack, fake attempt,

spoofing attack are used interchangeably. In the context of liveness detection

1Any person who, intentionally or otherwise poses as an authorised user is named an im-
postor [18]

1



Chapter 1. Introduction 2

these terms are used when artifacts are presented to the biometric system at

sensor level to subvert its normal operation.

In the rest of this chapter the motivation for this research is further expanded

upon. Section 1.1 will present a brief introduction to biometrics systems along

with potential vulnerability related to biometric systems. Section 1.2 will present

the motivation of this research along with system block diagram. Aims and

objectives are listed in Section 1.3. A scope for the work will be explored in

Section 1.4. Finally Section 1.5 will present the structure of the thesis.

1.1 Biometric systems

Security systems which require high accuracy are becoming more important than

ever in our technologically dependent world. In the modern interconnected so-

ciety we live in, to be able to reliably recognise a person at the remote end of a

computer network is becoming critical. Many questions can be raised, for exam-

ple,“Is she/he really who she/he claims to be?” or “Is this person at the other

end of the network authorized to use this facility?”, and so on.

The search for techniques that can improve the performance of an automatic

person recognition system is very important [19]. Traditionally a person is auto-

matically recognised based on “what s/he remembers”, for example, passwords,

PIN, etc. Similarly such recognition can also be based on tokens possessed by

someone such as ID cards and keys, etc. All these methods have been used to

control access to premises or systems, etc. [20]. However, if the ID card is stolen

or a password is known to an unauthorised user, security can be breached, espe-

cially if the system is unattended. Recognition based on what a person is or does

can address the problems related to these traditional methods [21]. Technologies
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for person recognition based on their physiological or behavioural characteristics

is known as biometrics [22].

The biometrics-based systems can have their functioning based on various parts

of the human body or human behaviour. For example, voice [23–27]; signature

[28–31]; gaze [32–36]; gait [37–40] etc. are usually classified as behavioural bio-

metrics and iris [41–45]; hand geometry [46–50]; fingerprint [51–55]; face [56–61];

etc. are examples of physiological biometric, all of which are used in the real

world for security.

However all modalities typically aim to fulfil the following criteria [22]:

• Universality: It is present in every person.

• Uniqueness: Two persons should be sufficiently different in terms of the

characteristic.

• Permanence: It must not change with time.

• Measurability: It has to be possible to measure it.

Biometrics-based methods have several advantages over the traditional security

methods, such as PIN codes, passwords, keys, cards, IDs, tokens, etc. For exam-

ple, the old classical security methods require the user to remember PIN codes or

long passwords that could easily be forgotten, or to carry cumbersome bunches

of keys, tokens or cards that can be easily lost or stolen [62–65]. Biometrics,

however, guarantees that the user who accesses certain facilities cannot deny us-

ing it (non-repudiation) [24] and does not require the possession of any physical

tokens, nor rely on uncertainty of the human memory. Biometric information

has been widely used with a satisfactory performance in criminal investigation,

access control, etc. [66].



Chapter 1. Introduction 4

Despite these advantages, biometric systems do have some disadvantages, and

can be vulnerable to external attacks which can compromise security [65]. Ratha

et al. [67] highlighted several possible attack points to biometric recognition

systems as depicted in Figure 1.1. These can be grouped into two main categories:

direct attacks also called presentation attacks, where the impostor attacks the

biometric system at the sensor by presenting synthetic biometric samples, e.g.

gummy fingers [68]. Matsumoto et al. [68] showed how easily gummy fingers can

be made with a common material like gelatine which can be used to spoof various

fingerprint devices with optical or capacitive sensors. Ruiz-Albacete at el. [69]

reported the vulnerabilities of iris-based recognition systems. They printed high

quality photo of the iris to present to the iris recognition system.

Figure 1.1 Possible points where biometrics system can be at-
tacked. (The focus of the thesis is shown by the red arrow -

presentation attacks)

The remaining points of attack shown in Figure 1.1 can be considered indirect

attacks. This study only deals with presentation attacks. This is a type of attack

where the the impostor does not need any prior knowledge about the underlying

working principles of the system.
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1.2 Motivation

Humans most commonly use facial appearance to recognise a person, therefore,

it is the natural choice as a modality in biometric technology [70, 71]. As the

face is normally visible, it is easy to capture the facial image of a person with

or without the cooperation of the individual [72]. A considerable amount of

work has been reported in the literature on this modality [56–59]. Among all

the biometric systems, face recognition is especially convenient in areas where

immediate, correct recognition of individuals at unattended access control points,

such as entrances to buildings, or security at border crossings, security in the

street, and where being able to uniquely recognize individual humans without

user cooperation is a vital aspect of achieving effective security.

Many companies have already implemented face recognition systems. These

may be accurate and fast, but they can also be susceptible to various threats

such as presentation attacks. Most facial recognition systems process facial im-

ages for identification without checking whether the sample is captured from the

authorised user or from a photo or video of the authorised user. Therefore, an

impostor can use a high quality image or a video of authorised users in order to

gain unauthorized access to premises, systems or data. A reliable facial recog-

nition system should, therefore, prevent impostors from gaining unauthorized

access to unattended places or data. Hence the suggestion that existing facial

recognition systems require an effective liveness detection function in order to

avert impostor attacks [73, 74].

The algorithms proposed in this study are based on the assumption that the

spatial and temporal coordination of the movements of eye, head and hand in-

volved in the task of following a visual stimulus are significantly different when

a genuine attempt is made compared with certain types of spoof attempts. The
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task requires head/eye fixations on a simple shape that appears on a screen in

front of the user, and in the case of a photo spoofing attack, visually guided hand

movements are also required to orientate the photographic artifact to point in

the correct direction towards the challenge item on the screen.

It is likely that the head pose and direction of gaze will be different when

photo spoofing is attempted as coordination may be maintained by delaying the

hand movements until the eye is available for guiding the movement [75]. The

introduction of hand movements is also likely to change the relationship between

head and eye movements, as the coordination of the eye and head in gaze changes

is usually a consequence of synergistic linkage rather than an obligatory one [75–

77]. Therefore, it is assumed that accurately directing the photograph to a

particular orientation indicated by the visual stimulus on the screen is likely to

be less repeatable than merely looking at the stimulus. Hence, the variance in

measured gaze parameters is used to distinguish genuine from fake attempts as

described in the rest of the research. So the features which will be investigated in

this research will be based on the gaze of the human. By gaze we mean head/eye

movements.

Many algorithms have been proposed in the literature [78–80] to address the

difficult problem of face liveness detection. A variety of techniques have been

proposed for liveness detection including detecting eye blinks, sensing response

to stimuli, and detection of facial gestures. Various approaches and constraints

are used to enhance the reliability of these systems. However, finding good novel

features which can detect all types of attack scenarios is a challenging task.

The general architecture of the face liveness detection system that will be fol-

lowed in this thesis is shown in Figure 1.2. Novel features from facial landmarks

will be extracted from the images which are then analysed to determine whether

the captured images are acquired from a genuine source or not.
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Figure 1.2 System structure flow diagram

Most smart phones have built-in cameras and have the option to use face recog-

nition for logging into the phone [81] instead of using a password. The proposed

liveness detection system can be added to such devices to enhance the security

of the existing face recognition system.

People normally use a password to log into a PC, laptop or note book. This

can be replaced by face recognition together with a liveness detection mechanism

to avoid entering a user name and password each time a system is used. In fact

this can be used to lock the system automatically as well if the authorised user

is not sitting in front of the PC. This will not only make it easier for the user,

but it will also enhance the system security as one can steal a client’s password.

There is another, perhaps more important aspect to the face liveness detection

method that can be implemented e.g. when the user is making an online trans-

action or withdrawing money from an ATM machine. The proposed system can

be embedded to the existing process of the online payment procedure, where the

system will ensure that the live face of the authorised user is available at the

time of completing the transaction to avoid unauthorised payment transaction

and unauthorised withdrawal using a card cloned from the card belonging to the

authorised user.

There are many potential applications of the proposed system and here we have

highlighted only a few important ones which demonstrate the potential impact
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of the proposed approach.

Note that the proposed liveness detection approach may be combined with

other biometric modalities too - notably iris recognition.

1.3 Aims and Objectives

The general aim of this research is to develop robust and efficient liveness detec-

tion algorithms to enhance the trust in and the security of biometric recognition

systems. This work will explore the effectiveness of such systems to counteract

impostor attacks for a number of attack scenario schemes. The specific ob-

jectives of the research are to review the state of the art of biometric liveness

detection methods and to propose a liveness detection framework that can deal

with a multitude of presentation attack types. This study will also aim to collect

the appropriate biometric databases and propose an evaluation framework to

facilitate investigative analysis of presentation attacks. The research objectives

include the exploration of gaze-based features to achieve liveness detection. This

work will also explore the use of fusion techniques to improve the efficiency of

the scheme and to optimise the proposed algorithms and carry out comparative

analysis.

1.4 Scope of the Project

The list of the work which will be carried in this study is summarized below

an explains the areas which will be covered in this research. The areas which

will not be covered in this research are also listed. This study will only explore

facial liveness detection methods. The research will deal with three types of
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presentation attacks, e.g photo, mask and video replay. In this study 2-D photo

mask attack detection will be explored. This work will not explore 3-D mask

attack detection. One would need several photos of the target and a 3-D printer

to produce the 3-D mask which may not be available promptly. The research will

investigate features based on gaze stability. Though liveness detection techniques

are normally used in conjunction with biometric person recognition systems, this

research does not address novel techniques for biometric recognition in general

and face recognition systems in particular. However, the interaction between

biometric systems and the liveness detection function is of relevance to the work

presented here.

1.5 Structure of the Thesis

The organization of the thesis is given below.

In Chapter 2, the background of various key concepts for understanding the

related previous work on face liveness detection is presented. A detailed com-

parative study is presented that focusses on various liveness detection methods

that have been proposed in recent years. The related previous work is grouped

into two main categories. This is further divided into several groups based on

the type of feature used for liveness detection.

Chapter 3 provides the detail of the database that was collected for training

and testing purposes. It also provides further details on the evaluation strategy

used for this work as well as the hardware and software used to conduct the

experiments.

Chapter 4 introduces the gaze colocation feature. The use of ROC curves to

analyze and assess the performance is proposed and demonstrated.
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Another novel feature, the gaze collinearity, is presented in Chapter 5 and is

aimed at improving the performance of the proposed face liveness detection sys-

tem. This chapter also explores combining collinearity and colocation to produce

more effective measures for liveness detection.

Chapter 6 presents another novel gazed-based homography feature, to further

enhance the accuracy of the proposed face liveness detection system. This chapter

also explores combining collinearity, colocation and homography to produce more

effective measures for liveness detection.

Conclusions, a summary of the contributions of this work and suggestions for

future work are provided in Chapter 7.

The goal of this thesis has been to perform an extensive experimental study of

various novel features, classification and combination rules applied to the problem

of face liveness detection for biometric systems.



CHAPTER 2

Literature Review

2.1 Introduction

The biometric technology involving face recognition has developed rapidly in re-

cent years as it is user friendly and convenient, and is used for many security

purposes, but is vulnerable to abuse, such as spoofing photographic or video

substitution and many others as discussed in Chapter 1. However, by adding

liveness detection the effectiveness of security systems can be substantially im-

proved. The differences between a photograph or video of an individual and the

real person can be used to establish liveness.

Various approaches have been presented in the literature to establish liveness

for detecting presentation attacks. Liveness detection approaches can be grouped

into two broad categories: active and passive. Active approaches require user

engagement to enable the facial recognition system to establish the liveness of

the source through the sample captured at the sensor. Passive approaches do not

require user co-operation or even user awareness but exploit involuntary physical

movements, such as spontaneous eye blinks, and 3D properties of the image.

11
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Challenge response is a type of intrusive approach, the user is asked to perform

specific activities to ascertain the liveness. Uttering digits, changing head pose

are the examples of the challenge response. Passive anti-spoofing techniques are

usually based on the detection of signs of life, e.g. eye blink, facial expression,

etc. Here the face liveness detection methods are grouped based on the feature

and the methods that were used to estimate the liveness.

2.2 Literature

Several approaches which are implemented to solve the the problem of face live-

ness detection for the face recognition system. In this section, these approaches

are grouped and explored based on the nature of the feature. Following methods

are proposed in literature for liveness detection.

2.2.1 Eyeblink Based Liveness detection

Blinking is a natural biological function of the closing and opening of the eyelid.

The blink helps spread fluid from the tear ducts across the eye and removes irri-

tants from the surface of the cornea and conjunctiva [82]. Blinking can vary with

fatigue, emotional stress, amount of sleep, eye injury, medication, and disease

[83]. It has been reported [84, 85] that the blink rate of a human is between 15

to 30 times per minute. The average blink lasts for about 250 milliseconds [86].

Blinking has been used as a means of human interaction with computer [87, 89].

Various researchers have used blink detection for face liveness detection.

One method to detect blinks, is to classify each image in the video sequence

independently as one state (closed eye or opened eye), for example, using the
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Viola-Jones cascaded Adaboost approach to detect the face and eye [90]. Ad-

aBoost is a learning algorithm that selects a small set of weak classifiers from

the large number of potential features. This method assumes that all of the im-

ages in the temporal sequence are independent. In real, the neighbouring images

during blinking are dependent, since the blink is a procedure of eye going from

open to closed, and back to open. The temporal information, which may be very

helpful for recognition, is ignored in this method. Lin Sun et al. [1] presented an

eye blink detection approach for detecting face liveness using Conditional Ran-

dom Fields (CRFs). Using Hidden Markov Model (HMM) [91] which can not

accommodate long-range dependencies on the observation, they used conditional

random fields(CRFs) which are probabilistic models for segmenting and labeling

sequence data and mainly used in natural language processing for its ability to

accommodate long-range dependencies on the observed sequence [92–94]. Lin

Sun et al. employed a linear chain of CRFs in their method [1].

Lin Sun et al. [1] demonstrated that the blinking consisted of two continuous

sub-actions, from open to closed and from closed to open. These (open to closed

and from closed to open) activities could be sampled into an image sequence with

eye in various states. The state of the eye in images are classified as open, half

open and closed. Each state of the blink should not be considered independently

for blinking recognition. They stressed the need to model blinking on the con-

textual dependencies in an eye blinking sequence. At particular points of time,

it is hard to predict blinking activity using the previous state and the current

observation.

Lin Sun et al. [1] used symbols C for closed state and NC for non-closed

(including open and half-open), to label eye states. The graphical structure of

their CRF-based blinking model is shown in Figure 2.1.
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Figure 2.1 Graphic structure of CRF-based blinking model. C
and NC are for closed state and non-closed state respectively [1]

They collected video database from genuine users using a webcam. There were

20 participants and 4 video clips were recorded of each creating 80 video clips of

about 5 seconds length. The number of blinking varies from 1 to 6 times in each

video. They also collected impostor database which contain 180 impostor video

capture using photo. The authors reported 98.3% imposter detection rate.

Pan et al. in [2] further enhanced the Lin Sun et al. work [1]. The main

eye states modeled are opening and closing. In addition, there is an ambiguous

state when blinking from open state to closed or from closed state to open. In

this method they extract the temporal information from the process of the eye

blink, namely the consecutive stages of open, half closed and closed, followed by

half open and fully open all of which are sequential eye blink movements and

constitute a complete eye blink pattern which was used to determine liveness.

In this work the authors defined a three-state set for eyes, α : open, γ : closed,

β : ambiguous and a typical blink activity was described as a state change pattern
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Figure 2.2 Illustration of the blinking activity sequence. The
value of the closeness for each frame is below the corresponding
frame. The bigger the value, higher the degree of closeness [2]

of α→ β → γ → β → α. They used the same database which is discussed in [2]

for evaluating the performance of their method. They compared three methods,

cascaded Adaboost, HMM and and their method against photo spoofing using

the photo-imposter video database.

Pan et al. [3] further explored the method to enhance their face liveness de-

tection system discussed [1] and [2]. In this work they fused eyeblink and scene

context. The authors assumed that the face recognition system camera is fixed

while the system is operating. The first frame was captured from the scene with-

out a person in front of the camera. This frame was designated as the reference

scene; an impostor video would be of a different scene.

They extracted reference points or activity in the captured frame and named

them clues. Clues extracted from the face region were named inside clue, example

of a face clue is eye blinks. Similarly clues extracted from the background of the

captured image near a face were named outside clues (scene context clue). These
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Figure 2.3 Examples of scene region of interest and fiducial
points extraction. Yellow dashed line rectangles are face re-
gions and red solid line rectangles are scene regions of interest.

Fiducial points are labeled by colorful squares [3]

can be any item located in the background which can be captured and extracted

for recognition.

They extract scene context clues from the right and the left parts of the detected

face region as shown in Figure 2.3. The eye blink may stop the photographs and

3D models spoofing, while the scene context is used for anti-spoofing by video

replay. They combined these clues of eyeblinks and scene context to improve

the performance of the liveness detection system. The proposed fusion system is

shown in Figure 2.4.

For training and testing purposes, they collected their own data. The database

consist of 100 video clips from 20 volunteers. A high-quality photo was taken

from each volunteer. The five categories of photo attacks below were simulated.

• Keep the photo still.
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Figure 2.4 Illustration of liveness detection system using a com-
bination of eyeblinks and scene context [3]

• Move the photo vertically, horizontally, back and front.

• Rotate the photo in depth along the vertical axis.

• Rotate the photo in plane.

• Bend the photo inward and outward along the central line.

For each attack, one video clip is captured with a length of about 10 to 15

seconds. Some samples are shown in Figure 2.5.

The live face video database contains 196 clips for 14 individuals. There were

2 indoor and 5 outdoor scenes. Each scene has a scene reference image. Each

individual appears before the camera twice and stays there about 5 seconds for

liveness verification. Examples of the data are shown in Figure 2.6.

Jee et al. [4] introduced a memory efficient method for face liveness detection

for embedded face recognition system. The method is based on the analysis of
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Figure 2.5 (a) Keep photo still. (b) Move vertically, horizon-
tally, backward and forward. (c) Rotate in depth. (d) Rotate

in plane. (e) Bend inward and outward [3]

Figure 2.6 The first row is four scene reference images. The
second row is live faces in video [3]

the eye movement. They used Viloa-Jones [90] methods to detected the eye in

the facial images.
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They normalized the input face images as they can vary in size and orientation.

After normalizing the face region, the eye regions were extracted. Then the eye

regions were binarized in order to achieve the pixel value of 0 and 1 by using

a threshold. The threshold is adaptively obtained from the mean pixel value of

each eye region. Figure 2.7 shows the eye regions of genuine and fake face which

change very little in case of fake attempt, and a much larger variation in shape

in case of the genuine attempt because of the blink or the movement of the pupil.

Figure 2.7 Example of binarized eye regions of (a) fake face and
(b) live face [4]

The authors used the hamming distance method to calculate the liveness de-

tection score for the eye region. They extracted 10 liveness scores of both the left

and right eyes and added them, and used the average of the scores. If the average

liveness score was bigger than the set threshold, the input image is classified as

a genuine face.



Chapter 2. Literature Review 20

Wang et al. [5] presented a liveness detection method in which the physiolog-

ical motion was detected by estimating the eye blink and using an eye contour

extraction algorithm. They used an active shape model [95] with a random forest

classifier trained to recognize the local appearance around each landmark. They

showed that if any motion in the face region is detected the sample is considered

to be captured from an imposter.

The proposed method is composed of two parts; the attempt passed through

both parts of the approach for the liveness check. The first part detects the

physiological motion in three modules for eye detection, eye contour extraction,

and eye blinking detection. The second part extracts the motion cues and seeks

to hold the head still. If any motion in the face region was detected, the attempt

was classified as fake. The flow chart of the system is shown in Figure 2.8

The eye blink estimation detects the eye blinks in the face sequences. The

authors related the blinking to the degree of the eye opening estimated from the

distances d1 and d2 in Figure 2.9. where d1is the distance between the upper and

lower eyelids of the left eye and d2 is the distance between the upper and lower

eyelids of the right eye. Where as de is the distance between the center of the

left and right eyes. The eye opening is then calculated as in Equation 2.1

D =
min(d1, d2)

de
(2.1)

When the opening degree is deduced from larger to small, an eye blink is de-

tected.
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Figure 2.8 Algorithm flowchart

Figure 2.9 Eye opening estimation [5]

2.2.2 Face Liveness Detection using Frequency and Tex-

ture Analysis

Kim et al. [6] proposed a face liveness detection method for distinguishing 2-

D paper masks from the genuine faces. They used a multi-classifier method
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for detecting fake attempts by combining frequency information from the power

spectrum and texture information using Local Binary Pattern (LBP) features.

3-D shapes lead to the difference in the low frequency regions which is closely

related to the illuminance component induced by the overall shape of a face. The

detail between the live attempts and the mask attempts trigger the disparity in

the high frequency information [96] [9]. The images taken from the 2-D objects

have less texture richness compared to the images taken from the 3-D objects.

The texture information obtained using Local Binary Pattern (LBP) features.

Figure 2.10 Frequency-based feature extraction (a) original fa-
cial image (b) Log-scale magnitude of the Fourier-transformed
image (power spectrum) (c) 1-D frequency feature vector ex-

tracted from the normalized power spectrum [6]

Frequency information from the facial images were extracted and were trans-

formed to the frequency domain using the 2-D discrete Fourier transform. The

face image is shown in Figure 2.10(a), Figure 2.10(b) shows the Fourier-transformed

image and Figure 2.10(c) shows the resulting frequency feature. Local Binary

Patterns (LBP) [7] is one of the most popular methods to describe the texture

information of the images. The authors used LBP to analyze the texture charac-

teristics of the image taken from genuine and fake attempt. Figure 2.11 explain
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the process of acquiring the LBP feature vector from a given facial image. Fig-

ure 2.11(a) is the original facial image while Figure 2.11(b) shows the LBP-coded

image of Figure 2.11(a). Figure 2.11(c) shown histogram of the LPB-coded im-

age, which will be exploited as the feature vector for the classification.

Figure 2.11 Feature vector extraction process based on LBP (a)
original facial image (b) LBP-coded image (c) histogram of the

LBP-coded image [7]

They extracted frequency-based feature, texture-based feature and implemented

own their own and fused them together. They used Support Vector Machine

(SVM) classifiers using the two types of feature vectors extracted. The decision

values of these two SVM classifiers were then used as 2-D feature vectors for the

subsequent fusion.

Komulainen et al. [97] explored the use of dynamic texture information for

spoofing detection. They argued that masks and 3D head models are rigid,

whereas genuine faces are non-rigid with contractions of facial muscles resulting

in temporal deformation of facial features, such as moving eyelids, lips, etc. The

structure and dynamics of the micro-textures that characterise real faces were

used in their proposed approach to spoof detection. They used spatiotemporal

(dynamic texture) extensions of the local binary pattern in this approach.
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The authors considered local binary patterns from three orthogonal planes

(LBP-TOP) which have been shown to be very effective in describing the hor-

izontal and vertical motion patterns in addition to appearance. The original

LBP operator was defined to only deal with the spatial information. It has been

extended to a spatiotemporal representation for dynamic texture analysis (DT).

This has resulted in the so called Volume Local Binary Pattern operator (VLBP)

[98]. The idea behind VLBP consists of looking at dynamic texture as a set of

volumes in the (X,Y,T) space where X and Y denote the spatial coordinates

and T denotes the frame index (time). The neighbourhood of each pixel is thus

defined in a three dimensional space. Then, similarly to basic LBP in spatial do-

main, volume textons can be defined and extracted into Face Spoofing Detection

Using Dynamic Texture 149 histograms. Therefore, VLBP combines motion and

appearance into a dynamic texture description.

They carried out experiments on the CASIA Face Anti-Spoofing Database [99]

and Print-Attack Database [100]. The CASIA data set contains 50 real clients

and the corresponding fake faces are captured with high quality from the original

ones. Three imaging qualities, low, normal and high were then extracted. They

used SVM classifier for training and testing the method.

Komulainen et al. [8] explored fusion of motion and texture based countermea-

sures under several types of face attacks. They explored the fusion potential of

different visual cues and show that the performance of the individual methods

can be vastly improved by performing fusion at score level.

Figure 2.12 is the diagram of the authors’ proposed fusion strategy. The video

sequences were divided into overlapping windows of frames. Each observation

generate scores from motion and micro-texture are combined to achieve a single

score using score based fusion using linear logistic regression (LLR). They carried

out experiments on the Replay Attack database [101]. The database was divided
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Figure 2.12 Block diagram of the used fusion strategy [8]

into three sets for training, development and testing to evaluate the method.

Jiangwei Li et al. [9] explored a technique based on the analysis of 2-D Fourier

spectra of the face image. They proposed that the size of a photograph is smaller

than the real image and the photograph is flat, it therefore has fewer high fre-

quency components than real face images. They further explored that if a photo

is held before a camera and is in motion, since the expressions and poses of the

face contained in the photo are invariant, the standard deviation of frequency

components in the sequence must be very small. This can only be valid for low

resolution photographs but it is possible print bigger and high resolution pho-

tographs in which the high frequency components will be closer to those of a real

image.

The most common presentation attack are printed photo, video replay on lcd

screen. The media of these sources are 2-D planar structure, whereas genuine

face is 3-D structures. The intensity contrast of a genuine facial image is more

obvious than that of a fake image and such differences lead to greatly different

reflectivity of light, which is shown in the frequency distribution of an image.

Figure 2.13, shows the comparison of the Fourier spectra of a genuine face image



Chapter 2. Literature Review 26

to that of a fake face image. (a) genuine face image; (b) A fake face image; (c)

2D Fourier spectra of (a); (d) 2D Fourier spectra of (b).

Figure 2.13 Difference between live face and fake face in fre-
quency domain [9]

Bharadwaj et al. [102] explored the utility of Local Binary Patterns (LBP)

based features along with motion magnification. The authors explored two types

of feature extraction algorithms. They presented a configuration of LBP that

provided better performance compared to other computationally expensive tex-

ture based approaches. Motion feature estimation is also explored.

The authors localized required motion and then magnified it under the Taylor

expansion assumption. The approach enhances facial movements including subtle

motion such as blinking, saccadic and conjugate eye motion that may otherwise

only be visible on close inspection of the video.

Motion magnified video of a subject can be classified for spoofing detection

using either texture or motion based features. As mentioned, texture features

are widely explored in spoofing detection literature as compared to motion based
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features. They proposed the texture and motion based features for spoofing

detection.

Bharadwaj et al. [102] exploited various texture based spoofing detection ap-

proaches [101, 103–107] to explored the utility of LBP based features along with

motion magnification for liveness detection system. To encode texture informa-

tion at multiple scales, they proposed to use feature concatenation of the three

LBP configurations.

Wu et al. [10] suggest a liveness detection scheme, combining Fourier statistics

and local binary patterns. Both techniques, Fourier spectra and local binary

patterns, have been investigated on their own and the authors fuse them together

in order to improve the liveness detection performance. Figure 2.14 shows the

their proposed system where the score from features of local binary patterns and

Fourier spectra are combined using support vector machine.

They carried out experiments on the NUAA [96] database which consists of

genuine and photo of impostor. Their method classified genuine and fake with

100% and 92.33% respectively.

Das et al. [108] proposed method based frequency analysis and texture anal-

ysis by using frequency descriptor and Local Binary Pattern respectively. They

exploited frequency and texture based analysis to differentiate between images

captured from genuine and fake attempts. Images captured from fake attempts

have low frequency regions and less texture richness. However, genuine sam-

ples have high frequency information and high texture richness. They also used

NUAA database for training and testing purposes.
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Figure 2.14 The framework of the proposed approach for live-
ness detection by Wu [10]

2.2.3 Challenge Response Mechanisms

Systems based on the challenge-response approach belong to the active category,

where the user is asked to perform specific activities to ascertain liveness such

as uttering digits or changing his or her head pose. For instance Frischholz et

al. [11] investigated a challenge-response approach to enhance the security of the

face recognition system. They developed a head pose estimation technique using

a single camera. The users were required to look in certain directions, which

were chosen by the system randomly. The system estimated the head pose and
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compared the real time movement (response) to the instructions asked by the

system (challenge) to verify the user authenticity. After responding to several of

these challenges, the user is asked to look straight into the camera and the final

image is captured for face recognition.

Figure 2.15 Random challenge directions [11]

Kollreider et al. [12] explored the liveness detection approach where users are

required to interact with the face liveness detection system. This interaction oc-

curred through the utterance of a specific digit sequence, either known previously

by the person or prompted randomly. The authors favored the latter scheme,

since a sound utterance can be recorded easily. They explored the changes in

facial expressions during the utterances.

In this technique they located the mouth regions and process every frame and

extract OFL in real time. They have used the XM2VTS database for evaluation.

Volunteers’ videos were recorded pronouncing digits (from 0 to 9). The aim was

to recognize the digits of the volunteer through lip-motion only. For a digit, they

have used 100 short videos. For training, there were a total of 60 videos and
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for testing, a total of 40 videos. For each of the digit videos, feature vectors

are extracted from mouth regions and given to SVM classifier for purpose of

classification. Out of 100 individuals, recognition rate is 0.73 (73%).

Figure 2.16 Dimension reduction of the extracted velocities in
the mouth region [12]

Eveno et al. [109] proposed a liveness detection method by measuring the

correlation between the movement of the lips and the speech produced. Linear

predictive coding (LPC) was used to parameterize the speech signal. The LPC

filters parameters are extracted at the video frame rate of 25fps. The video

parameters are derived from the outer contour of the lips. The algorithm requires

the manual selection of a single point above the mouth in the first frame and then

the remaining segmentation is automatically achieved by fitting a deformable

template. Five audio parameters and three video parameters are associated with

each video frame. Canonical correlation analysis is the statistical method used

to measure the relationship between two sets of the multi dimensional data. This

method was used to find the linear combination of the audio and video variable
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correlation. They also considered another method called Coinertia Analysis, a

statistic tool used to solve problems in ecology.

Bredin et al. [110] explored the synchronisation between the motion of the

lips and the sound of the speech of the talking face. Talking faces contain more

information which is available for verification, and not only contain the voice

signal and video signal but the most important dynamic detail which is the

correlation of the movement of the lips and the sound produced by the speech.

They cross fused the audio and video signals to estimate the correlation between

them.

Kant et al. [111] proposed a technique in which the user was asked to perform

some activities to check liveness of the attempt. They were asked to act like chew-

ing, smile or forehead movement. The camera captured sequences of images at

certain frame rate while the users were responding to the request. They extracted

the feature from the facial using correlation coefficient and image extension fea-

ture. Using some discriminant analysis method, images are discriminated and

skin elasticity is calculated. The output is compared with the stored database

to discriminant between fake and genuine attempts.

Saad [13] explored challenge response mechanism to avert spoofing attempt.

They located face in the captured images and calculated the center of the face

in the images as a reference point to track it once the challenge begins. The

users were asked randomly to look toward right, left, up and down features were

then estimated. Figure 2.17 shows the head movement in all four direction. The

collected data of 21 users providing both still and interactive attempts. The

videos were replayed using phone and tablet for spoofing attempts.

Singh et al. [112] suggested a liveness detection method where random challenge

was generated to the user. The user’s response was observed. The users were
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Figure 2.17 Head motion actions examples [13]

ask to open and close the mouth or eyes.

2.2.4 3D face

Some authors use methods based on the 3D structure of the face for face live-

ness detection. Andrea Lagorio et al. [14] proposed a novel liveness detection

method, shown in Figure 2.18, based on the 3D structure of the face. The method

computed the 3D features of the captured facial image data to detect whether a

human face has been presented to the acquisition camera. They collected a 3D fa-

cial database using a stereo camera system (VERTRA3D CRT) for performance

evaluation.

Wang et al. [15] explored novel liveness detection approach to counter spoofing

attacks by recovering sparse 3D facial structure using a single camera. They

detected facial landmarks and selected key frames from a face video or several
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Figure 2.18 Proposed anti spoofing system [14]

images which are captured from several viewpoints. The sparse 3D facial struc-

ture is recovered from the selected key frames and from the selected key frames,

the sparse 3D facial structures are recovered. The SVM classifier was used to test

the efficiency of the proposed method in classifying genuine and fake attempts.

For experiments, the authors had collected three databases using different qual-

ity cameras to inspect the anti-spoofing performance across different devices.

The proposed approach achieves 100% for both classification results and face

liveness detection accuracy. Genuine and Fake attempt examples are shown in

Figure 2.19.

2.2.5 Face Liveness Assessment Using Motion Analysis

Kollreider et al. [113] combine face parts (nose, ears) detection and optical flow

estimation to determine a liveness score. They assumed that a 3D face produces a

2D motion which is higher at central face parts (e.g. nose) compared to the outer

face regions (e.g. ears). The parts nearest to the camera move differently to parts
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Figure 2.19 The Genuine and Fake attempt example [15]

which are further away in a live face. On the other hand, a translated photograph

generates constant motion at various face regions. For the face part detection

they employ a model-based Gabor decomposition and SVM. They locate the

position of the face parts and compare their speed relative to each other. They

also compare the direction of the motion of the same face part. This enables

them to distinguish a live face from a photograph.

Continuing the work Kollreider et al. [114] exploited lightweight optical flow

for face motion estimation using structure tensor and input frames. The authors

presented a technique for computing and implementing the optical flow of lines

(OFL). Here they again used the model-based local Gabor decomposition which

are linear filters for edge detection and SVM.

The authors introduced two approaches for the face parts detection. First one

was based on optical flow pattern matching and model-based Gabor feature clas-

sification. The second one extracted Gabor features in a non-uniform retinotopic

grid and classifies them with trained SVM experts. The database which was
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used contained 100 videos of Head Rotation Shot-subset (DVD002 media) of

the XM2VTS database. Data was downsized to 300x240 pixels. Videos were

cut (3 to 5 frames) and were used for live and non-live sequences. Each user’s

last frame was taken and was translated horizontally and vertically to get two

non-live sequences per person.

Therefore, 200 live and 200 non live sequences were examined. Most of the

live sequences achieved a score of 0.75 out of 1, whereas the non-live pictures

achieved a score less than 0.5. It was also noticed that glasses and moustaches

lowered the score, as they were close to the camera. The authors mentioned that

the system will be error free if sequences containing only horizontal movements

are used. By considering a liveness score greater than 0.5 as alive, the proposed

system separates 400 test sequences with error rate of 0.75%.

Bao et al. [16] presented a method based on optical flow field. The difference

of the optical flow filed generated through the movement of the two dimensional

plane and three dimensional object was exploited for face liveness detection. The

relative motion between the two dimensional plane and camera are four types

named translation, rotation, moving forward or backward and swing. All other

movements are combinations of these four basic types. The authors described

four types of motion that can generate different optical flow field as shown in

Figure 2.20. Any planar object’s optical flow field can be represented as a linear

combination of these four basic types with regularity.

During the investigation the authors found that translation, rotation and mov-

ing generated almost similar optical flow fields for both two and three dimen-

sional objects whilst swing generated optical flow field that have much difference

between two and three dimensional object. Their approach was based on the

idea that the optical flow field for 2D objects can be represented as a projection

transformation. The optical flow allowed them to deduce the reference field,thus
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Figure 2.20 Optical flow fields generated by four basic types of
relative motions (a) Translation (b) Rotation (c) Moving for-

ward or backward (d) Swing [16]

allowed them to determine whether the test region is planar or not. For that, the

difference among optical flow fields was calculated. To decide whether a face is

a real face or not, this difference was noted as a threshold. The authors carried

out experiments on three types of data. The first set contained 100 printed facial

photo that were translated and rotated in front of the camera randomly. The

second set of data contains 100 facial photos which were folded and curled before

the photos were presented to the camera. The third set of data consisted of faces

of real people doing random gestures like swinging, shaking, etc. Ten people

participated the experiment in turn, with a total of 10 turns.

Tronci et al. [115] explored the information extracted from motion and clues

from still images and video. They captured spatial information of the still images

using different visual features as color. Video-based analysis was performed as a

combination of information of motion such as blink, mouth movement and facial

expression change among others.

Pinto et al. [116] proposed technique for video spoofing attempts. They ex-

plored that the addition of noise pattern in the sample is inevitable in acquisition
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Figure 2.21 Examples of the optical flow fields with (a) Group
1 (b) Group 2 (c)Group 3 [16]

process. Fixed pattern noise and noise resulting from the sensor due non-uniform

light-sensitive can be present in photo [117]. Noise pattern has been widely ex-

plored in digital document forensics [117, 118]. The exploited the noise signatures

generated by the recaptured video to distinguish between genuine and fake. They

used Fourier spectrum and then compute the video visual rhythms [119].

2.2.6 Miscellaneous Technologies

Chetty et al. [120] explored fusion of super resolved texture (SRT) features and

3D shape features with acoustic features for liveness checks. The proposed SRT

features allowed information related to non-rigid variations on speaking faces,

such as expression lines, gestures, and wrinkles, enhancing the performance of

the system against impostor and spoof attacks. They transform each image into

a new parametric vector space characterised by edge image and create a database

of the source edges. The low resolution data of the target edge is replaced with
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high resolution from the database. The super resolution (their proposed method)

is divided into two stages absorption and synthesis. In the absorption phase, the

source and target image frames are transformed and added to the edge database

while in the synthesis phase the single target image frame is reconstructed at a

higher resolution.

Figure 2.22 Stages of SuperRes algorithm

Synthesis: In this stage they key generation and hierarchical decomposition.

Key generation is to construct keys of for each edge. These keys were then

entered into the database and searched. Then, a hierarchical decomposition

model was used for mapping edges to keys with the start by creating a single

key for an entire edge, then recursively splitting the edge into two segments.

Figure 2.22 illustrate this scheme.

Bai et al. [121] explored a physics-based method, the key idea of their approach

is that when an image is displayed on paper or screen and captured the image

again, the recapture image is an image of the medium (paper or screen) only.
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However, because the medium has a target image, the new image appears to be

the target image itself.

Chetty et al. [122] present the multi-level liveness verification (MLLV) frame-

work for realizing the face-voice authentication system to avert audio and video

replay attacks. The MLLV framework is based on feature extraction and mul-

tilevel fusion. The fusion approaches are bimodal feature fusion, cross model

fusion and 3D multimodal fusion. The bimodal fusion level the system detects

the still photo and pre-recorded audio but can be cheated with video replay. At

the level of cross-modal fusion the system averts video replay attacks but it can

be cheated with 3D synthetic talking head. The 3D multimodal fusion performs

liveness check based on modelling the speaker in 3D space with the 3D shape

and texture features.

Chan et al. [17] presented a method where the images of the user with and

without flashlight and estimate the brightness of the face region and background

and compared with each other. They believed that the genuine and fake should

have different brightness difference. Figure 2.23 example of genuine and impostor

video replay attack with and without flashlight. They collected data from 21

subjects.

Peng et al. [123] proposed a method based on high frequency descriptor. In-

stead of simply calculating the high frequency descriptor and comparing it with

the set threshold, they calculated a high frequency descriptor for two images. One

image was taken as normal and the other one taken with additional illumination

provided by flashlight.

Kim [124] suggested a method for liveness detection using variable focusing.

They captured two images sequentially taken at different focus. They discovered

that in real faces, focused regions are clear and other regions are blurred due
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Figure 2.23 Examples of genuine and video replay with and
without flashlight. (a) Genuine user without flashlight (b) Gen-
uine user under flashlight (c) Video replay without flashlight (d)

Video replay under flashlight [17]

to depth information. They also found that this did not happened in images

taken from a printed photo. The extracted information based on the variation of

the sum modified Laplacian [125] that represents the degrees of focusing. This

information was used to discriminate between the genuine and impostor attack.

Yang [126] revised the method suggested in [124]. In this method the author

proposed by investigating the focus distance between the face and background.

The suggested that the focus distance should be same for photo and video and

should very for genuine attempt. Kim et al. [127] further enhanced the method

using the defocusing techniques this time. They argued that real face is 3D and

the ear region may or may not be clear while there was little difference in clarity

in case of photo using focus. This was used to classify genuine and fake face.



CHAPTER 3

Experimental Framework

3.1 Introduction

This chapter provides details of the experimental framework developed for the

evaluation of the proposed approach. It presents the proposed implementation

and the hardware set up used for the experiments. It also covers the definitions

of different types of attack scenarios and the performance measures used to assess

detection rates. The challenge design which is used for collecting the data is also

explained in this chapter. The database that is developed for the purpose of

evaluation of facial liveness detection methods is also described in this chapter.

Facial liveness detection is a relatively new area of research, nevertheless, there

are already some databases available for evaluation of liveness detection systems.

However, due to the specific nature of the proposed challenge-response approach

for liveness detection, none of the existing public databases are appropriate and

a new database has been collected to evaluate the proposed system.

To enable the proposed system to evaluate the liveness, the user is required to

interact with the system in a specific way, hence the visual stimulus providing the

41
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challenge to the user is designed in a particular order to extract the required gaze-

based novel features. The database included genuine and fake attempts (photo

attacks, photo mask attacks and video replay attacks) collected from male and

female volunteers.

The remainder of the chapter is organised as follows: Section 3.2 introduces the

proposed system. The attack scenarios are presented in Section 3.3. Section 3.4

provides details of the system implementation and test setup. It covers system

hardware, challenge design and landmark extraction. Section 3.5 provides details

of the data collection covering hardware and software parameters, the number

of volunteers, ethics approval and data storage. Finally, Section 3.6 presents

the objective evaluation methods and metrics used in this study and Section 3.7

presents a brief conclusion of the chapter.

3.2 Proposed System

To explore the approach based on gaze stability introduced in the introductory

chapters a system is proposed based on a challenge-response mechanism as out-

lined in Figure 3.1. The challenge is presented to the user as a visual stimulus

appearing on a display screen. The client is asked to follow the shape that ap-

pears on the screen with their gaze through natural head/eye movements and the

camera (sensor) captures the facial images at varying positions of the stimulus

on the screen.

A control mechanism is used to ensure the placement of the display target shape

and the image acquisition are synchronized. The system extracts facial landmarks

(centre of eyes/corner of eyes) in the captured frames and computes various

features from these landmarks, which are then used to classify the presentation
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Figure 3.1 Proposed system block diagram

attempt as either genuine (i.e. coming from a live sample) or fake (i.e. coming

from an impostor using a photo/mask or video attack instrument).

3.3 Attack Scenarios

Various types of attack scenarios were investigated in this study. The scenarios

considered here include that of an impostor attempting authentication by holding

a photograph, a simple photo mask or by replaying a recorded video of a genuine

client in front of the camera of the face recognition system.

The photo presentation attack scenario uses a high quality colour photo of a

genuine user held in front of the camera, whilst the attacker attempts to follow

the stimulus by orienting the photograph to “face” the position of the challenge

shape on the screen. In the case of photo mask presentation attacks, a high

quality colour photo of a genuine user with holes made in the pupil of the eyes

was held by the user in front of the eyes as a mask, and used to follow the

stimulus. In the case of the video replay attack the videos of the genuine users

were recorded while the users were following the challenge in a genuine attempt.

These videos were then replayed later for different challenges to attempt to spoof

the proposed system.
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Figure 3.2 Example of Genuine attempt

Figure 3.3 Example of Photo Spoof attempt
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Figure 3.4 Example of Photo Mask Spoof attempt

Figure 3.5 Example of Video replay Spoof attempt
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Figure 3.3 shows an impostor (attempting a photo presentation attack) during

the data collection process. Figure 3.4 shows an impostor (attempting a photo

mask presentation attack) holding a photo mask to follow the challenge while in

Figure 3.5 a recorded video is replayed to attack the system. Figure 3.2 shows a

genuine user tracking the challenge to establish liveness.

3.4 Implementation

The following section describes the implementation of the proposed system. It

explains the details of the hardware setup, challenge design and landmark ex-

traction.

3.4.1 Hardware Setup

The hardware setup consists of a webcam, a PC and a display monitor of the

PC. The challenge was displayed on the LCD screen for the user to follow the

challenge to establish liveness. The webcam captures an image at each location

of the challenge and stores these on the PC. Figure 3.6 is the sketch of the setup

for the proposed system.

3.4.2 Challenge Design and Response Acquisition

A small shape (stimulus) is presented to the subjects on the LCD screen whilst

subjects are seated in front of the computer screen and instructed to follow stim-

ulus as it changes its location on the screen with natural head/eye movements.

The data recording session starts after a brief cooling down period during which
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Figure 3.6 Data Acquisition Setup

the screen is black and the stimulus stationary for brief period. Figure 3.7 shows

the possible predefined locations where the stimulus shape may be presented.

Figure 3.7 Challenge Locations
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C = {c1, c2, . . . , cd, . . . , cD}

where, cd = (x, y) ; d = 1, . . . , D

(3.1)

Ideally stimulus locations should not be too close to one another, to encourage

a greater range of possible head/eye movements. The set of possible locations

is arranged so that some of these locations are used for the presentation of the

stimulus several times during a challenge session. Let P be the sequence of M

such presentations.

P = {p1, p2, . . . , pi, . . . , pM}

where, pm ∈ C; i = 1, . . . ,M

(3.2)

Let R be the corresponding set of landmark locations in the captured images.

For a given landmark k (e.g. corner of the left eye)

R = {rp1, rp2, . . . , rpi, . . . , rpM} (3.3)

where, rpi = {(uik, vik)} 1 ≤ i ≤M, 1 ≤ k ≤ K

3.5 Data Collection

To explore the performance of the proposed system initially two small data sets

(Initial Database) were collected. These only included the photo spoofing attack

scenario. A larger data set was subsequently collected (Extended Database)

including more subjects to explore other attack scenarios and features. These

databases are further described in this section.
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3.5.1 Initial Database

The initial evaluation of the proposed gaze collinearity feature was carried out

with a small database. Data was collected from only 5 subjects in 3 sessions.

Each attempt acquired 358 image frames, and the resolution of the images was

352 × 288 pixels. This resolution provided adequate picture quality to recognize

the facial landmarks. Higher resolution may not improve the performance but

will increase the processing time [128]. Each person performed 3 fake and 3

genuine attempts in total, creating 15 sets of fake and 15 sets of genuine attempts.

In this set up the stimulus was moving in a straight line continuously for the user

to follow. In total, 48 vertically collinear and 24 horizontal collinear point sets

were extracted.

Similarly the colocation feature was initially explored using a small data set

collected from 8 subjects in 3 sessions. Each subject provided data for both

genuine and impostor attempts, creating 26 sets of genuine and 26 sets of fake

attempts. Subjects provided different a number of genuine and fake attempts. In

total, 30 sets of x-y coordinates of the pupil centres from colocated gaze targets

were extracted resulting in a feature vector of size 60 for each eye.

During spoofing attacks a high quality colour photo of a genuine user was

held in front of the camera while the subject was instructed to orientate the

photo towards the position of the stimulus shape on the screen. There were a

small number frames where the pupil centres were not detected by software and

such frames and associated colocation points) were excluded from the feature

extraction process. The software used for locating the landmarks in the facial

images worked better with front facial images. If the stimulus was more on the

extreme left or right side of the screen, the user face was captured from onside

rather then the front. This was more obvious in the case of printed photo and



Chapter 3. Experimental Framework 50

later in photo mask attack where a small tilt could result in missing the whole

face in the captured frame. It also depended on the quality of the captured frame.

In the case of video replay the images were captured from the video playing on

an ordinary LCD screen. Some of the captured frames were of bad quality due to

the resolution and reflection of the screen. Hence the software could not detect

faces in a number of attempts in the captured frames.

3.5.2 Extended Database

The extended data was captured in order to increase the number of subjects and

also to include mask and video replay attacks. The new database was composed

of genuine, photo, mask and video replay attack subjects. Photos of both male

and female subjects were chosen for the hand-held photo and the photo mask

spoofing trials. The photos were printed on A4 matt paper, which bends easily.

Hard cardboard was attached to the back of the photo to attempt to minimize

any unintended deformation of the paper.

In the case of photo mask attack, photos of different sizes and different pupillary

distances (PD) were printed. Pupillary distances vary from person to person. It

was not practical to print photo masks of exact PD for each subject participating

in the data collection. Therefore, three different size photos (small, medium

and large) were printed and the best fitting one was chosen for the impostor to

facilitate the finding and follows of the stimulus by the impostor. Before a mask

was given to the impostor, the pupillary distance was measured with a pupillary

distance ruler similar to that shown in Figure 3.8. The photo mask with the PD

closest to the impostor PD was offered to the user for the impostor attempt. The

diameter of the hole in pupil centre was 4mm. The 4mm hole was large enough

to see through to follow the challenge. A bigger hole could have made the task of
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gaze direction easier for the attackers but may have compromised other biometric

indicators of the attacker (e.g. iris) that undermined their spoofing attempt

[112]. The male masks pupillary distances were 27mm, 31mm and 35mm for

small, medium and large respectively. The female masks pupillary distances

were 25mm, 29mm and 33mm for small, medium and large marks respectively.

Figure 3.8 Pupillary distance ruler for measuring subjects PD

During a genuine attempt, the video of the genuine user was recorded for sub-

sequent replay attacks. In this implementation, the stimulus was displayed on

the screen at 30 distinct locations (i.e., D=30) in a random order visiting each

position 3 times (thus, M=90). Typically 225-275 ms have been measured for

gaze fixation in reading tasks [77]. In this work a 1 second delay was used be-

tween each presentation of the stimulus shape to provide ample time for the users
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to fixate their gaze. Total duration of the challenge presentation was about 2

minutes. The locations are so arranged that there are 33 collinear sets and 30

colocation sets (i.e., L=33, W=30). For each presentation of the stimulus, the

camera acquires a facial image.

Data collection involved material that are considered to be of a sensitive and

personal nature, hence ethical approval was required. An ethical approval ap-

plication was made to the Sciences Research Ethics Advisory Group (REAG) at

the University of Kent together with a copy of the project protocol and other

supporting documentations including a participant information sheet, an exit

questionnaire sheet and a consent form. The Research Ethics Advisory Group

approved the application with minor revisions.

3.5.3 Implementation Details

The hardware system setup was similar to the one shown in Figure 3.6. The

setup consisted of a webcam, a PC and a display monitor. The camera used was

a Logitech Quick Cam Pro 5000, and was centrally mounted on the top of a 21.5”

LCD screen, a commonly used monitor type, having a resolution of 1920 × 1080

pixels and a 5ms response time. The reason for using a standard webcam was

to establish the usability of a low-cost off-the-shelf sensor, which may be already

embedded or available for many devices such as smart phones, laptops and note

books.

The computer used had a quad core processor with a 3.2 GHz clock frequency,

and 2 GB of RAM. The distance between the camera and the user was approx-

imately 750 mm. There is flexibility in this distance provided that the facial

features can be clearly acquired by the camera. The maximum expected gaze
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deviation from the normal to the screen is approximately 15 degrees for the ex-

perimental setup. If the subject turns their head beyond this pose angle they

are not following the instructions for using the system. In such a case landmarks

detection may be compromised. Such frames are excluded in the feature extrac-

tion phase. If this occurs 5 times or more in a single presentation attempt, the

whole attempt is excluded from the experiment, the user is asked to try again

in a new attempt. The choice of this number is determined by the number of

points and their placement in the stimulus. Such attempts were considered to

be cases of Failure to Detect Liveness. If the number of such frames is 5 or less,

then the missing landmark values were substituted by estimated data from the

remaining landmarks. The data acquisition system setup was similar to that

shown in Figure 3.6.

STASM Version 3.0 [128] is a software package for locating landmarks in the

facial image using an Active Shape Model. This software is written in C++.

STASM works on front view facial photo showing neutral expressions. Poor fits

can be experienced on faces at angles or with expressions. STASM returns 68

different landmarks on the face region using an active shape model algorithm

as shown Figure 3.10. If there are several faces in an image, STASM operates

on the face with the largest dimension. STASM converts the captured image

to monochrome before processing it. The coordinates of extracted landmarks

were used for feature extraction in the proposed system and the landmarks were

returned in an integer array. The first element of this array is the x coordinate

and the second element is the y coordinate of the landmark.

However, in a small number of frames some of the desired landmarks were not

detected by STASM. When the required landmarks were not detected in more

than five frames in one attempt, the attempt was excluded from the experiments

in this study. The choice of this number is determined by the number of points
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Figure 3.9 Landmarks extracted (best fit) using STASM

and their placement in the stimulus. Such attempts are considered to be cases of

Failure to Detect Liveness. If the number of such frames is five or less, then the

missing landmark values were substituted by estimated data from the remaining

landmarks. Table 3.1 shows the detail of the database.

Table 3.1 Database details

Attempt Type Missing Face > 5 Missing Face ≤ 5 Total

Genuine 3 27 30

Photo Mat 6 24 30

Photo Mask Mat 5 25 30

Video Replay 7 23 30

For the extended experiments reported in this study, the selected database was

composed of genuine attempts, hand held photos, photo masks and video replays

of twenty three attempts from each scenario. The remaining seven attempts of

each scenario were excluded from the experiment as these attempts had more
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Figure 3.10 Landmarks extracted (poor fit)using STASM

than five photos in which the face (or facial landmarks) could not be detected

by the software. Fifteen genuine samples and fifteen samples from each of the

attack scenario were used for training and the remaining samples were used for

testing the liveness detector.

The stimulus appears in a random sequence to prevent predictive video attacks,

face images are then captured at every presentation of the stimulus.

3.5.4 Subjects

Data was collected from 30 volunteers of both male and female aged between

20-45 years. The gender balance was unequal in that there were fewer females

available than males. The volunteers were from Asian, Arab, east and west
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European decent. Most of the volunteers were not wearing glasses, if anyone was

wearing glasses they were asked to remove them as STASM was only trained

with images without glasses.

Three potential presentation attack scenarios were studied: photo attack, mask

attack, and video replay attack. Each subject provided data for genuine attempts

as well as for the three attack scenarios, thus creating 30 sets of data for each

scenario. For the hand-held photo spoofing attacks session involved a high quality

colour photo of a genuine user with holes made in the place of the eyes held in

front of the camera, whilst the volunteer attempted to follow the stimulus.

Photos of both male and female subjects were chosen for the hand held photo

and the photo mask spoofing trials. The photos were printed on A4 matt paper,

which bends easily. Therefore, hard cardboard was attached to the back of the

photo to attempt to minimize any unintended deformation of the paper. The

photo mask attempt used three different photo sizes (small, medium and large)

with different pupillary distances (PD) printed. The reason for producing a set

of photos with pupillary holes at different distances was to match attackers with

different PDs to facilitate their following of the target with relative ease.

3.5.5 Data Storage

The database materials were of a sensitive and personal nature, hence it was

stored on a secure sever on a particular folder where access to the database was

limited to the investigator. The size of the database was about 500MB.
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3.6 Performance Analysis

Face liveness detection is a two-class classification problem. There are four possi-

ble outcomes of the classification process hereby referred to as: true positive, true

negative, false negative and false positive, with “true” indicating a live/genuine

presentation and “positive” indicating a live/genuine detection decision. When a

genuine (live/non-spoof) presentation/attempt is classified as genuine and a false

(fake/spoof) presentation/attempt is classified as genuine, these are termed true

positive (TP) and false positive (FP) classifications respectively. Similarly, when

a genuine presentation/attempt is classified as a fake and fake presentation/at-

tempt is classified as fake these are called false negative (FN) and true negative

(TN) cases respectively. FP and FN are the error outcomes of the process and

the rates of their occurrence are reported as False Positive Rate (FPR) and False

Negative Rate (FNR) in this report. The term True Positive Rate (TPR) is also

used and is equal to (1-FNR) [129].

TPR =
TP

(TP + FN)

TNR =
TN

(TN + FP )

FPR =
FP

(FP + TN)

FNR =
FN

(FN + TP )

(3.4)

The Total Error Rate (TER) is also used to quantify the overall performance

of the system at a particular operating point and is defined in Eq. 3.5.The values

for the TPR, TNR, FPR and FNR are based on Eq. 3.4.

TER =
(FP + FN)

(TP + TN + FP + FN)
(3.5)
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The Half Total Error Rate (HTER) is defined as a mean of False Positive

Rate (FPR) and False Negative Rate (FNR). This trade-off between accuracy is

through the receiver operating characteristic (ROC) curve in this study.

3.7 Conclusion

This chapter presents an experimental framework for the evaluation of the pro-

posed approach. It covers the experimental system, attack scenarios, hardware

setup, challenge design, landmarks extraction and the databases that were col-

lected for evaluation of facial liveness detection algorithms.

The databases include data from genuine attempts and three presentation at-

tack scenarios (photo attack, photo mask and video replay). The data which

is described in this chapter will be used to explore colocation, collinearity and

homography features for liveness detection that are explored in detail in the next

three chapters.

The main contribution of this chapter has been,

• Collecting databases.

• Evaluation framework.

In the next chapter a first novel feature called gaze colocation will be presented.



CHAPTER 4

Gaze Colocation

4.1 Introduction

In this chapter (in part based on work published by the author in [130]) a novel

feature for facial liveness detection in the presence of photo, photo mask and

video replay attacks is presented and explored. This novel feature is named

“gaze colocation”. A similar experimental setup to the one shown in Chapter 3

has been used for data collection for the evaluation of this feature. The novel

feature proposed here is based on the ability of the human gaze to return and

fixate to the same location consistently.

Here a small shape is randomly presented repeatedly, at distinct locations on

the screen. The user’s gaze is directed to these locations on the display, and

features are extracted from facial images captured at these colocated targets.

The underlying hypothesis is that the variance in eye landmark positions for

colocated positions should be small in genuine user attempts and greater for

spoofing attempts. This phenomenon is then exploited to differentiate between

genuine and fake users.
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The chapter is organized as follows. The principle behind the gaze colocation

feature is introduced in Section 4.2. Section 4.3 introduces the colocation feature

and provides a formal definition of it. Initial experiments and further evaluations

of this feature are included in Section 4.4. Section 4.5 presents extended experi-

mental results. Finally some concluding remarks for the chapter are provided in

Section 4.6.

4.2 Gaze Colocation Motivation

The idea behind the proposed new feature is that the imposter cannot align the

photo back to the same location as accurately as the genuine user. The feature

proposed in this chapter is also based on the assumption that the spatial and

temporal coordination of the movements of the eye, head and hand involved

in the task of following of a visual stimulus are significantly different when a

genuine attempt is made compared with certain types of spoof attempts. The

task requires head/eye fixations on a simple shape that appears on a screen in

front of the user, and in the case of a photo spoofing attack, visually guided hand

movements are also required to orientate the photographic artifact to point in

the correct direction toward the challenge item on the screen.

To investigate the feasibility of this approach, we used the small data set pre-

sented in Section 3.5. The (x,y) coordinates of the pupil centres from frames

captured while users are looking at the same stimulus location are plotted in

Figure. 4.1 and Figure. 4.2 displaying deviations ∆x,∆y from the mean for all

the genuine and fake attempts respectively. These coordinates were normalised

and the figures display deviation in the x and y directions from the location

where the user should be fixating the eye.
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Figure 4.1 Pupil coordinates deviations from mean during gen-
uine attempt for a location of the stimulus

The spread of the points in genuine attempts is compact compared to that of

the fake attempts. This supports the gaze stability hypothesis and indicates that

a impostor, relying on hand-eye coordination, is unable to align the photo back to

the same spot as accurately as a genuine user. As can be seen from these figures,

the deviation of the points captured during the fake attempts is approximately

4 times greater on the x-axis and 3 times greater along the y-axis than those of

the genuine attempts.

4.3 Gaze Colocation Features

The gaze colocation features are extracted from images when the stimulus is at

a given location. The x and y coordinates of the object on the display are the

same when they reappear at a given place at different times during this exercise.
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Figure 4.2 Pupil coordinates deviations from mean during spoof
attempt for a location of the stimulus

It can, therefore, be assumed that the x and y coordinates of the pupil centres

in the corresponding frames should also be very close. This should result in a

very small variance in the observed x and y coordinates of the pupil centres in

genuine attempts. A feature vector is thus formed from the variances of pupil

centre coordinates for all the locations where the stimulus is colocated.

Fig. 4.3 illustrates the observed coordinates (uik, vik) of a given landmark k

in response to the stimulus presented at the same location at different times.

To quantify the deviation from perfect colocation, the variances in the observed

landmarks are calculated.

Let Qw be a subset of P where the stimuli appeared at the same location cw

on the screen at different times.
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Figure 4.3 Observed (•) and expected (?) landmark positions

Qw ⊆ P, w = 1, . . . ,W where W is the number of such colocation sets used in

the challenge. Let Twk be the corresponding subset of R .

Twk ⊆ R,w = 1, . . . ,W (4.1)

Let σ2
uk and σ2

vk denote the variances of the observed landmarks along u and v

directions respectively.

σ2
uk =

1

N

∑
i
(uik − ūk)2

σ2
vk =

1

N

∑
i
(vik − v̄k)2

(4.2)

where (uik, vik) ∈ Twk, (ūk, v̄k) is the mean of the observed landmark locations

and N is the cardinality of Tw. Let Γwk = [σ2
uk, σ

2
vk].

As there are K different landmarks as well as W colocation subsets, a colocation

feature vector, Fcoloc, can be constructed from the concatenation of these values
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and used for liveness detection.

Fcoloc = [Γ11,Γ12, . . . ,Γ1K ,Γ21, . . . ,Γwk, . . . ,ΓWK ] (4.3)

Many other features can be extracted from these facial landmarks which can

further enhance the distinction between genuine and fake attempts. All these

can be combined into a global feature vector,

F = [Fcoloc, Fother, . . .]. (4.4)

If the impostor holds the photo or mask still (i.e., makes no attempt to respond

to the challenge) this will produce very small changes in the measured landmarks

location. However, this can also happen when a genuine user is non-cooperative

or non responsive. The opposite extreme can also occur, when the genuine user’s

response to the challenge involves extreme head and eye movements. Some may

produce large variances in response to the challenge. The maximum expected

gaze deviation from the normal to the screen is approximately 15 degrees for this

experimental setup. Therefore, the gaze variation for the entire attempt should

also be taken into account during liveness detection. The overall variance must

not be too small to ensure that the impostor was moving the photo or mask in

response to the challenge movement. Such extreme behaviour can be treated as

suspect and may be flagged as fake attempts. Overall variance for entire attempt

was calculated as below

σ2
u =

M∑
i=1

(ui − ū)2

M

σ2
v =

M∑
i=1

(vi − v̄)2

M

(4.5)
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Where ui, vi are the facial landmarks, ū, v̄ are mean of ui, vi and M is total

number of stimuli locations. So conditions such as θ1 ≤ σ2
u ≥ θ2 and θ1 ≤ σ2

v ≥ θ2

can be placed in order to eliminate such attempts, where θ1 and θ2 are some

thresholds.

4.4 Experimental Evaluation

For an initial evaluation of the proposed feature the small data set presented in

Section 3.5.1 was used. Features were extracted from single eye, both eyes and

their feature and score fusion were investigated. In the extended set of experi-

ments only score fusion was investigated using the larger database presented in

Chapter 3, as score fusion provided the best results in the preliminary analysis.

4.4.1 Preliminary Experimental Results

The colocation features extracted from the single eye were investigated in Sec-

tion 4.4.1.1. While the colocation features from each eye may be used in isolation

it is interesting to explore whether there is complementarity in these feature sets

and if a greater accuracy can be achieved by their combination. Therefore, both

feature fusion and score fusion schemes were explored in Section 4.4.1.2, and

Section 4.4.1.3 respectively to find if there would be any gain in accuracy by

combining information from features extracted from both eyes.

4.4.1.1 Single Eye Feature

Colocation feature vectors were extracted from the facial images captured when

the stimulus appeared at colocated locations. The features extracted from the



Chapter 4. Gaze Colocation 66

eye were passed to a classifier for training and testing purposes. The scheme is

illustrated in Figure 4.4.

Figure 4.4 Scheme, where feature extracted from single-eye

In this experiment all 60 features from the single eye were given to a k-NN

classifier for training and testing the system. The k-NN classifier from the prtools

package used for this work automatically determined an optimum k-value for each

experiment. Each experiment was run 400 times with random sets of data for

training and testing, resulting in a different optimum k values for each run. These

optimal k values were combined to obtain an overall mean k value to be used

for operational systems. In the case of colocation features this mean optimal

k value was 6. The ROC curve using features from the single eye is presented

in Figure 4.5. It is apparent that the performance of the system is not very

accurate. At 10% FPR, 40% TPR is achieved using the entire feature vector.

4.4.1.2 Feature Fusion

The features extracted from both eyes were concatenated to form a larger feature

vector using feature fusion. In this scheme the entire feature sets from the eyes

were combined. The combined feature set was passed to a classifier for training

and testing. This scheme is shown in Figure 4.6.

All 60 features from the left eye and the 60 features from the right eye were com-

bined in a feature-level fusion scheme. A k-NN classifier was used to investigate

the performance of the system.
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Figure 4.5 Performance with single eye feature using the entire
feature vector for photo attack

Figure 4.6 Feature fusion using left and right eye

The ROC curve of the proposed scheme using features from both eyes is pre-

sented in Figure 4.7. The performance of the system is slightly improved com-

pared to the single-eye case, when using the entire feature vectors for both eyes.

The TPR (at 10% FPR) of the system was 44% .
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Figure 4.7 Feature fusion performance from both eyes for photo
attack

4.4.1.3 Score Fusion

In the score fusion scheme, features were extracted from both eyes and indepen-

dent classifiers are used to obtain classification scores for each eye. The scheme

is illustrated in Figure 4.8.

Figure 4.8 Score fusion scheme
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In this multi-classifier system two k-NN classifiers are used, one for each eye.

The a-posteriori probabilities from the two classifiers were combined using fusion.

Figure 4.9 shows the ROC curve for the photo spoofing attack scenario. The

scheme achieved a TPR of 68% at FPR of 10%. This performance is much

improved compared to the single-eye scheme and the feature fusion scheme using

both eyes.

Figure 4.9 Score fusion performance of both eyes for photo at-
tack

To investigate the tradeoff between the feature dimensionality and liveness de-

tection accuracy, several experiments were performed to explore the performance

of the proposed method. The forward feature selection [131] method was run 400

times with random sets of data for training and testing. This resulted in different

rankings of features for each run. These rankings were combined to obtain an

overall ranking as follows. The feature that most frequently had the first rank
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was given the first overall ranking. This procedure was repeated for all the other

ranks so that the feature that appeared most frequently at rank N was given rank

N in the overall ranked list. As the number of feature elements (dimensionality

of the feature vector) were steadily reduced to a certain level, the performance

of the method was improved.

Figure 4.10 illustrates total error rates for different feature dimensions selected.

Figure 4.10 Variation in accuracy with feature dimension for
feature and score fusion

It can be seen in the Figure 4.10 that the error is reducing as the feature

dimension was reduced. The lowest total error rate was observed when the feature

dimension was reduced to around 15. The total error rate started increasing again

when the feature dimension was further reduced. The system produced higher

total error rates when the feature dimension was larger.
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Figure 4.11 shows the ROC curves for different feature a single-eye for photo

attack. Reducing the number of features improved the performance but the

best results were achieved when using a subset of best 15 features (as shown in

Figure 4.11). At 10% FPR, the TPR exceeded 90% which was only around 40%

when using the entire feature set.

Figure 4.11 Feature performance with single-eye feature

Similarly Figure 4.12 shows the performance of the feature fusion of both eyes

for optimum feature and other various feature sets.

The results improved using the optimum feature set. In Figure 4.12 ROC curves

for various subsets of the feature set are presented. At 10% FPR, the TPR was

approximately 80% using 15 best features. This was only around 44% when using

the entire feature set.
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Figure 4.12 Feature fusion performance

The ROC curve of the score fusion scheme using optimum features from left

and right eye is presented in Figure 4.13. It is apparent that the performance

of the system is improved significantly using the optimum feature set. At 10%

FPR, the TPR exceeded 99%. This was only around 68% when using the entire

feature set.

Table 4.1 presents a comparative performance of the proposed methods at var-

ious levels of FPR. The feature fusion scheme gave the highest error rates in

all cases. While using features from only single-eye, the TPR was 91%. This

improved considerably when the score fusion approach was implemented. At 1%

FPR, a TPR of 93% was achieved using score fusion. At 10% FPR, this rose to

99%.
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Figure 4.13 Score fusion performance

Table 4.1 TPR comparison of the three schemes at various FPRs

FPR=0.01 FPR=0.02 FPR=0.05 FPR=0.10

Signle Eye 0.84 0.86 0.90 0.91

Feature Fusion 0.47 0.62 0.74 0.78

Score Fusion 0.93 0.94 0.97 0.99

4.5 Extended Experimental Results

Initial experiments using the small database provided an encouraging indication

of the potential of the proposed colocation feature and fusion schemes for photo

attacks. The initial experiments also indicated that the score-based fusion scheme

outperformed the other schemes (single eye, feature fusion). It was decided to

explore whether the choice of features and fusion scheme that would work for
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detecting other types of presentation attacks (using masks or video replay).

Further experiments were carried out to test the proposed novel feature on a

larger database and other types of attack scenarios to confirm the claims made

in the preliminary experiments. These experiments included photo, mask and

video replay attacks.

Figure 4.14 ROC curve of the colocation feature using entire
feature set for photo attack

The colocation feature performance for photo spoofing attacks using the entire

feature set is illustrated in Figure 4.14. The performance of the system is poor

but it still classifies some spoofing attempts correctly. This could be improved

further with feature selection or in combination with other features.

Figure 4.15 shows the performance of the mask spoofing attack using the entire

feature set. The system performance is poor when compared to photo spoofing
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attacks. Nevertheless, the feature may be able to contribute to improve the

system performance to some extent when combined with other features.

Figure 4.15 ROC curve of the colocation feature using entire
feature set for mask attack

Figure 4.16 shows the ROC curves for the entire feature sets for video replay

attacks. The performance of the system was found to be better compared with

other attack scenarios as shown in Figure 4.14 and Figure 4.15.

Although the video is recorded from the genuine person, responding to the

challenge, the challenge is random each time it runs. When the impostor was

replaying the video to spoof the method, the probability of repeating the same

pattern of the challenge locations is very low. Hence the subject in the video

was not responding to the corresponding locations of the simulated challenge.

Therefore, there is no correlation between the challenge and and video response.

That is why video attack detection performed better.
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Figure 4.16 ROC curve of the colocation feature using entire
feature set for video replay attack

At 10% FPR, video replay performance is 83% and photo attack TPR is about

43%. The mask attack detection performance is lower compared to the video

and photo spoof detection performance. At 10% FPR, video replay performance

is 25%.

This method performance could be improved to use the subset of features which

are more optimum of the entire feature set. In order to find the feature dimension

for such feature, forward feature selection method [131] was again used to rank

the features. In similar fashion the feature selection method was run many times,

at each run random sets of the data for training and testing were chosen. The

results of these runs were combined to a single feature.

Figure 4.17 presents total error rates as a function of the number of features

selected to find optimum feature sets for colocation features of photo and mask
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Figure 4.17 Variation in accuracy with feature dimension

spooking attempts. The total error rate was decreasing as the feature dimension

was reduced until around 10 for mask attacks. In case of photo attacks the total

error was almost same for 15 and 10 feature set. Further reducing the feature

dimension caused the total error rate to increase.

Figure 4.18 Variation in accuracy with FPR

Figure 4.18 presents the total error rates as a function of the false positive rate

to find optimum sets of colocation features for a various set of features selected.

In this experiment the photo and mask attacks modalities were combined and
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treated together as single spoofing attempts against genuine attempts. The com-

bination of these attack modalities allows the establishment of a single optimal

feature vector that can be used for all of these major spoofing challenges. Video

spoofing attack data was excluded from this feature ranking exercises as the

system already has shown to perform well in detecting video spoofing attacks.

Again the feature selection method was run several times, choosing random

sets of data for training and testing for each run. The results of these runs were

combined to rank the features. It is shown in Figure 4.18 that the lowest total

error rate was observed when the feature dimension was reduced to around 3.

The colocation feature performance for photo, mask and video spoofing attacks

using this optimum feature set is illustrated in Figure. 4.19.

Figure 4.19 ROC curve of the colocation feature using optimum
feature set
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Photo attack detection gives the best performance, the video replay attack

detection ranks second in performance, followed by the photo mask attack de-

tection using colocation feature. At 10% FPR about 70%, 38% and 65% TPR

are achieved for photo, mask and video replay detection respectively. In general

video performance could have improved further using reduced feature set if the

feature extracted from video were included in feature ranking procedure. But as

is discussed in earlier section that the feature ranking was done only for photo

and mask attacks because the video attack detection performed considerably

better.

4.6 Conclusion

This chapter has presented a novel feature for liveness detection in the presence

of photo, photo mask and video replay spoofing attacks for face verification

systems. It is a challenge-response approach using a visual stimulus to direct the

gaze. The test scenario did not constrain the users to move either their head

or eyes exclusively. However, the proposed gaze colocation features provided a

robust measure for discriminating between live and fake attempts.

Experiments support the potential viability of this approach.

The main contribution of this chapter has been,

• New feature

• Investigate single-eye, feature fusion and score fusion of both eyes.

• Investigate three types of presentation attack which were photo, mask and

video replay attacks.

In the next chapter a new feature called collinearity will be presented.
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Gaze Collinearity

5.1 Introduction

The work presented in this chapter (in part based on work published by the

author in [132] [133]) explores another feature set, hereby referred to as the gaze

collinearity feature set, for the detection of presentation attacks. The same kind

of visual stimulus which is presented in Section 3.5.3 is used here to direct the

gaze of the user to sets of collinear points on the screen. The system records

the gaze of the user with an ordinary webcam. Features based on the measured

collinearity of the observed gaze are then used to discriminate between genuine

attempts responding to the challenge and those conducted by impostors. Several

sets of experiments reported later in this chapter indicate the effectiveness of

the proposed method in detecting spoofing attacks. The scenario considered in

the experiments reported in this chapter is that of a face recognition system

using an ordinary webcam. The spoofing attack is assumed to be through an

imposter holding a photograph, a photo mask or replaying a recorded video of

80
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an individual target presented to the camera of the face recognition system and

attempting authentication.

In this chapter we also explore the effect of stimulus alignments or orientations

on the performance of the proposed system. The aim is to establish whether there

is such a sensitivity and, if so, to explore how this may be exploited for improving

the design of the stimulus. The results suggest that for liveness detection using

this experimental setup collecting feature points along the horizontal direction

may be more effective than the vertical direction.

The chapter is organized as follows: First the motivation for using gaze collinear-

ity as a feature is presented in Section 5.2. In Section 5.3 a definition of the

collinearity feature and a formal derivation of this feature is provided. Sec-

tion 5.4 gives a summary of the experimental results. Section 5.5 explores the

fusion of colocation and collinearity features. Some concluding remarks for the

chapter are given in Section 5.6.

5.2 Gaze Collinearity Motivation

Collinearity feature vectors extracted from the facial images captured when the

stimulus locations appeared on straight lines. When the stimulus locations on

screen are along a straight line, the x or y-coordinate values of these locations are

the same as shown in Figure 5.1. Facial images were captured when stimuli were

presented to the user on these locations. Therefore, it may be assumed that the

x and y coordinates of the corresponding centers of the pupils for these sets of

stimulus locations should also be very similar in genuine attempts. This should

result in a very small variance in the observed coordinate values for these sets
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of collinear points compared to those obtained for fake attempts. The collinear-

ity feature vector is therefore a set of variances of face landmark coordinates

extracted from multiple sets of collinear challenges/targets.

5.3 Gaze Collinearity Features

A set of points lying on a straight line is referred to here as a collinear set of

points and this property of this set of points is hereby referred to as collinearity.

Collinearity features are, therefore, extracted from sets of images captured when

the stimulus is on a given line. In the investigations reported here, only horizontal

or vertical collinearity cases were studied.

Figure 5.1 Vertical and Horizontal Collinear set of points

Let Sl be a collinear subset of P , where the stimuli are horizontally aligned.

Sl ⊆ C, l = 1, . . . , L where L is the number of horizontally aligned sets of

stimulus locations. For (x, y) ∈ Sl, y = al where al is constant. Let R be the set
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of landmark locations in the captured images.

R = {rp1, rp2, . . . , rpi, . . . , rpM}

where, rpi = {(uik, vik)} 1 ≤ i ≤M, 1 ≤ k ≤ K

(5.1)

and (u, v) are the pixel positions in the image coordinate system for a given

landmark k (e.g. corner of the left eye) and K is the total number of such

landmarks. Individual subjects moved their eyes and heads by different amounts

in response to the movement of the stimulus. They may also be sitting in different

positions relative to the screen and camera in each session. So in order to remove

these user and session dependent factors in estimating gaze features the data

was normalized. The spatial coordinates of the landmarks for each session were

normalized using the Min-Max normalization technique [134] prior to feature

extraction. The (u, v) coordinates used in this study refer to these normalized

values.

For each Slk there is a corresponding subset of R. Let this be denoted by Tlk.

Tlk ⊆ R, l = 1, ..., L (5.2)

for any given landmark k. Let vik = f(uik) denote the trajectory of the facial

landmark in response to the challenge. Since the trajectory of the challenge Sl is

horizontal, a horizontal response can be assumed and this may be approximated

by the equation of a horizontal line.

v̂k = bk where bk is a constant (5.3)



Chapter 5. Gaze Collinearity 84

Figure 5.2 Observed locations (•) and expected locus of the
landmark positions (–)

The particular value of bk depends on the system setup. Let, eik denote the

deviation between the estimated v̂ik and observed vik (see Fig. 5.2), i.e.,

eik = vik − v̂ik (5.4)

For simple horizontal collinearity, v̂ik is calculated as the mean of the observed

vik. So, the mean square error (MSE) for Tlk will be

Elk =
1

N

∑
i
e2ik =

1

N

∑
i
(vik − v̂ik)2 (5.5)

where N is the cardinality of Tlk. A similar expression can be derived when the

challenge is vertically aligned. As there are multiple face landmarks as well as

several stimulus challenge trajectories, a feature vector, Fcolin, can be constructed

from the concatenation of these MSE values (and optionally other feature values)
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and used for liveness detection.

Fcolin = [E11, E12, . . . , E1K , E21, . . . , Eik, . . . , ELK ] (5.6)

A generalised form of the expression for collinearity feature along any straight

line is derived here. The collinearity feature provided above, derived for horizon-

tal stimulus loci, may be generalised to include any linear trajectory. Let Slk be a

collinear subset of C, where the stimuli are linear. Slk ⊆ C, l = 1, . . . , L where L

is the number of linear sets of stimulus locations. For (x, y) ∈ Slk, y = al1x +

al0 where al1 is constant.

Let R be the set of landmark locations in the captured images.

For each Slk there is a corresponding subset in R. Let this be denoted by Tlk

Tlk ⊆ R, l = 1, . . . , ..., L (5.7)

for any given facial landmark k, and let vik = f(uik) denote the trajectory of the

landmark in response to the challenge. Since the trajectory of the challenge Sl

is linear, a linear response can be assumed and this can be approximated by the

equation of a line

v̂k = bk1uk + bk0 where bk1, bk0 are constants. (5.8)

bk1 should be the same as al1 (the slope of the challenge trajectory) whereas bk0

depends on the system setup, user interaction, etc.

Let, elk denote the deviation between the estimated v̂ik and observed vik (see

Fig. 5.3), i.e.,

eik = vik − v̂ik (5.9)
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So, the mean square error (MSE) for Tlk will be

Elk =
1

N

∑
i
e2ik =

1

N

∑
i
(vik − v̂ik)2 (5.10)

where N is the cardinality of Tlk

By substituting eq. 5.8 in eq. 5.10 and replacing with bk1 with al1

Elk =
1

N

∑
i
(vik − (al1uik + bk0))

2

=
1

N
(
∑

i
(v2ik + a2l1

∑
i
u2ik + b2k0N

−2al1
∑

i
vikuik + 2al1bk0

∑
i
uik − 2bk0

∑
i
vik)

(5.11)

Figure 5.3 Observed locations (•) and expected locus of the
landmark positions (–)
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Here, bk0 should be such chosen that Elk is a minimum. Hence

∂Elk

∂bk0
= 0

=⇒ 2bk0 +
2al1
N

∑
i
uik −

2

N

∑
i
vik = 0

=⇒ bk0 =

∑
i vik − al1

∑
i uik

N
(5.12)

Eq. 5.12 can be used to calculate Elk. As there can be multiple face landmarks

as well as several distinct linear challenge trajectories, a feature vector Fcolin

can be constructed from the concatenation of these values and used for liveness

detection.

Fcolin = [E11, E12, . . . , E1K , E21, . . . , Elk, . . . , ELK ] (5.13)

More complex and nonlinear stimulus trajectories may also be used and features

can be obtained using a similar approach.

Other features can be added to the proposed global feature which may further

enhance the distinction between genuine and fake attempts.

F = [Fcolin, Fcoloc, Fother, . . .]. (5.14)

This formulation is similar to the least square regression method [135] but in

this case the slope of the best fit line is defined by the challenge and not by the

data points.
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5.4 Experimental Results

Several sets of experiments were carried out to verify the performance of the

proposed features in distinguishing genuine attempts from fake attempts. Ini-

tially, the effectiveness of the proposed collinearity features was investigated with

a small quantity of data to see if the features were worth investigation in more

detail. Then another set of the experiments were carried out to investigate the

nature of the challenge. The aim of these experiment was to optimise the chal-

lenge.

Preliminary results of this investigation are discussed in Section 5.4.1 of this

chapter. For subsequent investigation we collected more data from the test sub-

jects for photo attacks. Also data was collected for photo mask and video replay

presentation attacks. The detail of the database is discussed in Chapter 3. In

the last set of experiments the collinearity features were further tested with the

big database.

5.4.1 Preliminary Experimental Results

The initial experiments were carried out to estimate the potential of the proposed

collinearity feature in distinguishing between genuine and fake attempts. Data

was collected from 5 subjects in 3 sessions. Each volunteer performed 3 genuine

and 3 fake attempts. This small database was composed of 15 genuine and 15

fake photo presentation attack attempts. Each attempt acquired 358 frames of

facial images, and the resolution of the images is 35 × 288 pixels. A setup similar

to that shown in Figure 3.6 was used.

For the observations reported here, only the centres of the pupils in the captured

frames were used. For the vertically collinear points, the x-coordinate values of
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Figure 5.4 Feature distribution with outlier inclusion

the target are same. It can then be hypothesized that the x coordinates of the

pupil centres in the corresponding frames should also be very similar. This should

result in a very small variance in the observed x coordinates (σ2
x) of the pupil

centre. Since there are many such sets of vertically collinear points, in order to

reduce the feature dimensionality, the mean of these variances was used as the

discriminatory feature. In a similar fashion, the mean of the variance of the y

coordinates (σ2
y ) for the horizontally collinear sets was included in the feature

vector. Similar features can be extracted from other facial landmarks, but were

not used in the results reported here.

Figure 5.4 illustrates the distribution of the genuine and impostor attempts

in the feature space. As anticipated, genuine attempts showed much smaller

variances compared to those of the fake attempts in most of the cases.

If the impostor holds the photo or mask still (i.e., makes no attempt to respond

to the challenge) this will produce very small changes in the measured landmarks

location. However, this can also happen when a genuine user is non-cooperative
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or non responsive. The opposite extreme can also occur, when the genuine user’s

response to the challenge involves extreme head and eye movements. Some may

produce large variances in response to the challenge. The maximum expected

gaze deviation from the normal to the screen is approximately 15 degrees for

this experimental setup. Such extreme behaviour can be treated as suspect and

may be flagged as fake attempts. Figure 5.5 shows the distribution of genuine

and fake attempt features when such outliers are excluded. It is evident that in

this case the separation between genuine and impostor features has become more

prominent through removing the outliers.

Figure 5.5 Feature distribution without outliers

The criteria used for the identification of outliers are shown in Table 5.1. Rule

1 excludes the cases where the net variance in x and y coordinates are smaller

than certain thresholds whereas Rule 2 filters those with very large net variances.

The actual thresholds were determined empirically.

The liveness detection scheme proposed here is a two phase process. In the first

phase, the scheme applies the outliers’ rules and if outliers are detected, identifies
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Table 5.1 Outlier filter criteria

Rule 1
∑
σ2
x < 130 AND

∑
σ2
y < 13

Rule 2
∑
σ2
x > 1000 AND

∑
σ2
y > 300

the attempt as inconclusive and more data would be needed to establish liveness

of the user. In the second phase, a linear discriminant classifier [136] using the

collinearity features is employed to decide the liveness of the user. Table 5.2

shows the accuracy of the proposed method both with and without the outlier

detection phase.

Table 5.2 Performance of the proposed method

FAR FNR

Outliers not excluded 13.3% 0.0%

Outliers removed 0.0% 0.0%

The results show that in both configurations (with or without the outlier de-

tection phase) the FNR is 0%. Exclusion of the outliers reduced the FAR to 0%

too.

These experiments indicate the potential viability of this approach. Next the

experiments were expanded to include more users and attempts and also explore

more attack scenarios and more sophisticated spoofing attacks. The impact on

performance of reducing, the challenge duration was also explored to cut down the

number of vertical and horizontal collinear points set used for feature extraction.

5.4.2 Directional Sensitivity in Gaze Collinearity

Here we explored the sensitivity of the proposed system to different stimulus

alignments orientations. The aim was to establish whether there was any such

sensitivity and if so to explore how this may be exploited for improving the design

of the stimulus.
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In this investigation, coordinates of the landmarks were used to analyse and

compare the performance of the x and y coordinates of the features. The x, y or

both xy coordinates from left and right eyes were passed to independent k-nearest

neighbor (k-NN) classifiers [137]. In this implementation, k has been optimized

to minimize the leave-one-out error in the training data. The normalized scores

(based on the posterior probabilities of class membership) from these classifiers

were combined to produce a single score, using various rule-based fusion schemes

[71].

A small amount of data was collected to investigate the performance of the

proposed scheme. In total 8 subjects participated in the data collection phase.

The data was captured in 3 sessions. A total of 26 fake and 26 live attempts

were captured. The user presented a high quality colour photo of a target user

in front of the camera for a spoofing attempt.

Collinearity feature vectors were extracted from the facial images captured

when the stimulus locations appeared along horizontal and vertical lines. In the

first phase, only the x coordinates from both eyes (left and right) were used for

the classification of fake and live attempts. This was done to investigate the x

coordinates of the eyes on their own. Figure 5.6 illustrates where the score from

the each eye x coordinates was combined to get single score for decision.

Figure 5.6 Score fusion using x coordinates of the left and right
eye
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In this experiments the y coordinates from both eyes were used for the classifi-

cation of fake and live attempts. Figure 5.7 shows the fusion of the y coordinates

of both eyes scores.

Figure 5.7 Score fusion using y coordinates of the left and right
eye

The last set of experiments were the combination of the above two cases. In

this phase x coordinates and y coordinates from both eyes were used, using fusion

rules as shown in Figure 5.8. In this figure x and y coordinates from the left and

right eye were passed to a separate classifier and their scores were fused together

using sum, product and majority-vote rules [134].

Figure 5.8 Score fusion using x and y coordinates of the left and
right eye
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Figure 5.9 ROC curves showing the performances of the three
proposed schemes

Figure 5.9 shows the ROC curves, which shows the performance of the feature

extracted along x coordinated, y coordinate and combination both xy coordinates

form both eyes. The performance of the system was found to be lower when

using only the y-coordinate features. Although using x coordinate features alone

improved the performance, using both x and y coordinates performed best. Using

both x and y coordinates of both eyes, the system performance reached 75% TPR

(at 10% FPR). Using only the x coordinate of both eyes the system achieved 72%

TPR (at 10% FPR). The scores were combined using the sum rule score fusion.

At the lower FPR (< 0.10), the ROC curve of the x coordinate features is similar

to the ROC curve of xy coordinate features. The ROC curves for these features

rise rapidly with increasing FAR and show a much better performance than

that of the y-coordinate features alone. In conclusion, these results suggest that

the x coordinate features are better in comparison to the y coordinate features.

The improvement is very small in the performance between using features based
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on the x coordinate only, and the x and y coordinates together. The system

performance may be improved more efficiently by increasing the number or range

of the x coordinate features.

Table 5.3 Comparison of performance of Different Feature

TPR

Ruled base @FPR @FPR @FPR

fusion = 0.02 = 0.05 = 0.10

x-coordinate from both eyes Product 0.53 0.62 0.70

y-coordinate from both eyes Product 0.07 0.19 0.35

x-y-coordinate from both eyes Product 0.50 0.63 0.72

x-coordinate from both eyes Sum 0.52 0.63 0.72

y-coordinate from both eyes Sum 0.10 0.23 0.41

x-y-coordinate from both eyes sum 0.54 0.64 0.75

x-coordinate from both eyes Majority vote 0.21 0.53 0.64

y-coordinate from both eyes Majority vote 0.14 0.16 0.31

x-y-coordinate from both eyes Majority vote 0.06 0.52 0.72

Table 5.3 shows the performance of the system using various feature subsets,

and fusion schemes. The x coordinate features gave better performance compared

to the y-coordinate features. But combining the x and y coordinate improves the

performance slightly. The sum score fusion rule gave the most promising result.

These are interesting results that require further investigation for the identifi-

cation of possible causes. It may be suggested that human beings can move and

position their head/eye more easily and with more accuracy in the horizontal

direction. This effect may also be due to the nature of the display screen used

for the challenge i.e. the width of the screen is greater than the height.

5.4.3 Extended Experimental Results

Once the sensitivity of the different stimulus alignments was investigated, the

design of the challenge was decided. It was designed in such a way that in total,
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6 vertically collinear and 5 horizontal collinear point sets were extracted for this

data set. The aim of this part of the experiment was to validate the prelimi-

nary results with more data and also to investigate other types of sophisticated

spoofing attacks.

Error rates were calculated for a range of system operating parameters and

are reported here. True Positive Rates at a set of predefined FPR values were

obtained and used for comparison. The detection performance of the system for

mask attacks was better than that achieved for photo attacks. At 10% FPR,

video replay detection TPR is about 99%, mask attack detection TPR is 71%

and photo attack detection is about 55%.

In order to establish the tradeoff between the feature dimensionality and live-

ness detection, the accuracy of the system was determined as the feature dimen-

sions were steadily reduced. A forward feature selection method [131] was used

for this purpose.

The feature selection method was run several times, choosing random sets of

data for training and testing for each run. The results of these runs were com-

bined to rank the features. It can be seen in Figure 5.10 that the lowest total

was observed when the feature dimension was reduced to around 3 for collinearity

feature.

Figure 5.10 presents total error rates as a function of the number of features

selected to find optimum sets of collinearity features. In this experiment the

photo and mask attack modalities were combined and treated as presentation

attack against genuine attempts. The combination of these attack modalities

allows the establishment of a single optimal feature set that can be used for all

of these major spoofing challenges. Video attack data was excluded from this

feature ranking exercise as the system already performed very well in detecting

video spoofing attacks.
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Figure 5.10 Variation in accuracy with FPR for Collinearity
Feature

The collinearity feature performance for photo, mask and video spoofing attack

using this optimum feature set is illustrated in Figure 5.11.

It is evident that the system displayed a near-perfect performance in detecting

video attacks. Here again the replay video was captured from the genuine person

in response to the challenge. At the time of impostor attack, the user replayed

the video in response to the challenge. The video was not responding to the

corresponding stimulus locations as the challenge locations pattern was different

from the one at which video was recorded. Hence no collinearity can be seen in the

video response. Therefore, video attack resulted in better detection performance.

The detection performance of the system for mask attacks was better than that

achieved for photo attacks. At 10% FPR, video replay detection TPR is about

100%, mask attack detection TPR is 79% and photo attack detection is about

69%. Table 5.4 presents TPR values at 10% FPR for the three spoofing attack

detection scenarios using the collinearity feature. It shows the error rates when
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Figure 5.11 ROC curve of the proposed system using optimum
feature set schemes

collinearity features are implemented in a multi-classifier configuration. Score

fusion has been used in these cases.

Table 5.4 TPR at FPR = 0.10 using optimum feature sets

Feature Sets Photo Mask Vidoe Replay

Collinearity 0.69 0.79 1.00

5.5 Fusion both Collinearity and Colocation

Next the effectiveness of the two proposed features, collinearity and colocation,

in combination with each other in detecting liveness were investigated. Sev-

eral schemes were set up to explore the gain in accuracy achieved by combining

features extracted from both the eyes in a multi-classifier configuration incorpo-

rating rule-based fusion [71]. Several classification schemes were investigated and

the k-NN classifier was found to produce the best performance. These classifiers
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Figure 5.12 Collinearity and colocation fusion

(k-NN) were used to obtain the individual classification scores for each eye and

each feature set. The a posteriori probabilities from the separate classifiers were

combined at the fusion stage for liveness detection. The scheme is illustrated

in Figure 5.12. The k-NN classifier from the prtools package used for this work

automatically determined an optimum k-value for each experiment. Each ex-

periment was run 400 times with random sets of data for training and testing,

resulting in a dierent optimum k values for each run. These optimal k values were

combined to obtain an overall mean k value to be used for operational systems.

In the case of collinearity features this mean optimal k value was 7.

Figure 5.13 shows the Receiver Operating Characteristic (ROC) curves for com-

bined collinearity and colocation features using the proposed fusion scheme. It

is evident that the system displayed a near-perfect performance in the case of

video attacks detection.

The performance of the system for mask attack detection was better than that

achieved for photo attacks detection. At 10% FPR, video replay detection TPR

is about 99%, mask attack detection TPR is 69% and photo attack detection is
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Figure 5.13 ROC curve using entire feature vector

about 58%.

Table 5.5 TPR at FPR = 0.10 using the entire feature set

Feature Sets Photo Mask Video Replay

Collinearity 0.55 0.71 0.99

Colocation 0.43 0.25 0.83

Collinearity and Colocation 0.58 0.69 0.99

Table 5.5 presents TPR values at 10% FPR for the three spoofing attack detec-

tion scenarios. It shows the error rates when collinearity and colocation features

are implemented on their own, as well as in multi-classifier configuration. It is

evident that in all the schemes implemented, the video replay attack detection

outperformed the other two types of attacks. The collinearity features were supe-

rior to the colocation features. Using score fusion, the TPR for hand held photo

attack detection improved, the photo mask detection performance was slightly

decreased, and video replay attack detection remained the same. Product-rule

based score fusion has been used in these cases.
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Figure 5.14 Variation in accuracy with feature dimension

In order to establish the tradeoff between the feature dimensionality and live-

ness detection accuracy of the system was determined as the feature dimensions

were steadily reduced. A forward feature selection method [131] was used for

this purpose. Figure 5.14 presents total error rates as a function of the number

of features selected to find optimum feature sets for collinearity and colocation

features.

The collinearity and colocation feature performance for photo, mask and video

spoofing attack using this optimum feature set is illustrated in Figure 5.15. Video

replay attack detection gives best performance while the photo mask attack de-

tection ranks second in performance followed by hand held photo attack detection

using collinearity feature.

At 10% FPR, TPR of 69%, 79% and 100% are achieved for photo, mask and

video replay attacks respectively. The colocation feature performance is much

weaker compared to the collinearity performance. At 10% FPR about 70%, 38%
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Figure 5.15 ROC curve of the proposed system using optimum
feature set

and 65%TPR are achieved for photo, mask and video replay detection respec-

tively.

Figure 5.16 shows the ROC curves for the optimum feature sets for fusion

of collinearity and colocation information. The performance of the system was

found to be worse when collinearity or colocation features were used separately

for most scenarios as can be seen in comparison with Figure 5.15. At 10% FPR,

video replay performance is 100% and photo attack TPR increased to about 90%.

The mask attack detection performance marginally increased after fusion and is

lower compared to the video and photo spoof detection performance.

Table 5.6 summarizes some of the key results from Figure 5.15 and Figure 5.16

and presents results for each feature type separately along with the results for the

combined collinearity and colocation features, which gave a better performance.

For video replay attack detection, the proposed combined system is error free
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Figure 5.16 Score fusion performance using optimum feature
sets

(for this data set). The performances of collinearity, colocation features and their

fusion for the entire feature set and optimum feature sets are shown in Table 5.5

and Table 5.6 respectively for comparison. Using the optimum features, the

TPRs of combined collinearity and colocation feature increased by 32% and 15%

for photo and mask attack detection respectively. For video replay attack the

proposed scheme is nearly perfect, and no significant improvements due to fusion

were noticed.

Table 5.6 TPR at FPR = 0.10 using optimum feature sets

Feature Sets Photo Mask Vidoe Replay

Collinearity 0.69 0.79 1.00

Colocation 0.70 0.38 0.65

Collinearity and Colocation 0.90 0.81 1.00

In this experiment the photo and mask attack modalities were combined and

treated together against genuine attempts. The combination of these attack
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modalities allows the establishment of a single optimal feature set that can be

used for all of these major spoofing challenges. Video attack data was excluded

from this feature ranking exercise as the system already performs very well in

detecting video spoofing attacks. The feature selection method was run several

times, choosing random sets of data for training and testing for every run. The

results of these runs were combined to rank the features. It can be seen that the

lowest total error rate was observed when the feature dimension was reduced to

around 5 for both feature types.

Figure 5.17 Genuine vs fake (photo, mask, video) performance
using optimum feature sets

In the following experiments all attacks types were treated as one class (fake)

rather than as three separate attack scenarios. Figure 5.17 illustrates the ROC

curves for real and fake attempts. Combination of collinearity and colocation
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data again gave better performance. The performance of collinearity features is

very close to that achieved by the performance of the combined features. At 10%

FPR, TPR of about 91%, 63% and 93%, were achieved for collinearity, colocation

and their fusion respectively. The colocation feature performance is much weaker

compared to the performance of collinearity and fusion based schemes.

5.6 Conclusion

This chapter presents a face liveness detection technique that may be used for

a range of biometric applications. The proposed system is a challenge-response

approach using a visual stimulus to measure the gaze of the user for the purpose

of establishing the presence of photographic, mask and video spoofing attacks.

Collinearity features are proposed and used to provide a measure to discrimi-

nate between live and fake attempts. Preliminary experiments were carried out

to estimate the potential of the proposed novel features. The first set of experi-

mental results were promising and the challenge was redesigned to collect further

data to further support the potential of the novel feature. Before designing the

final challenge, we investigated the direction sensitivity of the challenge to enable

us to extract more informative features.

We analysed the performance of the system using x and y coordinates of the

pupil centre. The features based on x coordinates of the eye centre locations

were found to be more effective for liveness detection. Given that the acquisition

time will have to be bounded, this implies that the set of challenge points should

be chosen to have more vertically collinear sets of points.

The main contribution of this chapter has been,

• Another gaze-based novel feature
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• Investigate score fusion of both eyes and score fusion of colocation and

collinearity features.

• Investigate three types of presentation attack which were photo, mask and

video replay attacks.

In the next chapter another novel feature gaze-based homography features are

investigated.



CHAPTER 6

Gaze Homography-based Feature

6.1 Introduction

This chapter presents a third novel gazed-based feature named “gaze homogra-

phy”. Here homography is used to capture the relation between screen coordi-

nates and points on the image sensor. It may be assumed that there is a relatively

stable relationship between screen coordinates of stimulus to which gaze is di-

rected and the sensor coordinates of the eye landmarks for a genuine attempt.

The absence of such stability can be exploited to detect presentation attacks

using artifacts such as printed photographs, photo masks and video replay.

As before, in this approach the user’s gaze is directed to random positions

on the display and the facial image of the user was captured at each position

of the challenge to extract the pupil coordinates of the user. These pairs of

coordinates were used to estimate the transformation matrix which relate the

screen coordinates to the pupil coordinates. This chapter also covers the fusion

107



Chapter 6. Gaze Homography 108

of all the features studied in this research to explore if the performance of the

liveness detection system can be further improved.

The organization of this chapter is as follows: A mathematical framework for

the use of homography is presented in Section 6.2. All the necessary steps to

calculate the homography relationship are also explored in this section. The

gaze-based homograph features are derived in Section 6.3. Two systems using

these features are proposed in Section 6.4. Section 6.5 gives a summary of the ex-

perimental results. Section 6.6 presents the combining of collinearity, colocation

and homography features with detailed experimental results using score fusion.

Finally Section 6.7 provides the chapter summary and concluding remarks.

6.2 Homography and its Estimation

A function that maps one vector space into another is often achieved by using

a transformation matrix. If the vector addition and scalar multiplication are

preserved, a mapping is considered to be a linear transformation. There are two

types of linear transformations called projective (homography) and affine trans-

formations. Affine transformation is a particular case of the projective transfor-

mation. In projective transformations angles, distance, ratios of distances are

not preserved [138]. However, the straight lines are preserved projective trans-

formation [138]. While in affine transformation lines map to lines, parallel lines

remain parallel lines, ratio of lengths of two parallel segments remains same etc.

[139].

A 2D point (x, y) in an image can be represented as a 3D vector x = (x1;x2;x3)

where x = x1

x3
and y = x2

x3
. This is called the homogeneous representation of a

point and it lies on the projective plane P 2 [140]. Consider image coordinates

(x, y) plane and screen coordinates (u, v) plane are related by homography. To
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estimate the homography matrix, the relationship between two corresponding

points can be written as in Eq. 6.1.


x

y

1

 =


h11 h12 h13

h21 h22 h23

h31 h32 h33



u

v

1

 (6.1)

In Eq. 6.1 the transformation matrix is


h11 h12 h13

h21 h22 h23

h31 h32 h33



where

h11 h12

h21 h22

 is a rotation matrix. This matrix defines the kind of trans-

formation that will be performed: scaling, rotation, and so on.

Similarly

h13
h23

 is the translation vector. It simply moves the points and

[
h31 h32

]
is the projection vector.

To estimate the homography matrix from Eq. 6.1, the relationship can be

re-written as in Eq. 6.2,


x

y

1

 =


h11u h12v h13

h21u h22v h23

h31u h32v h33

 (6.2)

Eq. 6.2 can re-written as in Eq. 6.3,
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x = h11u+ h12v + h13

y = h21u+ h22v + h23

1 = h31u+ h32v + h33

(6.3)

To represent these coordinates in homogenous coordinates,

x =
h11u+ h12v + h13
h31u+ h32v + h33

y =
h21u+ h22v + h23
h31u+ h32v + h33

(6.4)

Setting h33 = 1

x =
h11u+ h12v + h13
h31u+ h32v + 1

y =
h21u+ h22v + h23
h31u+ h32v + 1

(6.5)

Multiplying through by denominator

(h31u+ h32v + 1)x = h11u+ h12v + h13

(h31u+ h32v + 1)y = h21u+ h22v + h23

(6.6)

Rearranging the above Eq. 6.6,

h11u+ h12v + h13 − h31ux− h32vx = x

h21u+ h22v + h23 − h32uy − h32vy = y

(6.7)

Homography has 8 degrees of freedom so there should be a minimum 4 sets

point of (x, y) and corresponding (u, v) to estimate the homography matrix.
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Subsituting these 4 sets of coordinates in Eq. 6.7, we obtain Eq. 6.8,



u1 v1 1 0 0 0 −u1x1 − v1y1

0 0 0 u1 v1 1 −u1x1 − v1y1

u2 v2 1 0 0 0 −u2x2 − v2y2

0 0 0 u2 v2 1 −u2x2 − v2y2

u3 v3 1 0 0 0 −u3x3 − v3y3

0 0 0 u3 v3 1 −u3x3 − v3y3

u4 v4 1 0 0 0 −u4x4 − v4y4

0 0 0 u4 v4 1 −u4x4 − v4y4





h11

h12

h13

h21

h22

h23

h31

h32



=



x1

y1

x2

y2

x3

y3

x4

y4



(6.8)

In this way the homomoraphy matrix which relates two planes to each can be

estimated.

6.3 Feature based on Gaze Homography

A small shape (stimulus) is presented to the subject on the screen whilst they are

seated in front of the computer screen and instructed to follow it as it changes

its location on the screen with natural head/eye movements. Let C be the set of

challenge locations where the stimulus was presented,

C = {c1, c2, . . . , cd, . . . , cD}

where, cd = (x, y) ; d = 1, . . . , D

(6.9)

The stimulus can be shown at a location multiple times and let P be the sequence

of M such presentations.

P = {p1, p2, . . . , pm, . . . , pM}

where, pm ∈ C;m = 1, . . . ,M

(6.10)
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Let R be the set of landmark locations in the captured images for given larmark.

R = {rp1, rp2, . . . , rpi, . . . , rpM}

where, rpi = {(ui, vi)} 1 ≤ i ≤M,

(6.11)

and (u, v) are the pixel positions in the image coordinate system for a given

landmark k (e.g. corner of the left eye) and K is the total number of such

landmarks.

Let Jl be a subset of P , at least 4 points

Jl ⊆ P l = 1, . . . , L where L is the number of set points of stimulus locations.

For each Jl there is a corresponding subset of R. Let this be denoted by Ol.

where Ol ⊆ R, l = 1, ..., L

To estimate homography matrix, denoted by Hl,

Ol = Hl · Jl

Hl = Ol · J−1
l

(6.12)

Hl can be estimated using a set of challenge and image coordinates.

Hl · Jl will give the estimated points on the sensor (ũ, ṽ), let that be R̃,

R̃ = Hl · P (6.13)

R̃ = {r̃p1, r̃p2, . . . , r̃pi, . . . , r̃pM}

where, r̃pi = {(ũi, ṽi)} 1 ≤ i ≤M,

(6.14)
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To find the Euclidean distance between pupil centre coordinates (u, v) and esti-

mated coordinates (ũ, ṽ) is shown below,

Eucl =
√

(vi − ṽi)2 + (ui − ũi)2

Fhomog = [Euc1, Euc2, . . . , Eucl, . . . , EucL]

(6.15)

The Euclidean distance between the pupil centre (R) and the estimated points

(R̃) was expected to be small for genuine attempts and larger for impostor at-

tempt. This phenomenon was then exploited to distinguish between the genuine

and presentation attacks.

Many other features can be extracted from facial landmarks which can further

enhance the proposed method. All these can be combined into a global feature

vector,

F = [Fcolin, Fcoloc, Fhomog, Fother, . . .]. (6.16)

6.4 Proposed Systems

Several sets of experiments were carried out to explore the performance of the

gaze-based homography features. The typical arrangement of the evaluation

framework is shown in Figure 6.1. Gaze-based homography features were ex-

tracted using both eyes and then were passed to separate classifiers for training

and testing using this framework. Initially two methods which were based on

two types of features were investigated. These methods were called System 1

and System 2 in this study.

System 1 is discussed in detail in Section 6.4.1 and System 2 is explored in

detail in Section 6.4.2.
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Figure 6.1 Score fusion using feature extracted from left and
right eye

6.4.1 System 1

In System 1 several homography matrices were calculated using various combi-

nations of corresponding screen and landmarks (observed) coordinates. Small

sets of points were extracted out of the landmarks points along with the cor-

responding screen coordinates in order to estimate the homography matrix for

each set. The stability of these homography matrices was used to discriminate

between genuine and fake attempts. The repeatability of the values of these ma-

trices should ideally be exactly the same. Mean and standard deviation for these

homography matrices were calculated.

h̄ij =
1

L

L∑
l=1

hijl (6.17)

where 1 ≤ ij ≤ 3 and hijl is the element hij in the homography matrix Hl,

σij =

√√√√√ L∑
l=1

(hijl − h̄ij)2

L

(6.18)

Fhomog = [h̄11, σ11, h̄12, σ12, . . . , h̄33, σ33]. (6.19)
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Vector of these means and standard deviations were used as the feature vector

and given to the classifier for training and testing of the proposed method.

Figure 6.2 System 1, where set of H matrixes are calculated

Figure 6.2 show System 1. P and R are the pupil centre and screen coordinates.

Subset of these coordinates were used to estimate the homography matrix.

6.4.2 System 2

System 2 setup is shown in Figure 6.3. In this setup two homography matrices

were calculated using two different sets of screen and corresponding pupil coor-

dinates. For the first homography matrix calculation, the odd points (1,2,...,29)

screen and pupil coordinates were used. Similarly for calculating the second ho-

Figure 6.3 System 2

mography matrix, the even (2,4,...30) screen and pupil coordinates were used.

The two matrices were then used to estimate the points using the screen coordi-

nates. The Euclidean distances between the second 30 observed and estimated
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points were calculated. These Euclidean distances were put in a vector and given

to classifier as feature vector.

6.5 Experiment

Several sets of experiments were carried out to evaluate the homography infor-

mation. In the initial experiments both systems were tested with the same data

to find out which is the more effective system. In the final set of experiments the

colocation, collinearity and homography features were combined together. The

data used for these experiments described in Chapter 3.

In total, 90 pairs of pupil centre coordinates form the captured images were

extracted. Various subsets of these landmarks along with the corresponding

screen coordinates were used to estimate the homography matrix. This matrix

was then used for estimating the gaze of the user to enable us to extract the

features which were then used to determine genuine and fake attempts. The

spatial coordinates of the landmarks for each session were normalized using the

Min-Max normalization technique [134] prior to feature extraction. Min-max

algorithm was used in this application due to its simplicity and the absence of

outliers in the genuine attempts.

6.5.1 Preliminary Experiments

Preliminary experiments were carried out to explore the accuracy of System 1

and System 2. In the first set of the experiments, the screen coordinates and the

observed coordinates were used to estimate the homography matrix.
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Figure 6.4 ROC curves of System 1 using normalised pupil cen-
tre and corresponding screen coordinates for calculating H

Figure 6.4 and Figure 6.5 shows the performance for photo, mask and video

replay attack detection using System 1 and System 2 respectively. These experi-

ments were carried out with normalised coordinates. It is clear from the figures,

System 2 performed better.

Using System 2, other experiments were carried out with normalizd coordinates

to find out the impact of the normalization on the the accuracy of the proposed

method. Performance for photo, mask and video replay attack is illustrated in

Figure 6.6.

It is clear from these small experiments that System 2 with normalised coordi-

nates performed better. Therefore, the remaining experiments were carried out

using System 2 with normalized pupil centre coordinates.
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Figure 6.5 ROC curves of System 2 using normalised pupil cen-
tre and corresponding screen coordinates for calculating H

6.5.2 Extended Experiments

Once the preliminary experiments were carried out using both System 1 and

System 2, it was decided to carry out further detailed experiments using System

2. The aim of this part of the experiments was to further investigate System 2

in more detail to see if the performance of the method could be improved.

Figure 6.5 shows the Receiver Operating Characteristic (ROC) curves for photo,

mask and video spoofing attacks using the proposed scheme shown in Figure 6.3.

At 10% FPR the TPRs were about 42%, 40% and 90% for photo, mask and

video respectively. The system performance for photo and mask attack detection

was poor, the mask performance lightly lower than the photo attack. Video
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Figure 6.6 ROC curves of System 1 using pupil centre and cor-
responding screen coordinates for calculating H

performed better compared to the photo and mask attack. This goes back to

same reason that video was played to a challenge which was different from the

challenge when recording the video. Therefore, the captured relation between the

screen coordinates and the pupil centre, did not represent the correct relation

between them. Hence the gaze stability did not hold any more which is the sign

of impostor attack.

To further improve the accuracy of the proposed method, features were ranked

using the forward feature selection method [131]. The feature dimensions were

steadily reduced by excluding the least informative features to increase the system

performance.
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Figure 6.7 Variation in accuracy with homography feature di-
mension

Figure 6.7 presents total error rates versus the number of features dimensional-

ity selected to find optimum sets for the homography features. In this experiment

the photo and mask attack modalities were treated as one presentation attack

type against genuine attempts.

The feature selection method was run several times, choosing random sets of

data for training and testing for each run. The results of these runs were com-

bined in similar way discussed in Chapter 4. It is shown in Figure 6.7 that the

lowest total error rate was observed when the feature dimension was reduced to

around 5.

Figure 6.8 shows the ROC curves for the optimum feature set for photo and

mask attack detection. Photo and mask attack detection performance improved
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using the optimum feature. However, video performance slightly decreased. As

video attack performed with high accuracy in all features investigated so far, we

did not rank the video feature to find the optimum feature set for video replay

attack. Instead we used the feature vector of mask to select the reduced feature

set for video replay attacks, due to this exclusion the system performance may be

expected to drop for video replay attack. Overall the system displayed a vastly

improved performance for photo and mask attacks detection.

Figure 6.8 ROC curve for phot, mask video using optimum
feature vector

Using optimum feature sets, video replay attack 3out-performed while the

photo attack detection ranked second and mask ranked third At 10% FPR, video

attack detection TPR is 71%, photo attack detection TPR is about 70% and mask

attack detection TPR is about 61%.
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6.6 Fusion of Colocation, Collinearity and Ho-

mography

In these sets of experiments, effectiveness and robustness of the three proposed

features, colocation, collinearity and homography information in combination

with one another in detecting liveness is explored. The proposed scheme is shown

in the Figure 6.9. Features based on gaze stability were extracted from both

eyes. These features were explored in detail in this study. Gaze homography is

explored in detail in the above sections while colocation and collinearity features

are discussed in detail in Chapter 4 and Chapter 5 respectively. In this scheme

the scores from collinearity, colocation and homography were combined together

to achieve the final score for detecting spoofing attacks.

Several classification schemes were investigated. The k-NN classifier produced

the best performance and hence the k-NN classifier was used here. Gaze-based

features were extracted from each eye and were passed to separate classifiers (k-

NN) to obtain the individual classification scores for each eye. The a-posteriori

probabilities from the separate classifiers were combined at the fusion stage using

score fusion for liveness detection. The scheme is illustrated in Figure 6.9 which

show three gaze-based features were fused using score fusion. The k-NN clas-

sifier from the prtools package used for this work automatically determined an

optimum k-value for each experiment. Each experiment was run 400 times with

random sets of data for training and testing, resulting in a different optimum k

values for each run. These optimal k values were combined to obtain an overall

mean k value to be used for operational systems. In the case of homography

features this mean optimal k value was 7.
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Figure 6.9 Proposed scheme combining collinearity, colocation
and homography using score fusion

Figure 6.10 shows the Receiver Operating Characteristic (ROC) curves, us-

ing the proposed scheme shown in Figure 6.9 for photo spoof attacks using the

entire feature set for collinearity, colocation and homography. It can be seen

that the system performance is poor but may be improved further using feature

optimization. Photo attack detection TPR was about 75% at 10% FPR.

Similarly Figure 6.11 shows the Receiver Operating Characteristic (ROC) mask

attack detection. The performance is close to the photo performance. At 10%

FPR, mask attack detection TPR is about 72% which slightly lower than the

photo attacks.

Video replay attack performed with no errors. At 10% FPR, video replay
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Figure 6.10 ROC curve for photo using proposed fusion scheme

detection TPR is about 100%. Again, the video was captured from the genuine

person in response to the challenge. At the time of impostor attack, the user

replayed the video in response to the challenge. The challenge presented to the

replaying video at the time of simulated impostor attempt, was different from

the challenge which was presented to the user at the time of recording the video

. Hence gaze stability may not be repeated in any of the extracted features in

the video response. That may be the reason why the system performed better

for video attack detection.

The performance of the system for mask attacks detection was lower than the

photo attacks detection. Masks have small holes in the pupil centre to facilitate

the impostor to see through to follow the challenge. In this way the impostor may
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Figure 6.11 ROC curve for mask using proposed fusion scheme

have gaze stability close to genuine attempts. This may have made it difficult for

the proposed method to detect the mask attack compared to the photo attack.

In order to establish the tradeoff between the feature dimensionality and live-

ness detection, the accuracy of the system was improved as the feature dimensions

were steadily reduced. A forward feature selection method [131] was used for this

purpose.

Two types of feature ranking were carried out. In the first type of ranking

photo and mask attack scenarios were ranked separately In the second type of

feature ranking, collinearity, colocation and homography features were ranked

separately to explore the system performance based on feature type rather then

attack scenario.

Figure 6.12 presents total error rates versus the number of features selected to
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find optimum sets for the homography features. In this experiment the optimum

feature of collinearity, colocation and homography were used for photo and mask

attack.

Figure 6.12 Variation in accuracy with feature dimension

The feature selection method was run several times, choosing random sets of

data for training and testing for each run. The results of these runs were com-

bined. As shown in Figure 6.12 the lowest total error rate was observed when

the feature dimension was reduced to around 5 and 7 for mask and photo attacks

respectively.

Figure 6.13 shows the ROC curves for the optimum feature sets for fusion of

collinearity, colocation and homography information for photo, mask and video.

The performance of the system was found to improve for all attack type as can be

seen in Figure 6.13. At 10% FPR, video replay performance is 100% and photo



Chapter 6. Gaze Homography 127

attack TPR increased to about 98%. The mask attack detection performance

also increased after fusion and is lower compared to the video (about 84%).

Figure 6.13 ROC curve of the proposed system using optimum
feature set schemes

Table 6.1 presents TPR values at 10% FPR for the three spoofing attack de-

tection scenarios. It shows the error rates when collinearity, colocation and ho-

mography features are implemented on their own, as well as in multi-classifier

configuration. It is clear that in all the schemes implemented, the video replay

attack detection outperformed the other two types of attacks. The collinearity

features were superior to the colocation and homography features. Using score

fusion, the TPR for photo attack detection and the photo mask detection per-

formance improved, and video replay attack detection give perfect performance.
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Table 6.1 TPR at FPR = 0.10 using optimum feature sets

Feature Sets Photo Mask Video Replay

Collinearity 0.69 0.79 1.00

Colocation 0.70 0.38 0.65

Homography 0.69 0.60 0.71

Fusion 0.97 0.84 1.00

In this experiment the photo and mask attack modalities were combined and

treated together as one spoof attack against genuine attempts. Figure 6.14 il-

lustrates the ROC curves for collinearity, colocation and homography features.

The collinearity feature gave the best performance compared to the colocation

and homography features. Homography is second in performance followed by

colocation. At 10% FPR, TPR of about 73%, 23% and 43%, were achieved

for collinearity, colocation, homography. The colocation feature performance

is much weaker compared to the performance of collinearity, homography and

fusion based schemes.

Table 6.2 summarizes the performance of the proposed method. It presents

TPR values for a range of FPRs for the novel gaze-based features and their

fusion. It presents the error rates for collinearity, colocation and homography

features when they are implemented on their own, as well as in multi-classifier

configurations. As can be seen in the Table, the fusion of the collinearity, coloca-

tion and homography performed better. The collinearity features were superior

to the colocation and homography features. Using score fusion, the TPR for im-

postor attack detection performance improved compared to when the proposed

features were implemented on their own.

In order to establish the tradeoff between the feature dimensionality and live-

ness detection, the accuracy of the system was improved as the feature dimen-

sions were steadily reduced. A forward feature selection method [131] was used
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Figure 6.14 Collinearity, colocation and homography feature

Table 6.2 TPR at FPR from 0.01 to 0.05 using entire feature
sets

Feature FPR FPR FPR FPR FPR

=0.01 = 0.03 = 0.05 = 0.07 = 0.10

Collinearity 0.22 0.43 0.56 0.64 0.72

Colocation 0.03 0.08 0.12 0.16 0.23

Homography 0.11 0.24 0.32 0.37 0.43

Fusion 0.37 0.54 0.64 0.72 0.78

for this purpose. In this ranking procedure, photo and mask attack scenarios

were combined and treated as a single impostor attack. The collinearity, coloca-

tion and homography features were ranked individually to see if the the system

performance could be further enhance the proposed method performance.

Figure 6.15 presents total error rates as a function of the number of features

selected to find optimum feature sets for combined collinearity, colocation and
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homography features for photo and mask attack scenarios. It is clear from the

Figure that feature dimension of 5 to 6 performed better.

Figure 6.15 f:Variation in accuracy with gaze feature dimension
for collinearity, colocation and homography

The collinearity, colocation and homography features were ranked. In this rank-

ing the photo and mask were treated as single spoofing attack. The combination

of these attack modalities allows the establishment of a single optimal feature set

that can be used for all of these major spoofing challenges. Video attack data was

excluded from this feature ranking exercise as the system already performs very

well in detecting video spoofing attacks. The feature selection method was run

several times, choosing random sets of data for training and testing for every run.

The results of these runs were combined to rank the features. In this scheme,

each feature is ranked separately and optimum feature sets for each feature type

is passed to a separate classifier.
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Figure 6.16 illustrates the ROC curves for collinearity, colocation and homog-

raphy using optimum feature. Collinearity feature gave the best performance

compared to colocation and homography features. Homography is second in per-

formance followed by colocation. At 10% FPR, TPR of about 92%, 62% and

78%, were achieved for collinearity, colocation, homography. The colocation fea-

ture performance is much weaker compared to the performance of collinearity,

homography and fusion-based schemes.

Figure 6.16 Collinearity, colocation and homography feature us-
ing an optimum feature sets

In this experiment all spoof attack types were combined as a single spoof attack.

Figure 6.17 illustrates the ROC curves for genuine and fake attempts using score

fusion. The performance of the proposed system is relatively good to avert

impostor attack. At 10% FPR, TPR of about 78% and 98%, were achieved for

entire and optimum feature respectively.
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Figure 6.17 ROC curve for impostor detection using fusion

Table 6.3 shows a comparison of our experimental results (GS for Gaze Stabil-

ity) with the performances reported for similar photo spoofing attacks published

in the literature. Although the results are based on different databases they in-

dicate the relative promise of the proposed methods. The performance of our

proposed approach can be seen to compare favourably with the other methods

considered and lends support to its applicability in detecting spoofing attacks.

6.7 Conclusion

This chapter presents another novel technique for face liveness detection that

may be used to protect against presentation attacks. The proposed system is a

challenge-response approach using a visual stimulus to measure the gaze of the
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Table 6.3 Comparison of performance reports

Method FPR FNR

Kollreider et al. [12] 0.02 0.19

Tan et al. [12] 0.09 0.18

Peixoto et al. [141] 0.07 0.07

IGD [142] 0.17 0.01

MaskDown [142] 0.00 0.05

GS Photo Attack 0.03 0.07

GS All Attack 0.07 0.03

user for the purpose of establishing the presence of photographic, mask and video

spoofing attacks.

Gaze homography features are extracted from the pupil centre and used to

classify between live and fake attempts. Preliminary experiments were carried

out to explore different schemes to find the one which gave better performance.

We analysed the performance of the system using the pupil centre and the

screen coordinates. The normalised features gave better performance.

The main contribution of this chapter has been,

• Gaze based novel feature

• Investigating various schemes.

• Investigating three types of presentation attack which were photo, mask and

video replay attacks.

The next chapter provides the summary, conclusion and recommendations for

future work.
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Conclusions and Future Work

7.1 Introduction

In this chapter, a summary of the work covered in this thesis is provided. This

will be followed by a discussion of the major research findings of this work, and

suggestions for future research directions.

7.2 Summary and Conclusion

The work presented here explores the notion of gaze stability and features based

on it for the task of detecting presentation attacks on facial biometric systems.

Using a visual stimulus to direct the gaze, the system provides an accurate mea-

sure to discriminate between genuine and fake attempts. Information from dif-

ferent eyes and using different algorithms have been combined in a score-fusion

framework and evaluated for a number of spoofing attack scenarios. Three attack

scenarios were investigated and data was collected to evaluate the performance of

134
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the proposed system using different combinations of features and attack modali-

ties. The multi-classifier approach, combining information from separate feature

sets using score fusion provided the best results and was seen to compare well

with the state of the art showing the potential effectiveness and viability of this

approach.

This thesis investigated novel features for face liveness detection based on gaze

information. The goal of this thesis has been to investigate novel features for

face liveness detection and performed an extensive experimental study of var-

ious classification and combination rules to overcome the problem of liveness

detection.

A review of the literature in face liveness detection was presented in Chapter

2. A number of techniques have been reported in the literature in recent years

addressing the problem of face liveness detection. Previous work was grouped

into two main categories: active and passive. These categories are further sub-

divided into several groups based on the features used.

This thesis includes four contributions in the field of biometric liveness detec-

tion.

In Chapter 3 we provided the general framework for the evaluation of the pro-

posed systems including the database and its collection procedure. We provided

the detail of software and hardware used in the data collection process. We also

provided further details on the evaluation strategy used for this work. The data

is stored on a secure sever where other researchers can benefit form it in their

study.

Chapter 4 presented the first novel feature explored in this study. An efficient

and robust collinearity feature is presented here. A number of preliminary ex-

periments were carried out to designed the challenge and to reduce the duration.
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The experiment shows that features extracted along the horizontal direction gave

better performance for distinguishing fake attempts. The results indicated that

features extracted from combined xy coordinates of the pupil center performed

better compared to single x or y coordinates. A number of classifiers and com-

biners were used to fuse the information from a number of facial landmarks. The

combiners both feature-based and score-based fusion were implemented. ROC

curves were used to analyze and assess the performance of the proposed collinear-

ity feature.

Chapter 5 presents a novel feature to improve the performance of face liveness

detection using a combination of various stimuli locations. Also Chapter 5 pro-

vides the results of combining collinearity and colocation features using fusion

based rules. The results suggest that a combination of features may be used to

improve the performance of the face liveness detection systems. The score fusion

based performed better than the single feature. The video replay attack have

outperformed. The performance of the photo and mask attack is also improved.

Chapter 6 provides details of a novel gaze homography features. Here we present

the performance results for a number of schemes using homography. The K-

nearest neighbour classifier was used for experiments. Finally this chapter covers

the fusion of all the features that were investigated in the research. The results

were promising using gaze homography feature. However the fusion of collinear-

ity, colocation and homography features performed significantly better compared

to individual feature.

In Chapter 7 we provided some concluding remarks and future work suggestions

for researcher in the field.
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7.3 Main Contributions

The main contributions of this thesis are the following:

• A study and review of the literature on liveness detection algorithms.

• Detailed evaluation of the proposed new features.

• Development of fusion schemes for combining different scores of liveness in-

formation.

• The development of three novel features based on gaze information.

7.4 Recommendations for Future Work

One area where more improvement can be made to the proposed system is in the

feature extraction stage, where more robust landmark detection methods can

be used to extract the gaze information more accurately. Two possible areas

for future research to extract novel features include fixations and saccade [143]

[144], [145]. Similarly one could investigate the the duration of the fixation and

saccade of the user in following the challenge. Features may be grouped into two

categories as follows:

Feature which can be collected at particular instances during the challenge such

as collinearity, colocation, homography, etc, so called static feature.

Features which can be extracted continuously called dynamic feature. Exam-

ple of the feature can fixation duration, saccade duration, acceleration between

fixation and saccade and so on.
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Although some satisfying solutions exist in the fixation and saccade [145], there

is much room for improvement. One area of research is to investigate the suit-

ability of ordinary web cameras for fixations and saccades rather then using

expensive eye trackers that normally used for this purpose.

Future work may also be focused on the design of the stimulus so that the

duration of the challenge is minimized while maintaining a high spoof detection

rate. The conjecture that human beings can move and position their head/eye

more easily, and with more accuracy in the horizontal direction, could also be

further investigated with a series of tests using alternative stimuli and screen

arrangements.

In this study a small object appears at random locations and these locations

should not be too close to one another and each should be visited multiple times,

using a 21.5” LCD screen to display the object. However, one could investigate

whether a similar system can be developed to work with a smaller screen and a

mobile devices.

Then this liveness detection approach can be incorporated in smart phones and

tablets and can be used for logging into smart devices. This liveness detection

system may further enhance the security of the existing face recognition systems

(and other biometric technologies) which are used in the mobile devices.

In this study only 2D mask was investigated. In future 3D mask can also be

investigated. More data and subjects can be another part one can contribute.
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