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Abstract

In this thesis, we develop preconditioned iterative methods for the solution of matrix

systems arising from PDE-constrained optimization problems. In order to do this,

we exploit saddle point theory, as this is the form of the matrix systems we wish to

solve. We utilize well-known results on saddle point systems to motivate precondi-

tioners based on effective approximations of the (1, 1)-block and Schur complement

of the matrices involved. These preconditioners are used in conjunction with suitable

iterative solvers, which include Minres, non-standard Conjugate Gradients, Gmres

and BiCG. The solvers we use are selected based on the particular problem and

preconditioning strategy employed.

We consider the numerical solution of a range of PDE-constrained optimization

problems, namely the distributed control, Neumann boundary control and subdomain

control of Poisson’s equation, convection-diffusion control, Stokes and Navier-Stokes

control, the optimal control of the heat equation, and the optimal control of reaction-

diffusion problems arising in chemical processes. Each of these problems has a special

structure which we make use of when developing our preconditioners, and specific

techniques and approximations are required for each problem. In each case, we moti-

vate and derive our preconditioners, obtain eigenvalue bounds for the preconditioners

where relevant, and demonstrate the effectiveness of our strategies through numerical

experiments. The goal throughout this work is for our iterative solvers to be feasible

and reliable, but also robust with respect to the parameters involved in the problems

we consider.
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CHAPTER 1

Introduction

For a period of many decades, or in some cases centuries, the analytical and numerical

study of partial differential equations (PDEs) has been a field of active interest and

considerable research in applied mathematics, and within the scientific community

more generally. In scientific computing, a major focus has been the development of

potent numerical techniques for solving such problems. Such methods comprise two

components. First, a method for representing the continuous solution of a PDE (for

instance finite differences, finite elements, spectral methods or radial basis functions)

needs to be exploited. Each of these strategies generates a matrix system that has

to be solved. The second component of the numerical technique must therefore be

the devising of a method for solving the resulting matrix system – either direct or

iterative. As the matrix systems arising from the solution of such problems are

sparse and frequently of very high dimension, it is often preferable to apply iterative

methods to solve these systems. Within the range of iterative methods for such

problems, there are two main classes of approach: those of multigrid techniques and

those of preconditioned iterative solvers. As preconditioned iterative solvers often

have considerable applicability to these problems, it is the exploration of suitable

preconditioners, for use within appropriate iterative methods, that we are interested

in within this thesis.

More recently, a class of problems that has generated a great deal of attention in

the field of applied mathematics and numerical analysis, as well as applied sciences
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CHAPTER 1. INTRODUCTION

more widely, is that of PDE-constrained optimization problems [70, 122]. The differ-

ence between these problems and PDEs themselves is that within PDE-constrained

optimization problems, a certain functional is aimed to be minimized with one or

more PDEs serving as constraints within the problem. A large amount of study into

this field has been theoretical, but recently there has been much interest in developing

efficient numerical techniques for discretized versions of such problems. The classes of

numerical methods for solving these problems can be divided up as for the numerical

solution of PDEs, and often the methods for PDE-constrained optimization exploit

techniques applied successfully to solve the forward PDEs.

Throughout this thesis, we consider the development of preconditioned iterative

methods for solving such PDE-constrained optimization problems. For each problem

we consider, the matrix system for which we develop preconditioners arises from a

finite element discretization of the problem. Moreover, each preconditioner that we

construct is justified by the fact that the matrix systems we solve, like matrices

arising from more general problems involving optimization with constraints, are of

saddle point structure. Therefore, as we will explain later, a large part of the work

which is required to develop effective methods for solving these problems involves

finding good approximations to the (1, 1)-block and Schur complement of the matrix

systems, and then incorporating these approximations into suitable iterative methods.

We find that for a large number of problems, we are able to find approximations that

are not only feasible, but result in fast iterative solution schemes for the problem

at hand. The ultimate goal when constructing these solvers is to ensure that the

iterative method is feasible for a wide range of parameters involved in the problem.

This objective may be characterized by two properties. Firstly, if the matrix system

doubles in dimension due to decreasing the step-size in space or time, the computation

time for solving the problem, in the best case, should roughly double as well – this

is one property we desire our solvers to exhibit. Secondly, if a parameter involved

in the problem that does not directly affect the size of the matrix system but does

affect its numerical features (usually a regularization parameter involved in the PDE-

constrained optimization problem) is changed, we hope that the performance of our

iterative method will not radically worsen. Our aim is to develop fast iterative solvers

that satisfy these two properties – if we are successful we say that we have a robust

solver for the problem being considered.

The types of problems that arise in the field of PDE-constrained optimization

vary enormously, be it through the functional being minimized, the PDEs acting

2



CHAPTER 1. INTRODUCTION
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Chemical
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Figure 1.1: Flow chart outlining the problems of which we seek the numerical solution
in this thesis, and their links to each other from a preconditioning point-of-view.

as constraints, the imposition of additional inequality constraints on the variables

involved in the problem, what types of boundary conditions are specified, or what

parts of the domain the variables are measured on. As such, in this thesis, we aim to

develop effective preconditioned iterative methods for a number of important PDE-

constrained optimization problems. The problems that we tackle in this thesis are

summarized in Figure 1.1, which also serves as a guide to the structure of the thesis,

as well as the interdependence of methods for different problems we look at. We will

return to this figure when we make concluding comments in Chapter 10.

This thesis is structured as follows. In Chapter 2, we detail background theory of

PDE-constrained optimization problems, discuss basic linear algebra related to saddle

point systems, and introduce iterative methods which we will utilize for the solution of

the systems. In Chapter 3, we describe the iterative solution of the distributed Poisson

control problem, one of the most fundamental PDE-constrained optimization prob-

3



CHAPTER 1. INTRODUCTION

lems. In Chapter 4, we will extend this theory to explain how to precondition matrix

systems arising from variants of this problem, specifically boundary control prob-

lems, subdomain control problems, and problems with additional state constraints.

In Chapter 5, we derive and test iterative solvers for the convection-diffusion con-

trol problem, which is a more physically realistic problem than the Poisson control

problem as it takes account of both convective and diffusive terms within a phys-

ical system. In Chapter 6, we explain how our methodology can be extended to

solving Stokes control problems, an important type of PDE-constrained optimiza-

tion problem in fluid dynamics, and in Chapter 7 we extend this to more complex

Navier-Stokes control problems. In Chapter 8, we build on our theory to explain how

we tackle time-dependent PDE-constrained optimization problems, specifically con-

sidering the heat equation. In Chapter 9, we discuss an iterative solution approach

for a reaction-diffusion control problem which models chemical processes – this is a

problem geared towards a more industrial application, and our method for solving

this problem uses and builds on many of the components discussed for other prob-

lems. Finally in Chapter 10, we make some concluding remarks and discuss possible

avenues for future work.

4



CHAPTER 2

Background

In this chapter, we wish to provide background information to the problems and meth-

ods considered in the remainder of this thesis. This summary is split into three parts.

In Section 2.1, we provide a basic overview of PDE-constrained optimization prob-

lems. We discuss a variety of such problems which may be considered, ranging from

distributed control, boundary control and subdomain control problems, problems with

additional state or control constraints, time-dependent problems, and others. Partic-

ular attention is paid to the matrix systems obtained using standard conforming finite

element methods for solving these problems. In Section 2.2, we introduce the concept

of preconditioning matrix systems, and describe the class of systems (namely saddle

point systems) of which the iterative solution is considered in this thesis. Finally in

Section 2.3, we detail the iterative solvers that we will seek to employ throughout

this thesis. In particular, we outline the Chebyshev semi-iteration, multigrid, Min-

res, Conjugate Gradient, Gmres and BiCG methods. We aim to provide some

background on the motivation of the methods, state in what circumstances they are

applied, and detail some results on their convergence. We also state exactly what we

will use each of the iterative methods for within the remainder of this thesis.

5



CHAPTER 2. BACKGROUND

2.1 Introduction to PDE-Constrained Optimiza-

tion

One of the most fundamental types of problems within applied mathematics is the

solution of partial differential equations. A major class of such problems is that of

Dirichlet boundary value problems, which we express in the following general form:

Ly = f, in Ω, (2.1)

y = g, on ∂Ω,

where y is the variable for which the PDE needs to be solved, the function f denotes

the source term of the PDE, and the function g corresponds to Dirichlet boundary

conditions. L here denotes some differential operator. A problem of this type is often

solved on a domain Ω × [0, T ], where Ω ⊂ Rd, d ∈ {2, 3}, is a spatial domain with

boundary ∂Ω, and [0, T ] is some time-interval. Such PDEs can describe a range of

real-world processes, and therefore much attention has been paid to the analytical

and numerical solution of these problems.

In this thesis, we wish to consider the solution of PDE-constrained optimization

problems. In this case a PDE is not the problem itself, but merely serves as a con-

straint subject to which some cost functional is sought to be minimized. In this

section, we aim to provide some background as to the types of PDE-constrained

optimization problems which are typically solved.

We motivate the class of problems to be examined by stating the following PDE-

constrained optimization problem, which relates to the PDE (2.1). This is known as

a distributed control problem (or tracking type problem).

min
y,u

1

2
‖y − ŷ‖2

L2(Ω) +
β

2
‖u‖2

L2(Ω) (2.2)

s.t. Ly = u, in Ω,

y = g, on ∂Ω.

Here, y denotes the state variable, with ŷ some desired state, and u represents the

control variable. The value β > 0 is the regularization parameter (frequently referred

to as the penalty parameter or Tikhonov parameter). The L2-norm is used to measure

how “close” the state variable is to the desired state, as well as the “size” of the control

6



CHAPTER 2. BACKGROUND

variable, though we note that other norms may be used. We find that it is natural to

use a Hilbert space norm, as this choice leads cleanly to the solution of the problem

using a finite element method. We typically assume that the desired state ŷ belongs

to L2(Ω).

One may observe that the motivation of a problem of this type is to attempt to

make the state variable “as close as possible” to a desired state, while also penalizing

the input of a large control into the system. The constraint subject to which this is

carried out arises in the form of a PDE. We may think of this in physical terms as

penalizing the input of energy into a physical system.

For instance, let us say a company wishes to store a foodstuff or chemical as

close as possible to certain “ideal” atmospheric conditions, and sets up a controlled

environment to do this. The reason for doing this could be that it is known the

substance is best preserved in certain conditions. However, carrying this out is likely

to be very expensive financially, so another consideration would be to minimize this

cost. This problem could potentially be solved by a PDE-constrained optimization

problem. The state variable in this case may therefore be given by temperature,

humidity, light intensity, or a combination of these parameters. The desired state

would correspond to an ideal set of atmospheric conditions, and the control variable

could be the energy put into the system to achieve these conditions. The PDE in the

problem set-up could involve the heat equation, or an equation of similar structure.

Solving the PDE-constrained optimization problem would hence involve finding a set

of atmospheric conditions close to the ‘ideal’ conditions, while penalizing to some

extent the energy required to create these conditions.

The penalty parameter β therefore plays an important role physically – for small

β the control variable is not heavily penalized, and so the state can typically be close

to the desired state, but for large β the input of control into the system contributes

more heavily to the functional which is sought to be minimized, and so it is harder

for the state variable to be near to the desired state in the L2-norm. For instance,

in the above physical example, a large value of β will result in more care being given

to minimizing the energy consumption used, whereas a small β corresponds to the

conditions of the foodstuff or chemical being prioritised, with less importance attached

to the amount of energy expended.

As the essence of PDE-constrained optimization problems is finding the profile

of a control variable which results in a state variable being close to some desired

profile, these problems are often referred to as optimal control problems. Indeed the

7



CHAPTER 2. BACKGROUND

optimization problem (2.2) is referred to as a distributed control problem because the

control variable is being applied over the entire domain – we note that the control

and the source term of the PDE constraint in this case are one and the same. This is

not the only type of PDE-constrained optimization problem which we may consider;

we will outline a number of alternative formulations in this section.

There is a plethora of industrial and scientific applications for PDE-constrained

optimization problems. We refer to [59] for details of a range of such studies. Exam-

ples of practical applications of PDE-constrained optimization problems include flow

control [55, 82], optimal semiconductor design [69], electromagnetic inverse problems

[56, 57], the Monge-Kantorovich mass transfer problem [1, 8, 10], reaction-diffusion

problems from chemical processes [5, 49, 50, 51, 52], parameter identification prob-

lems within pattern formation from mathematical biology [42, 43], medical imaging

and tomography [2, 26, 28, 76, 78], problems in financial markets and option pricing

[18, 33, 34], shape optimization problems [84, 97] and other parameter estimation

problems [58]. This provides only a handful of useful PDE-constrained optimization

problems; there are many more examples in the literature.

2.1.1 Distributed Control of Poisson’s Equation

We now wish to describe how to attempt to solve a distributed control problem of the

form (2.2). Let us consider for this demonstration the distributed control of Poisson’s

equation, i.e. the problem

min
y,u

1

2
‖y − ŷ‖2

L2(Ω) +
β

2
‖u‖2

L2(Ω) (2.3)

s.t. −∇2y = u, in Ω,

y = g, on ∂Ω,

which is of the general form (2.2), with L = −∇2. Now, as for any PDE-constrained

optimization problem, there are two methods available for solving this. Firstly, one

can use a discretize-then-optimize approach, which involves forming a discrete cost

functional and deriving discrete optimality conditions from these. Secondly, one can

derive optimality conditions in the continuous setting, and then discretize these –

this is known as the optimize-then-discretize approach. We now explain these two

methods using the problem (2.3) as an example. Our work throughout this thesis is

8



CHAPTER 2. BACKGROUND

based on applying a finite element method to these problems.1 For an overview of

the finite element method, we recommend [23, 36, 75].

To provide an introduction, we now consider how the finite element method is

applied to the PDE constraint in (2.3). We first define the following spaces for this

problem:

L2(Ω) =

{
v :

∫
Ω

|v|2 dΩ <∞
}
,

H1(Ω) =

{
v : v ∈ L2(Ω),

∂v

∂x1

,
∂v

∂x2

,
∂v

∂x3

∈ L2(Ω)

}
,

H1
E(Ω) =

{
v : v ∈ H1(Ω), v = g on ∂Ω

}
,

H1
E0

(Ω) =
{
v : v ∈ H1(Ω), v = 0 on ∂Ω

}
,

where x = [x1, x2, x3]T is the coordinate system in Ω that we use. (Of course if d = 2,

then this will reduce to x = [x1, x2]T .)

We may now state the weak formulation for the PDE constraint in (2.3). This is

typically written [122] as finding y ∈ H1
E(Ω) and u ∈ L2(Ω) such that∫

Ω

∇y · ∇v dΩ =

∫
Ω

uv dΩ, ∀v ∈ H1
E0

(Ω).

Let us now select v to be from a set of Galerkin test functions V0,h ⊂ H1
E0

(Ω). Suppose

we take {φ1, φ2, ..., φn} to be a finite element basis for this test space, i.e. we have

n basis functions centred within the interior of the domain Ω. Then one common

approach, and the one which we will consider for this problem, is to take the finite

element approximations yh, uh to y, u to be from this same space, and write

yh =
n∑
j=1

Yjφj +

n+n∂∑
j=n+1

Yjφj, uh =
n∑
j=1

Ujφj +

n+n∂∑
j=n+1

Ujφj, (2.4)

for some coefficients {Yj, Uj, j = 1, ..., n + n∂}. Here, we have n∂ nodes on to the

boundary ∂Ω, and corresponding finite element basis functions {φn+1, φn+2, ..., φn+n∂}.
Note that Yn+1, ..., Yn+n∂ correspond to the Dirichlet boundary conditions y = g, and

we later find that Un+1, ..., Un+n∂ are in fact all equal to zero.

1It is possible to solve these problems using methods other than finite element approaches. For
instance in [88], radial basis function methods for the solution of PDE-constrained optimization
problems are derived and discussed.
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We may then write our problem as finding yh and uh that belong to VE,h :=

span{φ1, ..., φn, φn+1, ..., φn+n∂}, such that∫
Ω

∇yh · ∇vh dΩ =

∫
Ω

uhvh dΩ, ∀vh ∈ V0,h. (2.5)

Finally, substituting (2.4) into (2.5) gives

n+n∂∑
j=1

Yj

∫
Ω

∇φi · ∇φj dΩ−
n+n∂∑
j=1

Uj

∫
Ω

φiφj dΩ = 0, i = 1, ..., n.

This is one of the systems of equations needed to be solved as part of this optimal

control problem.

Of course there are many different solutions for yh and uh here, but the additional

constraints provided by the minimization problem (2.3) generally give rise to a unique

solution.

We highlight once more that the assumptions on the finite element solution are

typically that yh ∈ H1(Ω) and uh ∈ L2(Ω) (in particular yh and uh do not have to

belong to the same finite element spaces, as we have taken to be the case here). The

finite element approximation of the adjoint variable, which we will introduce in the

next section, should also belong to H1(Ω).

Discretize-then-Optimize. Having motivated the finite element method which

we employ for the distributed Poisson control problem, we now consider the two

alternative strategies for solving PDE-constrained optimization problems. First, let

us consider the discretize-then-optimize strategy. For this, it is important that we

study the PDE constraint in the discrete setting. In a finite element formulation, we

may use (2.6) to write this constraint as

Ky −Mu = g,

where y and u are vectors corresponding to the coefficients {Yi, i = 1, ..., n} and

{Ui, i = 1, ..., n}. Here, the matrices K and M are the well-known finite element

10
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stiffness and mass matrices, defined by

K = {kij}i,j=1,...,n, kij =

∫
Ω

∇φi · ∇φj dΩ, (2.6)

M = {mij}i,j=1,...,n, mij =

∫
Ω

φiφj dΩ. (2.7)

It can easily be shown that the matrices K and M are symmetric positive definite

(meaning all their eigenvalues are positive). The vector g takes account of the Dirich-

let boundary condition imposed. We point out that the matrix M as defined in (2.7)

is generally referred to as a consistent mass matrix. In scientific applications lumped

mass matrices, defined by

M̄ = diag(m̄ii), m̄ii =
∑
j

∫
Ω

φiφj dΩ,

are also frequently used. As discussed in [54] for instance, such a lumping strategy

is related to approximating a consistent mass matrix using a trapezoidal quadrature

rule.

In the discretize-then-optimize formulation, the discrete cost functional that we

wish to minimize is given by

JD(y,u) =
1

2
‖yh − ŷ‖2

L2(Ω) +
β

2
‖uh‖2

L2(Ω) .

Let us now examine the individual terms of JD in more detail. The first term, upon

expanding in terms of finite element basis functions, may be written as follows:

1

2
‖yh − ŷ‖2

L2(Ω) =
1

2

∫
Ω

(∑
i

Yiφi − ŷ

)
·

(∑
j

Yjφj − ŷ

)
dΩ

=
1

2

∑
i

∑
j

YiYj

∫
Ω

φiφj dΩ−
∑
i

Yi

∫
Ω

ŷφi dΩ +
1

2

∫
Ω

ŷ2 dΩ

=
1

2
yTMy − yTz + C̄,

where the vector z contains entries of the form
∫

Ω
ŷφi dΩ, and C̄ is a constant inde-

11
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pendent of y and u. Similarly, the second term of JD(y,u) can be written as

β

2
‖uh‖2

L2(Ω) =
β

2

∫
Ω

(∑
i

Uiφi

)
·

(∑
j

Ujφj

)
dΩ =

β

2
uTMu.

Putting these two terms together gives that

JD(y,u) =
1

2
yTMy − yTz + C̄ +

β

2
uTMu.

The Lagrangian that we therefore need to work with in the discretize-then-optimize

setting will combine the cost functional JD(y,u) and a Lagrange multiplier term

which enforces the PDE constraint. This Lagrangian is hence given by

LDTO(y,u,p) =
1

2
yTMy − yTz + C̄ +

β

2
uTMu + pT (Ky −Mu− g),

where the vector p corresponds to the coefficients {Pi, i = 1, ..., n} for the finite

element approximation of the Lagrange multiplier (or adjoint variable) p, that is

ph =
n∑
j=1

Pjφj +

n+n∂∑
j=n+1

Pjφj.

The optimality conditions are obtained by differentiating LDTO with respect to y,

u and p, and setting ∂L
∂Yi

= ∂L
∂Ui

= ∂L
∂Pi

= 0 for i = 1, ..., n. Examining the first of these

conditions gives that

∂L
∂Yi

= 0 ⇒ My − z +Kp = 0,

which is called the adjoint equation. The second condition produces

∂L
∂Ui

= 0 ⇒ βMu−Mp = 0,

which is usually called the gradient equation. Finally, we obtain from the third con-

dition

∂L
∂Pi

= 0 ⇒ Ky −Mu− g = 0,

which is the state equation, i.e. the discretized version of the forward problem.

12
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Combining these three systems of equations2 gives the following matrix system

[100, 122]:  M 0 K

0 βM −M
K −M 0


 y

u

p

 =

 z

0

g

 . (2.8)

It is this matrix system that we focus on solving in Chapter 3. We note that this

system can be of very high dimension for practical problems, so finding effective

iterative solvers for this system is an important area of research.

Optimize-then-Discretize. In this formulation, for which we aim to provide

the basic motivation rather than the full technical details,3 we seek to consider the

continuous Lagrangian

LOTD(y, u, pΩ, p∂Ω) =
1

2
‖y − ŷ‖2

L2(Ω) +
β

2
‖u‖2

L2(Ω)

+

∫
Ω

(−∇2y − u)pΩ dΩ +

∫
∂Ω

(y − g)p∂Ω ds,

where here the continuous adjoint variable p has been divided up into interior and

boundary components, pΩ and p∂Ω, in order to enforce the PDE and boundary con-

dition constraints separately.

We now follow the approach discussed in [99, 122], which is to take the Fréchet

derivatives with respect to y, u, pΩ and p∂Ω in some direction h̃, and use the fact that

for the optimal solutions of state, control and adjoint, the derivatives will all be zero.

Using this method, taking the Fréchet derivative with respect to pΩ and p∂Ω in

turn recovers the forward problem, or continuous state equation

−∇2y = u, in Ω,

y = g, on ∂Ω.

Furthermore, taking the Fréchet derivative with respect to u in the direction of

2We note that the conditions represented within this matrix system are often referred to as the
first-order stationarity conditions or Karush-Kuhn-Tucker (KKT) conditions.

3We recommend [122, Chapter 2] for a detailed derivation of the optimality conditions for this
approach.
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some h̃ ∈ L2(Ω) gives ∫
Ω

(βu− p)h̃ dΩ = 0, ∀h̃ ∈ L2(Ω),

and hence that βu − p = 0 almost everywhere. This is the continuous gradient

equation.

Finally, considering the optimal solution when differentiating LOTD with respect

to y, we obtain that∫
Ω

(y − ŷ)h̃ dΩ +

∫
Ω

−∇2h̃ · pΩ dΩ +

∫
∂Ω

h̃p∂Ω ds = 0,

which yields, using the Divergence Theorem,

∫
Ω

(y − ŷ)h̃ dΩ−
∫

Ω

h̃∇2pΩ dΩ +

∫
∂Ω

(
∂h̃

∂n
pΩ − h̃

∂pΩ

∂n

)
ds

+

∫
∂Ω

h̃p∂Ω ds = 0. (2.9)

From here, as in [99, Chapter 2], we first consider the case h̃ ∈ C∞0 (Ω) (which we

take to mean that the value and normal derivative of h̃ vanish at the boundary, i.e.

h̃ = ∂eh
∂n

= 0 on ∂Ω). We may write using (2.9) that∫
Ω

(−∇2pΩ + y − ŷ)h̃ dΩ = 0, h̃ ∈ C∞0 (Ω).

We then consider the case h̃ ∈ H1
0 (Ω) (and hence that h̃ = 0 on ∂Ω), which gives

∫
∂Ω

∂h̃

∂n
pΩ ds = 0, h̃ ∈ H1

0 (Ω).

These equations give, along with the Fundamental Lemma of the Calculus of

Variations, that

−∇2pΩ = ŷ − y, in Ω,

pΩ = 0, on ∂Ω.

Furthermore, these equations along with (2.9) give that p∂Ω = ∂pΩ

∂n
on Ω. Hence, we
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conclude that

−∇2p = ŷ − y, in Ω,

p = 0, on ∂Ω,

which is the continuous adjoint equation.

If we now discretize the continuous state, gradient and adjoint equations using

the same basis functions as for the discretize-then-optimize approach, we obtain the

same matrix system:  M 0 K

0 βM −M
K −M 0


 y

u

p

 =

 z

0

g

 ,
as we derived for that approach. We wish to point out that it is possible to discretize

the continuous optimality conditions in such a way that this matrix system is not

the same as for the discretize-then-optimize method. In this optimize-then-discretize

setting, the choice of discretization of the optimality conditions is thus crucial. We

observe that the state and adjoint equations both involve the same PDE (Poisson’s

equation), which needs to be solved for y and p. This motivates the use of the same

finite element space for the discrete variables yh and ph.

We note that there can be other considerations which result in the matrix systems

corresponding to the discretize-then-optimize and optimize-then-discretize methods

not being the same. One is presented in Section 2.1.4 and is caused by the choice

of time-stepping scheme for time-dependent PDE-constrained optimization problems.

Another is discussed in Chapter 5, and results from particular stabilization strategies

for convection-dominated problems. In fact if certain methods are chosen for this

latter problem, the optimize-then-discretize matrix system is not even symmetric,

whereas the discretize-then-optimize matrix system is guaranteed to be symmetric by

construction of the method. The symmetry of the discretize-then-optimize approach

is in some sense more natural from an optimization point-of-view. Of course it is ideal

for the operations of discretization and optimization to commute, and hence that the

two resulting matrix systems are the same – we will repeatedly return to this point

throughout this thesis.

We note also that it is perfectly feasible to impose Neumann boundary conditions

for this distributed control problem, as opposed to the Dirichlet conditions speci-
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fied here. The matrix system (for either discretize-then-optimize or optimize-then-

discretize) would look the same, except the mass and stiffness matrices would have a

marginally different structure. In particular, when Neumann boundary conditions are

considered, the matrix M would take account of boundary nodes as well as interior

nodes and hence would be enlarged, and K would be a discrete Neumann stiffness

matrix rather than a Dirichlet stiffness matrix. In this case the spectral properties of

K would be slightly different – in particular K will have one zero eigenvalue, relating

to the constant function being a solution of the continuous Neumann problem for

Poisson’s equation.

2.1.2 Neumann Boundary Control and Subdomain Control

of Poisson’s Equation

The distributed control problem introduced in the previous section is not the only

type of optimal control problem that we may consider. We now wish to examine two

problems of a similar flavour to the distributed Poisson control problem: those of

Neumann boundary control and subdomain control.

Neumann Boundary Control Problems. In the class of boundary control

problems the control is applied only at the boundary, as opposed to distributed control

problems where it is applied on the entire domain. Such boundary control problems

are perhaps more physically realistic, as one can imagine that in real-world applica-

tions, in particular applications involving flow, it may only be possible to “access” or

“control” the physical features of the boundary of the domain. We therefore wish to

investigate such problems. Perhaps the main class of such problems is that of Neu-

mann boundary control problems – for Poisson’s equation, such a problem is expressed

as

min
y,u

1

2
‖y − ŷ‖ 2

L2(Ω) +
β

2
‖u‖2

L2(∂Ω) (2.10)

s.t. −∇2y = f, in Ω,

∂y

∂n
= u, on ∂Ω.

Here the control is applied in the form of the Neumann boundary condition of the

PDE, and the penalization term on the control is now measured as a boundary inte-

gral, rather than an integral over the entire domain.
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When trying to solve such a problem, it is a natural idea to seek a finite element

solution of the form

yh =

n+n∂∑
j=1

Yjφj, uh =

n∂∑
j=1

Ujχj, ph =

n+n∂∑
j=1

Pjφj. (2.11)

Clearly, in this case, the state and control must consist of different basis functions

{φj}j=1,...,n+n∂ and {χj}j=1,...,n∂ , as one set of functions corresponds to the entire

domain, and one solely to its boundary.

The weak formulation of the PDE constraint can be stated as finding some y ∈
H1(Ω) and u ∈ L2(Ω) such that [99, 122]∫

Ω

∇y · ∇v dΩ−
∫
∂Ω

u · tr(v) ds =

∫
Ω

fv dΩ, ∀v ∈ H1(Ω),

where tr(·) denotes the trace function, which restricts v to its values on ∂Ω. Substi-

tuting (2.11) into the weak form, and writing the resulting expression in matrix form,

gives

Ky −Nbu = f , (2.12)

where K here is the stiffness matrix for the Neumann problem, the matrix Nb contains

entries

Nb = {nb,ij}i=1,...,n+n∂ , j=1,...,n∂ , nb,ij =

∫
∂Ω

tr(φi) · χj dΩ, (2.13)

and the vector f corresponds to the source term of the PDE, that is

f = {fi}i=1,...,n+n∂ , fi =

∫
Ω

fφi dΩ,

where fi, i = 1, ..., n+ n∂, would be evaluated by a quadrature rule.

Looking for a discretize-then-optimize solution involves minimizing the following

discrete cost functional:

JD(y,u) =
1

2
‖yh − ŷ‖2

L2(Ω) +
β

2
‖uh‖2

L2(∂Ω) =
1

2
yTMy − yTz + C̄ +

β

2
uTMbu,

which may be derived in the same way as for the distributed control problem of
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the previous section. Here, M is a mass matrix for the Neumann problem, Mb is a

boundary mass matrix with entries

Mb = {mb,ij}i,j=1,...,n∂ , mb,ij =

∫
∂Ω

χiχj ds, (2.14)

and C̄ as before is a constant independent of y, u and p.

Combining this cost functional with the PDE constraints (2.12) leads to the La-

grangian

LDTO(y,u,p) =
1

2
‖yh − ŷ‖2

L2(Ω) +
β

2
‖uh‖2

L2(∂Ω) + pT (Ky −Nbu− f)

=
1

2
yTMy − yTz + C̄ +

β

2
uTMbu + pT (Ky −Nbu− f), (2.15)

where p once again denotes the discretized Lagrange multiplier, or adjoint variable.

Differentiating LDTO from (2.15) with respect to y, u and p gives the following

matrix system:  M 0 K

0 βMb −NT
b

K −Nb 0


 y

u

p

 =

 z

0

f

 .
It can be shown (as in [99, Chapter 2] for instance) that proceeding using an

optimize-then-discretize strategy results in the following (continuous) system of equa-

tions:

−∇2y = f, in Ω,

∂y

∂n
= u, on ∂Ω,

βu− p = 0, on ∂Ω,

−∇2p = ŷ − y, in Ω,

∂p

∂n
= 0, on ∂Ω.

Galerkin discretization of these equations results in the same matrix system as above,

provided the same finite element basis functions are chosen as for the discretize-then-
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optimize method.

Subdomain Control Problems. Another problem, which we will see results in

a similar matrix structure as that for boundary control problems, involves applying

control on an interior subdomain Ωsub of Ω. This is important in cases where it is only

possible to “control” some part of the domain – for instance in applications involving

flow it is perhaps natural to be only able to control some entry region of the domain.

We write the subdomain control problem for Poisson’s equation as

min
y,u

1

2
‖y − ŷ‖ 2

L2(Ω) +
β

2
‖u‖2

L2(Ωsub) (2.16)

s.t. −∇2y =

{
u on Ωsub ⊂ Ω,

0 on Ω\Ωsub,

y = g, on ∂Ω.

Here, we still measure the quantity y− ŷ on the entire domain Ω, but the formulation

of the problem reflects that the control may only be applied on the subdomain Ωsub.

When trying to solve such a problem, we may discretize state, control and adjoint

variables using equal-order finite element basis functions, but allow fewer degrees of

freedom for the control variable. That is, we may write

yh =

n+n∂∑
j=1

Yjφj, uh =
ns∑
j=1

Ujφj, ph =

n+n∂∑
j=1

Pjφj,

where ns < n+ n∂ corresponds to the number of basis functions within Ωsub.

When applying a discretize-then-optimize strategy to this problem, we proceed

very similarly as for the Neumann boundary control problem of this section to derive

the discrete Lagrangian

LDTO(y,u,p) =
1

2
‖yh − ŷ‖2

L2(Ω) +
β

2
‖uh‖2

L2(Ωsub) + pT (Ky −Nsu− g)

=
1

2
yTMy − yTz + C̄ +

β

2
uTMsubu + pT (Ky −Nsu− g), (2.17)

where C̄ is a constant as stated above, g corresponds to the Dirichlet boundary

condition, Msub is a mass matrix on Ωsub of dimension ns × ns, and Ns consists of

terms of the form
∫

Ωsub
φiφj dΩ for i = 1, ..., n+ n∂, j = 1, ..., ns.

Finding the stationary points of LDTO in (2.17), by differentiating with respect to
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y, u and p as before, gives the matrix system M 0 K

0 βMsub −NT
s

K −Ns 0


 y

u

p

 =

 z

0

g

 .
We note that the mass and stiffness matrices M and K are of the same form as for the

distributed control problem of Section 2.1.1. The reason for this is, as then, Dirichlet

boundary conditions need to be imposed – therefore the matrix M is a smaller matrix

that excludes the boundary nodes, and K is again the Dirichlet stiffness matrix.

We note that we may alternatively derive continuous optimality conditions and

discretize these – this optimize-then-discretize strategy gives the same matrix sys-

tem to be solved as the discretize-then-optimize approach shown above, assuming a

suitable choice of finite element basis functions is made.

We have demonstrated in this section that variants of the distributed control

problem of Section 2.1.1 may be tackled using similar strategies. In Chapter 4, we

will discuss preconditioned iterative methods for the boundary and subdomain control

problems outlined in this section.

2.1.3 Problems with State and Control Constraints

Another possibility for the construction of PDE-constrained optimization problems is

to impose additional inequality constraints on either the state or control variable. One

may observe how solving such problems could be of great practical use. For instance,

in the example described earlier concerning the storage of foodstuffs or chemicals,

an additional state constraint would involve rigidly specifying atmospheric conditions

which may occur, and an additional control constraint would put fixed limits on the

amount of energy allowed to be expended on the physical system.

In this section, we illustrate the theory of such problems by applying the method-

ology to the distributed control of Poisson’s equation.

Control Constraints. Let us first consider a method for solving problems which
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involve additional control constraints. We may write such a problem in the form

min
y,u

1

2
‖y − ŷ‖2

L2(Ω) +
β

2
‖u‖2

L2(Ω) (2.18)

s.t. −∇2y = u, in Ω,

y = g, on ∂Ω,

ua ≤ u ≤ ub, a.e. in Ω.

Here, ua and ub are either constants or functions of the spatial coordinate x – these

functions provide lower and upper bounds that the control variable u is required to

satisfy, in addition to the restrictions caused by the regularization term in the cost

functional (2.18). Methods for such problems are described in [11, 117], on which we

base our discussion here.

The approach used in [117] involves introducing two new Lagrange multipliers4

qa := (βū− p̄)+ and qb := (βū− p̄)−, that is

(qa)j =

{
(βū− p̄)j, if (βū− p̄)j > 0,

0 otherwise,

(qb)j =

{
|(βū− p̄)j|, if (βū− p̄)j < 0,

0 otherwise,

for j = 1, ..., n+ n∂, where (qa)j, (qb)j and (βū− p̄)j denote the values of qa, qb and

βū− p̄ at the j-th node, given particular computed iterates ū and p̄ of u and p. At

this point, we may define

q := qa − qb = βū− p̄.

Now, let us define the active sets for this problem as

A+ = {j ∈ {1, ..., n+ n∂} : (u− q)j > (ub)j}, (2.19)

A− = {j ∈ {1, ..., n+ n∂} : (u− q)j < (ua)j},

AI = {1, ..., n+ n∂}\(A+ ∪ A−),

4In [117], the Lagrange multipliers introduced were actually (βū + p̄)+ and (βū + p̄)− as the
matrix system being solved was of a slightly different form – we modify these to achieve consistency
of notation with the remainder of this chapter.
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where (u− q)j, (ua)j and (ub)j denote the values of u− q, ua and ub, respectively, at

the j-th node. These sets correspond to the nodes at which the control constraints are

achieved (AI) or violated (A+ and A−). In [117], an Active Set method, presented

in Algorithm 1, is used to compute y(k), u(k) and p(k), which are successive iterative

approximations to the accurate solutions y, u and p on the discrete space. It is shown

that one may successively solve the optimality conditions at each step of the iterative

procedure:

My(k) +Kp(k) = z,

Ky(k) −Mu(k) = g,

βMu(k) −Mp(k) −Mq(k) = 0,

u(k) = ua, on A(k)
− ,

u(k) = ub, on A(k)
+ ,

q(k) = 0, on A(k)
I .

Choose y(0), u(0), p(0), q(0)

Define active sets A(0)
+ , A(0)

− , A(0)
I using definitions, along with u(0), q(0)

for k = 1, 2, ... do

Solve (2.20) on free variables from previous iteration (on A(k−1)
I )

Update Lagrange multiplier q(k)

Define new active sets A(k)
+ , A(k)

− , A(k)
I using (2.19), along with u(k), p(k)

if A(k)
+ = A(k−1)

+ , A(k)
− = A(k−1)

− and A(k)
I = A(k−1)

I then
Algorithm converged

end

end

Algorithm 1: Active Set algorithm for control-constrained optimal control prob-

lems.
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These equations may be written as the matrix system [117]

M 0 0 0 K

0 βMA(k)
I ,A(k)

I 0 0 −MA(k)
I ,:

0 0 βMA(k)
+ ,A(k)

+ 0 −MA(k)
+ ,:

0 0 0 βMA(k)
− ,A(k)

− −MA(k)
− ,:

K −M :,A(k)
I −M :,A(k)

+ −M :,A(k)
− 0





y(k)

uA(k)
I

ub

ua

p(k)


=



z

0

(Mq)A
(k)
+

(Mq)A
(k)
−

g


,

and reduced to M 0 K

0 βMA(k)
I ,A(k)

I −MA(k)
I ,:

K −M :,A(k)
I 0




y(k)

uA(k)
I

p(k)

 =

 z

0

MA(k)
+ ,:ub +MA(k)

− ,:ua + g

 , (2.20)

where A(k)
+ , A(k)

− and A(k)
I denote the active sets defined as in (2.19), with u and q

replaced by the k-th iterates u(k) and q(k). Here, uA(k)
I

corresponds to the portion of the

solution vector of u at the k-th step of the Active Set method belonging to the active

set A(k)
I , and MA(k)

I ,A(k)
I , MA(k)

+ ,A(k)
+ , MA(k)

− ,A(k)
− is the block diagonal subdivision of M

into nodes within A(k)
I , A(k)

+ and A(k)
− respectively at each iteration. Correspondingly,

the mass matrix at each step may be divided up as [M :,A(k)
I ,M :,A(k)

+ ,M :,A(k)
− ] column-

wise, and [MA(k)
I ,:,MA(k)

+ ,:,MA(k)
− ,:]T row-wise.

At each step of the Active Set method, one may then recompute the Lagrange

multipliers q associated with A(k)
+ and A(k)

− via the expressions

(Mq)A
(k)
+ = βMA(k)

+ ,A(k)
+ ub −MA(k)

+ ,:p(k),

(Mq)A
(k)
− = βMA(k)

− ,A(k)
− ua −MA(k)

− ,:p(k).

The procedure is terminated at the iteration where the active sets remain unchanged

from the previous iteration. It is shown in [64] that this method is equivalent to

a semi-smooth Newton method, which is important as superlinear convergence is

therefore guaranteed under suitable conditions [12].

We note that, as in [117], we have decomposed the mass matrices using the as-

sumption that they are lumped – the case for consistent mass matrices is similar and

can be found in [103] for instance. Preconditioners for this matrix system have been

derived and discussed in [62, 64, 117] for example.
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State Constraints. Let us now consider problems with additional inequality

constraints on the state variable. Such a problem may be written in the form

min
y,u

1

2
‖y − ŷ‖2

L2(Ω) +
β

2
‖u‖2

L2(Ω)

s.t. −∇2y = u, in Ω,

y = g, on ∂Ω,

ya ≤ y ≤ yb, a.e. in Ω.

Here, ya and yb may be constants or functions of the spatial coordinates x. These

provide upper and lower bounds for the state variable, which must be satisfied in

addition to the PDE constraint. We note that this is in many ways a harder problem

than the control constrained problem, as the Lagrange multipliers associated with

the state constraints can be non-smooth. We refer the reader to literature such as

[27, 62, 73, 90] for further discussion of this problem.

One approach to deal with these problems is to introduce a Moreau-Yosida regu-

larization [73, 90]. This involves minimizing instead the cost functional

JMY (y, u) =
1

2
‖y − ŷ‖2

L2(Ω) +
β

2
‖u‖2

L2(Ω) +
1

2ε
‖min{0, y − ya}‖2

L2(Ω)

+
1

2ε
‖max{0, y − yb}‖2

L2(Ω) ,

where ε > 0 is some small Moreau-Yosida regularization parameter designed to penal-

ize the violation of the state constraints. We can see that if y < ya or y > yb anywhere

in Ω, the Moreau-Yosida regularization term will increase the value of JMY signifi-

cantly, and so this condition is constructed to “force” the state variable to attain the

lower and upper bounds imposed.

Now, consider the discretized version of this problem. As in [90], we may rewrite

the optimization problem in the following (discretize-then-optimize) form:

min
1

2
yTMy − yTz +

β

2
uTMu +

1

2ε
min{0,y − ya}TM min{0,y − ya}

+
1

2ε
max{0,y − yb}TM max{0,y − yb}

s.t. Ky −Mu = g,

where ya and yb are vectors which contain the values of ya and yb, respectively, at
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each node.

Taking p as a discrete adjoint variable (or Lagrange multiplier) as done previously

in this chapter, and differentiating with respect to y, u and p, gives the following

optimality conditions:

My +Kp = z− ε−1χA+M max{0,y − yb} − ε−1χA−M min{0,y − ya},

βMu−Mp = 0,

Ky −Mu = g,

where χA+ for this problem is the characteristic function for indices of y where y−yb >

0, and χA− similarly is the characteristic function for indices where ya − y > 0. The

sets

A+ = {j : yj > (yb)j}, A− = {j : yj < (ya)j},

here are the active sets associated with the bound constraints at each step, where yj,

(ya)j and (yb)j denote the values of y, ya and yb at the j-th node.

Applying a semi-smooth Newton method to this problem gives the matrix system

[90]  M + ε−1GAMGA 0 K

0 βM −M
K −M 0


 y(k)

u(k)

p(k)

 =

 cA

0

g


at each Newton step. Here, y(k), u(k) and p(k) denote the k-th iterates for state,

control and adjoint, the vector cA is given by

cA = z + ε−1(GA+MGA+yb +GA−MGA−ya),

and the matrices GA+ , GA− and GA are projection matrices onto the active sets given

by A+, A− and A± := A+ ∪A− respectively. In other words, G is a diagonal matrix,

with 1 on the diagonal entries corresponding to indices where the state constraint is

violated (y > yb for the matrix GA+ , y < ya for GA− , and either condition for GA),

and 0 on the other diagonals.

It is also possible to use this Moreau-Yosida regularization for optimal control

problems with additional control constraints, as an alternative to the strategy pro-
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posed above – we will consider this method for a particular problem in Chapter 9.

Problems that involve a combination of state and control constraints could also be

tackled using this technique.

2.1.4 Time-Dependent Problems

It is natural for us to also consider time-dependent variants of the problems discussed

in this section. This is important to do, as most real-world problems have a time-

dependent element, and therefore time-dependent optimal control problems will have

considerable applicability. To provide an outline of such problems, let us consider a

distributed control problem involving the heat equation, of the form

min
y,u

J(y, u)

s.t yt −∇2y = u, for (x, t) ∈ Ω× [0, T ],

y = g, on ∂Ω,

y = y0, at t = 0,

where we now work on a space-time domain Ω × [0, T ], with space-time coordinates

(x, t). For this problem, we require Dirichlet boundary conditions on ∂Ω (though

Neumann boundary conditions could also be considered) and initial conditions at

t = 0. There are many possible choices for the cost functional J(y, u) in this case. In

this work, we wish to consider the cases where J(y, u) is equal to either

J1(y, u) =
1

2

∫ T

0

∫
Ω

(y(x, t)− ŷ(x, t))2 dΩdt+
β

2

∫ T

0

∫
Ω

(u(x, t))2 dΩdt,

or

J2(y, u) =
1

2

∫
Ω

(y(x, T )− ŷ(x))2 dΩ +
β

2

∫ T

0

∫
Ω

(u(x, t))2 dΩdt.

We note that J1(y, u) is an appropriate choice for the cost functional if we wish to

consider the distance between the state and desired state (in the L2-norm) at all

instances in time, and J2(y, u) is a good choice if we only seek this quantity at the

final time t = T . We will refer to the optimal control problem with cost functionals

J1(y, u) and J2(y, u) as the “all-times case” and “final-time case” respectively.

The content of the remainder of this section was discussed in [91, 114].
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All-times case with J1(y, u). Let us first examine the discretize-then-optimize

approach for solving this problem. For this case, we need to consider once again

the discretized forward problem involving the heat equation. This depends on the

time-stepping scheme used: for our investigation we consider a simple backward Euler

scheme, in order to demonstrate that iterative solution of such problems is feasible.

In this case the forward problem can be written in matrix form as

Ky − τMu = d.

Here y and u correspond to the discretized versions of y and u at each time-step, that

is y =
[(

y(1)
)T
, ...,

(
y(Nt)

)T ]T
, u =

[(
u(1)
)T
, ...,

(
u(Nt)

)T ]T
, with y(j), u(j) relating to

the state and control at the j-th time-step. The parameter τ denotes the time-step

used in the discretization, with Nt being the number of time-steps, and

K =



M + τK

−M M + τK
. . . . . .

−M M + τK

−M M + τK


, (2.21)

M =



M

M
. . .

M

M


, d =



My0 + g

g
...

g

g


, (2.22)

where K and M are the standard finite element stiffness and mass matrices defined by

(2.6) and (2.7). Furthermore, g takes account of boundary conditions at each time-

step, and therefore is the same vector g which describes the boundary conditions for

the distributed Poisson control problem in (2.8). The vector y0 corresponds to the

initial condition y0.

Let us now use a trapezoidal rule approach to deal with integration in space within

the integral terms in the cost functional. Applying similar working as for the time-

independent problem leads to the following discrete cost functional that we wish to
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minimize:

JD(y,u) =
τ

2
yTM1/2y − τyTz1/2 + C̄ +

βτ

2
uTM1/2u,

where

M1/2 =



1
2
M

M
. . .

M
1
2
M


, (2.23)

the vector z1/2 =
[

1
2

(
z(1)
)T
,
(
z(2)
)T
, ...,

(
z(Nt−1)

)T
, 1

2

(
z(Nt)

)T ]T
, with z(j) containing

entries of the form
∫

Ω
ŷ(x, jτ)φi dΩ, and C̄ once again denotes a constant independent

of y and u.

When applying the PDE constraints, this leads to the following Lagrangian:

LDTO =
τ

2
yTM1/2y − τyTz1/2 + C̄ +

βτ

2
uTM1/2u + pT (Ky − τMu− d),

where p relates to the Lagrange multiplier at each time-step, that is to say p =[(
p(1)
)T
, ...,

(
p(Nt)

)T ]T
, with p(j) relating to the Lagrange multiplier at the j-th time-

step.

Now, differentiating LDTO with respect to y, u and p gives the following three

matrix equations in turn:

τM1/2y +KTp = τz1/2,

βτM1/2u− τMp = 0,

Ky − τMu = d,

which are again the adjoint, gradient and state equations. Combining these equations

gives the matrix system τM1/2 0 KT

0 βτM1/2 −τM
K −τM 0


 y

u

p

 =

 τz1/2

0

d

 . (2.24)
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Now, let us consider the alternative optimize-then-discretize approach for solving

this problem. In this case, we need to find the stationary points of the continuous

Lagrangian

LOTD =
1

2

∫ T

0

∫
Ω

(y(x, t)− ŷ(x, t))2 dΩdt+
β

2

∫ T

0

∫
Ω

(u(x, t))2 dΩdt

+

∫ T

0

∫
Ω

(yt −∇2y − u)pΩ dΩdt+

∫ T

0

∫
∂Ω

(y − g)p∂Ω dsdt.

Now, differentiating LOTD with respect to pΩ and p∂Ω returns the state equation

yt −∇2y = u, in Ω,

y = g, on ∂Ω,

y(x, 0) = y0.

Next, differentiating with respect to y gives, using similar working as for the time-

independent problem, the adjoint equation

−pt −∇2p = ŷ − y, in Ω,

p = 0, on ∂Ω,

p(x, T ) = 0.

As detailed in [114], discretizing the adjoint equation using a backward Euler method

gives the matrix system

τM0y +KTp = τz0,

where

M0 =



M

M
. . .

M

0


, (2.25)

and z0 =
[(

z(1)
)T
, ...,

(
z(Nt−1)

)T
,0
]T

, with z(j) again containing entries of the form∫
Ω
ŷ(x, jτ)φi dΩ. As in [114], combining this with discretizations of the state and
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gradient equations gives the following matrix system: τM0 0 KT

0 βτM1/2 −τM
K −τM 0


 y

u

p

 =

 τz0

0

d

 . (2.26)

We can see that the discretize-then-optimize and optimize-then-discretize ap-

proaches do not yield the same matrix system for this problem. To rectify this issue,

one would have to choose a time-stepping scheme more carefully.

We consider the solution of the systems (2.24) and (2.26) corresponding to both

approaches in Chapter 8.

Final-time case with J2(y, u). For this case, we will only examine the discretize-

then-optimize formulation, although here the matrix system arising from the optimize-

then-discretize method does turn out to be the same as the discretize-then-optimize

system.

In the discretize-then-optimize approach, due to the modified form of the contin-

uous cost functional, the discrete cost functional would now take the form

JD(y,u) =
1

2
yTM1y − yTz1 + C̄ +

βτ

2
uTM1/2u,

where

M1 =



0

0
. . .

0

M


(2.27)

takes account of the first term in the cost functional J2(y, u), and the vector z1 =[
0T , ...,0T ,

(
z(Nt)

)T ]T
, with z(Nt) corresponding to the desired state at t = T .

Consequently, the Lagrangian of which we wish to find the stationary points is

given by

LDTO =
1

2
yTM1y − yTz1 + C̄ +

βτ

2
uTM1/2u + pT (Ky − τMu− d).

Differentiating this cost functional with respect to y, u and p in turn gives the
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following three equations in terms of the discrete variables:

M1y +KTp = z1,

βτM1/2u− τMp = 0,

Ky − τMu = d,

which can be written as the matrix system M1 0 KT

0 βτM1/2 −τM
K −τM 0


 y

u

p

 =

 z1

0

d

 . (2.28)

Observe that the matrix systems (2.24), (2.26) and (2.28) are extremely large, even

in comparison to the matrix systems corresponding to the time-independent Poisson

control problem. This renders a direct method for these problems infeasible, even if

such a method could be applied to the time-independent formulation. In addition,

even if an iterative method can be devised, it would be likely to be ineffective if

matrices of dimension equal to that of the blocks of the matrix systems needed to be

stored, as these blocks grow rapidly in dimension if finer discretizations in space or

time are used. It is therefore hugely desirable to devise an iterative solution strategy

which involves only storing matrices of much lower dimension than the matrix system

of which the solution is sought. We will consider whether such a strategy can be

developed for solving such time-dependent problems in Chapter 8.

2.1.5 Other Problem Formulations

In this section, we have presented but a few of the possible formulations of PDE-

constrained optimization problems. There are many extensions to the examples dis-

cussed here. For instance one may consider using different norms within the cost

functional we try to minimize – in [102] an H1-norm regularization of the control

variable (rather than L2-norm) is studied, and in [59, 122], for instance, many other

norms applied to the state and control terms within the cost functional are discussed.

Furthermore, many different PDEs may be considered within the optimal control

problem, which leads to a wealth of application areas as listed earlier in this section.

We introduced problems here solely using Poisson’s equation and the heat equation,

but a variety of other PDEs are studied in later chapters of this thesis.
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2.2 Preconditioning Saddle Point Systems

Throughout this thesis, we will encounter (real) matrix systems of the form

Ax = b, (2.29)

which are large and sparse. For a large class of problems, and indeed the problems

that we wish to consider, the matrix A is also symmetric. There are two classes

of widely researched strategies for solving such systems: direct methods, which use

linear algebraic techniques including Gaussian elimination to decompose the matrix

such that the solution of the system becomes simpler (see [32] for a summary of

such methods), and iterative methods. As PDE-constrained optimization problems

are frequently of very high dimension, and appropriate iterative methods can work

extremely well for such problems, we will apply the latter strategy. In particular,

we will aim to solve systems of the form (2.29) using iterative methods, along with

preconditioners.

The idea of preconditioning is to create a matrix (or operator) P and look to

solve, instead of (2.29), the system

P−1Ax = P−1b, (2.30)

which has more “convenient” properties in some sense. Equation (2.30) corresponds

to left preconditioning. It is also perfectly possible to apply right preconditioning –

this involves solving, instead of (2.29), the system AP−1Px = b by solving in turn

AP−1y = b, Px = y.

Whether carrying out left or right preconditioning, the effectiveness of the strategy

depends on the choice of preconditioner made. A good choice of preconditioner P
will have two key properties:

1. The matrix P will capture the behaviour of the matrix A well. To give an idea

of what this means in practice, for a symmetric positive definite preconditioner

P and a symmetric matrix A, the crucial property is that κ(P−1A) � κ(A),

where κ denotes the condition number (in the 2-norm) of a matrix. This will

mean that the eigenvalues of the preconditioned system will be more clustered

than those of the original system.
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2. The matrix P will be cheap to invert, as at each step of an iterative method,

P−1 will need to be applied.

In order to understand these two properties better, we consider two particular

choices of preconditioners for the matrixA, neither of which would be used in practice:

• P = I: This choice of preconditioner will certainly satisfy the second stated

property of a good preconditioner, as it is trivial to invert. However, it will not

satisfy the first property as it will not improve the spectral properties of the

matrix system involved.

• P = A: Naturally, this would capture the behaviour of A well, as P−1A = I.

However, this would not be cheap to invert as A is not (if A were cheap to

invert, there would be no use for an iterative method in any case). So this is

not a good choice for P either.

These two artificial choices for P are at the opposite ends of the scale in terms of the

balance between spectral properties and computational cheapness – the precondition-

ers that we seek result in more of a “happy medium”. Our choices of preconditioners

will resemble the matrix A well, but will also be cheap to invert, with the cost of

applying P−1 scaling linearly or close to linearly with the dimension of A (and P).

2.2.1 Saddle Point Systems

When solving PDE-constrained optimization problems, we may in fact say much more

about effective preconditioning strategies for the resulting matrix systems than the

general observations made above. The reason for this is that the matrix systems that

need to be solved have a very specific structure, namely saddle point structure.

A saddle point system is defined as a matrix system of the form[
Φ ΨT

Ψ −Θ

]
︸ ︷︷ ︸

A

[
x1

x2

]
=

[
b1

b2

]
, (2.31)

where Φ ∈ Rm×m is invertible, Ψ ∈ Rp×m, p ≤ m, has full row rank, and Θ ∈ Rp×p.

Within all problems that we consider, Φ and Θ are also symmetric. The matrix Θ

will also always be positive semi-definite, and will often be equal to the zero matrix.
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An excellent review of such matrix systems and numerical methods for their solution

is given in [9].

We now introduce the following three general preconditioners for the matrix sys-

tem (2.31):

P1 =

[
Φ 0

0 Θ + ΨΦ−1ΨT

]
,

P2 =

[
Φ 0

Ψ −Θ−ΨΦ−1ΨT

]
,

P3 =

[
Φ 0

Ψ Θ + ΨΦ−1ΨT

]
.

We see that the two common components of each of these three preconditioners are

the (1, 1)-block Φ and the (negative) Schur complement S := Θ + ΨΦ−1ΨT .

A large part of the explanation of why these matrices are in fact very effective

preconditioners arises from the following three theorems. Theorems 1, 2 and 3 were

proved for the case Θ = 0 in [79, 83], and Theorems 2 and 3 were extended to the case

Θ 6= 0 in [72]. We note that in these theorems, λ(·) denotes the eigenvalue spectrum

of a particular matrix.

Theorem 1. Suppose for a matrix system of the form (2.31) that A is invertible, and

that Θ = 0. Then the following preconditioner for A:

P1 =

[
Φ 0

0 ΨΦ−1ΨT

]

satisfies

λ(P−1
1 A) ∈

{
1,

1±
√

5

2

}
.

Theorem 2. Suppose for a matrix system of the form (2.31) that A is invertible.

Then the following preconditioner for A:

P2 =

[
Φ 0

Ψ −Θ−ΨΦ−1ΨT

]
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satisfies

λ(P−1
2 A) ∈ {1}.

Theorem 3. Suppose for a matrix system of the form (2.31) that A is invertible.

Then the following preconditioner for A:

P3 =

[
Φ 0

Ψ Θ + ΨΦ−1ΨT

]

satisfies

λ(P−1
3 A) ∈ {±1}.

Given that the results for the block triangular preconditioners P2 and P3 are much

more general than the result for the block diagonal preconditioner P1 (as there is no

assumption that Θ = 0 involved in Theorems 2 and 3, in contrast to Theorem 1), it is

natural to ask whether one may predict eigenvalues for block diagonal preconditioners

when Θ 6= 0. The following theorem (as stated and proved in [86]) gives a partial

answer to this question.5

Theorem 4. Suppose a matrix system of the form A is invertible, and that Φ and Θ

are symmetric positive definite. Then the following preconditioner for A:

P1 =

[
Φ 0

0 Θ + ΨΦ−1ΨT

]

satisfies

λ(P−1
1 A) ∈

[
−1,

1

2
(1−

√
5)

]
∪
[
1,

1

2
(1 +

√
5)

]
.

5We note that bounds of this form have been widely discussed in the literature on saddle point
systems. For instance, the lower bounds on the negative and positive eigenvalues are shown by
Axelsson and Neytcheva in [3, Corollary 1], with the remaining bounds a consequence of the result
of Silvester and Wathen in [111, Lemma 2.2].
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Proof. Simple calculation gives us that

P−1
1 A =

[
Φ−1 0

0 (Θ + ΨΦ−1ΨT )−1

][
Φ ΨT

Ψ −Θ

]

=

[
I Φ−1ΨT

(Θ + ΨΦ−1ΨT )−1Ψ −(Θ + ΨΦ−1ΨT )−1Θ

]
.

We may therefore consider the eigenvalue problem P−1
1 Ax = λx, and write

x1 + Φ−1ΨTx2 = λx1, (2.32)

(Θ + ΨΦ−1ΨT )−1Ψx1 − (Θ + ΨΦ−1ΨT )−1Θx2 = λx2, (2.33)

by expressing x = [xT1 ,x
T
2 ]T , with x1 and x2 vectors of lengths m and p respectively.

Now, (2.32) gives us that

x1 =
1

λ− 1
Φ−1ΨTx2, (2.34)

provided that λ 6= 1. In this case, we may then substitute (2.34) into (2.33) to give

1

λ− 1
(Θ + ΨΦ−1ΨT )−1ΨΦ−1ΨTx2 − (Θ + ΨΦ−1ΨT )−1Θx2 = λx2

⇒ ΨΦ−1ΨTx2 − (λ− 1)Θx2 = λ(λ− 1)(Θ + ΨΦ−1ΨT )x2

⇒ (λ2 − λ− 1)(Θ + ΨΦ−1ΨT )x2 = −λΘx2.

Given that we have assumed that Θ is positive definite (and hence invertible), we

may write this as the following eigenvalue problem:

(I + Θ−1ΨΦ−1ΨT )x2 =
−λ

λ2 − λ− 1
x2.

The pertinent question at this point is what the eigenvalues of the matrix I +

Θ−1ΨΦ−1ΨT are. As Θ is symmetric positive definite, it has a (unique) matrix square

root Θ1/2, and hence the matrix I+Θ−1ΨΦ−1ΨT is similar to I+Θ−1/2ΨΦ−1ΨTΘ−1/2.

We may therefore use the symmetric positive definiteness of Φ and Θ to conclude that

the eigenvalues of the symmetric matrix Θ−1/2ΨΦ−1ΨTΘ−1/2 are all real and positive,

and hence that the eigenvalues of I + Θ−1/2ΨΦ−1ΨTΘ−1/2 are all real and at least 1.
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Figure 2.1: Plot of the function f(λ) = −λ
λ2−λ−1

. Marked are the values λ = −1, 1, 1
2
(1±√

5).

This makes it clear that the following inequality must hold:

−λ
λ2 − λ− 1

≥ 1.

In Figure 2.1, we display a plot of the function f(λ) = −λ
λ2−λ−1

. We can see that

f(λ) = 1 at the points λ = ±1, and that there are asymptotes at λ = 1
2
(1±

√
5). We

therefore deduce from the above inequality that

λ ∈
[
−1,

1

2
(1−

√
5)

]
∪
[
1,

1

2
(1 +

√
5)

]
,

as required. 2

As discussed in [36, 72], if we precondition the matrix A with P1, P2 and P3, then

an appropriate iterative method should converge in 3, 2 and 2 iterations respectively,

provided A is invertible [83], and with the additional assumption that Θ = 0 when

P1 is applied. These important observations result from Theorems 1, 2 and 3 above,

along with the fact that P1 and P3 are diagonalizable but P2 is not. The eigenvalues

of P−1
1 A can be shown to be well clustered in certain cases even if Θ 6= 0, as Theorem

4 shows.

The preconditioners P1, P2 and P3 can therefore be regarded as ideal precondi-

tioners, given the relevant assumptions detailed above, as they may be used within
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iterative methods to solve the matrix system (2.31) in a fixed (small) number of

iterations, independently of the dimension of the matrix system.

However, although the preconditioners P1, P2 and P3 are theoretically powerful,

they are clearly not practical – in particular the matrix Φ−1 may be dense even if

Φ is sparse, and so forming the Schur complement exactly would be prohibitively

expensive. However, we may be able to establish effective preconditioners for A by

approximating Φ and S with Φ̂ and Ŝ, and then applying these matrices within the

preconditioners. This would therefore involve considering preconditioners of the form

P̂1 =

[
Φ̂ 0

0 Ŝ

]
, P̂2 =

[
Φ̂ 0

Ψ −Ŝ

]
, P̂3 =

[
Φ̂ 0

Ψ Ŝ

]
.

The crucial task when constructing preconditioners for matrices of the form (2.31) is

therefore developing good approximations to the (1, 1)-block and Schur complement

of A. In practice, we often find the latter to be a harder problem, and we will devote

much attention to developing good choices of Ŝ.

For all matrix systems studied in this thesis, we find that preconditioners of the

form P̂1, P̂2 and P̂3 can be considered, and indeed that they can be very well-suited

to the problems at hand, if care is taken when choosing such approximations Φ̂ and

Ŝ.
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2.3 Iterative Solution Techniques

In this section, we wish to introduce the iterative methods which are employed to solve

the PDE-constrained optimization problems considered in this thesis. In order to

solve these problems, it is necessary to consider the precise structures of the resulting

saddle point systems. It is therefore very important that the methods we select have

particular properties, so that they can be applied in the appropriate way.

We in fact use only six components to generate the iterative solvers that we use

to solve PDE-constrained optimization problems. There are four methods which will

be used as an outer iteration:

• Minres, a solver designed for solving symmetric indefinite systems.

• Conjugate Gradients in a non-standard inner product, which can solve matrix

systems which are symmetric positive definite in the particular inner product.

• Gmres, a solver which may be applied to non-symmetric matrix systems.

• Biconjugate Gradients, another solver for non-symmetric matrix systems.

Additionally, there are two main techniques which will be exploited within precondi-

tioners for these iterative solvers:

• Chebyshev semi-iteration, which is highly effective for preconditioning symmet-

ric positive definite matrices, such as mass matrices, for which precise spectral

information is known.

• Multigrid, which is a particularly effective method for preconditioning symmet-

ric positive definite matrices such as stiffness matrices, and which may also be

applied to other matrices.

In this section, we aim to provide a brief overview of these methods, detail con-

vergence bounds of the methods where appropriate, and explain which problems the

methods will be applied to in this thesis.

2.3.1 Simple Iteration

In order to provide some necessary background about iterative methods, we first

introduce the concept of a simple iteration, the idea of which is applied within the

Chebyshev semi-iteration and multigrid methods of future sections.
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In order to employ a simple iteration when solving a matrix system Ax = b, one

first splits the matrix into the form A = Λ−Σ, for an appropriate choice of Λ. Then a

sequence of approximations {xj}j=1,2,... to x is constructed via the iterative sequence

Λxj = Σxj−1 + b, j = 1, 2, ... ,

given a suitable initial guess x0. We note that this formula may be re-written as

follows:

xj = (I − Λ−1A)xj−1 + Λ−1b, j = 1, 2, ... .

It is known that such a simple iteration scheme will converge to the true solution,

for any initial guess, if and only if [48, Lemma 4.1.1]

lim
j→∞

∥∥(I − Λ−1A)j
∥∥ = 0,

and so for an appropriate choice of splitting, this method can be usefully applied.

Some basic examples of simple iterations, stated in terms of the splitting matrix

Λ used, are detailed below:

• Jacobi iteration: Here, the splitting matrix Λ = D, where D = diag(A), is used.

• Relaxed Jacobi iteration: In this case, the modified system ωAx = ωb is solved,

with splitting matrix Λ = D. Here ω is some relaxation parameter.

• Gauss-Seidel iteration: Here, the splitting matrix Λ is taken to be the lower

triangular part of A.

These methods are frequently very useful for solving matrix systems iteratively; we

explain how such splittings can be used within the Chebyshev semi-iteration and

multigrid methods in the next sections.

2.3.2 Chebyshev Semi-Iteration

One of the main methods which we make use of within our preconditioners is the

Chebyshev semi-iteration method, devised by Flanders and Shortley [38], and popu-

larized by Golub and Varga [45, 46]. This method is of great use when one seeks to

approximate the inverse of a mass matrix when solving systems of the form Mx = b.
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The basic idea is to approximate such an inverse by a Chebyshev series, by making

use of known spectral bounds for mass matrices. This method is discussed in detail

in literature such as [99, 101, 126].

Chebyshev semi-iteration is based on the relaxed Jacobi method introduced in

the previous section, which is a simple iteration applied to the system ωMx = ωb

with splitting matrix Λ = D := diag(M). The relaxation parameter ω is chosen such

that the range of eigenvalues of I − ωΛ−1M is symmetric about zero. So suppose

λ(D−1M) ∈ [λmin, λmax] – then we wish to choose ω such that

1− ωλmin = −(1− ωλmax) ⇔ ω =
2

λmax + λmin

.

Therefore, the eigenvalues of I − ωΛ−1M would be within the interval[
−λmax − λmin

λmax + λmin

,
λmax − λmin

λmax + λmin

]
=: [−ρ, ρ]

for this choice of ω.

Element Type Dimension λmin λmax ω λmax−λmin

λmax+λmin

P1 2D 1
2

2 4
5

3
5arbitrary linear triangles

Q1 2D 1
4

9
4

4
5

4
5bilinear rectangles

P2 2D
0.3924 2.0598 0.816 0.680

arbitrary quadratic triangles

Q2 2D 1
4

25
16

32
29

21
29biquadratic rectangles

P1 3D 1
2

5
2

2
3

2
3arbitrary linear tetrahedra

Q1 3D 1
8

27
8

4
7

13
14rectangular triangular ‘brick’

Table 2.1: Bounds on minimum and maximum eigenvalues of D−1M for a number
of commonly-used finite element basis functions, as stated in [125], as well as the
appropriate choice ω for these functions, and the values of λmax−λmin

λmax+λmin
.

Table 2.1 gives bounds on the minimum and maximum eigenvalues of D−1M for
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a number of commonly used finite element basis functions, and also the values of ω

which would be used in the Chebyshev semi-iteration method for each set of basis

functions. The table illustrates the ease with which we are able to find the parameter

ω for these functions.

The aim of the Chebyshev semi-iterative method is to accelerate the relaxed Jacobi

method for this problem: that is instead of computing iterates xj, j = 1, 2, ..., for this

method using relaxed Jacobi iteration, we take a linear combination yj =
∑j

i=1 αixi

at the j-th step of the iteration, with the goal of constructing a better approximation

this way [101]. Here, αi are the coefficients of some polynomial pj(t) of degree j.

This polynomial needs to be chosen to be small when its argument is given by any

eigenvalue of T = I − ωΛ−1M = I − ωD−1M . It is also necessary that the condition

pj(1) = 1 holds, as we require that if x0 is the true solution x, then so are all the

subsequent iterates yj.

With these constraints, the optimal polynomial (that is to say the polynomial pj

such that maxt∈[−ρ,ρ] |pj(t)| is as small as possible) is the shifted and scaled Chebyshev

polynomial, given by

pj(t) = T̂j(t) :=
Tj

(
t
ρ

)
Tj

(
1
ρ

) ,
where Tj(t) := cos (j cos−1 t) denotes the standard Chebyshev polynomial.

In [99, Chapter 3], it is demonstrated that one may develop a three-term recurrence

relation for this choice of polynomial pj(t), and use this to construct a fast recursive

method for determining successive vectors yj. We note that this is made possible

due to the known values λmin and λmax of D−1M , which enable us to compute the

parameters ω and ρ in this method.

Pseudocode describing how the Chebyshev semi-iteration method may be im-

plemented, using this approach for constructing successive vectors yj, is stated in

Algorithm 2. We refer to [99, 101, 126] for further explanation as to the derivation of

this method.
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ω = 2
λmax+λmin

, ρ = λmax−λmin

λmax+λmin

θ0 = 1, y−1 = 0

Choose y0

for j = 0, 1, 2, ... do

θj+1 =
(

1− ρθ2
j

4

)−1

zj = ωD−1(b−Myj)

yj+1 = θj+1(zj + yj − yj−1) + yj−1

end

Algorithm 2: Chebyshev semi-iteration method for preconditioning the system

Mx = b, where M satisfies λ(D−1M) ∈ [λmin, λmax].

It can easily be shown, as in [99], that the error at the j-th step of the Chebyshev

semi-iteration method is bounded in the 2-norm as follows:

‖x− yj‖2

‖x− x0‖2

≤ 2

(√
κ− 1√
κ+ 1

)j
,

where κ here denotes the condition number of D−1M . Due to the fact that D and

M are symmetric, this quantity is given by the ratio of the maximum and minimum

eigenvalues. This tells us that we may apply the Chebyshev semi-iteration method as

a preconditioner within an iterative method such as Minres or Conjugate Gradients,

and know a priori how many steps of the method need to be taken to achieve a given

precision. Table 2.2 shows the eigenvalues of a mass matrix preconditioned using

Chebyshev semi-iteration, for a range of iteration numbers. Note for instance that 20

steps of Chebyshev semi-iteration leads to an error of roughly 10−6 for the Q1 mass

matrix tested. The rapid convergence of the method is an extremely useful feature of

Chebyshev semi-iteration.

Of course Chebyshev semi-iteration is not the only method that guarantees a

certain precision when it is applied to a matrix with uniform eigenvalue bounds. What

sets this method apart from other strategies is the computational cheapness with

which it may be applied. As demonstrated by the pseudocode above, the dominant

operation required to apply this method to a sparse matrix system is a single sparse

matrix-vector multiply at each iteration. This small amount of computational work

required to apply the method makes it very practical to apply. In addition, the

application of Chebyshev semi-iteration is a fixed linear operator, as opposed to other
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Iterations λmin λmax κ = λmax

λmin

1 0.2 1.8 9

2 0.5294118 1.4698694 2.7764199

3 0.7538462 1.2461538 1.6530612

4 0.8754864 1.1244668 1.2843909

5 0.9375610 1.0624390 1.1331946

10 0.9980469 1.0019516 1.0039124

15 0.9999390 1.0000610 1.0001221

20 0.9999981 1.0000019 1.0000038

25 0.9999999 1.0000001 1.0000001

Table 2.2: Minimum and maximum eigenvalues, as well as the condition number,
of M−1

chebM , where M is a 289 × 289 Q1 mass matrix in 2D, and Mcheb denotes the
application of Chebyshev semi-iteration to the matrix. Results are given for a variety
of iteration numbers.

methods, such as Conjugate Gradients, which could also be applied to precondition

a mass matrix.

Due to the excellent error properties and computational cheapness of the Cheby-

shev semi-iteration method, we apply it in Chapters 3, 4, 5, 6 and 7 to approximate

the inverse of (consistent) mass matrices.

Note. We observe that as diag(M)−1M is well-conditioned for consistent mass

matrices, it would be possible to simply approximate M by its diagonal within an

iterative method. However, based on discussion and numerical tests in literature

such as [101], as well as our own experiments, we conclude that applying Chebyshev

semi-iteration significantly reduces the number of iterations of the iterative methods

required, and hence that it is advantageous to approximate M this way within such

a method.

2.3.3 Multigrid Methods

Another algorithm which will be exploited often during the course of solving problems

detailed within this thesis is the multigrid method. We detail this method briefly in

this section in the context of solving a matrix system Ax = b. For comprehensive

introductions to this method, we recommend [24, 60, 127]. The class of such methods
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we spend most of this section introducing is referred to as the geometric multigrid

(GMG) method.

The idea of the multigrid method is to approximate the solution of a PDE on a

fine grid by approximating the differential operator and residuals on a coarser grid,

solve the problem set-up on this coarser grid, and then map the solution back to the

finer grid. For particular problems, this method is known to be highly effective.

The main ingredients which are required for such a method are:

• Prolongation operator: This is an operator, which we denote by a matrix

P , used to transfer a computed correction term of the solution from a coarse

grid to a fine grid. We will generally construct the matrix P by approximating

each value on the coarse grid as a weighted average of those on the fine grid, as

discussed in [36, Section 2.1].

• Restriction operator: This is an operator, which we denote R, used to restrict

the residual from a fine grid to a coarse grid. In this thesis, the choice R = P T

is taken.

• Smoothing operator: We employ pre- and post-smoothing, using matrices

Λ and ΛT respectively, to mitigate high frequency errors within the solution.

Smoothing methods relate to a simple iteration with splitting A = Λ − Σ:

common examples are (relaxed) Jacobi smoothing and Gauss-Seidel smoothing,

as described in Section 2.3.1.

We note that the multigrid method carried out on two grids may be shown to be

exactly a simple iteration with the following iteration matrix [36, Section 2.1]:

ej+1 =
(
I − Λ−TA

)s (A−1 − P Ā−1P T
)
A
(
I − Λ−1A

)s
ej, j = 0, 1, 2, ... ,

where ej = Arj denotes the error at the j-th iterate, and s denotes the number of

pre- and post-smoothing steps used (we only consider the case where the number of

pre- and post-smoothing steps is the same).

Algorithm 3 details a multigrid V-cycle, forms of which will be utilized often

within this thesis, on lc ≥ 2 grids. We note that other strategies, such as a multigrid

W-cycle, have been studied, but we do not focus on these in this work.
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function x = GMG(A,x,u, level)

for j = 1, ..., s do
x = (I − Λ−1A)x− Λ−1b

end

if level = lc then
Solve Ax = b

else

r̄ = P T (b−Ax)

Ā = P TAP
ē = GMG(Ā, r̄, ē, level + 1)

x = x + P ē
end

for j = 1, ..., s do

x = (I − Λ−TA)x− Λ−Tb

end

Algorithm 3: Geometric multigrid V-cycle for preconditioning the system Ax = b.

The algorithm is applied on lc grids, with Jacobi smoothing.

An important result is proved in [36, Lemma 6.2] concerning a multigrid process

applied to the linear system Kx = b, involving the stiffness matrix. This result states

that, provided there exists a contraction factor ρc < 1 such that the iteration error

for a simple iteration with splitting matrix Ks satisfies

‖u− uj+1‖K ≤ ρc ‖u− uj‖K , j = 0, 1, 2, ... , (2.35)

with uj denoting the j-th iterative approximation, then

1− ρc ≤
vTKv

vTKsv
≤ 1 + ρc,

where ρc is a constant independent of the size of the matrix, and v 6= 0 is a vector

of appropriate dimension. As shown in [23, Chapter 6], a multigrid method with

Jacobi smoother achieves the condition (2.35), provided an appropriate grid is used

to solve the problem. We may therefore conclude that, for this problem, a multigrid

routine will guarantee a fixed rate of contraction in the solution error, and is therefore

an excellent preconditioner for the stiffness matrix. This is a crucial property which
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motivates the use of such a method. Moreover, arguments of this form may be carried

over to solving matrix systems involving the sum of stiffness and mass matrices, as

such matrices are positive definite as well as the stiffness matrix itself. In the majority

of cases where we use a multigrid process in this thesis the method is applied to

matrices which are a linear combination of stiffness and mass matrices, so the results

described above are very important for our purposes.

We observe that if such a rate of contraction may be guaranteed, then the compu-

tational cost of solving such a sparse matrix system to a given tolerance should scale

linearly with the size of the matrix system. This is an important property that we

desire the applied methods to have.

Although multigrid is an effective method in its own right, in this thesis we wish

to make use of the method as a preconditioner within an iterative method. We apply

various forms of the multigrid method in this way in each of Chapters 3–9 to solve

the PDE-constrained optimization problems considered. For the most part, we will

consider an algebraic multigrid (AMG) method as opposed to the geometric multi-

grid approach defined above (see [22, 106] for an introduction to AMG). The basis of

AMG is that the operators on each level are constructed purely using the algebraic

structure of the matrix, as opposed to GMG which exploits known geometric infor-

mation concerning the domain on which the physical problem is based. We utilize the

Harwell Subroutine Library (HSL) code HSL MI20 [19] or the smoothed aggregation

AMG code within the Trilinos ML package [44] for the algebraic multigrid procedure.

However, we will make use of a specialized GMG routine for the convection-diffusion

control problem in Chapter 5. Here, the operator to which multigrid is applied is

neither symmetric nor positive definite, meaning that the strategy described above

needs to be modified – specifically, the construction of operators on coarse grids, as

well as the type of smoothing used, will be tailored to the problem at hand. We note

at this point that all the multigrid approaches we make use of appear to scale linearly

with the size of the matrix system being solved, and so multigrid is a very appropriate

method to employ.

2.3.4 MINRES

We now wish to introduce the iterative methods used as outer iterations in our solvers.

The method that we make the most use of is the Minimum Residual method (Min-

res). This was developed by Paige and Saunders in [85] for the purpose of solving
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symmetric matrix systems, which may be definite or indefinite. It is therefore a highly

useful method for the solution of saddle point systems arising in PDE-constrained op-

timization problems, as these systems are frequently symmetric indefinite themselves.

The Minres method is an example of a Krylov subspace method. These are

iterative methods which result in the j-th iterative approximation xj to the solution

x of (2.29) satisfying

xj ∈ x0 +Kj(A, r0), j = 1, 2, ... , (2.36)

where x0 is the initial guess of the solution, r0 = b−Ax0 is the initial residual, and

Kj(A, r0) is the Krylov subspace defined by

Kj(A, r0) = span
{
r0,Ar0,A2r0, ...,Aj−1r0

}
.

As in much of the literature about such methods, for instance [36], the expression

(2.36) is stated rather loosely – to be more precise, we say that xj is equal to the sum

of x0 and some vector that is a member of Kj(A, r0).

The Minres method is based on the Lanczos algorithm [80] for generating an

orthogonal basis {v1,v2, ...,vj} of Kj(A, r0) when A is symmetric. This method

involves setting v0, choosing v1 = r0

‖r0‖2
, and applying the recurrence

γi+1vi+1 = Avi − δivi − γivi−1, i = 1, 2, ..., j − 1, (2.37)

with δi = 〈Avi,vi〉, and γi+1 selected to enforce ‖vi+1‖2 = 1 for i = 1, 2, ..., j − 1.

As described in [36, Section 2.4], generating an approximation xj ∈ x0 +Kj(A, r0)

to x at the j-th Minres iteration, and choosing v1 = r0

‖r0‖2
, involves writing

xj = x0 + Vjyj,

for some vector yj ∈ Rj, with Vj = [v1,v2, ...,vj].

The fundamental property of the Minres method is that, at each iteration,

it minimizes the vector 2-norm of the residual rj over the vector subspace r0 +

span {Ar0,A2r0, ...,Ajr0}. At each iteration, this involves solving

min ‖rj‖2 = min
yj

∥∥∥‖r0‖2 e1 − Ŵjyj

∥∥∥
2
,
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where Ŵj is a tridiagonal matrix consisting of entries obtained from the repeated

application of the expression (2.37), and e1 = [1, 0, ..., 0]T . The minimum is calculated

within the method using Givens rotations for a QR factorization.

We recommend [36, 108] for a more detailed derivation of the Minres algorithm.

We note that one crucial property of the Minres algorithm is that we may also

consider a preconditioned Minres algorithm, provided we select a preconditioner P
that is symmetric positive definite. In this case, the preconditioner has a Cholesky

decomposition P = H̄H̄T , and so we may in effect consider the solution of [36, 99]

P−1Ax = P−1b ⇔ H̄−1AH̄−T
(
H̄Tx

)
= H̄−1b

⇔ H̄−1AH̄−Ty = H̄−1b, y = H̄Tx.

So in this reformulation, the matrix being solved for is H̄−1AH̄−T , which is symmetric

since A is. Therefore, the Minres algorithm may be applied to this preconditioned

system, though of course the only matrices worked with in practice are A and P
themselves, and not H̄ or H̄T . The preconditioned Minres method, which is used

extensively in this thesis, is stated in Algorithm 4.

We may observe the ease with which preconditioners may be applied within this

algorithm. For instance, suppose we wished to solve the matrix system

Kx = b,

which arises from the finite element solution of Poisson’s equation. Then we may

apply the preconditioned Minres algorithm as the matrix system is symmetric, pro-

vided that the preconditioner is symmetric positive definite. A good choice of such a

preconditioner [36, Chapter 2] is a multigrid process of the form described in Section

2.3.3, which may be applied within the algorithm to accelerate the rate of convergence.

The preconditioned Minres algorithm minimizes the residual in the P−1 norm,

which is defined by ‖r‖P−1 =
√

rTP−1r. We can bound the residual at the j-th

iteration as follows [36, Section 2.4]:

‖rj‖P−1

‖r0‖P−1

≤ min
pj∈Πj ,pj(0)=1

max
λi
|pj(λi)|, (2.38)

where λi denote the eigenvalues of P−1A and Πj defines the set of polynomials of

degree at most j. One may therefore describe the convergence of the preconditioned
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Minres method in terms of the eigenvalues of the preconditioned matrix system

considered, and so may select preconditioners with this objective in mind.

v0 = 0, w0 = 0, w1 = 0

Choose x0

v1 = b−Ax0

Solve Pz1 = v1

γ1 =
√
〈z1,v1〉

η = γ1, s0 = s1 = 0, c0 = c1 = 1

for j = 1, 2, ... do

zj =
zj
γj

δj = 〈Azj, zj〉
vj+1 = Avj − δj

γj
vj − γj

γj−1
vj−1

Solve Pzj+1 = vj+1

γj+1 =
√
〈zj+1,vj+1〉

α0 = cjδj − cj−1sjγj

α1 =
√
α2

0 + γ2
j+1

α2 = sjδj + cj−1cjγj

α3 = sj−1γj

cj+1 = α0

α1
, sj+1 =

γj+1

α1

wj+1 = 1
α1

(zj − α3wj−1 − α2wj)

xj = xj−1 + cj+1ηwj+1

η = −sj+1η

<Convergence Test>

end

Algorithm 4: Minres algorithm for solving Ax = b with preconditioner P .

We emphasize that the preconditioned Minres algorithm, when applied to a

sparse matrix system, can be applied in a number of computational operations that

scales linearly with the size of the system being solved, provided the preconditioner

can itself be applied in a number of operations that also scales as such. We may

therefore obtain useful solvers based on the Minres algorithm, provided suitable

preconditioners are found which may be cheaply applied.

We use the Minres algorithm for solving a range of problems, including Pois-

son control problems in Chapters 3 and 4, convection-diffusion control problems in
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Chapter 5, Stokes control problems in Chapter 6 and time-dependent optimal control

problems in Chapter 8.

2.3.5 Conjugate Gradients

Another key method for solving symmetric linear systems is the Conjugate Gradient

(CG) method. The method, in its standard form, was devised by Hestenes and Stiefel

[63] for solving matrix systems of the form Ax = b, where A is symmetric positive

definite.

The Conjugate Gradient method is another example of a Krylov subspace method.

In CG successive iterates, of the form

xj+1 = xj + αjpj, j = 0, 1, 2, ... ,

are generated. Here pj denote search directions – these are A-conjugate vectors,

meaning that pTj Api = 0 for i 6= j, which are found using the Gram-Schmidt method,

and are related to the residual vectors rj. The values of αj are chosen at each iteration

to achieve stationary points of the quadratic form

f(x) =
1

2
xTAx− xTb,

the minimization of which is an equivalent problem to solving the matrix system

Ax = b.

We do not give a detailed description of the Conjugate Gradient method in this

thesis, and instead refer to [36, 63] for more thorough discussion.

An important property of CG is that it is a method which, at the j-th iterate,

minimizes the A-norm of the error, ‖x− xj‖A, over Kj(A, r0). Further, it may be

shown [121, Lecture 38] that this error can be bounded by

‖x− xj‖A
‖x− x0‖A

≤ 2

(√
κ− 1√
κ+ 1

)j
,

where κ again denotes the condition number (in the 2-norm) of A, which for a sym-

metric matrix A is given by the quotient of the maximum and minimum eigenvalues

of A.

As for the Minres method of the previous section, we may also consider a precon-

ditioned CG method, provided we use a preconditioner P that is symmetric positive
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definite. In this case, we may write P = H̄H̄T for some matrix H̄, and hence consider

instead [36, 99]

H̄−1AH̄−Ty = H̄−1b, y = H̄Tx.

So, as for the Minres algorithm discussed in Section 2.3.4, the matrix being solved

for is H̄−1AH̄−T , which is guaranteed to be symmetric and positive definite as A is.

Again, the matrices H̄ and H̄T do not need to be applied in practice to enact the

preconditioner – only P itself needs to be used. A preconditioned CG method can

therefore be used, and is stated in Algorithm 5. We note that, as for the Minres

algorithm of the previous section, the computational cost of applying this algorithm

to a sparse matrix system scales linearly with the size of the system being solved,

provided the cost of applying the preconditioner P scales in this way.

Choose x0

r0 = b−Ax0

Solve Pz0 = r0

p0 = z0

for j = 0, 1, 2, ... do

αj =
〈zj ,rj〉
〈Apj ,pj〉

xj+1 = xj + αjpj

rj+1 = rj − αjApj

<Convergence Test>

Solve Pzj+1 = rj+1

βj =
〈zj+1,rj+1〉
〈zj ,rj〉

pj+1 = zj+1 + βjpj

end

Algorithm 5: Conjugate Gradient algorithm for solving Ax = b with precondi-

tioner P .

Now, for the CG algorithm as described, we rely heavily on the matrix A being

positive definite. However, for the problems we will seek to solve, this is not the

case – in fact we will consider problems for which A is symmetric but indefinite –

so the standard algorithm cannot be used. However, as discussed in [21, 99, 113]

for instance, it is possible to write a CG algorithm in a non-standard inner product
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〈·, ·〉H, in which the preconditioned matrix system is symmetric positive definite. In

more detail, we select a symmetric positive definite inner product matrix H in which

the preconditioned matrix is self-adjoint, i.e. for all vectors v, w of appropriate

dimension,

〈P−1Av,w〉H = 〈v,P−1Aw〉H ⇔ wTHP−1Av = wT
(
P−1A

)T Hv

⇔ wTHP−1Av = wTAP−1Hv,

or equivalently,

HP−1A = AP−1H.

So provided we can find a symmetric and positive definite inner product H, and

preconditioner P such that the preconditioned system is symmetric positive definite

inH, we may apply a non-standard CG method in this inner product. This procedure

is stated in Algorithm 6.

Choose x0

r0 = b−Ax0

Solve Pz0 = r0

p0 = z0

for j = 0, 1, 2, ... do

αj =
〈zj ,rj〉H
〈Apj ,pj〉H

xj+1 = xj + αjpj

rj+1 = rj − αjApj

<Convergence Test>

Solve Pzj+1 = rj+1

βj =
〈zj+1,rj+1〉H
〈zj ,rj〉H

pj+1 = zj+1 + βjpj

end

Algorithm 6: Conjugate Gradient algorithm for solving Ax = b with precondi-

tioner P in a non-standard inner product H.

For a number of problems considered in this thesis, it is in fact possible to construct

suitable and practical inner products such that a non-standard CG method may be
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applied. We will employ the CG method in non-standard inner products in Chapter

3 for the distributed Poisson control problem, and in Chapter 5 for the convection-

diffusion control problem – in each case we will explicitly specify the inner product

needed to apply the algorithm.

2.3.6 GMRES

The preconditioned Minres and Conjugate Gradient methods outlined above rely

heavily on the symmetric positive definiteness of the preconditioner used. However,

for a number of problems we consider in the remainder of this thesis, in particular

more complex optimal control problems, the preconditioners we develop will not be

positive definite, and in some cases will not be symmetric either. It is therefore very

important that there are iterative methods available which can be used with such

preconditioners also.

One such method which will be made use of is the Generalized Minimum Residual

method (Gmres). This is a generalized form of Minres developed by Saad and

Schultz in [108] for the purpose of solving non-symmetric matrix systems Ax = b,

as opposed to symmetric systems. Gmres is possibly the most widely used iterative

solver for non-symmetric matrix systems.

This algorithm is based on the Arnoldi method,6 which at the j-th step constructs

an orthogonal basis {v1,v2, ...,vj} of the Krylov subspace Kj(A, r0), with r0 the

initial residual, by using the modified Gram-Schmidt process. The method can be

written as follows [36, Section 4.1.1]:

AVi = ViHi + hi+1,i [0, ...,0,vi+1] , i = 1, 2, ..., j − 1, (2.39)

where Vi = [v1,v2, ...,vi], and Hi is an upper Hessenberg matrix, that is, a matrix

with zeros everywhere except the diagonal and super-diagonal.

Finding an approximate solution xj ∈ x0 +Kj(A, r0) at the j-th Gmres iteration,

and choosing v1 = r0

‖r0‖2
, gives [36, Section 4.1.1]

xj = x0 + Vjyj,

for some yj ∈ Rj.

6This generalizes the Lanczos method, as previously defined, to non-symmetric matrix systems.
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The aim of the Gmres method is to minimize the vector 2-norm of the residual

rj at each iteration, which can be shown to be found by solving [36, Section 4.1.1]

min ‖rj‖2 = min
yj

∥∥∥‖r0‖2 e1 − Ĥjyj

∥∥∥
2
,

using a QR factorization applied to the matrix Ĥj, which is equal to the matrix Hj

but with a final row [0, ..., 0, hj+1,j] added. Again, the vector e1 = [1, 0, ..., 0]T .

We omit a thorough derivation of the Gmres method here, and refer instead to

[36, 108] for detailed discussions. The preconditioned Gmres method we will use is

discussed in [107] and stated in Algorithm 7.

Choose x0

r1 = b−Ax0

β0 = ‖r0‖2

v1 = r0

β0

for j = 1, 2, ... do
Solve Pzj = vj

w
(1)
j+1 = Azj

for k = 1, ..., j do

hk,j = 〈w(k)
j+1,vk〉

w
(k+1)
j+1 = w

(k)
j+1 − hk,jvk

end

hj+1,j =
∥∥∥w(j+1)

j+1

∥∥∥
2

vj+1 =
w

(j+1)
j+1

hj+1,j

Find yj such that yj minimizes βj =
∥∥∥β0e1 − Ĥjyj

∥∥∥
2

<Convergence Test>

end

Vj = [v1,v2, ...,vj]

Solve Pzj = Vjyj

x = x0 + zj

Algorithm 7: Gmres algorithm for solving Ax = b with (right) preconditioner

P .

The preconditioned Gmres algorithm has been used to good effect to solve a
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number of non-symmetric matrix systems arising from practical problems. In the

context of the numerical solution of PDEs, the applicability of the method to solving

the convection-diffusion equation and Navier-Stokes equations is discussed in [36,

Chapters 4 and 8]. As PDE-constrained optimization problems include many of the

matrices and structures involved in such simpler PDEs, it seems a natural choice to

apply the Gmres method to problems of this type as well, in the cases where methods

such as Minres and non-standard Conjugate Gradients cannot be used.

However, there are some drawbacks of this method when compared to, say, the

Minres method, of which it is a generalization. The major additional computational

expenses of the Gmres method as opposed to the Minres method are the compu-

tation and storage of Hessenberg matrices Ĥj and matrices Vj containing Arnoldi

vectors, as well as operations resulting from the presence of these matrices. Of course

one only has to store two such matrices at a time, as Ĥj and Vj may be created by

modifying Ĥj−1 and Vj−1; however both matrices grow at each iteration. Storing and

solving the least squares problems involving the Hessenberg matrices would become

very expensive if many iterations were required to solve the matrix system.

Another disadvantageous feature of applying Gmres instead of Minres is that

there is not as full a picture of the rate of convergence of the Gmres algorithm as

for Minres. In particular, whereas the convergence bound (2.38) can be estimated

purely using information about the eigenvalues of the (preconditioned) matrix, there

is no bound on the convergence of Gmres that requires only this information. One

can make some comments on Gmres convergence – for instance provided the matrix

A is diagonalizable, one known bound on the j-th residual obtained by applying the

(unpreconditioned) method is given by [36, Theorem 4.1]

‖rj‖2

‖r0‖2

≤ κ(Y ) min
pj∈Πj ,pj(0)=1

max
λi
|pj(λi)|,

where the eigendecomposition of A is Y Λ̂Y −1, λi denote the eigenvalues of A (i.e. the

diagonal entries of Λ̂), and Πj again defines the set of polynomials of degree at most

j. However, this bound can clearly not be predicted solely using information about

eigenvalues of the matrix system – this is a significant drawback when attempting to

ascertain the effectiveness of our preconditioners theoretically.

We do however find the Gmres method to be an effective one for a number of

problems, and we apply this method when solving Stokes control problems in Chapter
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6 and Navier-Stokes control problems in Chapter 7. In each case, the preconditioners

which we motivate for the problem at hand are not symmetric positive definite, so it

is crucial to have such a method which may be applied to these problems.

2.3.7 BiCG

The Gmres method introduced in the previous section is by no means the only

useful iterative solver for non-symmetric matrix systems. Another powerful example

of such a solver is the Biconjugate Gradient method (or BiCG method). This method

was designed as an analogue of the Conjugate Gradient method, for the purpose of

solving non-symmetric systems (see [39, 81]). In fact, the matrices that we will use

this method for solving are symmetric, but the preconditioners we apply are neither

symmetric nor positive definite – we find that this method works well for the problems

we consider.

Choose x0

r0 = b−Ax0

Solve Pp0 = r0

Choose r̂0 such that 〈r0, r̂0〉 6= 0

Solve PT p̂0 = r̂0

for j = 0, 1, 2, ... do

αj =
〈zj ,brj〉
〈Apj ,bpj〉

xj+1 = xj + αjpj

x̂j+1 = x̂j + αjp̂j

rj+1 = rj − αjApj

r̂j+1 = r̂j − αjAT p̂j

<Convergence Test>

Solve Pzj+1 = rj+1

Solve PT ẑj+1 = r̂j+1

βj =
〈zj+1,brj+1〉
〈zj ,brj〉

pj+1 = zj+1 + βjpj

p̂j+1 = ẑj+1 + βjp̂j

end

Algorithm 8: Biconjugate Gradient algorithm for solving Ax = b (where A is a

real matrix) with preconditioner P .
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The method is expressed as pseudocode in Algorithm 8. The main differences

from CG involve computing two residuals rj and r̂j instead of a single one for CG,

as well as applying operations resulting from the preconditioner P twice per BiCG

iteration rather than once, and using this to calculate quantities pj and p̂j at each

step.

For symmetric matrix systems being solved with symmetric positive definite pre-

conditioners, this algorithm reduces to the preconditioned Conjugate Gradient al-

gorithm introduced earlier. The convergence of BiCG for this case is therefore the

same as for Conjugate Gradients, but there are few other results on the convergence

of this method. This is a similar drawback as for the Gmres method, as discussed

in the previous section. Of course there are advantages of Gmres and BiCG over

each other. For instance, the Gmres method requires the construction of a Hessen-

berg matrix and a matrix containing Arnoldi vectors which grow with each iteration;

BiCG does not require this. Conversely, each iteration of preconditioned BiCG re-

quires two applications of the selected preconditioner, versus the single application

required at each Gmres iteration.

We note that, like the Conjugate Gradient method, it is possible to apply this

algorithm in a non-standard inner product (see [105]). We also note that a stabilized

version of this algorithm, Biconjugate Gradients Stabilized (BiCGStab), was created

by Van der Vorst in [124], however we find that the simpler BiCG algorithm is

sufficient for our purposes. We apply this method to the problem of reaction-diffusion

control for chemical processes in Chapter 9.

There is a variety of solvers for non-symmetric matrix systems other than the Gm-

res and BiCG algorithms discussed in this chapter, for example the Quasi-Minimal

Residual (QMR) algorithm [41], the Ideal Transpose-Free QMR (ITFQMR) algo-

rithm [40], and the Conjugate Gradients Squared (CGS) algorithm [112]. However,

we focus our attention on Gmres and BiCG as our non-symmetric solvers in this

thesis.
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Distributed Poisson Control

As discussed in the previous chapter, one of the most fundamental problems in the

field of PDE-constrained optimization is that of the distributed Poisson control prob-

lem:

min
y,u

1

2
‖y − ŷ‖2

L2(Ω) +
β

2
‖u‖2

L2(Ω)

s.t. −∇2y = u, in Ω,

y = g, on ∂Ω.

In this chapter, we consider the iterative solution of this problem.7 Much work has

gone into developing effective iterative methods for such Poisson control problems (see

[100, 101, 109] for instance for preconditioned iterative methods, and [15, 16, 17, 118]

for multigrid methods). We will focus on three preconditioned iterative methods in

particular that have been previously developed for this problem, all motivated using

the saddle point theory of Section 2.2. Firstly, in [100], Rees, Dollar and Wathen

developed a block diagonal preconditioner for use with Minres. Secondly, a block

7This chapter is based on the following paper, which is Ref. [94]:
J. W. Pearson, and A. J. Wathen, A New Approximation of the Schur Complement in

Preconditioners for PDE-Constrained Optimization, Numerical Linear Algebra with Applications,
19(5), pp.816–829, 2012.

The author notes that the content of Section 3.3 did not appear in this article.
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triangular preconditioner for use with a non-standard (Bramble-Pasciak) Conjugate

Gradient algorithm was introduced by Rees and Stoll in [101]. Thirdly, a symmetric

indefinite preconditioner was derived by Schöberl and Zulehner in [109] to be used

with a different non-standard Conjugate Gradient method. In their construction

of a block preconditioner for use with a non-standard inner product, Schöberl and

Zulehner pay particular attention to achieving robust behaviour with respect to small

values of β, however the other two methods are independent with respect to h only.

In fact, as β is decreased, the performance of the solvers discussed in [100] and [101]

deteriorates quite rapidly. We wish to see if we may improve the effectiveness of these

preconditioners.

Our specific goal when developing solvers for this problem, as in the remainder of

this thesis, is to construct preconditioners that are robust with respect to problem size,

as well as the regularization parameter β. Motivated by this objective, we describe

a new Schur complement approximation for PDE-constrained optimization problems

which can be employed in the three approaches mentioned (as well as others), and

which yields convergence of the appropriate iterative method in a number of steps

which is independent of the value of the regularization parameter β, as well as the

mesh-size h. We prove the relevant eigenvalue bounds which guarantee this property.

This chapter is structured as follows. In Section 3.1, we review the three pre-

conditioners we have mentioned that have previously been proposed for solving the

matrix system (2.8). In Section 3.2, we propose a new approximation to the Schur

complement which, along with a good approximation to the mass matrix M , can be

incorporated into any of the three preconditioners of Section 3.1. We prove a result

on the eigenvalues of the preconditioned Schur complement with this new approxima-

tion, to demonstrate analytically why our approximation to the Schur complement is

effective. In Section 3.3, we consider the eigenvalues of the entire preconditioned ma-

trix system with this approximation. In Section 3.4, we present numerical results to

show how well our approximation works within the three preconditioners in practice,

and in Section 3.5, we make some concluding comments.
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3.1 Previously Developed Preconditioners for Dis-

tributed Poisson Control

The problem we will aim to solve efficiently is of the saddle point form described in

Section 2.2: we write the matrix system in the form Ax = b, with

A =

 M 0 K

0 βM −M
K −M 0

 .
We may write, in the notation of (2.31), that for this problem

Φ =

[
M 0

0 βM

]
, Ψ =

[
K −M

]
, Θ =

[
0
]
.

Two natural options for approximating A would be to devise preconditioners of

the form

P̂1 =

[
Φ̂ 0

0 Ŝ

]
, P̂2 =

[
Φ̂ 0

Ψ −Ŝ

]
, (3.1)

where Ŝ ≈ S = ΨΦ−1ΨT , as discussed in the context of general saddle point systems

in Section 2.2. The formulations of the preconditioners P̂1 and P̂2 motivate our

discussion in Sections 3.1.1 and 3.1.2 respectively.

A third option is to construct a preconditioner for the matrix system (2.31) of the

form

P̂4 =

[
Φ̂ ΨT

Ψ ΨΦ̂−1ΨT − Ŝ

]
=

[
I 0

ΨΦ̂−1 I

][
Φ̂ ΨT

0 −Ŝ

]
,

meaning that one application of the approximation of Ŝ and two of Φ̂ are required

to effect this preconditioner. We will discuss this preconditioner further in Section

3.1.3.

In Sections 3.1.1–3.1.3, we consider three preconditioners, one each of the form P̂1,

P̂2 and P̂4. These are “optimal” provided that the inverses of Φ̂ and Ŝ can themselves

be applied with optimal complexity. That is to say, an appropriate Krylov subspace

method combined with each preconditioner has linear complexity in matrix size, or
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alternatively that the number of iterations required for convergence of the solver is

bounded independently of the mesh, with linear work required for each iteration, as

long as the inverses of Φ̂ and Ŝ can be applied with optimal complexity.

We will note in particular the Schur complement approximations used in these

preconditioners. This work will later be incorporated when testing the Schur comple-

ment approximation that we propose in Section 3.2.

3.1.1 Block Diagonal Preconditioners

As motivated by the discussion above, one option for constructing a solver for the

Poisson control problem is to apply the following block diagonal preconditioner:

P̂1 =

 M̂ 0 0

0 βM̂ 0

0 0 Ŝ

 (3.2)

to the matrix system in (2.8), where M̂ and Ŝ are approximations of the mass ma-

trix M and the Schur complement S respectively. Here, the approximation of the

(1, 1)-block of the saddle point system is given by Φ̂ = blkdiag(M̂, βM̂). The approx-

imations M̂ and Ŝ must be symmetric and positive definite; thus P̂1 is symmetric and

positive definite, and so it is possible to build this into a Krylov subspace algorithm

for symmetric matrices, such as the Minres algorithm introduced in Section 2.3.4.

Rees, Dollar and Wathen [100] introduced the block diagonal preconditioner (3.2)

for PDE-constrained optimization; they took the mass matrix approximation M̂ to be

a fixed number of steps of the Chebyshev semi-iteration method described in Section

2.3.2 – this strategy is a well-founded one, and we make use of it frequently for other

problems also.

The authors then considered the Schur complement of the matrix system

S = KM−1K +
1

β
M,

which they approximated by dropping the second term, that is

S ≈ KM−1K =: Ŝ1. (3.3)

This choice of approximation is motivated by the fact that the 1
β
M term is a higher
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order term in the mesh-size h than KM−1K. (Theorem 7 of Section 3.2 gives upper

and lower bounds for Ŝ−1
1 S.) To approximate K when required, a limited number of

multigrid cycles, described in Section 2.3.3, are applied. That is to say the multigrid

algorithm is not run to convergence, but one or two cycles are used to accelerate the

convergence of the outer Minres iteration. Two such multigrid processes to approxi-

mate the matrix K, as well as one matrix multiplication to represent M , are required

per application of Ŝ1. This approximation leads to mesh-independent convergence,

but convergence is not β-independent. The preconditioner we recommend in Section

3.2 enables us to overcome this issue, so that our method is insensitive to the value

of β, without resulting in significant additional work.

3.1.2 Block Triangular Preconditioners

When employing a block triangular preconditioner of the form P̂2, there is no sim-

ple symmetric formulation, as for the block diagonal preconditioner of the previous

section, since the matrix P̂2 is non-symmetric. This means that a method such as

Minres or Conjugate Gradients with a standard inner product cannot be used with

this preconditioner. However, it is possible to apply a non-standard Conjugate Gra-

dient method of the form described in Section 2.3.5. As outlined in [21, 116, 128]

and discussed in the context of Poisson control by Rees and Stoll in [101], P̂−1
2 A is

self-adjoint and positive definite in the inner product defined by 〈u,v〉H = uTHv,

where

H =

[
Φ− Φ̂ 0

0 Ŝ

]
.

One is therefore able to use the theory of Section 2.3.5, and apply the Conjugate

Gradient method with this non-standard inner product. This is a method known as

the Bramble-Pasciak Conjugate Gradient method. Note that Φ−Φ̂ (as well as Ŝ) must

be positive definite for this to define an inner product, and so Φ̂ must be carefully

constructed with this in mind. For the Poisson control problem, this can readily be

achieved.

In [101], the application of this method to Poisson control is discussed. In this
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context, we may write the preconditioner as

P̂2 =

 γM̂ 0 0

0 βγM̂ 0

K −M −Ŝ

 , (3.4)

and the inner product as

H =

 M − γM̂ 0 0

0 β(M − γM̂) 0

0 0 Ŝ

 ,
for a parameter γ which ensures that M − γM̂ is positive definite.

As discussed in [101], it is effective to again take M̂ as a fixed number of Chebyshev

semi-iterations, and Ŝ as two multigrid approximations and a matrix multiplication.

In [101] Ŝ was again taken to be Ŝ1 as in (3.3). Particular emphasis is made in

[101] of the ease of choosing γ, which is a scaling constant introduced to ensure that

M−γM̂ is positive definite for the PDE-constrained optimization problem, and hence

that the inner product matrix H is positive definite. As explained by the authors,

known eigenvalue bounds of M̂−1M for a fixed number of Chebyshev semi-iterations,

as highlighted in Table 2.2 for Q1 basis functions for instance, mean that choosing

a constant γ less than but close to 1 will ensure positive definiteness of this inner

product matrix.

3.1.3 Symmetric Indefinite Preconditioners

In [109], a preconditioner of the form P̂4 is proposed for use with the Conjugate

Gradient method in a non-standard inner product (as outlined in Section 2.3.5).

Here, Φ̂ and Ŝ are chosen such that the preconditioned system is positive definite

with respect to the inner product 〈·, ·〉H̄, where

〈u,v〉H̄ = uT

[
Φ̂− Φ 0

0 ΨΦ̂−1ΨT − Ŝ

]
︸ ︷︷ ︸

H̄

v.

We note that Φ̂ here must be carefully constructed such that Φ̂−Φ is positive definite,

and Ŝ constructed such that ΨΦ̂−1ΨT − Ŝ is positive definite. For the Poisson control
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problem, this can feasibly be done using the strategy presented in this section.

When considering this problem, Schöberl and Zulehner [109] took approximations

Φ̂ =
1

σ
Φ̂0, Ŝ =

1

τ̄
Ŝ0, (3.5)

with

Φ̂0 =

[
Ŷ 0

0 βM̂

]
, Ŝ0 =

σ

β
Ŷ , (3.6)

for positive constants σ and τ̄ . Here, Ŷ denotes a multigrid solver applied to the

matrix
√
βK+M , and M̂ denotes application of the symmetric Gauss-Seidel method

to the appropriate mass matrix. (Throughout the remainder of this chapter, we will

replace this mass matrix approximation with the Chebyshev semi-iteration method

described in Section 2.3.2.) The formulation of (3.5) and (3.6) guarantees that

1

σ
Φ̂0 > Φ,

1

τ̄
Ŝ0 < ΨΦ̂−1ΨT ,

and hence that the preconditioned system is positive definite in the inner product

defined by H̄. The overall preconditioner for the Poisson control problem therefore

looks as follows:

P̂4 =


1
σ
Ŷ 0 K

0 β
σ
M̂ −M

K −M σKŶ −1K + σ
β
MM̂−1M − σ

τ̄β
Ŷ

 (3.7)

=

 I 0 0

0 I 0

σKŶ −1 −σ
β
MM̂−1 I




1
σ
Ŷ 0 K

0 β
σ
M̂ −M

0 0 − σ
τ̄β
Ŷ

 .
In [109], it is recommended that σ ≈ 1 and τ̄ ≈ 4

3
, and these are the values we use in

the computations of Section 3.4. We note that this solver was designed by the authors

to exhibit independence with respect to mesh-size and regularization parameter, in

contrast to the solvers discussed in Sections 3.1.1 and 3.1.2.
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3.2 A New Schur Complement Approximation

All three methods detailed in Section 3.1 rely heavily on an accurate approximation

of the Schur complement. When the block diagonal preconditioner for Minres and

block triangular preconditioner for Bramble-Pasciak Conjugate Gradients are applied,

the iteration count becomes prohibitively large for small values of β. This is due to

the neglected 1
β
M term in the Schur complement approximation (3.3). A detailed

computational analysis of the asymptotic behaviour of eigenvalue properties of the

matrix A for small values of β is given in [119, 120]. In this section, we introduce an

alternative Schur complement approximation that is robust with respect to all values

of h and β.

Instead of (3.3), it is easily checked that we can write

S =

(
K +

1√
β
M

)
M−1

(
K +

1√
β
M

)
− 2√

β
K,

which enables us to take the approximation

S ≈ Ŝ2 :=

(
K +

1√
β
M

)
M−1

(
K +

1√
β
M

)
(3.8)

by dropping the − 2√
β
K term. We highlight that the term discarded here is O(β−1/2)

rather than O(β−1), as was the case in the Schur complement approximation Ŝ1.

When we wish to use preconditioners involving the approximate Schur complement,

the factorization (3.8) enables us to apply multigrid on two occasions to the matrix

K + 1√
β
M rather than the matrix K, together, as before, with a mass matrix multi-

plication. We note the similarity of this to applying the multigrid process Ŷ to the

matrix
√
βK+M as discussed in Section 3.1.3, but note also that the multigrid cycles

are applied at different points in the preconditioners.

We demonstrate theoretically why this approximation is more potent than the

approximation Ŝ1 defined in (3.3). Note that Schöberl and Zulehner derive the dif-

ferent Schur complement approximation (3.5), (3.6) in [109]; we will demonstrate in

Section 3.4 that our approximation (3.5), (3.8) also fits nicely into the preconditioning

framework developed in [109].

In order to obtain convergence bounds or estimates, we wish to obtain eigenvalue

bounds for Ŝ−1
1 S and Ŝ−1

2 S. To calculate the eigenvalues for the former, as done in
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[100], Theorems 5 and 6, which are stated in [36, pp.57–60], need to be utilized.8

Theorem 5. For the problem (2.8) for Ω ⊂ R2, with a degree of approximation Pm

or Qm with m ≥ 1, the following bound holds:

c1h
2 ≤ vTMv

vTv
≤ C1h

2, ∀v ∈ RN̄ ,

where the positive (real) constants c1 and C1 are independent of the mesh-size h but

dependent on m.

For Ω ⊂ R3, the equivalent result is

c1h
3 ≤ vTMv

vTv
≤ C1h

3, ∀v ∈ RN̄ .

Theorem 6. For the problem (2.8) for Ω ⊂ R2, with a degree of approximation Pm

or Qm with m ≥ 1, the following bound holds:

c2h
2 ≤ vTKv

vTv
≤ C2, ∀v ∈ RN̄ ,

where the positive (real) constants c2 and C2 are independent of the mesh-size h but

dependent on m.

For Ω ⊂ R3, the equivalent result is

c2h
3 ≤ vTKv

vTv
≤ C2h, ∀v ∈ RN̄ .

Theorems 5 and 6 give us that in 2D or 3D, for any v ∈ RN̄ ,

ch2 ≤ vTMv

vTKv
≤ C, (3.9)

for positive (real) constants c and C independent of the mesh-size h, and therefore

that the eigenvalues of K−1M are contained in an interval of the form [ch2, C].

Theorem 7 as stated below is proved in [100] using the result (3.9).

Theorem 7. The eigenvalues of Ŝ−1
1 S are bounded as follows:

λ(Ŝ−1
1 S) ∈

[
1

β
c̃h4 + 1,

1

β
C̃ + 1

]
,

8In Theorems 5 and 6, the parameter N̄ refers to the size of the matrices K and M being
considered.
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for positive (real) constants c̃ and C̃ independent of h and β.

The Schur complement approximation (3.8) is an improved one, as Theorem 8

demonstrates.

Theorem 8. The eigenvalues of Ŝ−1
2 S satisfy the following bound:

λ(Ŝ−1
2 S) ∈

[
1

2
, 1

]
,

independently of the values of h and β.

Proof. First note that Ŝ2 is always non-singular since M is positive definite, and that

K−1M+
√
βI is positive real (as it is similar to the symmetric positive definite matrix

M1/2K−1M1/2 +
√
βI) and hence invertible. If we denote the eigenvalues of Ŝ−1

2 S by

µ̄, and the corresponding eigenvectors by x, then

Ŝ−1
2 Sx = µ̄x ⇒

(
KM−1K +

1

β
M

)
x = µ̄

(
K +

1√
β
M

)
M−1

(
K +

1√
β
M

)
x

⇒
(
KM−1K +

1

β
M

)
x = µ̄

[
KM−1K +

2√
β
K +

1

β
M

]
x

⇒
(
I +

1

β
K−1MK−1M

)
x = µ̄

[
I +

2√
β
K−1M +

1

β
K−1MK−1M

]
x

⇒
(
βI +K−1MK−1M

)
x = µ̄

[
βI + 2

√
βK−1M +K−1MK−1M

]
x

⇒
(
βI + (K−1M)2

)
x = µ̄

(
K−1M +

√
βI
)2

x

⇒
(
K−1M +

√
βI
)−2 (

βI + (K−1M)2
)

x = µ̄x.

So we deduce for each eigenvalue χ of K−1M , that χ2+β
(χ+
√
β)2 is an eigenvalue of Ŝ−1

2 S.

Now since K−1M is similar to a real symmetric matrix (M1/2K−1M1/2), it is diag-

onalizable, and hence this describes all eigenvalues of Ŝ−1
2 S. But χ2+β

(χ+
√
β)2 is simply

a function of the form a2+b2

(a+b)2 with a and b real and positive. It is a simple algebraic

task to show that 1
2
≤ a2+b2

(a+b)2 ≤ 1, and hence that

λ(Ŝ−1
2 S) ∈

[
1

2
, 1

]
. (3.10)

2

We thus have a very simple bound for Ŝ−1
2 S. Note that to demonstrate that this
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bound holds, we did not need to use any spectral properties of K or M besides the

fact that all eigenvalues of K−1M are real. Hence the bound (3.10) must also hold for

any positive definite self-adjoint operator appropriately approximated by a symmetric

matrix, regardless of the order of the elliptic operator.

In Figure 3.1, we compare the eigenvalue spectra of Ŝ−1
1 S and Ŝ−1

2 S for the Poisson

control problem for a range of values of β. We can see that for large β the approxi-

mation Ŝ1 of S is likely to be very effective, as all eigenvalues of Ŝ−1
1 S are clustered

close to 1; but, as β becomes smaller the eigenvalues become increasingly spread out,

and the convergence of an iterative method will generally suffer as a result. However,

for the new approximation Ŝ2, the eigenvalues of Ŝ−1
2 S are pinned down into a fixed

interval as predicted by (3.10), so an appropriate iterative method should perform

well regardless of how small β is – note carefully the vertical scales of the individ-

ual plots in Figure 3.1 to see this. To illustrate the spreading of the eigenvalues of

Ŝ−1
1 S, we include more detailed plots of the intermediate eigenvalues for β = 10−4

and β = 10−7 in Figure 3.2.

Note. As the state, control and adjoint are here all discretized using the same

piecewise polynomial approximation spaces (as in [95] for example), it would be pos-

sible to use the discretized gradient equation to eliminate the second block of the

matrix system (2.8), and then solve the remaining 2× 2 block system[
M K

K − 1
β
M

][
y

p

]
=

[
z

g

]
, (3.11)

which is still a saddle point system of the form (2.31), but now with Θ 6= 0. The

Schur complement of the resulting system would then be exactly the same as that of

the original 3× 3 block system, so the approximation Ŝ2 to S detailed in this section

is equally useful in this case. Due to Theorem 4 of Section 2.2, this is a viable solution

strategy when block diagonal preconditioners are used; Theorem 2 also guarantees

the effectiveness of a block triangular preconditioner for this matrix system.

Note. We highlight at this point the presence of another block diagonal precon-

ditioner for the Poisson control problem in the literature: in [129], Zulehner uses a

non-standard norm argument to derive the following preconditioner for (3.11):[
M +

√
βK 0

0 1
β
(M +

√
βK)

]
,
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Figure 3.1: Spectra of Ŝ−1
1 S [(a), (c), (e)] and Ŝ−1

2 S [(b), (d), (f)] for β = 10−1,
β = 10−4 and β = 10−7, for an evenly spaced grid on Ω = [0, 1]2 with h = 2−4.
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Figure 3.2: Illustrations of the intermediate eigenvalues of Ŝ−1
1 S for β = 10−4 and

β = 10−7, for an evenly spaced grid on Ω = [0, 1]2 with h = 2−4.

for the reduced 2× 2 matrix system. It is demonstrated that this yields an effective

solver when used with the Minres algorithm. This preconditioner is closely related

to the one introduced in Section 3.1.3.

The approximation Ŝ2 to the Schur complement we have stated here can be used

in effective preconditioners for the three solution approaches we have discussed in

Section 3.1. The use of a fixed number of Chebyshev semi-iteration cycles to approx-

imate mass matrices, along with our approximation Ŝ2 to S, can be used as part of a

block diagonal, block triangular or symmetric indefinite preconditioner, as in Sections

3.1.1, 3.1.2 and 3.1.3 respectively. Analysis of how well the approximations detailed

perform in practice is given in Section 3.4. In all three cases, the bound (3.10) ensures

that the convergence rate of the iteration will be independent of β; independence with

respect to h is ensured if a spectrally equivalent9 approximation of K + 1√
β
M such as

a multigrid process is used. The availability of such a spectrally equivalent approxi-

mation which can be applied with O(N̄) work (where N̄ here denotes the dimension

of the matrices K and M) is crucial here: our preconditioned iterative solvers will

only have optimal complexity with such an approximation. In our computations we

use the HSL algebraic multigrid code HSL MI20 [19] via a Matlab interface, which

as expected is seen to satisfy these conditions. We highlight once more that only a

fixed number of multigrid cycles are applied, as opposed to running multigrid until

convergence.

9We say that two matrices A1(h) and A2(h) are spectrally equivalent if the eigenvalues of A−1
2 A1

are bounded within a constant (positive) interval, whatever the value of h is.
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This new Schur complement approximation thus gives rise to three new methods

for solving the Poisson control problem. Firstly, we can apply Minres with the

preconditioner (3.2), but now using Ŝ2 to approximate the Schur complement instead

of Ŝ1 as in (3.3). Secondly, we may apply Bramble-Pasciak CG preconditioned by

(3.4) (using an appropriate choice of γ, which is typically very close to 1), but again

replacing the Schur complement approximation Ŝ1 with Ŝ2. Finally, we may apply a

non-standard CG method with a symmetric indefinite preconditioner of the form

P̂4 =

 I 0 0

0 I 0

σKM̂−1 −σ
β
MM̂−1 I




1
σ
M̂ 0 K

0 β
σ
M̂ −M

0 0 − 1
τ̄
Ŝ2

 , (3.12)

with M̂ again an application of Chebyshev semi-iteration to the relevant mass matrix.

The bound (3.10) guarantees that we may choose appropriate values σ and τ̄ using

the same reasoning with which we choose γ for the Bramble-Pasciak CG method,

taking into account Chebyshev semi-iteration results described in Section 2.3.2, as

well as [101]. We test our three new methods in Section 3.4.

3.3 Eigenvalues of the Preconditioned Matrix Sys-

tem

We now present results concerning the eigenvalues of P̂−1
1 A and P̂−1

2 A when our new

Schur complement approximation Ŝ2 is used. These results demonstrate that, in an

idealized setting (i.e. if the mass matrix M and the matrix K + 1√
β
M are inverted

exactly), then the bounds for the eigenvalues of the preconditioned Schur complement

also guarantee that robust bounds for the entire matrix system can be obtained.

In order to consider the eigenvalues of P̂−1
1 A, relating to our block diagonal pre-

conditioner, we make use of the following result, which is shown in [100, Proposition

3.2] when considering eigenvalues for the preconditioned system with Schur comple-

ment approximation Ŝ1.

Theorem 9. Any eigenvalue λ of the matrix[
I B̃T

B̃ 0

]
,
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where B̃ has full row-rank, satisfies one of the following:

λ = 1,

1 +
√

1 + 4σmin

2
≤ λ ≤ 1 +

√
1 + 4σmax

2
,

1−
√

1 + 4σmax

2
≤ λ ≤ 1−

√
1 + 4σmin

2
.

Here σmin and σmax denote the minimum and maximum eigenvalues of B̃B̃T respec-

tively.

We may use Theorem 9 to prove the following result on the eigenvalues of P̂−1
1 A.

Theorem 10. The eigenvalues of P̂−1
1 A, where

A =

 M 0 K

0 βM −M
K −M 0

 , P̂1 =

 M 0 0

0 βM 0

0 0 Ŝ2

 ,
are all real, and are contained within the following intervals:

λ(P̂−1
1 A) ∈

[
1−
√

5

2
,
1−
√

3

2

]
∪ {1} ∪

[
1 +
√

3

2
,
1 +
√

5

2

]
≈ [−0.618,−0.366] ∪ {1} ∪ [1.366, 1.618].

Proof. We follow the approach used in [100] to prove an analogous result when the

Schur complement is approximated by Ŝ1 instead.10 There, it is noted that the eigen-

values of P̂−1
1 A are the same as those of P̂−1/2

1 AP̂−1/2
1 by similarity transformation.

10The equivalent result when the Schur complement is approximated by Ŝ1 is given by [100,
Corollary 3.3]

λ(P̂−1
1 A) ∈

1
2

1−

√
5 +

4C̃
β

 ,
1
2

(
1−

√
5 +

4c̃h4

β

) ∪ {1}
∪

1
2

(
1 +

√
5 +

4c̃h4

β

)
,

1
2

1 +

√
5 +

4C̃
β

 .
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Expanding out the matrix P̂−1/2
1 AP̂−1/2

1 gives

P̂−1/2
1 AP̂−1/2

1 =

 M−1/2 0 0

0 1√
β
M−1/2 0

0 0 Ŝ
−1/2
2

A
 M−1/2 0 0

0 1√
β
M−1/2 0

0 0 Ŝ
−1/2
2



=

 M−1/2 0 0

0 1√
β
M−1/2 0

0 0 Ŝ
−1/2
2


 M1/2 0 KŜ

−1/2
2

0
√
βM1/2 −MŜ

−1/2
2

KM−1/2 − 1√
β
M1/2 0



=

 I 0 M−1/2KŜ
−1/2
2

0 I − 1√
β
M1/2Ŝ

−1/2
2

Ŝ
−1/2
2 KM−1/2 − 1√

β
Ŝ
−1/2
2 M1/2 0

 =:

[
I B̃T

B̃ 0

]
.

We are interested in the eigenvalues of this matrix. Theorem 9 tells us that we need

to consider the minimum and maximum eigenvalues σmin and σmax of B̃B̃T . Now,

B̃B̃T =
[
Ŝ
−1/2
2 KM−1/2 − 1√

β
Ŝ
−1/2
2 M1/2

] [ M−1/2KŜ
−1/2
2

− 1√
β
M1/2Ŝ

−1/2
2

]
= Ŝ

−1/2
2 KM−1KŜ

−1/2
2 +

1

β
Ŝ
−1/2
2 MŜ

−1/2
2

= Ŝ
−1/2
2

(
KM−1K +

1

β
M

)
Ŝ
−1/2
2 ,

so the eigenvalues of B̃B̃T are the same as those of

Ŝ−1
2

(
KM−1K +

1

β
M

)
= Ŝ−1

2 S,

again using a similarity transformation. Hence σmin ≥ 1
2

and σmax ≤ 1 in the notation

of Theorem 9, and therefore, using this theorem, we have that

λ(P̂−1
1 A) ∈

[
1−
√

5

2
,
1−
√

3

2

]
∪ {1} ∪

[
1 +
√

3

2
,
1 +
√

5

2

]
,

as claimed. 2

Let us now consider the derivation of eigenvalue bounds for P̂−1
2 A. In order to

derive such bounds, we exploit the following result, which was proved in [101, Theorem

3.1] where the authors considered eigenvalues of the preconditioned system when the
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Schur complement approximation Ŝ1 was used.

Theorem 11. Consider a general saddle point system of the form (2.31), with Θ = 0.

Then if

1 < θ̃ ≤ vTΦv

vT Φ̂v
≤ Θ̃, 0 < ω̃ ≤ wTΨΦ−1ΨTw

wT Ŝw
≤ Ω̃,

for positive definite approximations Φ̂ and Ŝ, and for all non-zero vectors v and w

of the appropriate dimension, then the eigenvalues λ of the matrix[
Φ̂ 0

Ψ −Ŝ

]−1 [
Φ ΨT

Ψ 0

]

are contained within one of the following intervals:

θ̃ ≤ λ ≤ Θ̃,

(1 + ω̃)Θ̃−
√

(1 + ω̃)2Θ̃2 − 4ω̃Θ̃

2
≤ λ ≤

(1 + Ω̃)θ̃ −
√

(1 + Ω̃)2θ̃2 − 4Ω̃θ̃

2
,

(1 + ω̃)θ̃ +

√
(1 + ω̃)2θ̃2 − 4ω̃θ̃

2
≤ λ ≤

(1 + Ω̃)Θ̃ +

√
(1 + Ω̃)2Θ̃2 − 4Ω̃Θ̃

2
.

We note that the condition 1 < θ̃ in Theorem 11 is applied above to ensure

positivity in the non-standard inner product being used for the Conjugate Gradient

algorithm.

Theorem 11 leads to the following result on the eigenvalues of P̂−1
2 A.

Theorem 12. The eigenvalues of P̂−1
2 A, where

A =

 M 0 K

0 βM −M
K −M 0

 , P̂2 =

 γM 0 0

0 βγM 0

K −M −Ŝ2

 ,
with γ < 1, are all real, and are contained within the following intervals:

λ(P̂−1
2 A) ∈

[
3−
√

9− 8γ

4γ
,
1−
√

1− γ
γ

]
∪
{

1

γ

}
∪
[

3 +
√

9− 8γ

4γ
,
1 +
√

1− γ
γ

]
.

For instance, if γ = 0.95, the intervals of the eigenvalues of P̂−1
2 A are given approx-
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imately by

λ(P̂−1
2 A) ∈ [0.478, 0.817] ∪ {1.053} ∪ [1.101, 1.288].

Proof. We follow the approach of Rees and Stoll in [101], where an analogous result

is sought when the Schur complement is approximated by Ŝ1 instead,11 and make use

of Theorem 11. It is therefore necessary to ascertain values of θ̃, Θ̃, ω̃ and Ω̃, in the

notation of the theorem. By construction of the approximation Φ̂ to the (1, 1)-block

Φ, it is clear that we may write θ̃ = Θ̃ = 1
γ
. We also write ω̃ = 1

2
and Ω̃ = 1, using the

eigenvalue bounds of Ŝ−1
2 S proved in Theorem 8. Therefore, inserting these values

into the intervals of Theorem 11, we obtain that

λ(P̂−1
2 A) ∈

[
3−
√

9− 8γ

4γ
,
1−
√

1− γ
γ

]
∪
{

1

γ

}
∪
[

3 +
√

9− 8γ

4γ
,
1 +
√

1− γ
γ

]
,

as claimed. 2

These above results indicate that our Schur complement approximation, along

with effective procedures to apply this approximation as well as the approximate

inverses of mass matrices, will ensure that the condition numbers of the preconditioned

matrix systems P̂−1
1 A and P̂−1

2 A are small. When such preconditioners are used

within iterative methods such as Minres and Conjugate Gradients, this property

guarantees fast convergence of the methods [36, Chapters 2 and 6]. This therefore

provides a further argument to advocate our proposed preconditioners.

11The equivalent result when the Schur complement is approximated by Ŝ1 is given by (using
results from [99, 101])

λ(P̂−1
2 A) ∈

{
1
γ

}

∪

 1
2γ

2 +
c̃h4

β
−

√(
2 +

c̃h4

β

)2

− 4γ
(

1 +
c̃h4

β

) ,
1

2γ

2 +
C̃

β
−

√√√√(2 +
C̃

β

)2

− 4γ

(
1 +

C̃

β

)


∪

 1
2γ

2 +
c̃h4

β
+

√(
2 +

c̃h4

β

)2

− 4γ
(

1 +
c̃h4

β

) ,
1

2γ

2 +
C̃

β
+

√√√√(2 +
C̃

β

)2

− 4γ

(
1 +

C̃

β

)
 .
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Figure 3.3: State and control solution to the numerical example in 2D, within Ω\∂Ω
with axes x1 and x2, with h = 2−5 and β = 10−4.

3.4 Numerical Results

We have demonstrated the theoretical capability of our new Schur complement ap-

proximation by the eigenvalue results of Section 3.2 and 3.3. To illustrate the practical

effectiveness of the preconditioners we have derived, we now test them with the block

diagonal, block triangular and symmetric indefinite preconditioners proposed in [100],

[101] and [109] respectively, and described in Section 3.1. The test problem we use is

given by

min
y,u

1

2
‖y − ŷ‖2

L2(Ω) +
β

2
‖u‖2

L2(Ω)

s.t. −∇2y = u in Ω,

y = 0 on ∂Ω,

where Ω = [0, 1]2, ∂Ω denotes its boundary, and ŷ is given by

ŷ =

{
1 in [0, 1

2
]2 =: Ω1,

0 in Ω\Ω1.

The solution for the state and control of this problem when β = 10−4 is shown in

Figure 3.3.

In Table 3.1, we compare the number of Minres iterations required and CPU

time (in seconds) taken to solve this problem to a tolerance of 10−6 using the block
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Approximation Ŝ1 Approximation Ŝ2

Iterations β β

10−2 10−4 10−6 10−8 10−2 10−4 10−6 10−8

h

2−4 9 21 73 248 13 16 15 (12)∗

2−5 9 20 82 484 13 17 16 15

2−6 9 22 85 592 13 17 16 16

2−7 11 22 84 619 13 17 16 16

2−8 11 21 85 646 15 17 17 16

Approximation Ŝ1 Approximation Ŝ2

Time (s) β β

10−2 10−4 10−6 10−8 10−2 10−4 10−6 10−8

h

2−4 0.0209 0.0451 0.151 0.508 0.0290 0.0354 0.0398 (0.0359)∗

2−5 0.0660 0.105 0.409 2.41 0.0693 0.0902 0.0864 0.121

2−6 0.198 0.461 1.67 11.5 0.272 0.351 0.342 0.554

2−7 0.901 1.89 6.53 47.1 1.05 1.35 1.27 1.33

2−8 4.56 8.40 33.5 241 6.29 7.01 6.81 6.61

Table 3.1: Number of Minres iterations and time taken with block diagonal precon-
ditioner (3.2) to solve the test problem in 2D, using Q1 basis functions for state and
control, for a variety of h and β. Results are given when the Schur complement is
approximated by Ŝ1 and Ŝ2.

diagonal preconditioner (3.2) for a range of h and β, when the Schur complement is

approximated by Ŝ1 and Ŝ2.12

To demonstrate that our method is equally applicable in three dimensions, in

Table 3.2 we present results for solving the problem above, except with Ω = [0, 1]3

and Ω1 = [0, 1
2
]3, using Minres with block diagonal preconditioner (3.2). In Table 3.3,

we show the number of Bramble-Pasciak Conjugate Gradient iterations required and

CPU time taken to solve the test problem using the block triangular preconditioner

(3.4), approximating S by Ŝ1 and Ŝ2, with γ = 0.95.13 Finally in Table 3.4, we

compare the number of Conjugate Gradient iterations and CPU time taken with Φ̂ and

Ŝ defined by (3.5), (3.6) as described in [109], with the number of iterations required

12All results in Tables 3.1–3.4 were generated on a tri-core 2.5 GHz workstation.
13We wish to choose γ reasonably close to 1 in order for the preconditioner for the (1, 1)-block

to be effective, but also far enough away from 1 to ensure that the inner product we work with is
clearly positive definite. We found that the value γ = 0.95 met these criteria in practice. Similar
issues are discussed in [101] for instance.

78



CHAPTER 3. DISTRIBUTED POISSON CONTROL

Approximation Ŝ1 Approximation Ŝ2

Iterations β β

10−1 10−3 10−5 10−7 10−1 10−3 10−5 10−7

h

2−2 8 12 26 28 10 14 (12)∗ (8)∗

2−3 8 12 42 130 10 16 14 (12)∗

2−4 8 12 48 272 12 17 15 13

2−5 10 14 49 341 12 18 16 16

Approximation Ŝ1 Approximation Ŝ2

Time (s) β β

10−1 10−3 10−5 10−7 10−1 10−3 10−5 10−7

h

2−2 0.0119 0.0169 0.0344 0.0370 0.0147 0.0200 (0.0178)∗ (0.0951)∗

2−3 0.0417 0.0598 0.198 0.601 0.0536 0.0826 0.0748 (0.0883)∗

2−4 0.568 0.735 2.76 15.4 0.793 1.10 1.10 0.937

2−5 9.21 12.6 41.4 266 11.6 18.0 14.2 17.7

Table 3.2: Number of Minres iterations and time taken with block diagonal precon-
ditioner (3.2) to solve the test problem in 3D, using Q1 basis functions for state and
control, for a variety of h and β. Results are given when the Schur complement is
approximated by Ŝ1 and Ŝ2.

and CPU time taken when using the preconditioner (3.12) with Schur complement

approximation Ŝ2 (except that we use Chebyshev semi-iterations to approximate a

mass matrix rather than Gauss-Seidel iteration as in [109]; this equally improves both

approaches).

On each occasion, we use 20 Chebyshev semi-iterations to approximate a mass

matrix, and 2 algebraic multigrid V-cycles with 2 pre- and post- (relaxed Jacobi)

smoothing steps whenever a multigrid solve is required. We employ the HSL code

HSL MI20 [19] via a Matlab interface for the (algebraic) multigrid cycles. In Tables

3.1–3.4, ∗ denotes that the coarsening failed when the code HSL MI20 was applied to

K+ 1√
β
M , which occurs only when h is large and β is very small. This clearly occurs

in relatively few cases, and is caused by the presence of positive off-diagonal entries.

The use of large h and small β is not an interesting practical parameter regime, but

for completeness we apply a sparse direct solve for this regime and include the results

in brackets in Tables 3.1–3.4, next to the ∗ symbol. We note that an application

of the Chebyshev semi-iteration method would also be an effective approach for this

regime.
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Approximation Ŝ1 Approximation Ŝ2

Iterations β β

10−2 10−4 10−6 10−8 10−2 10−4 10−6 10−8

h

2−4 8 15 74 480 11 14 15 (15)∗

2−5 8 16 84 864 11 15 16 17

2−6 9 18 84 975 11 15 17 18

2−7 9 19 96 1061 13 15 17 18

2−8 10 19 104 1257 13 17 17 19

Approximation Ŝ1 Approximation Ŝ2

Time (s) β β

10−2 10−4 10−6 10−8 10−2 10−4 10−6 10−8

h

2−4 0.0200 0.0355 0.165 1.06 0.0267 0.0336 0.0418 (0.0405)∗

2−5 0.0479 0.0913 1.45 4.58 0.0640 0.0852 0.0938 0.142

2−6 0.209 0.392 1.82 20.9 0.250 0.332 0.376 0.645

2−7 0.828 1.66 8.16 85.5 1.14 1.30 1.45 1.59

2−8 4.58 8.21 43.4 523 5.82 7.50 7.54 8.35

Table 3.3: Number of Bramble-Pasciak CG iterations and time taken with block
triangular preconditioner (3.4) to solve the test problem in 2D, using Q1 basis func-
tions for state and control, for a variety of h and β. Results are given when the Schur
complement is approximated by Ŝ1 and Ŝ2.

Tables 3.1–3.4 clearly illustrate the potency of our new Schur complement approx-

imation; h and β-independent convergence is exhibited in all cases. In Tables 3.1–3.3,

we can see that for larger values of β, the approximation of the Schur complement Ŝ1

is marginally more effective than the approximation Ŝ2, as the eigenvalues of Ŝ−1
1 S

are more clustered than those of Ŝ−1
2 S (see Figure 3.1). However, as β gets smaller, it

is easily observable that, as the eigenvalues of Ŝ−1
1 S become less clustered but those

of Ŝ−1
2 S remain in the interval

[
1
2
, 1
]
, our new Schur complement approximation per-

forms far better. Table 3.4 also illustrates that our approximations of mass matrices

and Schur complement leave us with a preconditioner that is at least competitive

with the symmetric indefinite preconditioner proposed in [109].
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Approximation as in [109] Approximation Ŝ2

Iterations β β

10−2 10−4 10−6 10−8 10−2 10−4 10−6 10−8

h

2−4 11 14 13 (13)∗ 7 11 13 (13)∗

2−5 11 14 16 14 8 11 13 14

2−6 11 15 17 16 8 12 13 15

2−7 12 16 18 19 8 12 14 15

2−8 12 16 18 20 9 13 14 16

Approximation as in [109] Approximation Ŝ2

Time (s) β β

10−2 10−4 10−6 10−8 10−2 10−4 10−6 10−8

h

2−4 0.0566 0.0721 0.0802 (0.0991)∗ 0.0479 0.0714 0.0886 (0.103)∗

2−5 0.138 0.173 0.199 0.264 0.120 0.161 0.188 0.236

2−6 0.535 0.718 0.820 1.33 0.471 0.678 0.734 1.05

2−7 2.32 3.00 3.32 3.64 1.73 2.51 2.90 3.13

2−8 12.0 16.0 17.8 19.8 10.1 13.8 14.7 16.8

Table 3.4: Number of CG iterations and time taken with symmetric indefinite pre-
conditioner (3.7) to solve the test problem in 2D, using Q1 basis functions for state

and control, for a variety of h and β. Results are given with Φ̂ and Ŝ as stated in (3.5),

(3.6) and detailed in [109], and using the preconditioner (3.12) with Ŝ approximated

by Ŝ2.

3.5 Summary

In this chapter, we wished to consider how we might apply the saddle point theory

introduced in Section 2.2 to one of the most fundamental optimal control problems: a

distributed control problem with Poisson’s equation as a constraint. We first reviewed

three methods previously introduced for this problem: a Minres approach with a

block diagonal preconditioner, a Bramble-Pasciak CG solver with a block triangular

preconditioner, and a CG method with a symmetric indefinite preconditioner. All of

these solvers exhibited independence with respect to the mesh-size h taken, but only

the last one was also independent with respect to the regularization parameter β.

We then introduced a new approximation of the Schur complement of the relevant

matrix system, and proved analytically that it is spectrally equivalent to the exact

Schur complement. We demonstrated how we may build this new approximation into
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the three solvers previously discussed, with the goal that all three methods exhibit

mesh and β-independence. We were able to show analytically and numerically that

our suggested preconditioners did indeed give rapid parameter-independent conver-

gence when applied within each of the three methods described, used in conjunction

with a Chebyshev semi-iteration method to approximate the relevant mass matrices

and a multigrid process to apply the Schur complement approximation.

We will find that the new Schur complement approximation introduced in this

chapter is an important one. This is not only because of the improved results gener-

ated for the distributed Poisson control problem, but also because we will be able to

use similar strategies to solve many other optimal control problems in future chapters.
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CHAPTER 4

Boundary and Subdomain Control

In this chapter, we wish to discuss a number of problems related to the distributed

Poisson control problem detailed in the previous chapter.14 Firstly, we consider the

Neumann boundary control problem governed by Poisson’s equation, as stated in

(2.10), where the control variable is applied in the form of a Neumann boundary

condition. Secondly, we tackle the subdomain control problem (2.16), which is a

distributed control problem, but with the control only applied in some subdomain

rather than the entire domain. We also briefly detail how we may approach distributed

control problems with additional inequality constraints imposed on the state variable.

These problems are to some extent more physically relevant than the distributed

Poisson control problem discussed in the previous section. It seems natural to restrict

the portion of a domain on which control may be applied, be that the boundary of the

domain or some interior subdomain. It also seems a pertinent question to examine the

effect of placing bound constraints on the solution of the state variable. This motivates

14Section 4.1 is partially based on Sections 3.4–3.5 of Ref. [91], which is the following published
paper:

J. W. Pearson, M. Stoll and A. J. Wathen, Regularization-Robust Preconditioners for Time-
Dependent PDE-Constrained Optimization Problems, SIAM Journal on Matrix Analysis and Appli-
cations, 33(4), pp.1126–1152, 2012.

Additionally, Section 4.3 is a short summary of Ref. [90], which is
J. W. Pearson, M. Stoll and A. J. Wathen, Preconditioners for State Constrained Optimal

Control Problems with Moreau-Yosida Penalty Function, to appear in Numerical Linear Algebra
with Applications, available online, DOI: 10.1002/nla.1863, 2012.
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our investigations of such problems. Our goal when carrying out these investigations

is to discover whether robust solvers may be developed for these problems, as they

were for the distributed Poisson control problem in the previous chapter.

We wish to follow similar strategies as for the distributed Poisson control problem,

and investigate to what extent our methods are effective for the problems examined in

this chapter. For the most part we will seek block diagonal preconditioners, though

we are not limited to considering them. As for the work of the previous chapter,

one may consider either block diagonal or block triangular preconditioners for each

problem detailed in this chapter.

4.1 Neumann Boundary Control Problem

Let us first consider the solution of Neumann boundary control problems. We examine

the following problem formulation:

min
y,u

1

2
‖y − ŷ‖2

L2(Ω) +
β

2
‖u‖2

L2(∂Ω)

s.t. −∇2y = f, in Ω,

∂y

∂n
= u, on ∂Ω,

discussed in Section 2.1.2. As detailed there, applying a finite element method with

equal-order basis functions to this problem leads to the matrix system M 0 K

0 βMb −NT
b

K −Nb 0


 y

u

p

 =

 z

0

f

 ,
with M and K being mass and stiffness matrices for the entire domain, and Mb, Nb

representing the boundary matrices defined by (2.14), (2.13). It is possible to elimi-

nate the second block of this matrix system (corresponding to the gradient equation)

leaving the system [
M K

K − 1
β
MΓ

][
y

p

]
=

[
z

f

]
. (4.1)
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Here, MΓ := NbM
−1
b NT

b contains entries of Mb at indices corresponding to nodes on

∂Ω, and zeros elsewhere. To put it another way, if the nodes are ordered such that

all the interior nodes are listed first followed by the boundary nodes, then MΓ =

blkdiag (0,Mb). We will seek to solve matrix systems of the form (4.1) in this section.

We may write this system in the saddle point form of (2.31), with

Φ = M, Ψ = K, Θ =
1

β
MΓ.

Therefore, we are faced with two challenges when constructing a block diagonal pre-

conditioner of the form blkdiag
(

Φ̂, Ŝ
)

. The first is to accurately approximate the

(1, 1)-block Φ – we are able to do this, as in the previous chapter, by applying the

Chebyshev semi-iteration method of Section 2.3.2. The second task, on which we fo-

cus our attention now, is to approximate the Schur complement of the matrix system

S = KM−1K +
1

β
MΓ.

4.1.1 Approximating the Schur Complement

The Schur complement for this problem has a different structure to that of the dis-

tributed Poisson control problem. In particular, the rank-deficiency of the second

term of the Schur complement, as well as the non-invertibility of the matrix K (as it

corresponds to a Neumann problem), create complications when we seek to develop

an effective Schur complement approximation.

Another aspect of this problem that makes its iterative solution more difficult

in comparison to the distributed control problem is the presence of two different

mass matrices – M and MΓ. When analysing these matrices, we find it is therefore

often useful to consider them in lumped form (though we implement mass matrices

in consistent form for all numerical results in this chapter). In this case, M is a

diagonal matrix that is spectrally equivalent to hdI (where d is the dimension of the

domain in which the problem is being solved), and the non-zero diagonal part of

MΓ (corresponding to boundary terms) is spectrally equivalent to hd−1Ib, where Ib

denotes the identity matrix of dimension equal to the number of boundary nodes.

These observations enable us to make the following approximations to aid us when

carrying out analysis for this problem:

MΓM
−1 ≈ blkdiag

(
0, h−1Ib

)
, MΓ ≈ hMΓM

−1MΓ. (4.2)
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We now propose two options for approximating S, both of which are designed to

be robust with respect to both mesh-size and regularization parameter.15 Firstly, we

may approximate S by

Ŝ1 =

(
K +

1√
β
M̂

)
M−1

(
K +

1√
β
M̂

)
,

where M̂ is a matrix chosen such that we maintain the structure of the exact Schur

complement in our approximation. Examining in more detail the contributions to Ŝ1,

we obtain

Ŝ1 = KM−1K +
1

β
M̂M−1M̂ +

1√
β

(
KM−1M̂ + M̂M−1K

)
.

We now wish to choose M̂ so that the second term in the above expansion of Ŝ1

approximates the second term of S, i.e.

1

β
M̂M−1M̂ ≈ 1

β
MΓ. (4.3)

This can be described as a “matching” strategy, in which we seek to capture the

nature of both terms of the exact Schur complement in our approximation. This is

based on the discussion above concerning the spectral equivalence of various mass

matrices. Note once more that the eigenvalues of M are all of O(hd), and, since it

corresponds to boundary terms, MΓ contains eigenvalues of at most O(hd−1) – the

matrix MΓ also has many zero eigenvalues due to its rank-deficiency. Therefore, if we

make the choice

M̂ =
√
hMΓ,

then we find that the largest eigenvalues of both sides of (4.3) should balance, i.e.

β−1 · h1/2hd−1 · h−d · h1/2hd−1 = β−1 · hd−1.

15We note the change in notation from Chapter 3 – before, Ŝ1 denoted an approximation that
was not robust with respect to β, whereas in this section, both Ŝ1 and Ŝ2 represent preconditioners
which are aimed to be parameter-robust.
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This motivates our choice of Schur complement approximation

Ŝ1 =

(
K +

√
h

β
MΓ

)
M−1

(
K +

√
h

β
MΓ

)
.

We may motivate very similarly a second choice of approximation

Ŝ2 =

(
K +

√
h

β
MΓ

)(
hM̂Γ

)−1
(
K +

√
h

β
MΓ

)
,

where M̂Γ denotes a matrix which contains exactly the entries of MΓ at boundary

nodes, and entries of O(hd−1) on the diagonals corresponding to interior nodes.16

Eigenvalues of Ŝ−1
1 S. We now wish to establish bounds for the preconditioned

Schur complement when our first approximation is used. We will carry out analysis

for the 2D case, though the case for 3D problems is very similar and the same results

can be obtained. We find that, whereas we cannot pin the eigenvalues into a clear

interval as in the previous chapter, we may argue that they should be contained within

bounds of O(1).

To do this, we consider the Rayleigh quotient

vTSv

vT Ŝ1v
=

vTKM−1Kv + 1
β
vTMΓv

vTKM−1Kv + h
β
vTMΓM−1MΓv +

√
h
β
vT [KM−1MΓ +MΓM−1K] v

=
vTKM−1Kv + vT

(
1
β
MΓ

)
v

vTKM−1Kv + h
β
vTMΓM−1MΓv + 2

√
h
β
vTMΓM−1Kv

,

which will give us a range for the eigenvalues of Ŝ−1
1 S.

If v ∈ null(MΓ), then vTSv

vT bS1v
= 1. If this is not the case, we may write the above

expression as

vTSv

vT Ŝ1v
=

1

vTKM−1Kv+h
β
vTMΓM−1MΓv

vTKM−1Kv+ 1
β
vTMΓv

+
2
q
h
β
vTMΓM−1Kv

vTKM−1Kv+ 1
β
vTMΓv

. (4.4)

16In fact in our implementation, we set the diagonal entries corresponding to the interior nodes
to be the same as one of the diagonal entries of the boundary nodes – this way the relevant entries
are of the same order.
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We now use the fact that the non-zero parts of MΓ

(
1
h
M
)−1

MΓ = hMΓM
−1MΓ and

MΓ are spectrally equivalent (which we justified in (4.2), and used to motivate our

choice for M̂ above),17 to observe that

0 <
vTKM−1Kv + h

β
vTMΓM

−1MΓv

vTKM−1Kv + 1
β
vTMΓv

=: D̃1 = O(1),

where D̃1 is a mesh and β-independent constant. Specifically, this is a constant

that measures the spectral equivalence of the non-zero parts of MΓ

(
1
h
M
)−1

MΓ =

hMΓM
−1MΓ and MΓ.

We now examine in more detail the term

2
√

h
β
vTMΓM

−1Kv

vTKM−1Kv + 1
β
vTMΓv

=:
T1

T2

,

in particular its maximum and minimum values. For the purposes of this heuristic, it

is useful to consider M and MΓ as lumped mass matrices, as explained earlier in this

section. We then have M ≈ h2I and MΓ ≈ blkdiag (0, hIb), ignoring multiplicative

constants. The eigenvalues of K are within the interval [cKh
2, CK ], where cK and

CK are constants independent of h and β (apart from one zero eigenvalue with a

corresponding eigenvector of ones – as discussed in Section 2.1.2 this corresponds

to an arbitrary constant being a solution of the continuous Neumann problem for

Poisson’s equation).

Let us consider a possible lower bound for the quantity T1

T2
, paying attention first to

T1. This is a quantity which corresponds to the product of the matrices MΓM
−1 and

K (which is symmetric positive semi-definite). Observe once more that when lumped

mass matrices are considered, the matrix MΓM
−1 may be reasonably approximated

by blkdiag (0, h−1Ib). In this case the quantity T1 reduces to a scaled quadratic form

with the matrix K, which we may expect to be non-negative in most cases. We also

note that T2 must always be strictly positive.18 If T1 and T2 are both non-negative,

17The matrices MΓ and hMΓM
−1MΓ themselves are not spectrally equivalent using our pre-

vious definition, as neither matrix is invertible. However, the non-zero sub-matrices of MΓ and
hMΓM

−1MΓ corresponding to boundary nodes are spectrally equivalent.
18This may be argued as follows. Both vTKM−1Kv and 1

βv
TMΓv are non-negative terms. The

first term is strictly positive unless v is the vector of ones, corresponding to the zero eigenvalue of
K. If this is the case, the vTMΓv term is strictly positive. So for each v, at least one of the terms
is strictly positive.
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we may write that T1

T2
≥ 0, and hence that vTSv

vT bS1v
≤ 1eD1

, giving us an upper bound for

the largest eigenvalue, λmax(Ŝ−1
1 S).

We now consider the maximum and minimum values of T1

T2
. We consider the

maximum such value by writing

T1

T2

=
2β−1/2h1/2hh−2ξ

h−2ξ2 + β−1h
=

2β−1/2h−1/2ξ

h−2(ξ2 + β−1h3)
=

2υξ

ξ2 + υ2
,

with υ = β−1/2h3/2, and ξ corresponding to the relevant eigenvalue of K. Here,

both υ and ξ are positive, and so in this case 2υξ
ξ2+υ2 ≤ 1 by straightforward algebraic

manipulation. This means that the denominator in (4.4) will be bounded above by

a constant independent of h and β, as both terms are of O(1). This gives us a lower

bound for the smallest eigenvalue, λmin(Ŝ−1
1 S).

Putting our analysis together, and reinstating multiplicative constants, we con-

clude that

λmin(Ŝ−1
1 S) ≥ c̃1, λmax(Ŝ−1

1 S) ≤ C̃1,

where c̃1 and C̃1 are positive constants independent of h and β.

Eigenvalues of Ŝ−1
2 S. It is possible to carry out a similar analysis for the

approximation Ŝ2 of S, by considering the Rayleigh quotient

vTSv

vT Ŝ2v
=

vTKM−1Kv + vT
(

1
β
MΓ

)
v

vTK(hM̂Γ)−1Kv + h
β
vTMΓ(hM̂Γ)−1MΓv + 2

√
h
β
vTMΓ(hM̂Γ)−1Kv

,

and writing that M ≈ h2I, M̂Γ ≈ hI, and MΓ ≈ blkdiag (0, hIb).

Proceeding as above, we obtain using our heuristic approach that

λmin(Ŝ−1
2 S) ≥ c̃2, λmax(Ŝ−1

2 S) ≤ C̃2,

where c̃2 and C̃2 are positive constants independent of h and β.

Although we are not able to bound the eigenvalues of the preconditioned Schur

complements as precisely as for the distributed Poisson control problem, it is helpful

that we may at least bound the eigenvalues heuristically by constants of O(1).
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We therefore conclude that the two preconditioners

P̂1 =

[
M 0

0 Ŝ1

]
, P̂2 =

[
M 0

0 Ŝ2

]
,

are potentially effective and robust ones for the Neumann boundary control problem.

We may also consider block triangular preconditioners of the form[
M 0

K −Ŝ1

]
,

[
M 0

K −Ŝ2

]
,

as described in the previous chapter.

4.1.2 Numerical Tests

To demonstrate numerically the performance of our block diagonal preconditioners,

we now wish to test them on the following problem:

min
y,u

1

2
‖y − ŷ‖ 2

L2(Ω) +
β

2
‖u‖2

L2(∂Ω)

s.t. −∇2y = 0, in Ω := [0, 1]2,

∂y

∂n
= u, on ∂Ω,

ŷ =

{
1 on Ω1 := [0, 1

2
]2,

0 on Ω\Ω1.

We note that the target function within the test problem is the same as that used to

test our solvers for the distributed Poisson control problem in the previous chapter.

However the nature of the problem is very different. Figure 4.1 is a plot of solutions

obtained for a particular choice of h and β, along with a Matlab ‘spy’ plot of the

matrix within the system we solve iteratively.

To solve this problem, we use Q1 basis functions for state and adjoint variables.

We use the Minres algorithm, and observe the number of iterations required to

solve the matrix system (4.1) to a tolerance of 10−6, when preconditioners P̂1 and

P̂2 are used. We again approximate the inverse of a mass matrix by 20 Chebyshev

semi-iterations, and approximate the inverse of the matrix K +
√

h
β
MΓ using 2 AMG

cycles with 2 pre- and post- (relaxed Jacobi) smoothing steps.

In Tables 4.1 and 4.2, we present iteration numbers required for solving the prob-
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Figure 4.1: Plots of state, control and adjoint variables for the Neumann boundary
control test problem, with h = 2−5 and β = 10−3, as well as a Matlab ‘spy’ plot of
the matrix within the system being solved.
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P̂1 β

Iterations 1 10−1 10−2 10−3 10−4 10−5 10−6 10−7 10−8

h

2−2 18 19 21 21 18 17 15 14 14

2−3 17 21 31 34 35 30 31 27 26

2−4 18 26 34 44 50 48 40 43 42

2−5 18 26 39 52 63 65 61 57 61

2−6 23 29 44 59 75 87 88 79 75

2−7 22 30 46 67 90 113 121 120 106

Table 4.1: Number of Minres iterations with preconditioner P̂1 required to solve the
test problem, using Q1 basis functions for state and adjoint, for a variety of h and β.

P̂2 β

Iterations 1 10−1 10−2 10−3 10−4 10−5 10−6 10−7 10−8

h

2−2 21 21 21 20 16 13 11 11 11

2−3 35 35 34 34 32 32 31 29 29

2−4 40 39 41 43 43 44 42 40 40

2−5 43 43 46 48 50 54 53 52 50

2−6 41 44 48 55 56 63 67 67 66

2−7 44 46 51 58 67 78 87 90 89

Table 4.2: Number of Minres iterations with preconditioner P̂2 required to solve the
test problem, using Q1 basis functions for state and adjoint, for a variety of h and β.

lem with preconditioners P̂1 and P̂2 respectively. We note that, whereas the iteration

numbers do not remain as small or uniform as for the results presented in the pre-

vious chapter on distributed control, they do remain bounded as well as moderate

in size, for all values of h and β tested (with P̂2 performing marginally better than

P̂1 in the majority, though not all, of the cases). We also observe that the iterative

methods seem to perform better when h3 and β are far apart – we observe this in

Tables 4.1 and 4.2, as, for a given h and decreasing β, the iteration numbers first

seem to increase and then decrease again. This feature may be explained as follows:

when h3 � β, the first term of the Schur complement (KM−1K) is very dominant

and is captured well by the Schur complement approximations; similarly if β � h3,

the second term of the Schur complement ( 1
β
MΓ) dominates, and this too is captured

well by our approximations.
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As a result of the iteration counts we observe when employing our solvers, as well

as CPU timings not presented here, we conclude that our solvers exhibit robustness

when applied to this problem for a wide range of values of h and β.

4.2 Subdomain Control Problem

We now turn our attention to the numerical solution of subdomain control problems.

We work with the following formulation:

min
y,u

1

2
‖y − ŷ‖ 2

L2(Ω) +
β

2
‖u‖2

L2(Ωsub)

s.t. −∇2y =

{
u in Ωsub ⊂ Ω,

0 in Ω\Ωsub,

y = g, on ∂Ω,

which we discussed in Section 2.1.2. As explained there, an equal-order finite element

method yields the matrix system M 0 K

0 βMsub −NT
s

K −Ns 0


 y

u

p

 =

 z

0

g

 ,
which we may reduce to [

M K

K − 1
β
Ms

][
y

p

]
=

[
z

g

]
, (4.5)

by eliminating the gradient equation. The matrix Ms := NsM
−1
subN

T
s contains entries

of Msub at indices corresponding to Ωsub, and zeros elsewhere. We will consider the

iterative solution of the matrix system (4.5) in this section.

We write this system in the form of the saddle point system (2.31), with

Φ = M, Ψ = K, Θ =
1

β
Ms.

We may hence consider block diagonal preconditioners of the form blkdiag
(

Φ̂, Ŝ
)

for

this system (or indeed block triangular or other preconditioners). We may approxi-
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mate the (1, 1)-block using Chebyshev semi-iteration as before, leaving the main task

as approximating the Schur complement

S = KM−1K +
1

β
Ms.

4.2.1 Approximating the Schur Complement

As for the Neumann boundary control problem, we wish to propose options for ap-

proximating the Schur complement S which are robust with respect to mesh-size and

regularization parameter.

As in the previous section, when carrying out our analysis we believe it to be

helpful to consider the mass matrices in lumped form. Once again, M is then a

diagonal matrix that is spectrally equivalent to hdI, and the non-zero diagonal part

of Msub (corresponding to nodes in Ωsub) is spectrally equivalent to hdIs, with Is

denoting the identity matrix of dimension equal to the number of nodes within Ωsub.

These observations lead to the following approximations, which will be helpful when

analysing our Schur complement approximation for this problem:19

MsM
−1 ≈ blkdiag (Is, 0) , Ms ≈MsM

−1Ms. (4.6)

Using the above set-up, let us consider first an approximation of the form

Ŝ1 =

(
K +

1√
β
M̂

)
M−1

(
K +

1√
β
M̂

)
= KM−1K +

1

β
M̂M−1M̂ +

1√
β

(
KM−1M̂ + M̂M−1K

)
,

where here M̂ is chosen so that

1

β
M̂M−1M̂ ≈ 1

β
Ms. (4.7)

Now, as for the boundary control case, the eigenvalues of M are all of O(hd), and Ms

contains eigenvalues of at most O(hd). It is therefore natural to consider the choice

M̂ = Ms,

19We have assumed from the point of view of this notation that the nodes are ordered with the
nodes in Ωsub first, followed by the remaining nodes.
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as this will balance the largest eigenvalues of both sides of the expression (4.7), i.e.

β−1 · hd · h−d · hd = β−1 · hd.

We therefore propose the Schur complement approximation

Ŝ1 =

(
K +

1√
β
Ms

)
M−1

(
K +

1√
β
Ms

)
,

as well as the alternative approximation

Ŝ2 =

(
K +

1√
β
Ms

)
M̂−1

s

(
K +

1√
β
Ms

)
,

using similar motivation. The matrix M̂s contains the entries of Ms at nodes within

Ωsub, and entries of O(hd) on the diagonals corresponding to nodes outside Ωsub.20

Eigenvalues of Ŝ−1
1 S. A pertinent question at this point is whether we may

apply a similar heuristic as for the Neumann boundary control problem to bound the

largest and smallest eigenvalues of Ŝ−1
1 S by values of O(1). We again analyse the

eigenvalues in the 2D case, with the 3D case being similar.

We examine the Rayleigh quotient

vTSv

vT Ŝ1v
=

vTKM−1Kv + 1
β
vTMsv

vTKM−1Kv + 1
β
vTMsM−1Msv + 1√

β
vT [KM−1Ms +MsM−1K] v

=
vTKM−1Kv + 1

β
vTMsv

vTKM−1Kv + 1
β
vTMsM−1Msv + 2√

β
vTMsM−1Kv

,

which will give us a range for the eigenvalues of Ŝ−1
1 S as before.

If v ∈ null(Ms), then vTSv

vT bS1v
= 1. If not, we may write

vTSv

vT Ŝ1v
=

1
vTKM−1Kv+ 1

β
vTMsM−1Msv

vTKM−1Kv+ 1
β
vTMsv

+
2√
β
vTMsM−1Kv

vTKM−1Kv+ 1
β
vTMsv

. (4.8)

Motivated by the above expression, we may utilize that the non-zero sub-matrices of

20In our implementation, we set the diagonal entries corresponding to nodes outside Ωsub to be
the same as one of the diagonal entries corresponding to a node within Ωsub, to ensure the entries
are of the same order.
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MsM
−1Ms and Ms are spectrally equivalent,21 as explained above in (4.6), and hence

write

0 <
vTKM−1Kv + 1

β
vTMsM

−1Msv

vTKM−1Kv + 1
β
vTMsv

=: D̃2 = O(1),

with D̃2 an h and β-independent constant corresponding to the spectral equivalence

of the sub-matrices of MsM
−1Ms and Ms.

We now look more carefully at the maximum and minimum values of

2√
β
vTMsM

−1Kv

vTKM−1Kv + 1
β
vTMsv

=:
T3

T4

.

We again consider, for the purposes of our heuristic, lumped versions of the mass

matrices M and Ms, and assume that M ≈ h2I and Ms ≈ blkdiag (h2Is, 0), ignoring

all multiplicative constants. We note that the eigenvalues of K are within [cKh
2, CK ],

for constants cK and CK which are independent of h and β.

Using our approximations for M and Ms, we may write that the matrix MsM
−1 ≈

blkdiag (Is, 0). This puts us in a position to argue, as in the previous section for the

quantity T1, that T3 is essentially a scaled quadratic form for K, and is therefore

typically non-negative. Further, T4 must be strictly positive, using a similar argument

as for the quantity T2 in the previous section. If T3 and T4 are indeed non-negative,

we write that T3

T4
≥ 0, and therefore that vTSv

vT bS1v
≤ 1eD2

, giving us an upper bound for

λmax(Ŝ−1
2 S).

We may then consider the maximum value of T3

T4
, which we do by writing

T3

T4

=
2β−1/2h2h−2ξ

h−2ξ2 + β−1h2
=

2β−1/2ξ

h−2(ξ2 + β−1h4)
=

2$ξ

ξ2 +$2
,

with $ = β−1/2h2, and ξ corresponding to the relevant eigenvalue of K as before.

Both $ and ξ are positive, and so 2$ξ
ξ2+$2 ≤ 1. This means that the denominator in

(4.8) is bounded above by a constant independent of h and β. This gives us the lower

bound for λmin(Ŝ−1
2 S) that we seek.

Putting all the pieces together (with multiplicative constants reintroduced) we

21The non-zero sub-matrices of MsM
−1Ms and Ms corresponding to nodes in Ωsub are spectrally

equivalent using our definition.
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may conclude that

λmin(Ŝ−1
1 S) ≥ c̃3, λmax(Ŝ−1

1 S) ≤ C̃3,

with c̃3 and C̃3 positive constants independent of h and β.

Eigenvalues of Ŝ−1
2 S. We may perform a similar analysis for Ŝ−1

2 S, by exam-

ining the Rayleigh quotient

vTSv

vT Ŝ2v
=

vTKM−1Kv + 1
β
vTMsv

vTKM̂−1
s Kv + 1

β
vTMsM̂−1

s Msv + 2√
β
vTMsM̂−1

s Kv
,

and writing that M ≈ h2I, M̂s ≈ h2I, and Ms ≈ blkdiag (h2Is, 0).

Proceeding once more as we did for Ŝ1, we obtain that

λmin(Ŝ−1
2 S) ≥ c̃4, λmax(Ŝ−1

2 S) ≤ C̃4,

where c̃4 and C̃4 are positive constants independent of h and β.

We therefore postulate that the two preconditioners

P̂1 =

[
M 0

0 Ŝ1

]
, P̂2 =

[
M 0

0 Ŝ2

]
,

are potentially effective and robust ones for the subdomain control problem, as may

be related block triangular preconditioners.
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Figure 4.2: Plots of state, control and adjoint variables for the subdomain control
test problem, with h = 2−5 and β = 10−3, as well as a Matlab ‘spy’ plot of the
matrix within the system being solved.
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4.2.2 Numerical Tests

In order to demonstrate how the above preconditioners perform in practice, we wish

to test our methods on the following test problem:

min
y,u

1

2
‖y − ŷ‖ 2

L2(Ω) +
β

2
‖u‖2

L2(Ωsub)

s.t. −∇2y =

{
u in Ωsub := [0, 1]× [1

2
, 1],

0 in Ω\Ωsub,

y = 0, on ∂Ω,

ŷ =

{
1 on Ωsub,

0 on Ω\Ωsub.

Figure 4.2 contains solution plots for this problem, along with a Matlab ‘spy’ plot

of the matrix we consider solving for.

P̂1 β

Iterations 1 10−1 10−2 10−3 10−4 10−5 10−6 10−7 10−8

h

2−2 10 11 11 12 12 (12)∗ (12)∗ (12)∗ (12)∗

2−3 17 17 19 21 23 24 (30)∗ (30)∗ (33)∗

2−4 25 27 28 30 31 36 41 (50)∗ (51)∗

2−5 38 40 41 44 48 57 66 76 87

2−6 44 44 47 52 62 77 84 97 114

2−7 44 46 50 56 69 84 90 103 118

Table 4.3: Number of Minres iterations with preconditioner P̂1 required to solve the
test problem, using Q1 basis functions for state and adjoint, for a variety of h and β.

We again use Q1 basis functions for state and adjoint variables, and apply the

Minres algorithm to solve this problem. We solve to a tolerance of 10−6 with pre-

conditioners P̂1 and P̂2, approximating the inverse of a mass matrix by 20 Chebyshev

semi-iterations and the inverse of the matrix K + 1√
β
Ms using 2 AMG cycles with 2

pre- and post- (relaxed Jacobi) smoothing steps.22

22In Tables 4.3 and 4.4, the symbol ∗ denotes that the AMG routine did not solve for the matrix
K+ 1√

β
Ms in the parameter regime being tested, due to the presence of positive off-diagonal entries.

In these cases Gaussian elimination solves were used instead. We note that this problem only occurs
when h is large and β is small, which is not an interesting practical case.
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P̂2 β

Iterations 1 10−1 10−2 10−3 10−4 10−5 10−6 10−7 10−8

h

2−2 12 12 12 12 12 (12)∗ (12)∗ (12)∗ (11)∗

2−3 27 28 28 30 31 32 (34)∗ (33)∗ (33)∗

2−4 45 45 45 45 48 52 53 (55)∗ (58)∗

2−5 67 69 70 71 76 87 92 90 97

2−6 77 77 80 85 96 115 121 123 131

2−7 78 80 83 88 102 127 128 129 136

Table 4.4: Number of Minres iterations with preconditioner P̂2 required to solve the
test problem, using Q1 basis functions for state and adjoint, for a variety of h and β.

Tables 4.3 and 4.4 show iteration numbers for solving the problem with precondi-

tioners P̂1 and P̂2 respectively. Again, the iteration numbers remain bounded, and are

very reasonable in size for all parameter regimes of h and β tested (with the precon-

ditioner P̂1 marginally outperforming P̂2). We find that the CPU times demonstrate

parameter robustness also. We observe for this problem that the iterative methods

seem to perform better when h4 and β are far apart, as when this is the case one of

the terms of the Schur complement (KM−1K or 1
β
Ms) is dominant and is captured

well by our Schur complement approximations. However, we can again conclude that

our solvers perform well for the subdomain control problem considered, for all values

of h and β tested.

4.3 Comment on Distributed Poisson Control with

State Constraints

Finally, in this section we briefly discuss how we may approach solving the matrix

system  M + ε−1GAMGA 0 K

0 βM −M
K −M 0


 y(k)

u(k)

p(k)

 =

 cA

0

g

 , (4.9)
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which arises at every semi-smooth Newton step when seeking the solution of the

following problem:

min
y,u

1

2
‖y − ŷ‖2

L2(Ω) +
β

2
‖u‖2

L2(Ω)

s.t. −∇2y = u, in Ω,

y = g, on ∂Ω,

ya ≤ y ≤ yb, a.e. in Ω.

We discussed optimal control problems with such additional state constraints previ-

ously in Section 2.1.3, and we wish to consider the iterative solution of this problem,

as it is a further example of a Poisson control problem with additional complexities

arising in the structure of the matrix system. The notation with which this system

is written is as in Section 2.1.3.

In [90], preconditioners for the matrix system (4.9) are sought. The (1, 1)-block

Φ =

[
M + ε−1GAMGA 0

0 βM

]

is easily obtained using exact diagonal solves, as lumped mass matrices are used. If

this were not the case, then the matrix M + ε−1GAMGA could be split into two parts

(one corresponding to the active set and one to the other nodes) – the inverse of

the matrix could then be approximated by applying Chebyshev semi-iteration to the

separated matrices. The matrix βM could be dealt with by Chebyshev semi-iteration

as usual in the case of consistent mass matrices being used.

The most difficult task, once again, is approximating the Schur complement

S = K
(
M + ε−1GAMGA

)−1
K +

1

β
M.

This time, we seek robust approximations of S with respect to three variables – h, β

and ε. The presence of an additional parameter creates extra complications when it

comes to finding robust solvers.

In [90], a proposed approximation of S is given by

Ŝ1 =

(
K +

1√
β
M̂

)(
M + ε−1GAMGA

)−1
(
K +

1√
β
M̂

)
,
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where here M̂ = blkdiag
(
MI ,
√

1 + ε−1MA
)
, and MI , MA denote the parts of the

mass matrix corresponding to the inactive and active sets respectively. The approx-

imation Ŝ1 is justified by exactly the same “matching” strategy as for the other

problems discussed in this section.

Using similar motivation, the second Schur complement approximation

Ŝ2 =

[
K +

1√
β
MIG,ε

]
I−1
G,εM

−1I−1
G,ε

[
K +

1√
β
IG,εM

]
,

where IG,ε = I + 1√
ε
GA, is also proposed.

Although it is again not possible to prove rigorous bounds for Ŝ−1
1 S or Ŝ−1

2 S as

for the distributed control problem without state constraints, numerical experiments

indicate that the (block triangular) preconditioners,

P̂1 =

 γ (M + ε−1GAMGA) 0 0

0 βγM 0

K −M −Ŝ1

 ,

P̂2 =

 γ (M + ε−1GAMGA) 0 0

0 βγM 0

K −M −Ŝ2

 ,
are effective ones for this problem for a wide range of parameter regimes for h, β and

ε. As for the block triangular preconditioners discussed in the previous chapter, γ

denotes a scaling parameter to ensure positive definiteness within the inner product

being used. These preconditioners were used with the Bramble-Pasciak CG method.

Of course related block diagonal preconditioners could also be used along with the

Minres algorithm – these may be derived in the same way as for the boundary and

subdomain control problems of this chapter.

4.4 Summary

In this chapter, we have described the derivation of solvers for Poisson control prob-

lems of different structure to the distributed control problem discussed in Chapter

3. The classes of problems detailed were the Neumann boundary control problem,

the subdomain control problem, and, briefly, the state-constrained Poisson control

problem.
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We pursued a similar strategy as for the distributed Poisson control problem. The

main added difficulty for these problems was the more complex structure of the Schur

complement. However, we were able to use similar ideas as in Chapter 3 to derive

effective approximations. We motivated heuristic eigenvalue bounds (in contrast to

the more rigorous bounds for the distributed control problem), and numerical re-

sults indicate that our preconditioners are robust and efficient ones for these harder

problems.

The main conclusion of this chapter is that the methodology detailed in Chapter

3, involving saddle point theory, effective mass matrix approximation, and approxi-

mating the Schur complement using a “matching” strategy as we have described, can

be effective for tackling a range of optimal control problems, even if the problems

are not of the exact nature for which the strategy was originally derived. This indi-

cates that the family of preconditioners we have developed so far for optimal control

problems may be applicable for a yet wider range of problems – we will examine this

conjecture in future chapters.
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CHAPTER 5

Convection-Diffusion Control

In this chapter, we examine the iterative solution of convection-diffusion control prob-

lems, a more sophisticated class of PDE-constrained optimization problems than that

of Poisson control problems, and also a more challenging one from a numerical point-

of-view.23 Equations of convection-diffusion type are an important class of problems

motivated by applications such as contaminant transport. When solving forward

problems of this type using a finite element method, they result in non-symmetric

matrix systems, which needs to be considered when solving optimal control problems

of this form, as well as the forward problem in isolation.

In addition, convection-diffusion type problems often require stabilization tech-

niques to be applied, in order that the solution obtained is reliable. For convection-

diffusion control problems, we thus wish to select a stabilization scheme which results

in the matrix systems obtained using the discretize-then-optimize and optimize-then-

discretize approaches being the same. Commonly-used stabilization strategies, such

as the Streamline Upwind Petrov-Galerkin stabilization [71], do not satisfy this prop-

erty. However, the stabilization method we select, that of the Local Projection Sta-

bilization approach [6, 7, 20], does meet this requirement. With this stabilization,

along with appropriate approximations of the (1, 1)-block and Schur complement of

23This chapter is based on the following paper, which is Ref. [93]:
J. W. Pearson, and A. J. Wathen, Fast Iterative Solvers for Convection-Diffusion Control

Problems, Electronic Transactions on Numerical Analysis, 40, pp.294–310, 2013.

104



CHAPTER 5. CONVECTION-DIFFUSION CONTROL

the matrix system involved, and a carefully constructed multigrid routine to enforce

the Schur complement approximation, we will develop effective block diagonal and

block triangular preconditioners for this problem.

This chapter is structured as follows. In Section 5.1, we discuss the solution of

the convection-diffusion equation – we will incorporate elements of this solver into

our solution strategies for the control problem. In Section 5.2, we introduce the

convection-diffusion control problem, discuss stabilization strategies for the problem,

and motivate our choice of stabilization by considering the matrix systems obtained

using the discretize-then-optimize and optimize-then-discretize strategies. In Section

5.3, we derive block diagonal and block triangular preconditioners for the control

problem, to be used with Minres and Bramble-Pasciak CG respectively. In Section

5.4, we provide results obtained from numerical experiments, and in Section 5.5, we

make some concluding comments.

5.1 Iterative Solution of the Convection-Diffusion

Equation

In order to motivate the work we will carry out on the convection-diffusion control

problem, we first consider the finite element solution of the convection-diffusion equa-

tion with Dirichlet boundary conditions

−ν∇2y + w · ∇y = f, in Ω, (5.1)

y = g, on ∂Ω, (5.2)

where the domain Ω ⊂ Rd, d ∈ {2, 3}, has boundary ∂Ω, ν > 0, and w is a divergence-

free wind vector (i.e. ∇ ·w = 0).

The −ν∇2y term in the above equation denotes the diffusive element, and the

w · ∇y term represents convection. As pointed out, for example in [36, Chapter 3],

convection typically plays a more significant physical role than diffusion, so ν � ‖w‖
for many practical problems. However, this in turn makes the problem more difficult

to solve [36, 98], as the solution procedure will need to be robust with respect to the

direction of the wind w and any boundary or internal layers that form.
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The finite element representation of the equations (5.1)–(5.2) is given by

K̄y = f , (5.3)

where y = {Yi}i=1,...,n, with Yi denoting the coefficients of the finite element solution

yh =
∑n+n∂

i=1 Yiφi with interior finite element basis functions φ1, ..., φn and boundary

basis functions φn+1, ..., φn+n∂ . The matrix K̄ is defined by

K̄ = νK +N + T̄ ,

where K is a stiffness matrix as defined by (2.6),

N = {ñij}i,j=1,...,n, ñij =
∫

Ω
(w · ∇φj)φi dΩ,

T̄ is a matrix corresponding to the stabilization strategy used (which depends on the

mesh-size h, a stabilization parameter δ and an orthogonal projection operator πh),

and f is a vector corresponding to the functions f and g (and sometimes the stabi-

lization as well). We discuss the definitions of T̄ and f for two different stabilization

methods in Section 5.2.1, and note that T̄ = 0 if no stabilization is used.

A method discussed in [36, Chapter 4] for solving (5.1)–(5.2) is a Gmres method

preconditioned with a geometric multigrid process described by Ramage in [98]. The

multigrid process contains standard prolongation and restriction operators, but there

are two major differences between it and a more typical multigrid routine:

• Construction of the coarse grid operator – In most geometric multigrid

algorithms, the construction of a coarse grid operator is carried out using the

scaled Galerkin coarse grid operator (that is K̄coarse = RK̄fineP , where P is

the projection operator and R the restriction operator). However, in Ramage’s

method, the coarse grid operator is explicitly constructed on all grids on which

it is required. This involves constructing the matrices K, N and T̄ on each

sub-grid, and incorporates different stabilization parameters δ for each grid.

• Pre- and post- smoothing – The smoothing strategy we employ is block

Gauss-Seidel smoothing (which involves taking as a splitting matrix the block

lower triangular part of the matrix K̄, ordered in different ways), applied in each

direction to take account of all possible wind directions, that is to say we employ

4 (2 pre- and 2 post-) smoothing steps for a two dimensional problem, and 6
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smoothing steps for a three dimensional problem. This strategy is shown to be

effective for a wide range of problems with our formulation, as demonstrated in

[36, Chapter 4] and [98].

−1
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−1

0

1
0

0.5

1

x
1

x
2

y

Figure 5.1: Finite element solution plot of (5.1)–(5.2), with Ω = [−1, 1]2, h = 2−3,
ν = 1

200
, f = 0, g = 1 on x1 = 1 and 0 otherwise, and w = [1

2
x2(1−x2

1),−1
2
x1(1−x2

2)]T ,
where x = [x1, x2]T denotes the spatial coordinates.

In Figure 5.1, we display the solution of the convection-diffusion equation for a

particular problem set-up.

5.2 Convection-Diffusion Control Problems

For the remainder of this chapter, we will consider the distributed convection-diffusion

control problem

min
y,u

1

2
‖y − ŷ‖2

L2(Ω) +
β

2
‖u‖2

L2(Ω) (5.4)

s.t. − ν∇2y + w · ∇y = u, in Ω,

y = g, on ∂Ω,

where y again denotes the state variable with ŷ some desired state, u denotes the

control, and β > 0 is a regularization parameter.
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We again employ a finite element method to solve the problem, that is we write

yh =

n+n∂∑
i=1

Yiφi, uh =

n+n∂∑
i=1

Uiφi, ph =

n+n∂∑
i=1

Piφi,

where p denotes the Lagrange multiplier (or adjoint variable) we use. Note that we

discretize the state y, the control u and the Lagrange multiplier p using the same basis

functions here. Note also that the coefficients Yn+1, ..., Yn+n∂ are trivially obtained by

considering the specified Dirichlet boundary condition y = g.

For the rest of this section, we define y, u and p as follows:

y = {Yi}i=1,...,n, u = {Ui}i=1,...,n, p = {Pi}i=1,...,n,

as for the Poisson control problem of Chapter 3.

5.2.1 Stabilization of the Control Problem

One important consideration when solving the convection-diffusion control problem

(or indeed the convection-diffusion equation itself) is that of stabilizing the problem.

It is well known that, without any form of stabilization, accurate solution of the

convection-diffusion equation [36, 98] and the convection-diffusion control problem

[7, 61] is compromised due to the formation of layers in the approximate solution,

potentially leading to large errors for small ν.

One popular method for avoiding this problem is by using the Streamline Upwind

Petrov-Galerkin (SUPG) stabilization, which was introduced in [71] and discussed

further in literature such as [36, 61, 99]. For the forward problem, using this stabi-

lization would result in a system of the form (5.3), with K and N as above, and

T̄ = {τ δh,ij}i,j=1,...,n, τ δh,ij = δ

∫
Ω

(w · ∇φi)(w · ∇φj) dΩ

− νδ
∑
k

∫
∆̄k

(∇2φi)(w · ∇φj) dΩ,

f = {fi}i=1,...,n, fi =

∫
Ω

fφi dΩ + δ

∫
Ω

fw · ∇φi dΩ,

with stabilization parameter δ, and ∆̄k denoting the k-th element in our finite element

discretization. Here we have taken zero Dirichlet conditions for illustrative purposes.
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It is well recognised that this method is effective for solving the forward problem

(see [36, Chapters 3 and 4] for instance). However, for the convection-diffusion con-

trol problem, difficulties arise – the matrix systems that we obtain when we use the

discretize-then-optimize and optimize-then-discretize formulations of Sections 5.2.2

and 5.2.3 do not commute [99, Chapter 6]. This is problematic as we would then

have to choose between solving the discretize-then-optimize matrix system, which

would not be strongly consistent (meaning the solutions to the optimization prob-

lem would not satisfy all the optimality conditions), or the optimize-then-discretize

system, which is non-symmetric and so is not the optimality system for any finite

dimensional problem. Further, the non-symmetry of the matrix system that arises

when using the optimize-then-discretize approach means that we cannot apply the

methodology detailed in Section 5.3 to solve it, as our methods depend on the ma-

trix being symmetric. It is also believed that applying SUPG to the optimal control

problem will guarantee at most first-order accuracy in the solution [61].

To deal with these two problems, we now introduce the Local Projection Sta-

bilization (LPS) method, which is discussed in [7, 53] for example. Applying this

stabilization to the forward problem again yields a matrix system of the form (5.3),

with K and N as above and

T̄ = {τ δh,ij}i,j=1,...,n, τ δh,ij = δ

∫
Ω

(
w · ∇φi − πh(w · ∇φi)

)
(5.5)

×
(
w · ∇φj − πh(w · ∇φj)

)
dΩ,

f = {fi}i=1,...,n, fi =

∫
Ω

fφi dΩ,

with δ again a stabilization parameter and πh an orthogonal projection operator

from L2(Ω) to the space of piecewise constant functions on patches of the domain.

We have again taken zero Dirichlet conditions for this working. Furthermore, as we

will demonstrate in Sections 5.2.2 and 5.2.3, when this stabilization is applied in

the optimal control setting, the discretize-then-optimize and optimize-then-discretize

systems are consistent and self-adjoint; that is the discretization and optimization

steps commute.

There are a number of considerations detailed below which need to be taken into

account when applying this method in the control setting with a uniform grid and

bilinear basis functions, as we will do in Section 5.4.
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• Stabilization parameter δ – We take δ to be the following, as in [7]:

δ =

{
0 if Pe < 1,
h
‖w‖2

if Pe ≥ 1,

where the mesh Péclet number Pe is defined on each element as

Pe =
h ‖w‖2

ν
.

Clearly this means that the stabilization depends on the mesh-size, and if the

mesh-size h is less than ν
‖w‖2

, then no stabilization procedure will be applied.

• Orthogonal projection operator πh – We require an L2-orthogonal projec-

tion operator defined on patches of the domain, that satisfies L2-norm properties

specified on [7, p.4]. We will proceed by working with Q1 elements with equally

spaced nodes, and divide the domain into patches consisting of 2 elements in

each dimension. From this, we will take πh(v) (where v has support solely on

that patch) to be equal to the integral of v over the patch divided by the area

of the patch (in 2D this will be 4h2). This definition will satisfy the required

properties in our formulation.

• Error of LPS method – In [7], it is shown that the LPS stabilization gives

O(h3/2) convergence for problems of the form (5.4) for bilinear finite elements.

This further motivates the use of the LPS stabilization method for the remainder

of this chapter.

5.2.2 Discretize-then-Optimize Strategy

We now demonstrate that, when using the LPS method described in Section 5.2.1,

the matrix systems obtained with the discretize-then-optimize and optimize-then-

discretize approaches are the same. The derivation of the matrix system when using

the former approach is straightforward. We first note that the discretized version of

the PDE constraint is given by

K̄y −Mu = g,

where g is as defined for the Poisson control problem.
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We also note that we may write the functional that we are trying to minimize,
1
2
‖y − ŷ‖2

L2(Ω) + β
2
‖u‖2

L2(Ω), as

1

2
‖y − ŷ‖2

L2(Ω) +
β

2
‖u‖2

L2(Ω) =
1

2
yTMy − yTz + C̄ +

β

2
uTMu,

where C̄ is a constant independent of y, M denotes a mass matrix as defined previ-

ously, and z contains entries of the form
∫

Ω
ŷφi dΩ.

We therefore deduce that the Lagrangian, the stationary point of which we wish

to find, is given by

LDTO(y,u,p) =
1

2
yTMy − yTz + C̄ +

β

2
uTMu + pT (K̄y −Mu− g). (5.6)

Differentiating (5.6) with respect to y, u and p yields the following system of

equations:  M 0 K̄T

0 βM −M
K̄ −M 0


 y

u

p

 =

 z

0

g

 . (5.7)

This is of the saddle point form discussed in Section 2.2. To provide an illustration of

the appearance of this matrix system, we display the sparsity pattern for a particular

problem in Figure 5.2.

5.2.3 Optimize-then-Discretize Strategy

To derive the optimize-then-discretize formulation, as in [7], we need to consider a

Lagrangian of the form

LOTD(y, u, pΩ, p∂Ω) =
1

2
‖y − ŷ‖2

L2(Ω) +
β

2
‖u‖2

L2(Ω)

+

∫
Ω

(−ν∇2y + w · ∇y − u)pΩ dΩ +

∫
∂Ω

(y − g)p∂Ω ds,

where y and u relate to the weak solutions of the forward problem, and pΩ, p∂Ω

(which correspond to the adjoint variable p on the interior of Ω and ∂Ω respectively)

are assumed to be sufficiently smooth.

As in [99, Chapter 6] for example, we differentiate LOTD with respect to the state

y, the control u and the Lagrange multipliers pΩ and p∂Ω, and study the resulting
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Figure 5.2: Sparsity pattern of the system (5.7) for Problem 1 as stated in Section
5.4, with h = 2−3, β = 10−2 and ν = 1

200
.

equations. Calculating the Fréchet derivative with respect to y, and applying the

Divergence Theorem and the Fundamental Lemma of Calculus of Variations, as in

[99, Chapter 6], yields

−ν∇2p−w · ∇p− (∇ ·w)p = ŷ − y, in Ω,

p = 0, on ∂Ω,

from which we use the assumption ∇ ·w = 0 to obtain the adjoint equation

−ν∇2p−w · ∇p = ŷ − y, in Ω,

p = 0, on ∂Ω.

Further, differentiating with respect to u generates the gradient equation

βu− p = 0,

and differentiating with respect to the Lagrange multipliers pΩ and p∂Ω yields the

state equation

−ν∇2y + w · ∇y = u, in Ω,

y = f, on ∂Ω.
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Discretizing these three equations using the stabilization (5.5) yields the matrix

system  M 0 K̄T

0 βM −M
K̄ −M 0


 y

u

p

 =

 z

0

g

 ,
which is the same saddle point system as that derived using the discretize-then-

optimize approach. We therefore consider the solution of this system for the remainder

of this chapter.

5.3 Preconditioning the Matrix System

We now consider how one might precondition the matrix system (5.7) for solving the

convection-diffusion control problem with Local Projection Stabilization. We will use

the saddle point theory of Section 2.2 in this section.

We first note that we may write (5.7) as a sparse saddle point system of the form

(2.31), with

Φ =

[
M 0

0 βM

]
, Ψ =

[
K̄ −M

]
, Θ =

[
0
]
.

By the theory of Section 2.2, we see that we may obtain an effective solver if we have

a good approximation to Φ, as well as the Schur complement of the matrix system

which is given by

S = K̄M−1K̄T +
1

β
M.

We therefore start by considering an accurate approximation of these two matri-

ces. As previously in this thesis, the Chebyshev semi-iterative method is effective

for approximating mass matrices, so in our preconditioners we approximate Φ by

blkdiag
(
M̂, βM̂

)
, where M̂ denotes the application of Chebyshev semi-iteration to

M .

To find an accurate approximation of the Schur complement, we apply the result

of Theorem 13 below. This theorem gives us a Schur complement approximation

for which the eigenvalues of the Schur complement preconditioned with this approx-
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imation are bounded robustly, given positive semi-definiteness of the symmetric ma-

trix νK + T and skew-symmetry of the matrix N (see [36, Chapters 3 and 5] for

more details), and therefore positive semi-definiteness of the symmetric part of K̄,

H := 1
2
(K̄ + K̄T ). We note that Theorem 13 is an extension of Theorem 8 proved

in Chapter 3, which applied to symmetric operators rather than the non-symmetric

operator K̄ we are considering in this chapter. The stronger result presented below

is highly useful, as it may be applied to a vastly wider class of problems.

Theorem 13. Suppose that the symmetric part of K̄, H := 1
2
(K̄ + K̄T ), is positive

semi-definite. Then, if we approximate the Schur complement S by

Ŝ =

(
K̄ +

1√
β
M

)
M−1

(
K̄ +

1√
β
M

)T
,

we can bound the eigenvalues of Ŝ−1S as follows:

λ(Ŝ−1S) ∈
[

1

2
, 1

]
.

Proof. We have that the eigenvalues µ̄ and eigenvectors x of Ŝ−1S satisfy:

Ŝ−1Sx = µ̄x ⇔
(
βK̄M−1K̄T +M

)
x = µ̄

[
βK̄M−1K̄T +M +

√
β(K̄ + K̄T )

]
x.

Note that it is sufficient to show that the Rayleigh quotient R := vTSv

vT bSv
∈
[

1
2
, 1
]
.

To show this, we write

R =
vT
[
βK̄M−1K̄T +M

]
v

vT
[
βK̄M−1K̄T +M +

√
β(K̄ + K̄T )

]
v

=
aTa + bTb

(a + b)T (a + b)
,

where a = (
√
βK̄M−1/2)Tv, b = (M1/2)Tv.

The upper bound follows immediately from the fact that
√
βvT (K̄ + K̄T )v =

2
√
βvTHv ≥ 0 by the assumption of positive semi-definiteness of H, as well as the

positivity of bTb = vTMv.
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(c) λi(Ŝ−1S), β = 10−6, i = 1, ..., 289
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Figure 5.3: Spectra of Ŝ−1S for β = 10−2, β = 10−4, β = 10−6 and β = 10−8, for an

evenly spaced grid on Ω = [−1, 1]2 with h = 2−3, ν = 1
100

and w =
[
sin π

6
, cos π

6

]T
.

To show that R ≥ 1
2
, we proceed as follows, noting again that bTb > 0:

R ≥ 1

2
⇔ aTa + bTb ≥ 1

2

[
aTa + bTb + aTb + bTa

]
⇔ 1

2

[
aTa + bTb− aTb− bTa

]
≥ 0

⇔ (a− b)T (a− b) ≥ 0.

As (a− b)T (a− b) = ‖a− b‖2
2 ≥ 0 is clearly satisfied, the result is proved. 2

Illustrations of the eigenvalue distribution of Ŝ−1S for a variety of values of β in

a particular practical case are shown in Figure 5.3 – we note that the eigenvalues are

particularly clustered for small values of β.

Therefore, using Theorem 13, we may obtain an effective Schur complement ap-

proximation if we can find a good way of approximating the matrices K̄ + 1√
β
M and
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(
K̄ + 1√

β
M
)T

. The method we use for approximating these matrices is the geometric

multigrid process described for the forward problem in Section 5.1, with the coarse

grid matrices formed explicitly rather than by the use of prolongation and restriction

operators, and with block Gauss-Seidel smoothing.

So, as we now have good approximations of the matrices Φ̂ and Ŝ, we can propose

two effective preconditioners of the form

P̂1 =

[
Φ̂ 0

0 Ŝ

]
, P̂2 =

[
Φ̂ 0

Ψ −Ŝ

]
,

as described in Section 2.2.

Unlike the forward problem, the convection-diffusion control problem is symmetric

with our (symmetric) stabilization, and so P̂1 is symmetric positive definite. There-

fore, our first method for solving the matrix system (5.7) would be to apply a Minres

method with preconditioner

P̂1 =

 M̂ 0 0

0 βM̂ 0

0 0 Ŝ

 . (5.8)

In our preconditioner, M̂ denotes 20 steps of Chebyshev semi-iteration to approximate

the mass matrix M , and Ŝ denotes the approximation to the Schur complement

discussed above.

Our second method involves applying the Bramble-Pasciak Conjugate Gradient

method as described in Section 2.3.5, with preconditioner

P̂2 =

 γM̂ 0 0

0 βγM̂ 0

K̄ −M −Ŝ

 , (5.9)

and inner product given by

H =

 M − γM̂ 0 0

0 β(M − γM̂) 0

0 0 Ŝ

 ,
where γ is a constant which can be chosen a priori to ensure that M −γM̂ is positive
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definite, as in previous chapters.

At this juncture, we make two points about our preconditioning strategy and its

applicability:

1. The matrix system (5.7) for the distributed convection-diffusion control problem

could potentially be reduced to the following system of equations by elimination

of the discretized gradient equation:[
M K̄T

K̄ − 1
β
M

][
y

p

]
=

[
z

g

]
.

We note that our preconditioning strategies are also valid for this problem (due

to Theorems 2 and 4 of Section 2.2), as we still obtain a saddle point system of

the structure discussed in Section 2.2 (except now with Θ 6= 0). We will again

need to implement a Chebyshev semi-iteration process to approximate M and

enact the approximation of the Schur complement S, which remains the same

as for the system (5.7).

2. We believe that other similar methods could be devised to solve the convection-

diffusion control problem based on the framework discussed in this section. For

instance, we see no reason why a preconditioner of the form

P̂4 =

[
Φ̂ ΨT

Ψ ΨΦ̂−1ΨT − Ŝ

]
=

[
I 0

ΨΦ̂−1 I

][
Φ̂ ΨT

0 −Ŝ

]
,

which we discussed in the context of the Poisson control problem in Section

3.1.3, could not be applied to this problem using our approximations Φ̂ and Ŝ.

5.4 Numerical Results

In this section, we provide numerical results to demonstrate the effectiveness of our

suggested methods. In our numerical tests, we discretize the state y, control u and

adjoint p using Q1 finite element basis functions. We construct the relevant matrices

for our two test problems in the same way as is done in the Incompressible Flow &

Iterative Solver Software (IFISS) package [35, 110].

The two problems that we consider are stated below, with plots of their solutions

shown in Figures 5.4 and 5.5 respectively.
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Figure 5.4: Solutions of state and control for Problem 1 using Q1 basis functions
with ν = 1

100
and β = 1.
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Minres BPCG

ν = 1
250

β β
h
2

Size 10−2 10−4 10−6 10−8 10−2 10−4 10−6 10−8

2−2 75 13 7 5 3 11 9 6 6

2−3 243 13 9 5 3 12 10 7 6

2−4 867 13 11 5 3 12 13 9 7

2−5 3, 267 13 12 7 3 13 14 10 7

2−6 12, 675 13 12 7 4 13 14 12 8

2−7 49, 923 12 11 9 5 13 15 15 10

Table 5.1: Number of Minres iterations with ‘ideal’ block diagonal preconditioner
(5.8), and Bramble-Pasciak CG iterations with ‘ideal’ block triangular preconditioner
(5.9), needed to solve Problem 1. Results are given for a range of values of h

2
(which

is equal to the inverse of the number of steps in space in each coordinate) and β,
where ν = 1

250
, and Q1 basis functions are used to approximate the state, control and

adjoint.

• Problem 1: We wish to solve the following distributed convection-diffusion

control problem on Ω = [−1, 1]2:

min
y,u

1

2
‖y‖2

L2(Ω) +
β

2
‖u‖2

L2(Ω)

s.t. − ν∇2y + w · ∇y = u, in Ω,

y =

{
1 on ∂Ω1 := ([0, 1]× {−1}) ∪ ({1} × [−1, 1]),

0 on ∂Ω2 := ∂Ω\∂Ω1,

where w =
[
sin π

6
, cos π

6

]T
. This is an optimal control problem involving a

constant wind w; forward problems of this form have previously been considered

in literature such as [36, 99].

• Problem 2: We wish to solve the following distributed convection-diffusion
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Minres β

ν = 1
100

10−2 10−4 10−6 10−8

h
2

Size Iter. Time Iter. Time Iter. Time Iter. Time

2−2 75 13 0.070 7 0.051 5 0.040 3 0.038

2−3 243 13 0.11 9 0.092 5 0.072 3 0.063

2−4 867 13 0.20 11 0.17 5 0.078 3 0.064

2−5 3, 267 13 0.54 12 0.50 7 0.29 3 0.23

2−6 12, 675 13 2.36 13 2.24 7 1.52 5 1.53

2−7 49, 923 13 14.1 11 12.9 9 11.1 5 8.10

Minres β

ν = 1
500

10−2 10−4 10−6 10−8

h
2

Size Iter. Time Iter. Time Iter. Time Iter. Time

2−2 75 13 0.072 7 0.054 5 0.044 3 0.038

2−3 243 13 0.13 9 0.098 4 0.066 3 0.060

2−4 867 13 0.27 11 0.15 5 0.084 3 0.062

2−5 3, 267 13 0.58 12 0.52 7 0.42 3 0.27

2−6 12, 675 13 2.93 12 2.73 7 1.76 4 1.21

2−7 49, 923 12 15.2 11 15.1 9 10.2 5 9.51

Table 5.2: Number of Minres iterations with block diagonal preconditioner (5.8)
needed to solve Problem 1, and computation times taken to do so (in seconds). Results
are given for a range of values of h

2
(and hence problem size) and β, with ν = 1

100
and

ν = 1
500

, where Q1 basis functions are used to approximate the state, control and
adjoint.

control problem on Ω = [−1, 1]2:

min
y,u

1

2
‖y‖2

L2(Ω) +
β

2
‖u‖2

L2(Ω)

s.t. − ν∇2y + w · ∇y = u, in Ω,

y =

{
1 on ∂Ω1 := {1} × [−1, 1],

0 on ∂Ω2 := ∂Ω\∂Ω1,

where w =
[

1
2
x2(1− x2

1),−1
2
x1(1− x2

2)
]T

, and x = [x1, x2]T denotes the spa-

tial coordinates. This is an optimal control formulation of the double-glazing

problem discussed in [36, p.119.]: a model of the temperature in a cavity with
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BPCG β

ν = 1
100

10−2 10−4 10−6 10−8

h
2

Size Iter. Time Iter. Time Iter. Time Iter. Time

2−2 75 10 0.056 9 0.050 6 0.040 6 0.044

2−3 243 12 0.11 10 0.11 7 0.084 6 0.075

2−4 867 12 0.20 13 0.22 9 0.17 7 0.13

2−5 3, 267 13 0.60 14 0.62 10 0.46 7 0.38

2−6 12, 675 13 2.89 15 2.99 12 2.60 9 2.31

2−7 49, 923 13 14.5 15 16.0 15 15.8 11 11.6

BPCG β

ν = 1
500

10−2 10−4 10−6 10−8

h
2

Size Iter. Time Iter. Time Iter. Time Iter. Time

2−2 75 11 0.057 8 0.048 6 0.047 6 0.043

2−3 243 12 0.11 10 0.10 7 0.080 6 0.079

2−4 867 12 0.22 13 0.22 9 0.16 7 0.14

2−5 3, 267 13 0.52 14 0.55 10 0.45 7 0.36

2−6 12, 675 13 2.91 14 2.96 12 2.68 8 2.01

2−7 49, 923 13 13.7 15 14.8 14 14.2 9 10.5

Table 5.3: Number of Bramble-Pasciak CG iterations with block triangular precon-
ditioner (5.9) needed to solve Problem 1, and computation times taken to do so (in
seconds). Results are given for a range of values of h

2
(and hence problem size) and

β, with ν = 1
100

and ν = 1
500

, where Q1 basis functions are used to approximate the
state, control and adjoint.

recirculating wind w. We note that we have chosen the wind so that the maxi-

mum value of ‖w‖2 on Ω is equal to 1.

We first provide a proof-of-concept that our proposed preconditioners are effective

ones. In Table 5.1, we present iteration numbers for solving Problem 1 with ν = 1
250

and a range of h and β, using ‘ideal’ versions of our two preconditioners (specifically,

where we invert K̄+ 1√
β
M and its transpose using direct solves in the preconditioners,

rather than using multigrid). The results shown demonstrate that in theory our pre-

conditioners are highly potent for a range of parameters. All other results presented

are thus generated using the geometric multigrid procedure previously described.

In Table 5.2, we present the number of Minres iterations and computation times
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Minres β

ν = 1
100

10−2 10−4 10−6 10−8

h
2

Size Iter. Time Iter. Time Iter. Time Iter. Time

2−2 75 13 0.071 7 0.050 4 0.044 3 0.039

2−3 243 15 0.13 7 0.063 4 0.061 3 0.059

2−4 867 13 0.19 7 0.13 5 0.076 3 0.065

2−5 3, 267 13 0.52 9 0.42 5 0.32 3 0.25

2−6 12, 675 13 2.39 11 2.14 7 1.49 3 1.06

2−7 49, 923 13 13.9 11 13.2 9 10.8 5 8.32

Minres β

ν = 1
500

10−2 10−4 10−6 10−8

h
2

Size Iter. Time Iter. Time Iter. Time Iter. Time

2−2 75 15 0.074 7 0.053 5 0.041 3 0.040

2−3 243 21 0.20 7 0.085 4 0.071 3 0.060

2−4 867 19 0.35 9 0.17 5 0.085 3 0.064

2−5 3, 267 12 0.55 9 0.47 5 0.33 3 0.28

2−6 12, 675 12 2.81 9 2.34 5 2.10 3 1.17

2−7 49, 923 12 15.4 11 14.7 5 8.92 3 7.71

Table 5.4: Number of Minres iterations with block diagonal preconditioner (5.8)
needed to solve Problem 2, and computation times taken to do so (in seconds). Results
are given for a range of values of h

2
(and hence problem size) and β, with ν = 1

100
and

ν = 1
500

, where Q1 basis functions are used to approximate the state, control and
adjoint.

(including the time taken to construct the relevant matrices on sub-grids) required to

solve Problem 1 with ν = 1
100

and ν = 1
500

, using preconditioner P̂1, to a tolerance of

10−6. In Table 5.3 we show how many Bramble-Pasciak CG iterations are required

to solve the same problem to the same tolerance with preconditioner P̂2 and with

γ = 0.95. We observe that both our solvers generate convergence in a small number

of iterations for both values of viscosity. The convergence rate actually improves as β

decreases, probably because our Schur complement approximation becomes better for

smaller β, as illustrated by Figure 5.3. Although we take the wind w =
[
sin π

6
, cos π

6

]T
and specific values of ν, we find, in other computations not presented here, that the

results were similar for any constant wind with vector 2-norm equal to 1, for a wide
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BPCG β

ν = 1
100

10−2 10−4 10−6 10−8

h
2

Size Iter. Time Iter. Time Iter. Time Iter. Time

2−2 75 10 0.056 7 0.050 6 0.040 6 0.044

2−3 243 12 0.10 8 0.097 6 0.078 6 0.077

2−4 867 12 0.19 10 0.18 7 0.14 6 0.12

2−5 3, 267 13 0.58 12 0.52 9 0.44 7 0.38

2−6 12, 675 13 2.93 15 3.02 11 2.38 8 2.10

2−7 49, 923 13 14.2 15 15.6 15 15.5 10 10.4

BPCG β

ν = 1
500

10−2 10−4 10−6 10−8

h
2

Size Iter. Time Iter. Time Iter. Time Iter. Time

2−2 75 12 0.061 7 0.046 6 0.045 6 0.043

2−3 243 16 0.13 8 0.091 6 0.071 6 0.075

2−4 867 17 0.25 9 0.16 7 0.13 6 0.13

2−5 3, 267 13 0.54 11 0.45 7 0.38 6 0.34

2−6 12, 675 13 2.86 13 2.88 9 2.28 7 1.85

2−7 49, 923 13 13.6 15 15.4 11 12.7 7 9.14

Table 5.5: Number of Bramble-Pasciak CG iterations with block triangular precon-
ditioner (5.9) needed to solve Problem 2, and computation times taken to do so (in
seconds). Results are given for a range of values of h

2
(and hence problem size) and

β, with ν = 1
100

and ν = 1
500

, where Q1 basis functions are used to approximate the
state, control and adjoint.

range of ν. We note that altering the boundary conditions or target function ŷ

would not change the matrix within the system being solved, so our solvers seem to

be very robust for problems involving constant winds and values of β which are of

computational interest.

In Table 5.4, we present the number of preconditioned Minres iterations and

CPU times required to solve Problem 2, a harder problem, to the same tolerance, with

ν = 1
100

and ν = 1
500

; the number of preconditioned Bramble-Pasciak CG iterations

required to solve this problem is shown in Table 5.5. Once more, for this problem

and a wide range of values of β, our solvers are effective, with convergence achieved

in a very small number of iterations.
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We can see that the Minres and Bramble-Pasciak CG methods are very compet-

itive, and results for both methods are similar. Whereas Minres tends to converge

in fewer iterations, the Bramble-Pasciak CG method is computationally cheaper for a

fixed number of iterations. We note that the computation times for Bramble-Pasciak

CG seem to be better for larger β (in particular for smaller h), and that the Minres

solver works better for smaller β due to the lower iteration numbers. However the

analysis of Section 5.3 and these results demonstrate that the iteration count should

be bounded by a low number for these problems when either method is used, for any

choice of h and β.

The results in this section have demonstrated that the solvers we have proposed

are potent ones for a number of convection-diffusion control problems, a class of prob-

lems which, as for the convection-diffusion equation itself, is fraught with numerical

difficulties. The number of iterations required to solve these problems is small, and

the convergence of the solvers improves rather than degrades as β is decreased. As

is observable in the computation times shown in Tables 5.2–5.5, the convergence is

close to linear with respect to the size of the matrix system – we find that the only

component of our solvers that does not scale linearly in time is the construction of

matrices on the sub-grids.

5.5 Summary

In this chapter, we have explored preconditioned iterative methods for convection-

diffusion control problems, a more complex and general class of problems than the

Poisson control problems considered up to this point. In order to tackle these prob-

lems, we first needed to introduce an appropriate stabilization technique to ensure

that the discretize-then-optimize and optimize-then-discretize approaches resulted in

the same matrix system.

We then found that extensions of the preconditioning strategies introduced for

Poisson control problems could in fact be applied to these harder problems – the

major additional step was proving a stronger result on the approximation of the

Schur complement of the matrix system. Having done this, as well as implementing

an appropriate multigrid routine to enact our Schur complement approximation, we

were able to motivate two solvers for convection-diffusion control problems – one block

diagonal and one block triangular. We presented numerical results which validated

our strategy. We note that our solution methods worked well whether SUPG or LPS
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stabilization was used, and were also effective when no stabilization was applied at

all.

We conclude that our approach for approximating Schur complements of PDE-

constrained optimization problems is in fact valid for a wider class of problems than

we originally envisaged. In future chapters, we will build on the solvers derived so far,

in order to motivate iterative methods for harder optimal control problems arising in

fluid dynamics.
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Stokes Control

In this chapter, we consider the iterative solution of the (distributed) Stokes control

problem, an important optimal control problem in the field of fluid dynamics.24 There

has been much previous work on iterative methods for this problem. For instance, in

[104] solvers for the time-independent problem were derived that were independent of

the mesh-size used, and in [115] this methodology was extended to the time-dependent

problem. In [66], a multigrid solver was developed for the time-dependent problem

that also exhibited mesh-independence. In addition, in [129], Zulehner derived a

solver for the time-independent problem that exhibited independence with respect to

both the mesh-size and the regularization parameter used. We wish to see whether

we may use the theory introduced so far in this thesis to derive methods for this

important problem.

In this chapter, we consider the development of (block diagonal and block trian-

gular) preconditioners for a time-independent Stokes control problem, by using the

saddle point theory of Section 2.2, as well as applying commutator arguments to

the matrix system, the concept of which we will describe. We find this work to be

useful for a number of reasons. For one, it enables us to re-derive the block diago-

24This chapter is based on the following paper, which is Ref. [86]:
J. W. Pearson, On the Role of Commutator Arguments in the Development of Parameter-

Robust Preconditioners for Stokes Control Problems, submitted to Electronic Transactions on Nu-
merical Analysis, 2013.

126



CHAPTER 6. STOKES CONTROL

nal preconditioner of Zulehner [129]; we may also use this theory to motivate a new

block diagonal preconditioner, as well as two block triangular preconditioners, for this

problem. Furthermore, as discussed in Chapter 7, we are able to extend some of the

methodology of this chapter to the harder Navier-Stokes control problem – this is

perhaps the most interesting aspect of the work introduced here.

This chapter is structured as follows. We introduce the Stokes control problem

that we seek to solve in Section 6.1. In Section 6.1.1, we derive 2 block diagonal

preconditioners for this problem, and in Section 6.1.2, we use our methodology to

motivate 2 block triangular preconditioners. In Section 6.1.3, we discuss the effective-

ness of the new commutator arguments we introduce, and outline the main operations

required to apply our preconditioners. In Section 6.2 we carry out numerical tests on

our preconditioners, and finally in Section 6.3 we make some concluding comments.

6.1 Preconditioners for the Stokes Control Prob-

lem

The problem that we wish to consider in this chapter is the following distributed

Stokes control problem:

min
v,u

1

2
‖v − v̂‖2

L2(Ω) +
β

2
‖u‖2

L2(Ω)

s.t. −∇2v +∇p = u, in Ω,

−∇ · v = 0, in Ω,

v = g, on ∂Ω.

Again we work on a domain Ω ⊂ Rd, d ∈ {2, 3}, with boundary ∂Ω, and with

regularization parameter β. Here, v denotes the velocity in d dimensions and p the

pressure field, both of which are state variables in this problem. u here is the control

variable in d dimensions. We also introduce at this point the adjoint variables λ (in

d dimensions) and µ. The Stokes equations, on which this optimal control problem

is based, are a fundamental system of equations in the field of fluid dynamics: in

particular they describe slow incompressible flow.

We note that, in the construction of the functional being minimized in this opti-

mal control problem, we have not regularized the pressure term – the problem where
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pressure is regularized was considered in [104, 115] for instance, and solvers for prob-

lems of this form undoubtedly have a big role to play when considering the iterative

solution of Stokes control problems in general.

In order to arrive at a matrix system for the problem stated above, we may

either employ a discretize-then-optimize or optimize-then-discretize approach. The

discretize-then-optimize strategy in this case involves differentiating a discrete cost

functional of the form

LDTO =
1

2
vTMv − vTz +

β

2
uTMu + λT (Kv +BTp−Mu− g) + µT (Bv),

with respect to the discrete variables λ, µ, u, v and p. Here, M and K denote

d × d block matrices with mass and stiffness matrices on the velocity space on the

block diagonals, and B represents the negative of the divergence operator on the finite

element space in matrix form. The vector z corresponds to the target function v̂, and

λ, µ relate to the adjoint variables λ, µ.

Alternatively, an optimize-then-discretize method involves differentiating a con-

tinuous cost functional of the form

LOTD =
1

2
‖v − v̂‖2

L2(Ω) +
β

2
‖u‖2

L2(Ω) +

∫
Ω

(−∇2v +∇p− u)λΩ dΩ

+

∫
∂Ω

(v − g)λ∂Ω ds+

∫
Ω

(−∇ · u)µ dΩ,

with respect to the continuous variables (where λ is split into interior and boundary

components λΩ and λ∂Ω), and then discretizing the equations.

Applying either method (and eliminating the gradient equation βu − λ = 0)

results in the following matrix system [129]:
M 0 K BT

0 0 B 0

K BT − 1
β
M 0

B 0 0 0




v

p

λ

µ

 =


z + g1

0

g2

g3

 , (6.1)

where the vectors g1, g2 and g3 take account of boundary conditions. We note at this

point that this matrix is in general singular, as it is well known that the vector of ones

is a member of the nullspace of BT (see [36, Chapter 5] for instance) – the matrix in

(6.1) therefore has 2 zero eigenvalues (one corresponding to each appearance of BT ).
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On the continuous level, the zero eigenvalues arise from the fact that an arbitrary

constant may be added to the solution of the pressure p or the adjoint variable µ and

yield another solution. However, the presence of these eigenvalues may be avoided

by restricting the pressure space to the orthogonal complement of the nullspace, as

in this case the matrix BT will clearly no longer have a nullspace.

We note that the discrete representation of the forward problem occurs in the

bottom left of the matrix system (6.1), with the adjoint problem in the top right and

the terms arising from the cost functional the minimum of which we seek on the block

diagonal.

We consider discretizing this problem using the well-studied (inf-sup stable) Taylor-

Hood finite element basis functions, that is discretizing the velocity v using Q2 basis

functions, and the pressure p using Q1 basis functions. We discretize the control

u and adjoint variable λ using Q2 functions, and the adjoint variable µ using Q1

functions.

It is not immediately obvious how the preconditioners derived for the Poisson con-

trol problem in Chapter 3 can be applied to the more difficult Stokes control problem.

Specifically, the appearance of a saddle point system within the PDE constraint (as

opposed to a single matrix which is symmetric positive definite) greatly increases the

complexity of the problem. In this section, we discover that we may in fact apply pre-

conditioning strategies for the Poisson control problem to the harder Stokes control

problem, and we explain how this can be done.

6.1.1 Motivation of Block Diagonal Preconditioners

To commence our derivation, we reorder the matrix system (6.1) so that we are dealing

with the system 
M K BT 0

K − 1
β
M 0 BT

B 0 0 0

0 B 0 0


︸ ︷︷ ︸

A


v

λ

µ

p

 =


z + g1

g2

g3

0

 .
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This is a saddle point system of the form (2.31), with

Φ =

[
M K

K − 1
β
M

]
, Ψ =

[
B 0

0 B

]
, Θ =

[
0 0

0 0

]
.

Note that the (1, 1)-block Φ is of the form of the matrix system (2.8) relating to the

Poisson control problem. We will use this to motivate two block diagonal precon-

ditioners, related to two preconditioners for Poisson control detailed in Chapter 3.

These preconditioners will be of the form[
Φ̂ 0

0 (ΨΦ−1ΨT )approx

]
. (6.2)

Such a strategy also leads to block triangular preconditioners of the form[
Φ̂ 0

Ψ (ΨΦ−1ΨT )approx

]
or

[
Φ̂ 0

Ψ −(ΨΦ−1ΨT )approx

]
. (6.3)

We will derive two such block triangular preconditioners in Section 6.1.2.

First Block Diagonal Preconditioner

We motivate our first preconditioner for the Stokes control system (6.1) using a pre-

conditioner derived by Zulehner [129] for the Poisson control problem, as discussed

in Chapter 3. We first note that the (1, 1)-block of the Stokes control problem (6.1)

is of the form of the matrix involved in the Poisson control problem, so we write, in

the notation of (6.2),

Φ =

[
M K

K − 1
β
M

]
≈

[
M +

√
βK 0

0 1
β
(M +

√
βK)

]
=: Φ̂.

Here, the statement Φ ≈ Φ̂ means that Φ̂ has been selected with the aim that the

singular values of Φ̂−1Φ are all contained within a fixed (small) interval that is robust

with respect to mesh-size and regularization parameter.

The next step is to find a potentially good approximation to the Schur complement
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ΨΦ−1ΨT of A; we proceed by writing

ΨΦ−1ΨT =

[
B 0

0 B

][
M K

K − 1
β
M

]−1 [
BT 0

0 BT

]

≈

[
B 0

0 B

][
M +

√
βK 0

0 1
β
(M +

√
βK)

]−1 [
BT 0

0 BT

]
=: ΨΦ̂−1ΨT

=

[
B(M +

√
βK)−1BT 0

0 βB(M +
√
βK)−1BT

]
.

We therefore now seek an idea for approximating Σ̃ := B(M +
√
βK)−1BT , so

that we obtain a cheap and invertible approximation to the Schur complement. We

do this using a commutator argument, a type of which is described in [36, Chapter

8] for the Navier-Stokes equations for instance. We examine the commutator

E = (L̃)∇−∇(L̃)p,

where L̃ = −
√
β∆+I := −

√
β∇2 +I; this is an operator carefully chosen to give us a

matrix that we can use to approximate Σ̃. In the continuous setting, the commutator

E should be small – the foundation of the commutator argument we employ is the

assumption that the discretized version of this commutator is also small.

Discretizing the commutator E using finite elements gives

Eh = (M−1L)M−1BT −M−1BT (M−1
p Lp),

where L = M +
√
βK and Lp = Mp +

√
βKp. Pre-multiplying by BL−1M and

post-multiplying by L−1
p Mp then gives

BM−1BTL−1
p Mp ≈ BL−1BT ,

using the assumption that Eh is small.

We are faced in the above expression with the non-trivial matrix term BM−1BT

– this term appears frequently in our working. However, it is known that BM−1BT

may be well approximated by Kp (see [36, Chapter 8]). This may be motivated as

follows: the matrices B and BT represent the negative of the divergence operator −∇·
and the gradient operator ∇ respectively, on the continuous space. The mass matrix

131



CHAPTER 6. STOKES CONTROL

corresponds to the identity operator, so BM−1BT corresponds to −∇ · ∇ = −∇2,

which in turn relates to the stiffness matrix Kp.

We may therefore use the approximation BM−1BT ≈ Kp and substitute in the

expression for L to give that25

Σ̃ = B(M +
√
βK)−1BT ≈ KpL

−1
p Mp,

and therefore that

Σ̃−1 ≈M−1
p LpK

−1
p = M−1

p (Mp +
√
βKp)K

−1
p =

√
βM−1

p +K−1
p .

We note that such a motivational argument has been used before, in order to derive

preconditioners for a range of fluid dynamics problems [25, 36].

We may use the result of the above argument to write that

ΨΦ−1ΨT ≈

[
(
√
βM−1

p +K−1
p )−1 0

0 β(
√
βM−1

p +K−1
p )−1

]
=: (ΨΦ−1ΨT )approx.

Therefore, putting all of the above working together, we postulate that

P̂1 =


M +

√
βK 0 0 0

0 1
β
(M +

√
βK) 0 0

0 0 (
√
βM−1

p +K−1
p )−1 0

0 0 0 β(
√
βM−1

p +K−1
p )−1


might be an effective preconditioner for A. We note that it is of course the action of

P̂−1
1 that is needed within our solver.

This is exactly the preconditioner proposed by Zulehner in [129] using a non-

standard norm argument. We will demonstrate the effectiveness of this preconditioner

by displaying numerical results in Section 6.2.

Second Block Diagonal Preconditioner

We are also able to derive a new block diagonal preconditioner for the Stokes control

system (6.1) using the new block diagonal preconditioner for the Poisson control

25An approximation of the form BL−1BT ≈ KpL
−1
p Mp was first introduced by Cahouet and

Chabard in [25] for the forward Stokes problem. Such arguments have since been used to develop
iterative solvers for a variety of fluid dynamics problems.
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problem derived in Chapter 3. We treat the (1, 1)-block of the Stokes control system

by using the preconditioner for Poisson control, writing (in the notation of (6.2))

Φ =

[
M K

K − 1
β
M

]
≈

[
M 0

0 KM−1K + 1
β
M

]

≈

[
M 0

0
(
K + 1√

β
M
)

M−1
(
K + 1√

β
M
) ] =: Φ̂.

We now once again search for a potentially good approximation to the Schur

complement – we proceed as follows:

ΨΦ−1ΨT ≈

[
B 0

0 B

][
M 0

0 KM−1K + 1
β
M

]−1 [
BT 0

0 BT

]

=

 BM−1BT 0

0 B
(
KM−1K + 1

β
M
)−1

BT

 .
We do not as yet have a feasible preconditioner, as the matrices BM−1BT and

B
(
KM−1K + 1

β
M
)−1

BT cannot be inverted without computing the inverses of M

or KM−1K + 1
β
M. However, we may use once again that BM−1BT may be well

approximated by Kp.

The crucial task is now to approximate the matrix B
(
KM−1K + 1

β
M
)−1

BT ,

so that this approximation may be fed into our preconditioner. We again apply a

commutator argument, examining the term

E = (L̃)∇−∇(L̃)p,

and assume that its discretized version is small. For this approximation, we take

L̃ = ∆2 + 1
β
I = ∇4 + 1

β
I.

Applying the same working as above gives once again that

BL−1BT ≈ KpL
−1
p Mp,
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where L = KM−1K + 1
β
M and Lp = KpM

−1
p Kp + 1

β
Mp. This tells us that

[
B

(
KM−1K +

1

β
M

)−1

BT

]−1

≈M−1
p

(
KpM

−1
p Kp +

1

β
Mp

)
K−1
p

= M−1
p KpM

−1
p +

1

β
K−1
p .

So, combining our working, we have that a second possible preconditioner for A
is

P̂2 =


M 0 0 0

0
(
K + 1√

β
M
)

M−1
(
K + 1√

β
M
)

0 0

0 0 Kp 0

0 0 0
(
M−1

p KpM
−1
p + 1

β
K−1
p

)−1

 ,

which we postulate may be an effective preconditioner. Again, the action of the

inverse of this preconditioner is required within an iterative method. We verify the

potency of this preconditioner with numerical experiments presented in Section 6.2.

We note at this point that the preconditioner P̂2 is more “flexible”. We will find

that a preconditioner of this form may be applied to the more difficult and general

Navier-Stokes control problem – this will be demonstrated in the next chapter.
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6.1.2 Block Triangular Preconditioners

A further useful aspect of our approach is that we may consider developing robust

preconditioners for the Stokes control problem that are not of the block diagonal form

of P̂1 and P̂2. We do this by considering various block triangular preconditioners of

the Poisson control matrix system.

Firstly, we may consider a preconditioner of the form

[
Φ̂ 0

Ψ (ΨΦ−1ΨT )approx

]
stated in (6.3) that is in some sense analogous to P̂1 as derived in Section 6.1.1. We

could in fact consider the same approximations Φ̂ and (ΨΦ−1ΨT )approx as we did to

construct P̂1,

Φ̂ =

[
M +

√
βK 0

0 1
β
(M +

√
βK)

]
,

(ΨΦ−1ΨT )approx =

[
(
√
βM−1

p +K−1
p )−1 0

0 β(
√
βM−1

p +K−1
p )−1

]
,

to develop the following block triangular preconditioner for A:

P̂3 =


M +

√
βK 0 0 0

0 1
β
(M +

√
βK) 0 0

B 0 (
√
βM−1

p +K−1
p )−1 0

0 B 0 β(
√
βM−1

p +K−1
p )−1

 ,

which may be applied within the Gmres algorithm.

In addition to this preconditioner, we may form a block lower triangular precon-

ditioner for the Stokes control problem that is based on the following block triangular

preconditioner for the Poisson control problem:[
M 0

K −
(
K + 1√

β
M
)
M−1

(
K + 1√

β
M
) ] ,

which we showed to be effective for that problem in Chapter 3. We may, once again,

use this as an approximation to the (1, 1)-block of the Stokes control matrix A.

Let us consider how we may precondition the Schur complement of A while using
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this approximation of the (1, 1)-block. We write, in the notation of (6.3),

ΨΦ−1ΨT =

[
B 0

0 B

][
M K

K − 1
β
M

]−1 [
BT 0

0 BT

]

≈

[
B 0

0 B

][
M 0

K −ŜP

]−1 [
BT 0

0 BT

]

=

[
B 0

0 B

][
M−1 0

Ŝ−1
P KM−1 −Ŝ−1

P

][
BT 0

0 BT

]
=: ΨΦ̂−1ΨT

=

[
BM−1BT 0

BŜ−1
P KM−1BT −BŜ−1

P BT

]

≈

 Kp 0

BŜ−1
P KM−1BT −

(
M−1

p KpM
−1
p + 1

β
K−1
p + 2√

β
M−1

p

)−1


=: (ΨΦ−1ΨT )approx,

where

ŜP =

(
K +

1√
β

M

)
M−1

(
K +

1√
β

M

)
.

In the working above, we have again used the approximation BM−1BT ≈ Kp. To

approximate the matrix BŜ−1
P BT , we have used the same commutator argument as

in Section 6.1.1 except with L = ŜP = KM−1K + 1
β
M + 2√

β
K and Lp = KpM

−1
p Kp +

1
β
Mp + 2√

β
Kp.

Therefore, applying the (block triangular) saddle point theory of Section 2.2, we

have arrived at a block triangular preconditioner for A, namely:

P̂4 =


M 0 0 0

K −ŜP 0 0

B 0 Kp 0

0 B BŜ−1
P KM−1BT −

(
M−1

p KpM
−1
p + 1

β
K−1
p + 2√

β
M−1

p

)−1

 .

Of course, we would not be able to apply the Minres algorithm with the precon-

ditioners P̂3 or P̂4; instead we would use the Gmres algorithm of [108]. Numerical

tests indicate that P̂3 and P̂4 are also effective preconditioners for A when applied

within this algorithm – we refer to Section 6.2 for a demonstration of this assertion.
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6.1.3 Further Comments

We now wish to make some further observations about the preconditioners which

we have proposed. Firstly, it is natural to consider the effectiveness of the new

commutator arguments we have introduced, as such arguments are heuristic in nature.

We therefore carry out numerical tests on our approximations; in particular we look

for the maximum and minimum (non-zero) eigenvalues of[
M−1

p KpM
−1
p +

1

β
K−1
p

]
B

(
KM−1K +

1

β
M

)−1

BT , (6.4)[
M−1

p KpM
−1
p +

1

β
K−1
p +

2√
β
M−1

p

]
B

(
KM−1K +

1

β
M +

2√
β

K

)−1

BT , (6.5)

which relate to the two new commutator arguments introduced in this chapter, and

which are utilized in the preconditioners P̂2 and P̂4 respectively. In Table 6.1, we

provide eigenvalues of the matrix (6.4) for a range of mesh-sizes and values of β, and

in Table 6.2, we present the same results for (6.5). For the results in both tables, an

evenly spaced grid with Taylor-Hood elements was used, with the values of h stated

corresponding to the distance between Q2 nodes. We can see that the approximations

are effective ones for a range of parameter values, especially for smaller values of β.

We note a benign dependence of the effectiveness of the approximations on h, but the

eigenvalue ranges obtained are all relatively tight, apart from when β is very large (in

which case the minimum eigenvalue is small). In this case, numerical tests indicate

that the rate at which λ2 approaches zero slows down as h decreases, and the iteration

numbers obtained in Section 6.2, using the approximations (6.4) and (6.5), are very

β

10 10−2 10−5 10−8

λ2 λmax λ2 λmax λ2 λmax λ2 λmax

h

2−2 0.0584 1.3315 0.1271 1.2617 0.4537 0.9776 0.4975 1.0096

2−3 0.0400 1.3495 0.0843 1.3245 0.2988 0.9591 0.5000 1.0090

2−4 0.0295 1.3730 0.0560 1.3560 0.1721 1.1442 0.4876 0.9994

2−5 0.0227 1.3645 0.0396 1.3624 0.1065 1.2964 0.3872 0.9968

Table 6.1: Maximum and minimum (non-zero) eigenvalues for commutator approxi-
mation (6.4) used in block diagonal preconditioner, for different values of h and β.
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β

10 10−2 10−5 10−8

λ2 λmax λ2 λmax λ2 λmax λ2 λmax

h

2−2 0.0653 1.3211 0.1541 1.1475 0.3922 0.9171 0.4924 1.0026

2−3 0.0446 1.3443 0.1048 1.2563 0.2881 0.9550 0.4812 0.9839

2−4 0.0326 1.3694 0.0699 1.3167 0.1951 1.0707 0.4355 0.9876

2−5 0.0249 1.3633 0.0487 1.3466 0.1294 1.2051 0.3418 0.9968

Table 6.2: Maximum and minimum (non-zero) eigenvalues for commutator approx-
imation (6.5) used in block triangular preconditioner, for different values of h and
β.

reasonable for all values of h and β tested.

Another pertinent question is how cheap it is to apply our proposed precondition-

ers. We therefore detail the main computational operations required to approximate

P̂−1
1 , P̂−1

2 , P̂−1
3 and P̂−1

4 (excluding matrix multiplications, which are comparatively

cheap). For the purposes of these descriptions, we view the preconditioners as 4× 4

block matrices, and refer to each block as such.

• Operations needed to apply P̂−1
1 :

– (1,1): 1 multigrid operation for M +
√
βK

– (2,2): 1 multigrid operation for M +
√
βK

– (3,3): 1 Chebyshev semi-iteration for Mp, and 1 multigrid operation for

Kp

– (4,4): 1 Chebyshev semi-iteration for Mp, and 1 multigrid operation for

Kp

– Total: 2 Chebyshev semi-iterations and 4 multigrids.

• Operations needed to apply P̂−1
2 :

– (1,1): 1 Chebyshev semi-iteration for M

– (2,2): 2 multigrid operations for K + 1√
β
M

– (3,3): 1 multigrid operation for Kp
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– (4,4): 2 Chebyshev semi-iterations for Mp, and 1 multigrid operation for

Kp

– Total: 3 Chebyshev semi-iterations and 4 multigrids.

• Operations needed to apply P̂−1
3 : These are the same as for P̂−1

1 , and hence

total:

– Total: 2 Chebyshev semi-iterations and 4 multigrids.

• Operations needed to apply P̂−1
4 :

– (1,1): 1 Chebyshev semi-iteration for M

– (2,2): 2 multigrid operations for K + 1√
β
M

– (3,3): 1 multigrid operation for Kp

– (4,3): 1 Chebyshev semi-iteration for M, and 2 multigrid operations for

K + 1√
β
M

– (4,4): 2 Chebyshev semi-iterations for Mp, and 1 multigrid operation for

Kp

– Total: 4 Chebyshev semi-iterations and 6 multigrids.

We can see from this list of operations that the application of each preconditioner

(especially P̂1, P̂2 and P̂3) is fairly cheap, and therefore that our methods should be

computationally effective ones.
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6.2 Numerical Results

Having motivated the theoretical potential of our approach, we now seek to demon-

strate how our preconditioners perform in practice. To do this, we consider an optimal

control analogue of the lid-driven cavity problem on the domain Ω = [−1, 1]2:

min
v,u

1

2
‖v‖2

L2(Ω) +
β

2
‖u‖2

L2(Ω)

s.t. −∇2v +∇p = u, in Ω,

−∇ · v = 0, in Ω,

v =

{
[1, 0]T on [−1, 1]× {1},
[0, 0]T on ∂Ω\ ([−1, 1]× {1}) .
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(b) β = 10−4

Figure 6.1: Plots of computed velocity solution to the test problem for different β.
The value of h used here is 2−3.

This is a somewhat academic problem, but it is useful for testing the effectiveness

of iterative solvers for Stokes-type problems. We therefore wish to observe how well

the 4 preconditioners presented in this chapter perform when solving the matrix sys-

tem relating to this problem. In Table 6.3, we show the number of Minres iterations

and CPU times26 for solving this problem with preconditioner P̂1 to a tolerance of

26The CPU times include the time taken to construct the matrices Mp and Kp involved in the
preconditioner. We construct these matrices in the same way as in the Incompressible Flow &
Iterative Solver Software (IFISS) package [35, 110]. Where appropriate we follow the recipe detailed
in [36, Chapter 8] of imposing a Dirichlet boundary condition in the matrix Kp at the node on the
velocity space corresponding to the inflow boundary condition.
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Figure 6.2: Plots of computed pressure solution to the test problem for different β.
The value of h used here is 2−4.

10−6, for a variety of h and β. In Table 6.4, we show the number of iterations and

CPU times for solving the same problem, using Minres with preconditioner P̂2, to

the same tolerance. Finally in Tables 6.5 and 6.6, we show the iteration count and

CPU times for solving the problem to the same tolerance, with the Gmres algo-

rithm used in the Incompressible Flow & Iterative Solver Software (IFISS) package

[35, 110], preconditioned with the matrices P̂3 and P̂4.27 In Figures 6.1 and 6.2, we

display solutions to the test problem for velocity and pressure, for different values

of β. In each of the tables and figures, the value of h indicated corresponds to the

spacing between Q2 nodes.

When generating these results, we once more use 20 steps of Chebyshev semi-

iteration to approximate the inverse of mass matrices. To approximate the inverses

of Kp, M+
√
βK and K+ 1√

β
M in our preconditioners (note that the last two matrices

are the same up to a multiplicative factor), we employ the algebraic multigrid routine

HSL MI20 from the Harwell Subroutine Library (HSL) [19], using 2 V-cycles with 2

pre- and post- (relaxed Jacobi) smoothing steps to approximate each matrix inverse.28

The results shown in Tables 6.3–6.6 indicate that all 4 preconditioners discussed

in this chapter are robust with respect to mesh-size and regularization parameter.

27All results in Tables 6.3–6.6 were obtained using a tri-core 2.5 GHz workstation.
28In Tables 6.3–6.6, the symbol ∗ denotes that the coarsening of the AMG routine failed when

applied to M+
√
βK or K+ 1√

β
M – as in previous chapters this occurs in the specific and impractical

parameter regime where h is large and β is small, and is caused by the presence of positive off-
diagonal entries. In these cases, we present results obtained using direct solves rather than AMG.
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β

P̂1 Size 102 1 10−2 10−4 10−6 10−8 10−10

h

2−3 1, 318
80 80 60 44 36 (32)∗ (26)∗

0.281 0.283 0.216 0.189 0.156 (0.290) (0.232)

2−4 4, 934
84 85 66 52 37 (32)∗ (26)∗

0.755 0.766 0.601 0.488 0.475 (1.59) (1.38)

2−5 19, 078
88 90 70 58 44 32 (28)∗

3.03 3.08 2.41 2.04 2.05 1.54 (7.42)

2−6 75, 014
86 90 74 62 50 33 (28)∗

12.6 13.6 11.0 10.3 7.96 8.39 (40.1)

2−7 297, 478
86 88 76 66 54 40 26

62.0 58.8 53.5 46.2 39.3 29.2 28.1

Table 6.3: Number of iterations and CPU times (in seconds) when applying Minres

to the test problem with preconditioner P̂1, for a variety of h and β.

β

P̂2 Size 102 1 10−2 10−4 10−6 10−8 10−10

h

2−3 1, 318
112 107 85 59 42 (30)∗ (25)∗

0.502 0.480 0.388 0.317 0.222 (0.316) (0.249)

2−4 4, 934
125 123 97 68 48 (33)∗ (25)∗

1.51 1.49 1.18 0.847 0.768 (1.87) (1.52)

2−5 19, 078
142 137 102 75 60 39 (27)∗

6.68 6.42 4.79 3.59 3.54 2.37 (7.33)

2−6 75, 014
156 148 106 80 67 48 (29)∗

32.5 30.9 22.3 17.2 14.1 17.0 (46.5)

2−7 297, 478
165 160 106 84 72 54 34

141 138 91.2 80.5 61.9 49.4 89.6

Table 6.4: Number of iterations and CPU times (in seconds) when applying Minres

to the test problem with preconditioner P̂2, for a variety of h and β.

In fact the only parameter regime where we do not observe complete robustness is

that of very small β, when we observe some degradation in the performance of the

AMG routine used. The iteration count is low, considering the complexity of the

problem, when each of the 4 preconditioners is used. In many practical problems, the
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β

P̂3 Size 102 1 10−2 10−4 10−6 10−8 10−10

h

2−3 1, 318
64 62 53 44 39 (33)∗ (28)∗

0.238 0.247 0.195 0.188 0.184 (0.287) (0.263)

2−4 4, 934
65 63 56 50 41 (38)∗ (31)∗

0.671 0.674 0.573 0.516 0.565 (1.98) (1.65)

2−5 19, 078
63 63 56 53 48 38 (35)∗

2.54 2.53 2.26 2.11 2.81 2.27 (9.42)

2−6 75, 014
63 61 57 54 51 41 (37)∗

13.7 12.5 13.1 11.5 10.9 13.8 (58.1)

2−7 297, 478
63 62 56 52 52 48 39

60.8 62.8 55.3 45.1 51.8 43.8 45.5

Table 6.5: Number of iterations and CPU times (in seconds) when applying Gmres

to the test problem with preconditioner P̂3, for a variety of h and β.

β

P̂4 Size 102 1 10−2 10−4 10−6 10−8 10−10

h

2−3 1, 318
91 85 67 46 26 (19)∗ (14)∗

0.755 0.675 0.529 0.415 0.238 (0.376) (0.261)

2−4 4, 934
107 101 79 59 34 (24)∗ (15)∗

2.55 2.38 1.84 1.38 1.02 (2.47) (1.63)

2−5 19, 078
123 114 88 73 47 29 (21)∗

11.7 10.8 8.20 6.75 5.42 3.42 (11.7)

2−6 75, 014
138 131 99 81 62 37 (25)∗

63.5 58.5 43.7 37.0 27.6 24.1 (74.8)

2−7 297, 478
156 150 109 89 73 48 30

327 287 224 161 130 92.3 148

Table 6.6: Number of iterations and CPU times (in seconds) when applying Gmres

to the test problem with preconditioner P̂4, for a variety of h and β.

value of β is within the range [10−6, 10−1]; all solvers perform well in this regime. We

note that the block diagonal preconditioner P̂1 (introduced in [129]), and the block

triangular preconditioner P̂3 based on it, solve the problem in the shortest time in all

cases considered, and the lowest iteration count in most cases. However, the strategy
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involved in constructing these preconditioners is highly specific to this problem. As

shown in the next chapter, the flexibility in the methodology used to construct P̂2 and

P̂4 enables us to consider the more general and much harder Navier-Stokes control

problem, and therefore it is important to note that these preconditioners also seem

to achieve robustness, albeit with larger iteration counts and CPU times than P̂1 and

P̂3.

Of the two preconditioners P̂2 and P̂4, we note that the preconditioner P̂4 solves

the problem in fewer iterations than P̂2, but greater CPU time due to the added

complexity of the Gmres algorithm (though this could partially be offset by using

restarts within the Gmres method). We also note that in the parameter regime of

small β, the iteration count when the preconditioner P̂4 is used is even smaller than

that when P̂1 (or indeed P̂2) is applied.

6.3 Summary

In this chapter, we have been able to utilize our methodology for preconditioning

optimal control problems to develop efficient solvers for the distributed Stokes control

problem. Our methods for this problem have made use of effective preconditioners

for the Poisson control problem which we discussed in Chapter 3. In addition, to

solve the Stokes control problem we required a specialized commutator argument –

we found that applying such an argument, alongside the preconditioning strategies

for Poisson control, resulted in fast iterative methods for this problem.

We have discussed 2 block diagonal (one of which was previously derived in [129])

and 2 block triangular preconditioners for this problem, to be used with the Minres

or Gmres algorithms. We analysed the major operations required to apply each

preconditioner, showing that the computational work required is very reasonable, and

we carried out numerical tests to demonstrate the effectiveness of our new commutator

arguments for a wide range of parameter values.

Putting all the pieces together, we were able to create new preconditioners which

exhibited robustness with respect to mesh-size and regularization parameter. Perhaps

the most intriguing aspect of the work presented in this chapter is that two of the

preconditioners introduced may be adapted to tackle the harder and more general

Navier-Stokes control problem. We detail how this may be done in the next chapter.
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Navier-Stokes Control

In this chapter, we aim to extend the methodology presented in the previous chapter

to the more difficult and general Navier-Stokes control problem.29 This problem has

aroused much interest within the applied mathematics community, and we recommend

literature such as [13, 14, 29, 30, 67, 68, 74, 96, 123] for discussions on research into

this field. Developing preconditioners for this problem is therefore an interesting

and important research topic. Indeed the construction of preconditioned iterative

methods for the Navier-Stokes equations themselves is a fairly recent development; in

[77] Kay, Loghin and Wathen utilized saddle point theory, along with a commutator

argument to approximate the Schur complement of the matrix system, and were able

to develop good solvers for the relevant matrix systems in this way. We will aim to

use similar ideas to build efficient solvers for the control problem; we will incorporate

an Oseen-type iteration to deal with the nonlinear terms in the forward and adjoint

problems, apply saddle point theory to motivate good preconditioners, and utilize the

preconditioning strategy of Chapter 5 for the convection-diffusion control problem,

as well as develop new commutator arguments to approximate the Schur complement

at each outer iteration.

This chapter is structured as follows. In Section 7.1, we outline the problem that

29This chapter is based on the following paper, which is Ref. [87]:
J. W. Pearson, Preconditioned Iterative Methods for Navier-Stokes Control Problems, sub-

mitted to SIAM Journal on Scientific Computing, 2013.
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we wish to solve, and detail the Oseen-type iteration that we apply. In Section 7.2,

we explain our strategies for preconditioning the matrix system that arises at each

step of this outer iteration. In Section 7.3 we present numerical results for our solvers,

and in Section 7.4 we summarize the work undertaken.

7.1 Outline of the Navier-Stokes Control Problem

The problem we will consider in this chapter is the time-independent (distributed)

Navier-Stokes control problem, given by

min
v,u

1

2
‖v − v̂‖2

L2(Ω) +
β

2
‖u‖2

L2(Ω) (7.1)

s.t. − ν∇2v + (v · ∇)v +∇p = u, in Ω,

−∇ · v = 0, in Ω,

v = g, on ∂Ω.

We again work on the domain Ω ⊂ Rd, d ∈ {2, 3}, with boundary ∂Ω. As in the pre-

vious chapter, the variables v and p are the state variables, denoting the velocity (in

d-dimensions) and pressure respectively, the variable u denotes the control variable,

the parameter β is a regularization parameter, and v̂ is some desired state. Once

more, λ and µ are the adjoint variables to v and p respectively. The parameter ν as

written above denotes viscosity.

The Navier-Stokes equations, on which this problem is based, are a fundamental

system of equations describing viscous flow. They are an extension of the Stokes

equations described in the previous chapter. Similarly as for the convection-diffusion

equation introduced in Chapter 5, the −ν∇2v term describes diffusive processes, and

the (v · ∇)v term represents convection. Additionally, an incompressibility condition

−∇ · v = 0 is stated.

In order to linearize this problem, we have a number of possibilities. The approach

we follow is an Oseen-type (or Picard-type) iteration, as examined in [96]. This

involves choosing an initial guess for states and control, and then solving in turn the
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problems

min
v,u

1

2
‖v − v̂‖2

L2(Ω) +
β

2
‖u‖2

L2(Ω) −
∫

Ω

(v · ∇v̄)λ̄ dΩ

s.t. − ν∇2v + (v̄ · ∇)v +∇p = u, in Ω,

−∇ · v = 0, in Ω,

v = g, on ∂Ω,

where v̄ denotes the most recent iterate of v and λ̄ the most recent iterate of λ, until

convergence of the solution is achieved. As shown in [96], −
∫

Ω
(v · ∇v̄)λ̄ dΩ is the

appropriate correction term required to prove convergence. Further, this choice of

correction term also makes the cost functional strictly convex on a linear manifold,

giving a unique solution for any given v̄ and λ̄ [96]. We will again use a Q2-Q1

Taylor-Hood element to solve this problem.

We next apply a discretize-then-optimize approach, considering a discrete cost

functional of the form

LDTO =
1

2
vTMv − vTz +

β

2
uTMu− vT w̄

+ λT (Fv +BTp−Mu− g) + µT (Bv),

at each step of the outer iteration. Here F = νK + N, with M and K again denoting

d× d block matrices consisting of standard finite element mass and stiffness matrices

on their block diagonals. Furthermore, N is a matrix denoting convective terms of

the type
∫

Ω
(v̄ · ∇φj)φi dΩ, and w̄ contains terms of the form

∫
Ω

(φi · ∇v̄)λ̄ dΩ.

Differentiating LDTO with respect to the discrete variables λ, µ, u, v and p, and

eliminating the gradient equation βu − λ = 0, gives the following matrix system at

each Oseen step:
M 0 FT BT

0 0 B 0

F BT − 1
β
M 0

B 0 0 0




v

p

λ

µ

 =


z + g1

0

g2

g3

+


w̄

0

0

0

 . (7.2)

We note that the discretize-then-optimize approach results in a symmetric matrix

system at each Oseen iteration. The alternative optimize-then-discretize approach,

as highlighted previously, will not necessarily result in symmetric matrix systems
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for this problem, and the systems obtained will depend on the precise discretization

strategy used.

We note also that, as for the Stokes control problem in the previous chapter, the

bottom-left of the matrix system corresponds to the forward problem, the top-right

relates to the adjoint problem, and the terms corresponding to the cost functional

occur on the block diagonal. Equation (7.2) states the form of matrix system for

which we will consider preconditioned iterative methods in this chapter.

We note that the Oseen-type iteration we have selected to deal with the non-

linearity of the optimal control problem is not the only option we have to do this.

Another possibility is to apply a Newton-type method (see [30, 67, 68, 123] for in-

stance); however we discover that applying such a method causes the (1, 1)-block of

the resulting matrix systems to be dominated by convective terms. This is highly

problematic when constructing an iterative solver for such a system using our ap-

proach, and we therefore conclude that the Oseen iteration strategy presented is the

one best suited to our preconditioners. Numerical tests in [96] also indicate that this

method is competitive overall with other approaches for solving these problems.

7.2 Preconditioners for the Navier-Stokes Control

Problem

We now seek to develop good preconditioners for the matrix system (7.2). Moti-

vated by the saddle point theory of Section 2.2 and the strategies employed for the

Stokes control problem in the previous chapter, we rearrange the matrix system (7.2)

obtained at each step of the Oseen iteration for the Navier-Stokes control problem.

Specifically, we write it as
M FT BT 0

F − 1
β
M 0 BT

B 0 0 0

0 B 0 0


︸ ︷︷ ︸

A


v

λ

µ

p

 =


z + g1

g2

g3

0

+


w̄

0

0

0

 , (7.3)
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which is a saddle point system with

Φ =

[
M FT

F − 1
β
M

]
, Ψ =

[
B 0

0 B

]
, Θ =

[
0 0

0 0

]
.

We once more wish to derive effective preconditioners by developing good approxi-

mations to Φ and S = ΨΦ−1ΨT .

We spend the majority of this section motivating a block diagonal preconditioner

for the matrix system (7.3). We first note that the (1, 1)-block Φ of A is itself a

saddle point system – specifically, it relates to the matrix system corresponding to

the (distributed) convection-diffusion control problem discussed in Chapter 5. We

recall that the matrix

Φ̂ =

 M 0

0
(
F + 1√

β
M
)

M−1
(
F + 1√

β
M
)T
 =:

[
M 0

0 ŜCD

]
(7.4)

is an effective preconditioner for the matrix Φ, and so we wish to employ the matrix

Φ̂ within our preconditioners for Navier-Stokes control.

In order to develop a good approximation of the Schur complement

S =

[
B 0

0 B

][
M FT

F − 1
β
M

]−1 [
BT 0

0 BT

]

of A, we approximate the matrix

[
M FT

F − 1
β
M

]
in terms of its (1, 1)-block and exact

Schur complement, and write (similarly as for the Stokes control problem in the

previous chapter)

S ≈

[
B 0

0 B

][
M 0

0 FM−1FT + 1
β
M

]−1 [
BT 0

0 BT

]

=

 BM−1BT 0

0 B
(
FM−1FT + 1

β
M
)−1

BT

 .
The matricesBM−1BT andB

(
FM−1FT + 1

β
M
)−1

BT cannot be used directly within

the approximation of the Schur complement – we must therefore introduce approxi-

mations of these matrices. However we once again note that BM−1BT ≈ Kp, so we
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utilize this within our block diagonal preconditioner.

We now consider how best to approximate the matrix B
(
FM−1FT + 1

β
M
)−1

BT .

We do this by applying a similar commutator argument to that introduced in the

previous chapter.

We again start by examining the commutator

E = (L̃)∇−∇(L̃)p,

where now L̃ = (−ν∇2+v̄·∇)·(−ν∇2+v̄·∇)T+ 1
β
I, and make the assumption that E is

small. The operator L̃ is chosen to represent FM−1FT + 1
β
M on the continuous space,

so that an approximation of Σ̃ := B
(
FM−1FT + 1

β
M
)−1

BT may be developed.

We next discretize this commutator using finite elements to obtain

Eh = (M−1L)M−1BT −M−1BT (M−1
p Lp) ≈ 0, (7.5)

where L = FM−1FT + 1
β
M and Lp = FpM

−1
p F T

p + 1
β
Mp. Note that we have again

carried over to the discrete space our assumption that the commutator is small.

Pre-multiplying (7.5) by BL−1M and post-multiplying by L−1
p Mp then gives that

BM−1BTL−1
p Mp ≈ BL−1BT . We then use that BM−1BT ≈ Kp and substitute in

the expressions for L and Lp to give

Σ̃ = B

(
FM−1FT +

1

β
M

)−1

BT ≈ Kp

(
FpM

−1
p F T

p +
1

β
Mp

)−1

Mp

⇒ Σ̃−1 ≈M−1
p

(
FpM

−1
p F T

p +
1

β
Mp

)
K−1
p = M−1

p FpM
−1
p F T

p K
−1
p +

1

β
K−1
p .

This commutator argument therefore generates an approximation of Σ̃ to be used in

our preconditioner for A.

We use the result of this argument to approximate the Schur complement of A by

Ŝ :=

 Kp 0

0
(
M−1

p FpM
−1
p F T

p K
−1
p + 1

β
K−1
p

)−1

 =:

[
Kp 0

0 Ŝ−1
NS,1

]
.

Putting all the pieces together, we may write a proposed preconditioner P̂1 for A
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as blkdiag
(

Φ̂, Ŝ
)

, i.e.

P̂1 =


M 0 0 0

0
(
F + 1√

β
M
)

M−1
(
F + 1√

β
M
)T

0 0

0 0 Kp 0

0 0 0 Ŝ−1
NS,1

 .

We highlight once again that this is not a symmetric preconditioner, due to the

non-symmetry of the matrix M−1
p FpM

−1
p F T

p K
−1
p , despite the fact that A is itself sym-

metric. We are therefore not able to use a symmetric solver with this preconditioner,

and would instead need to use a solver such as Gmres with preconditioner P̂1.

We note that, as before, the above commutator argument is a heuristic approach,

and due to the non-symmetry of the matrix approximation generated it would be

very difficult to analyze in great detail. In Figure 7.1 we provide eigenvalue plots

for the matrix
(
M−1

p FpM
−1
p F T

p K
−1
p + 1

β
K−1
p

)[
B
(
FM−1FT + 1

β
M
)−1

BT

]
, for small

matrix systems arising from the final Oseen iteration applied to Problem 1 (as stated

in Section 7.3). Plots are given for a range of β and Reynolds number Re. The

matrix we consider for our plots is equal to Σ̃ preconditioned by our approximation

of Σ̃. In the plots, we omit the zero eigenvalue resulting from the vector of ones

belonging to the nullspace of BT , as well as the largest eigenvalue. The reason for

this latter omission is that we find there is a single eigenvalue of this matrix of much

larger magnitude than the others – identifying a way of isolating and removing this

very large eigenvalue would improve our approximation. We find however that the

remainder of the eigenvalues are well clustered for a range of parameters, and that an

individual eigenvalue is unlikely to greatly delay the convergence of a Krylov subspace

method.

The non-symmetry of the preconditioner P̂1 means that we could also create a

block triangular preconditioner for the matrix A, without imposing further restric-

tions on the solvers we could use it with. We therefore now derive such a block

triangular preconditioner. We start by approximating Φ with the non-symmetric

matrix  M 0

F −
(
F + 1√

β
M
)

M−1
(
F + 1√

β
M
)T
 ,
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Figure 7.1: Spectra of
(
M−1

p FpM
−1
p F T

p K
−1
p + 1

β
K−1
p

)[
B
(
FM−1FT + 1

β
M
)−1

BT

]
for β = 10−1, 10−2, 10−3 and Re = 2

ν
= 100 and 200, for the final Oseen step in the

solution of Problem 1, on an evenly spaced grid on Ω = [−1, 1]2 with h = 2−4.
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as motivated in Chapter 5.

When approximating the Schur complement of A for this block triangular precon-

ditioner, we may write[
B 0

0 B

][
M FT

F − 1
β
M

]−1 [
BT 0

0 BT

]

≈

[
B 0

0 B

][
M 0

F −ŜCD

]−1 [
BT 0

0 BT

]

=

[
B 0

0 B

][
M−1 0

Ŝ−1
CDFM−1 −Ŝ−1

CD

][
BT 0

0 BT

]

=

[
BM−1BT 0

BŜ−1
CDFM−1BT −BŜ−1

CDB
T

]

≈

[
Kp 0

BŜ−1
CDFM−1BT −Ŝ−1

NS,2

]
,

where ŜCD is as defined in (7.4), and

ŜNS,2 := M−1
p FpM

−1
p F T

p K
−1
p +

1

β
K−1
p +

1√
β
M−1

p (Fp + F T
p )K−1

p .

As for the block diagonal preconditioner, we use the fact that BM−1BT ≈ Kp.

We then take L̃ =
(
−ν∇2 + v̄ · ∇+ 1√

β
I
)
·
(
−ν∇2 + v̄ · ∇+ 1√

β
I
)T

in the above

commutator argument to obtain that BŜ−1
CDB

T ≈ Ŝ−1
NS,2.

Putting all the pieces together, we may postulate that

P̂2 =


M 0 0 0

F −ŜCD 0 0

B 0 Kp 0

0 B BŜ−1
CDFM−1BT −Ŝ−1

NS,2


is an appropriate choice of a block triangular preconditioner for A. We may use this

with an iterative method such as Gmres.

Having derived our two proposed preconditioners P̂1 and P̂2, we now examine the

dominant processes required to apply the inverses of these preconditioners – we of

course do not invert any of the matrices exactly, but instead approximate them. We
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approximate the inverse of a mass matrix by Chebyshev semi-iteration as discussed

in Section 2.3.2 and in [126], and we deal with the matrix Kp by using the alge-

braic multigrid routine HSL MI20 from the Harwell Subroutine Library (HSL) [19].

Whenever the matrix F + 1√
β
M or its transpose appears, we also use the same AMG

routine, but we note that, for flows with a very large Reynolds number (which is a

harder problem numerically due to dominant convective terms within the matrix), we

would need to apply a more specialized multigrid routine, such as that described in

[98] for the forward convection-diffusion problem.30

Below we detail the dominant operations required to approximate P̂−1
1 (for this

we view P̂1 as a 4× 4 block matrix, and refer to the blocks as such):

• (1,1): 1 Chebyshev semi-iteration for M

• (2,2): 2 multigrid operations: 1 for F + 1√
β
M and 1 for its transpose

• (3,3): 1 multigrid operation for Kp

• (4,4): 1 multigrid operation for Kp, and 2 Chebyshev semi-iterations for Mp

• Total: 3 Chebyshev semi-iterations and 4 multigrids (2 dealing with terms

involving convection).

We similarly detail the dominant operations required to approximate P̂−1
2 :

• (1,1): 1 Chebyshev semi-iteration for M

• (2,2): 2 multigrid operations: 1 for F + 1√
β
M and 1 for its transpose

• (3,3): 1 multigrid operation for Kp

• (4,3): 1 Chebyshev semi-iteration for Mp, and 2 multigrid operations: 1 for

F + 1√
β
M and 1 for its transpose

• (4,4): 1 multigrid operation for Kp, and 3 Chebyshev semi-iterations for Mp

• Total: 5 Chebyshev semi-iterations and 6 multigrids (4 dealing with terms

involving convection).

30In the case of high Reynolds number flow, the problem may require strategies such as stabilization
as well, which would be taken account of within the multigrid routine. As this is a specialized subject
area, with the appropriate stabilization technique highly dependent on the type of finite elements
used to solve the problem, we do not investigate this in this chapter, but instead provide a more
general picture of the strategies required to solve this problem.
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We note that a single application of the inverse of P̂2 is therefore more expensive

than an application of the inverse of P̂1, and hence a fixed number of Gmres iterations

will be cheaper when used with the preconditioner P̂1. We also comment that one

convenient feature of both preconditioners is that one never has to invert the matrices

Fp or F T
p exactly. When they appear in the preconditioners, a matrix multiply is

involved rather than an inversion – this is a positive aspect of our preconditioners as

these matrices may contain large convective terms, and hence applying a multigrid

routine to them may be troublesome numerically.

We will demonstrate the potential effectiveness of both proposed preconditioners

in the next section. We will use the Gmres method to show this, but we note that

other methods, such as BiCG or BiCGStab, could also be applied.

7.3 Numerical Results

In this section, we test our proposed solvers on the following two examples:

• Problem 1: We consider the following optimal control variant of the lid-driven

cavity problem:

min
v,u

1

2
‖v‖2

L2(Ω) +
β

2
‖u‖2

L2(Ω)

s.t. − ν∇2v + (v · ∇)v +∇p = u, in Ω := [−1, 1]2,

−∇ · v = 0, in Ω,

v =

{
[1, 0]T on [−1, 1]× {1},
[0, 0]T on ∂Ω\ ([−1, 1]× {1}) .

• Problem 2: We consider a target state which involves a recirculating wind

near to the boundary and zero velocity near the centre of the domain, with the

problem statement as follows:

min
v,u

1

2
‖v − v̂‖2

L2(Ω) +
β

2
‖u‖2

L2(Ω)

s.t. − ν∇2v + (v · ∇)v +∇p = u, in Ω := [−1, 1]2,

−∇ · v = 0, in Ω,

v = v̂, on ∂Ω,
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where

v̂ =

{ [
1
2
x2(1− x2

1),−1
2
x1(1− x2

2)
]T

if x2
1 + x2

2 ≥ 1
2
,

[0, 0]T otherwise,

and x = [x1, x2]T denotes the spatial coordinates.
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Figure 7.2: Solution plots for velocity v, pressure p and adjoint λ for Problem 1, with
β = 1 and Re = 100.

Solution plots are given for these problems in Figures 7.2 and 7.3. We solve these

problems iteratively with an outer iteration tolerance of 10−5 (we measure convergence

using the ratio of the vector 2-norm of the difference between the current and previous

iterates for v divided by the vector 2-norm of the previous iterate for v) and with

a Gmres tolerance of 10−6. When applying our preconditioners, we use 20 steps of

Chebyshev semi-iteration whenever we need to approximate the inverse of a mass

matrix, and 2 V-cycles of the AMG routine from the Harwell Subroutine Library

[19] when approximating the inverses of all other matrices. In order to construct the
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relevant finite element matrices, we use and modify code from the IFISS software

system [35, 110], from which we also modify the version of the Gmres code for solving

our problems.

Re = 50 β

P̂1 10−1 10−2 10−3 10−4 10−5 10−6

h

2−3 5 67 5 55 4 44 4 (34)∗ 3 (23)∗ 2 (18)∗

2−4 5 83 4 70 4 58 4 48 3 (34)∗ 3 (24)∗

2−5 5 104 4 85 3 71 3 60 3 48 3 (36)∗

2−6 5 124 4 97 3 80 3 71 3 62 3 50

2−7 5 158 4 118 3 95 3 80 3 71 3 62

Re = 50 β

P̂1 10−1 10−2 10−3 10−4 10−5 10−6

h

2−3 0.389 0.331 0.252 (0.374)∗ (0.237)∗ (0.181)∗

2−4 1.23 1.20 1.00 0.83 (1.87)∗ (1.28)∗

2−5 5.93 4.90 4.80 4.50 5.88 (9.56)∗

2−6 33.6 25.4 20.3 19.8 21.3 16.9

2−7 191 140 111 90.5 82.1 99.5

Table 7.1: Top: Number of outer iterations (in blue) and average number of Gmres
iterations per outer iteration (rounded to the nearest integer) when solving Problem 1

with preconditioner P̂1, for a variety of h and β, and with Re = 50. Bottom: Average
CPU times (in seconds) for the same values.

h = 2−5 β

P̂1 1 10−1 10−2 10−3 10−4

Re

1 3 182 3 180 3 157 2 135 2 119

10 4 183 3 140 3 111 3 92 3 80

50 7 144 5 104 4 85 3 71 3 60

100 8 122 5 93 4 74 4 61 4 50

200 12 118 6 87 5 65 4 52 4 41

Table 7.2: Number of outer iterations (in blue) and average number of Gmres iter-
ations per outer iteration (rounded to the nearest integer) when solving Problem 1

with preconditioner P̂1, for a variety of β and Re, and with h = 2−5.
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We wish to test the performance of our methods for different values of h (which

we define to be the mesh-size between Q2 nodes), regularization parameter β and

viscosity ν.31 The Reynolds number of the flow we consider is again Re = 2
ν
, as we

are working on a domain of length scale 2. In Table 7.1, we fix the value of Re to be

50, and test our preconditioner P̂1 on Problem 1 for a variety of h and β. We display

the number of Oseen iterations (with our initial guess the solution of the equivalent

Stokes control problem – that is the same problem but without the convective terms),

the average number of Gmres iterations per Oseen iteration, and the average CPU

time for each Oseen iteration. Table 7.3 displays the same results with preconditioner

P̂2. We also wish to examine the effect of altering the Reynolds number. Therefore,

in Tables 7.2 and 7.4, we present results from tests of the preconditioners P̂1 and P̂2

on Problem 1 for a variety of values of β and Re, with a fixed mesh-size h = 2−5.32

Re = 50 β

P̂2 10−1 10−2 10−3 10−4 10−5 10−6

h

2−3 5 45 5 30 4 23 4 (18)∗ 3 (14)∗ 2 (12)∗

2−4 5 61 4 41 4 31 4 24 3 (19)∗ 3 (15)∗

2−5 5 72 4 59 3 42 3 32 3 24 3 (20)∗

2−6 5 86 4 68 3 52 3 43 3 34 3 24

2−7 5 113 4 82 3 64 3 52 3 45 3 37

Re = 50 β

P̂2 10−1 10−2 10−3 10−4 10−5 10−6

h

2−3 0.421 0.288 0.213 (0.348)∗ (0.268)∗ (0.234)∗

2−4 1.46 1.17 0.905 0.710 (2.07)∗ (1.58)∗

2−5 6.80 5.57 4.96 4.31 5.56 (10.8)∗

2−6 37.8 29.6 22.1 20.4 22.1 14.9

2−7 227 160 125 101 86.1 107

Table 7.3: Top: Number of outer iterations (in blue) and average number of Gmres
iterations per outer iteration (rounded to the nearest integer) when solving Problem 1

with preconditioner P̂2, for a variety of h and β, and with Re = 50. Bottom: Average
CPU times (in seconds) for the same values.

31All results were obtained using a tri-core 2.5 GHz workstation.
32In Tables 7.1, 7.3, 7.5 and 7.6, the numbers in brackets and labelled ∗ correspond to values

where the AMG routine used did not work, due to the presence of positive off-diagonal entries. We
again use direct solves for such matrices in place of a multigrid routine.
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h = 2−5 β

P̂2 1 10−1 10−2 10−3 10−4

Re

1 3 143 3 136 3 115 2 99 2 84

10 4 130 3 102 3 77 3 67 3 50

50 7 105 5 72 4 59 3 42 3 32

100 8 88 5 65 4 46 4 35 4 25

200 12 84 6 60 5 39 4 28 4 21

Table 7.4: Number of outer iterations (in blue) and average number of Gmres iter-
ations per outer iteration (rounded to the nearest integer) when solving Problem 1

with preconditioner P̂2, for a variety of β and Re, and with h = 2−5.

From the tables, we first note that the number of outer (Oseen/Picard) iterations

is reasonable for all parameter values tested (though the number rises as the Reynolds

number is increased), so we believe our choice of this outer iteration is an appropriate

one for these problems. Looking at the average number of Gmres iterations and

CPU times in Tables 7.1 and 7.3, we note a benign dependence on h when using

our solvers, though we believe that the increase in iteration numbers as h decreases

is reasonable, as the size of the matrix system increases by roughly a factor of 4 as

h is halved. Our methods also perform better as β and ν are decreased, as shown

in Tables 7.2 and 7.4. The decrease in iteration numbers as ν is decreased (i.e. for

higher Reynolds numbers) is in some sense surprising, though we point out that the

accuracy of the finite element solution is likely to be worse in these cases for a fixed

h. We also note that beyond values of Re ≈ 200, the AMG routine used begins to

struggle due to the dominant convective terms within the relevant matrices, so a more

sophisticated multigrid routine would need to be employed.

In Tables 7.5 and 7.6, we display the iteration numbers taken to solve Problem

2 using preconditioners P̂1 and P̂2, for a range of h, β and Re. We see that for this

harder problem, the iteration numbers are slightly larger, but all are still reasonable

given the complexity of the problem.

We also briefly examine the following test problem:

• Problem 3: We look at an optimal control analogue of a channel flow problem
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Figure 7.3: Solution plots for velocity v, pressure p and adjoint λ for Problem 2, with
β = 1 and Re = 200.

introduced in [36, Chapter 7]:

min
v,u

1

2
‖v‖2

L2(Ω) +
β

2
‖u‖2

L2(Ω)

s.t. − ν∇2v + (v · ∇)v +∇p = u, in Ω := [−1, 1]2,

−∇ · v = 0, in Ω,

v =


[1− x2

2, 0]
T

on {−1} × [−1, 1],

[0, 0]T on [−1, 1]× {1},
[0, 0]T on [−1, 1]× {−1},[

∂vx1

∂x1

,
∂vx2

∂x1

]T
= [p, 0]T , on {1} × [−1, 1],

where v = [vx1 , vx2 ]T , and x = [x1, x2]T as before. We present solution plots for

this problem in Figure 7.4.
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Re = 50 β

P̂1 10−1 10−2 10−3 10−4 10−5

h

2−3 4 88 4 61 4 44 3 (35)∗ 2 (30)∗

2−4 4 116 3 85 3 60 3 44 3 (33)∗

2−5 4 155 3 108 3 75 3 54 3 41

2−6 4 218 3 143 3 94 3 66 2 50

Re = 100 β

P̂1 10−1 10−2 10−3 10−4 10−5

h

2−3 6 84 5 52 4 (36)∗ 3 (30)∗ 2 (27)∗

2−4 5 120 4 78 4 51 3 38 3 (29)∗

2−5 5 167 3 102 3 68 3 45 3 35

2−6 5 244 3 135 3 84 3 59 3 44

Table 7.5: Number of outer iterations (in blue) and average number of Gmres iter-
ations per outer iteration (rounded to the nearest integer) when solving Problem 2

with preconditioner P̂1, for a variety of h and β, with Re = 50 and Re = 100.

Re = 50 β

P̂2 10−1 10−2 10−3 10−4 10−5

h

2−3 4 56 4 35 4 24 3 (20)∗ 2 (16)∗

2−4 4 81 3 54 3 35 3 24 3 (20)∗

2−5 4 111 3 74 3 48 3 31 3 22

2−6 4 151 3 93 3 63 3 45 2 30

Re = 100 β

P̂2 10−1 10−2 10−3 10−4 10−5

h

2−3 6 54 5 31 4 (22)∗ 3 (17)∗ 2 (14)∗

2−4 5 79 4 46 4 28 3 21 3 (17)∗

2−5 5 115 3 70 3 42 3 26 3 19

2−6 5 169 3 94 3 58 3 38 3 25

Table 7.6: Number of outer iterations (in blue) and average number of Gmres iter-
ations per outer iteration (rounded to the nearest integer) when solving Problem 2

with preconditioner P̂2, for a variety of h and β, with Re = 50 and Re = 100.

We note that this problem set-up is not of the precise form of (7.1), as there are

Neumann boundary conditions present. However we find that our approach can be
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Figure 7.4: Solution plots for velocity v and pressure p for Problem 3, with β = 10−2

and Re = 100.

used for this problem as well, and we present results for solving this problem with

preconditioner P̂1, for a range of h, β and Re, in Table 7.7. The set-up of the

problem, including the presence of Neumann boundary conditions, makes it a much

harder one from a numerical point-of-view (where the value of Re can play a large

role). Therefore when solving this problem we run the Oseen-type iteration to a higher

tolerance of 10−3 for our numerical tests, with Gmres run to a tolerance of 10−4. We

also note that the AMG routine used for other problems fails in a large number of

cases, so we use exact solves instead where appropriate. We therefore regard our

solver for this problem as a “proof-of-concept” implementation – a more complete

solver would require a suitable multigrid routine, such as that described by Ramage

in [98]. Overall however, the iteration numbers shown suggest that the framework for

solving difficult problems such as this one may be in place; the only parameter regime

where our solver struggles occurs when β is very large. Given the incorporation of a

more robust multigrid routine however, our solver should once more be a feasible and

effective one for this problem, for a range of parameter values.

From the results obtained for each problem, we observe that our two solvers in-

volving the preconditioners P̂1 and P̂2 perform quite similarly. However, it appears

that, although the block triangular preconditioner P̂2 consistently solves the problem

in fewer iterations, the block diagonal preconditioner P̂1 does so in lower CPU time

for the majority of parameter values studied. This is due to the larger number of op-

erations required to apply the preconditioner P̂2, as detailed in the previous section.
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h = 2−4 h = 2−5

P̂1 β β

10−2 10−3 10−4 10−5 10−2 10−3 10−4 10−5

Re

50 3 107 3 80 3 69 2 63 3 196 2 117 2 95 2 86

100 4 100 3 73 3 63 2 57 4 175 2 106 3 85 2 79

200 4 102 4 68 3 56 2 55 4 156 3 97 3 75 2 71

500 7 114 4 63 3 53 2 52 5 191 4 101 3 68 2 65

Table 7.7: Number of outer iterations (in blue) and average number of Gmres iter-
ations per outer iteration (rounded to the nearest integer) when solving Problem 3

with preconditioner P̂1, for a variety of β and Re, with h = 2−4 and h = 2−5, and
with exact solves used instead of algebraic multigrid for the relevant matrices.

h Size Direct Iterative

2−3 1, 318 0.050 0.272

2−4 4, 934 0.321 1.11

2−5 19, 078 1.76 4.12

2−6 75, 014 16.1 23.5

2−7 297, 478 — 121

2−8 1, 184, 774 — 1240

Table 7.8: CPU times (in seconds) for solving Problem 1, with sparse direct solves

in Matlab, and our iterative approach with preconditioner P̂1, for a range of h and
with β = 10−2, Re = 100. Where ‘—’ is denoted, the sparse direct method failed to
give a solution.

Importantly however, we have demonstrated that solving a number of complicated

Navier-Stokes control problems is feasible for a range of parameter values using either

of our methods, and we believe that the iteration numbers obtained are satisfactory

considering the complexity of the problem. To illustrate the importance of develop-

ing such feasible iterative methods for Navier-Stokes control, we compare direct and

iterative solution strategies in Table 7.8 – here it is shown that our method gives so-

lutions in reasonable times for matrix systems which are sufficiently large that direct

methods fail when attempting to solve them.
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7.4 Summary

In this chapter, we have been able to exploit saddle point theory, solvers for convection-

diffusion control problems and commutator arguments, in order to create precondi-

tioned iterative methods for the difficult and practically useful incompressible Navier-

Stokes control problem. We have demonstrated numerically that our approach yields

feasible solution strategies for a wide range of mesh-sizes, regularization parameters

and Reynolds numbers, and for a number of test problems.

There are many pieces of future research that could be spawned by the work

presented in this chapter. One major challenge would be to create preconditioners

for Navier-Stokes control problems solved by Newton iteration. This would be likely

to require a markedly different approach in order to deal with convection-dominated

terms which would appear in the (1, 1)-block of the matrix system. However if this

could be tackled it would be a major breakthrough, as the convergence of the outer

iteration would be more reliable. One could also modify this approach to deal with

boundary control problems, and problems which include additional state or control

constraints. Finally one could seek to solve time-dependent variants of the problem

introduced in this section – such an extension could be of substantial practical use,

and would be a natural problem to consider. In the next chapter, we will introduce

solvers for a class of time-dependent optimal control problems, which could form the

foundation of preconditioners for the time-dependent analogue of this optimal control

problem.
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Time-Dependent Optimal Control Problems

In this chapter, we wish to extend the methodology we have developed so far to time-

dependent PDE-constrained optimization problems.33 As the majority of real-world

mathematical models involve a time-dependent element, it is natural and important

to consider how to develop effective solvers for such problems. We base our studies

in this chapter on the optimal control of the heat equation, for the most part the

following problem that we introduced in Section 2.1.4:

min
y,u

J(y, u) (8.1)

s.t yt −∇2y = u, for (x, t) ∈ Ω× [0, T ],

y = g, on ∂Ω,

y = y0, at t = 0,

33This chapter is based on the following two papers, which are Refs. [91] and [92] respectively:
J. W. Pearson, M. Stoll and A. J. Wathen, Regularization-Robust Preconditioners for Time-

Dependent PDE-Constrained Optimization Problems, SIAM Journal on Matrix Analysis and Appli-
cations, 33(4), pp.1126–1152, 2012.

J. W. Pearson, M. Stoll and A. J. Wathen, Robust Iterative Solution of a Class of
Time-Dependent Optimal Control Problems, Proceedings in Applied Mathematics and Mechanics
(PAMM), 12(1), pp.3–6, 2012.

Specifically, the “final-time case” portion of Section 8.1.1, as well as some numerical results, are
based on the latter article, with the remainder based on the former.
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where

J(y, u) = J1(y, u) =
1

2

∫ T

0

∫
Ω

(y(x, t)− ŷ(x, t))2 dΩdt+
β

2

∫ T

0

∫
Ω

(u(x, t))2 dΩdt,

or

J(y, u) = J2(y, u) =
1

2

∫
Ω

(y(x, T )− ŷ(x))2 dΩ +
β

2

∫ T

0

∫
Ω

(u(x, t))2 dΩdt.

Recall that we referred to the problems involving the minimization of J1(y, u) and

J2(y, u) as the “all-times case” and “final-time case” respectively. We will also develop

solvers for the Neumann boundary control of the heat equation.

We consider the development of block diagonal preconditioners for these problems

to be used with Minres, though of course related block triangular preconditioners

could also be constructed. The goal of our solvers, in keeping with the work presented

so far in this thesis, is for their performance to be independent of mesh-size h and

regularization parameter β, as well as the time-step τ taken in the set-up of the

problem. Devising solvers for these problems is a much more difficult task than doing

so for their time-independent counterparts, as the matrix systems in question are of

much larger dimension.

This chapter is structured as follows. In Section 8.1, we will derive robust pre-

conditioners for the distributed control problems discussed above, as well as related

boundary control problems. We again pay particular attention to the choice of Schur

complement approximations. In Section 8.2, we discuss aspects of our solvers, includ-

ing the potential for parallelization of our methods, and spectral properties of the

preconditioned systems. In Section 8.3, we present numerical results to highlight the

performance in practice of our solvers, and in Section 8.4 we make some concluding

comments.

8.1 Preconditioning the Matrix Systems

In this section, we motivate preconditioners for a number of time-dependent optimal

control problems, commencing with distributed control problems, and then moving

on to Neumann boundary control problems.
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8.1.1 Distributed Control

All-Times Case with Discretize-then-Optimize Approach

We start by examining the problem (8.1) with J(y, u) = J1(y, u). As demonstrated

in Section 2.1.4, employing the discretize-then-optimize strategy results in the matrix

system  τM1/2 0 KT

0 βτM1/2 −τM
K −τM 0


 y

u

p

 =

 τz1/2

0

d

 , (8.2)

whereM1/2,M and K are defined by (2.23), (2.22) and (2.21) respectively. Equation

(8.2) is a saddle point system of the form (2.31), with

Φ =

[
τM1/2 0

0 βτM1/2

]
, Ψ =

[
K −τM

]
, Θ =

[
0
]
.

To construct preconditioners for this problem, as usual we require good approxi-

mations of the (1, 1)-block and Schur complement of the matrix system in question.

Approximating the (1, 1)-block is a trivial task, as it is a block diagonal matrix solely

consisting of mass matrices. For our numerical experiments in this chapter we will

employ lumped mass matrices, and so we may use diagonal solves to represent Φ−1

exactly. Such a strategy has long been used for solving physical problems using finite

element methods (see [65] for instance), and involves taking a diagonal approximation

of finite element mass matrices to make the problem structure simpler. However if we

were to use consistent mass matrices instead, we may of course apply the Chebyshev

semi-iteration method.

Our task then is to approximate the (negative) Schur complement of the system,

which is given by

S =
1

τ
KM−1

1/2K
T +

τ

β
MM−1

1/2M.

We wish to see if we may approximate S in a similar way as we did for the time-

independent case. We therefore employ a similar matching strategy as in previous
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chapters to attempt to “capture” both terms of the Schur complement, and so define

Ŝ =
1

τ

(
K +

τ√
β
M
)
M−1

1/2

(
K +

τ√
β
M
)T

.

We see that, with this choice of approximation, it is not desirable to invert K+ τ√
β
M

and its transpose exactly as this is essentially equivalent to solving the PDE directly,

which is itself computationally expensive. Hence, in our solver we apply the inverse

of Ŝ using multigrid cycles for K + τ√
β
M and its transpose. This involves using a

multigrid process for each of the diagonal blocks M + τK + τ√
β
M . We will need to

apply a few cycles of such a multigrid process Nt times to approximate the action of

the inverse of K+ τ√
β
M, and Nt times to approximate the action of the inverse of its

transpose.

In conclusion, to solve the matrix system (8.2), we recommend using the Minres

method with the following preconditioner:

P̂ =


τM1/2 0 0

0 βτM1/2 0

0 0 1
τ

(
K + τ√

β
M
)

MG
M−1

1/2

(
K + τ√

β
M
)T

MG

 .
We emphasize that we only require the storage of two matrices, M and K, to apply

this iterative method. In Section 8.3, we provide numerical results to demonstrate

the effectiveness of our proposed preconditioner.

All-Times Case with Optimize-then-Discretize Approach

We now wish to consider the iterative solution of the matrix system τM0 0 KT

0 βτM1/2 −τM
K −τM 0


 y

u

p

 =

 τz0

0

d

 , (8.3)

which corresponds to the optimize-then-discretize method for the all-times case. The

matrix M0 is defined by (2.25). We also introduced this matrix system in Section

2.1.4. This is a saddle point system with

Φ =

[
τM0 0

0 βτM1/2

]
, Ψ =

[
K −τM

]
, Θ =

[
0
]
.
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However we immediately face a problem when we attempt to approximate it using

our usual saddle point preconditioners, namely that the (1, 1)-block of the matrix

system is not invertible due to the zero block on the block diagonal. This means,

furthermore, that the Schur complement of the matrix system (8.3) does not exist.

Our solution to this problem is to consider for our preconditioner a perturbation

of the (1, 1)-block of the matrix system to

Φ̃ =

[
τMγ

0 0

0 βτM1/2

]
,

where

Mγ
0 =



M

M
. . .

M

γM


,

for a constant γ such that 0 < γ � 1. We will return to the precise choice of γ in

Section 8.2.1.

Perturbing the (1, 1)-block of the matrix system in this way ensures invertibility

of the perturbed block, and the existence of the Schur complement of the perturbed

system

S̃ = ΨΦ̃−1ΨT =
1

τ
K (Mγ

0)−1KT +
τ

β
MM−1

1/2M.

Therefore, in our heuristic approach, we aim to develop a preconditioner for the

matrix system

[
Φ̃ ΨT

Ψ 0

]
with the goal that this preconditioner will also be effective

for the original system. We find that this is a highly effective strategy in practice.

Preconditioning the perturbed system is quite feasible. The matrix Φ̃ may be

inverted exactly as we use lumped mass matrices (and if we were to use consistent

mass matrices, we could use the Chebyshev semi-iteration method to approximate

Φ̃−1). For the Schur complement S̃ of the perturbed system, we wish to make use of

a similar matching strategy as for the discretize-then-optimize case.
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To enable us to do this, we apply basic algebraic manipulation to S̃ to arrive at

S̃ =
1

τ
K (Mγ

0)−1KT +
τ

β
Γ1 (Mγ

0)−1 Γ1,

where

Γ1 =



√
2M

M
. . .

M
√

2γM


.

We are now in a position to apply our usual strategy to capture both terms of the

Schur complement in our approximation. We hence advocate

Ŝ =
1

τ

(
K +

τ√
β

Γ1

)
(Mγ

0)−1

(
K +

τ√
β

Γ1

)T
as an effective Schur complement approximation for the perturbed system. We believe

this is a pragmatic choice for our preconditioner of the non-perturbed system as well,

as the two systems are very similar in structure. Of course as in the previous section

we do not advocate inverting K+ τ√
β
Γ1 or its transpose exactly; instead we will apply

multigrid cycles to approximate the actions of the matrix inverses.

We therefore recommend the following preconditioner for the matrix system (8.3):

P̂ =


τMγ

0 0 0

0 βτM1/2 0

0 0 1
τ

(
K + τ√

β
Γ1

)
MG

(Mγ
0)−1

(
K + τ√

β
Γ1

)T
MG

 .
In Section 8.3, we show numerical results illustrating the potency of this precondi-

tioner.
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Final-Time Case

The last distributed control problem we consider is the final-time case introduced in

Section 2.1.4 – this leads to the matrix system M1 0 KT

0 βτM1/2 −τM
K −τM 0


 y

u

p

 =

 z1

0

d

 , (8.4)

where M1 is defined by (2.27). This is a saddle point system with

Φ =

[
M1 0

0 βτM1/2

]
, Ψ =

[
K −τM

]
, Θ =

[
0
]
.

However, as in the previous section, the (1, 1)-block Φ is not invertible, as the matrix

M1 is not invertible. We note that in fact M1 is highly degenerate, as every block

diagonal entry is zero apart from the one corresponding to the final time-step.

We again consider a perturbation of the (1, 1)-block to

Φ̃ =

[
Mγ

1 0

0 βτM1/2

]
,

where

Mγ
1 =



γM

γM
. . .

γM

M


,

with γ once again a small constant, the choice of which we discuss in Section 8.2.1.

As in the previous section, we wish to develop a preconditioner for the matrix

system

[
Φ̃ ΨT

Ψ 0

]
. As there, the matrix Φ̃ may be inverted exactly, leaving the

main task as approximating the Schur complement of the perturbed system

S̃ = K (Mγ
1)−1KT +

τ

β
MM−1

1/2M,
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which by simple manipulation we may write as

S̃ = K (Mγ
1)−1KT +

τ

β
Γ2 (Mγ

1)−1 Γ2,

where

Γ2 =



√
2γM

√
γM

. . .
√
γM √

2M


.

We may now apply our matching strategy to arrive at the following Schur com-

plement approximation for the perturbed system:

Ŝ =

(
K +

√
τ

β
Γ2

)
(Mγ

1)−1

(
K +

√
τ

β
Γ2

)T
.

We believe this is also a sensible choice for our preconditioner of the non-perturbed

system. Once again we will approximate K +
√

τ
β
Γ2 and its transpose by multigrid

cycles in our preconditioner.

To summarize, we recommend the following preconditioner for the matrix system

(8.4):

P̂ =


Mγ

1 0 0

0 βτM1/2 0

0 0

(
K +

√
τ
β
Γ2

)
MG

(Mγ
1)−1

(
K +

√
τ
β
Γ2

)T
MG

 .
In Section 8.3, we show numerical results to demonstrate the effectiveness of this

preconditioner.

8.1.2 Time-Dependent Neumann Boundary Control

We now wish to consider the iterative solution of time-dependent Neumann boundary

control problems, and see if our approach can yield effective preconditioning strategies

once more. The problem we consider corresponds to the all-times case, and is written
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as

min
y,u

J3(y, u)

s.t yt −∇2y = f, for (x, t) ∈ Ω× [0, T ],

∂y

∂n
= u, on ∂Ω,

y = y0, at t = 0,

where

J3(y, u) =

∫ T

0

∫
Ω

(y(x, t)− ŷ(x, t))2 dΩdt+
β

2

∫ T

0

∫
∂Ω

(u(x, t))2 dsdt.

We consider a discretize-then-optimize approach for this matrix system. This

results in the Lagrangian

LDTO =
τ

2
yTM1/2y − τyTz1/2 + C̄ +

βτ

2
uTMb,1/2u + pT (Ky −Nu− c),

where M1/2 and z1/2 are as defined in Section 2.1.4, K is as defined at (2.21) except

now with mass and stiffness matrices corresponding to the Neumann problem, and

Mb,1/2 =



1
2
Mb

Mb

. . .

Mb

1
2
Mb


,

N =



Nb

Nb

. . .

Nb

Nb


, c =



My0 + f

f
...

f

f


,

with y0 and f corresponding to the initial condition and source term of the PDE

respectively, and the boundary matrices Mb, Nb defined by (2.14), (2.13).
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Differentiating with respect to y, u and p as usual gives the matrix system τM1/2 0 KT

0 βτMb,1/2 −τN T

K −τN 0


 y

u

p

 =

 τz1/2

0

c

 . (8.5)

This is a saddle point system with

Φ =

[
τM1/2 0

0 βτMb,1/2

]
, Ψ =

[
K −τN

]
, Θ =

[
0
]
.

Therefore, when developing a preconditioner, we need to approximate Φ and S =

ΨΦ−1ΨT . Representing Φ is again trivial, as we use lumped mass matrices and so Φ

may be inverted exactly.

We turn our attention to the Schur complement

S =
1

τ
KM−1

1/2K
T +

τ

β
NM−1

b,1/2N
T ,

for which we wish to develop good approximations.

One possible such approximation is given by

Ŝ1 =
1

τ

(
K +

τ√
β
M̂
)
M−1

1/2

(
K +

τ√
β
M̂
)T

=
1

τ
KM−1

1/2K
T +

τ

β
M̂M−1

1/2M̂+
1√
β

(
KM−1

1/2M̂+ M̂M−1
1/2K

T
)
,

where we make a careful choice of M̂, similarly as for the time-independent boundary

control problem in Section 4.1. As then, we wish to choose M̂ such that the second

term of Ŝ1 and the second term of S approximately match, that is

τ

β
M̂M−1

1/2M̂ ≈
τ

β
NM−1

b,1/2N
T .
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Now, as

M̂M−1
1/2M̂ =



2M̂M−1M̂

M̂M−1M̂
. . .

M̂M−1M̂

2M̂M−1M̂


,

NM−1
b,1/2N

T =



2NbM
−1
b NT

b

NbM
−1
b NT

b

. . .

NbM
−1
b NT

b

2NbM
−1
b NT

b


,

we are reduced to choosing a matrix such that M̂M−1M̂ = NbM
−1
b NT

b . In Section

4.1, we established that a good choice for such a matrix is
√
hMΓ, where MΓ =

blkdiag(0,Mb) (assuming that the interior nodes are ordered first, followed by the

boundary nodes). We therefore make this choice again, and select

M̂ =
√
h



MΓ

MΓ

. . .

MΓ

MΓ


.

We may similarly justify the alternative Schur complement approximation

Ŝ2 =
1

τ

(
K +

τ√
β
M̂
)(

hM̂Γ

)−1
(
K +

τ√
β
M̂
)T

,

where M̂Γ = blkdiag
(

1
2
M̂Γ, M̂Γ, ..., M̂Γ,

1
2
M̂Γ

)
, with M̂Γ again denoting a matrix

containing the entries of MΓ at boundary nodes, and entries of O(hd−1) on diagonal

entries corresponding to interior nodes. This is analogous to the choice Ŝ2 we made for

the time-independent boundary control problem in Section 4.1, and can be justified

using the observation that hM̂Γ is spectrally equivalent to M1/2.

Putting all the pieces together, we recommend the following preconditioners for
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the matrix system (8.5): τM1/2 0 0

0 βτMb,1/2 0

0 0 Ŝ1

 ,
 τM1/2 0 0

0 βτMb,1/2 0

0 0 Ŝ2

 ,
where multigrid cycles are used to approximate inverses of matrices involving discrete

elliptic operators where required. In Section 8.3, we present results which highlight

the effectiveness of these approximations for a range of parameters.

8.2 Aspects of our Preconditioners

We now wish to provide a short discussion of three important points relating to

our preconditioning strategies. The first note that we make concerns the selection

of the perturbation parameter γ that we utilize in a number of our preconditioners

for distributed control problems. Secondly, we discuss how the preconditioners may

be modified with the goal of making our solvers parallelizable. Finally, we discuss

spectral properties of the preconditioned systems using our methods.

8.2.1 Selection of Parameter γ

In two of the solvers for distributed control problems described above (relating to the

all-times case using the optimize-then-discretize method, and the final-time case),

we have used explicitly a small perturbation parameter γ. We now wish to detail

precisely how we select this value.

In the final-time case, our selection is motivated by wishing both terms of the

Schur complement of the perturbed system

S = K(Mγ
1)−1KT +

τ

β
MM−1

1/2M

to be “balanced” in some sense. In more detail, we wish to approximately balance

the smallest eigenvalues of K(Mγ
1)−1KT and τβ−1MM−1

1/2M. We simplify this task

by replacing K by its block diagonal L̄ := blkdiag(Ld, ..., Ld), where Ld = M +
√
βK,

and comparing the blocks in S as follows:

γ−1h−2L2
d ≈ τβ−1h2I,
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using the approximation M ≈ h2I for the 2D problem. Now, for L2
d = τ 2K2 +

τKM+τMK+M2, the smallest eigenvalues will be of order τ 2h4 (up to multiplicative

constants). Hence, if we wish to balance both terms of S, we obtain

γ−1h−2τ 2h4 ≈ τβ−1h2 ⇔ γ ≈ τβ.

We therefore use this reasoning to make the selection γ = τβ in our precondi-

tioning strategy. We note that the same working can be done to motivate the same

choice of γ in 3D.

For the all-times case being solved with the optimize-then-discretize approach,

applying identical analysis to that above leads to the selection γ = β. However, on

occasions we believe it is sensible to modify the analysis to make the choice γ = τβ

for this problem as well, as this ensures that γ is small when the time-step is small.

We note that if we wished to solve variants of the time-dependent optimal con-

trol problems detailed here, such as a boundary control problem corresponding to

the final-time case, we would need to incorporate perturbation parameters into the

preconditioners in a similar way. In this case, we would recommend selecting these

parameters in a similar way as described in this section.

8.2.2 Parallelization of Solvers

A subject area which is currently attracting much interest in scientific computing is

that of parallel computing (see [47]). This involves constructing methods and algo-

rithms such that operations within the method may be carried out concurrently, on

many processors rather than just one. Developing such algorithms has the potential to

drastically reduce the computation time to solve the problem in question. Paralleliza-

tion has previously been considered in the context of PDE-constrained optimization

problems in literature such as [13, 14, 31, 37].

Based on this, a reasonable question concerning our methods for time-dependent

optimal control problems seems to be whether they may be parallelized over time.

That is to say, would it be possible to take a time-dependent PDE-constrained opti-

mization problem described in this chapter, involving a large number Nt of time-steps,

and divide up the time interval into a number of smaller intervals such that each pro-

cessor within a cluster is required to carry out computations resulting from a much

smaller number of time-steps.

In order to predict whether this may be achieved for our solvers, the pertinent
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question is whether our preconditioners could be applied in parallel. We answer this

question for our recommended preconditioner

P̂ =


τM1/2 0 0

0 βτM1/2 0

0 0 1
τ

(
K + τ√

β
M
)

MG
M−1

1/2

(
K + τ√

β
M
)T

MG


for the distributed control problem corresponding to the all-times case using the

discretize-then-optimize method. However the reasoning introduced here carries over

to the other problems considered in this chapter as well.

We first note that individual mass matrices within M1/2 may clearly be inverted

in parallel. However, there is greater difficulty when seeking to apply multigrid to

the matrix K + τ√
β
M or its transpose, as this involves solving systems of the form


Ld + τ√

β
M

−M Ld + τ√
β
M

. . . . . .

−M Ld + τ√
β
M




x1

x2

...

xNt

 =


b1

b2

...

bNt

 (8.6)

as well as the equivalent transpose system, at each Minres iteration. The system

(8.6) could not be solved in parallel, as information about xj−1 would be needed to

solve for xj (for j = 2, ..., Nt).

However, we find in results not presented in this chapter that using the similar

Schur complement approximation

ŜL̄ =
1

τ

(
L̄+

τ√
β
M
)

MG

M−1
1/2

(
L̄+

τ√
β
M
)

MG

,

where once again L̄ consists of the block diagonals of K, results in almost identical

iteration numbers to those obtained when using the approximation Ŝ. This is unsur-

prising, as by inspection of the structure of K the dominant blocks all occur on the

block diagonals, with the τK matrices strongly dominating the −M terms unless τ

is very small and h extremely large. Figure 8.1 demonstrates this dominance of the

block diagonal terms.

Moreover, applying the inverse of ŜL̄ is parallelizable, as L̄ + τ√
β
M is a block

diagonal matrix. We therefore advocate this as an effective strategy for developing
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Figure 8.1: Singular values of the matrices K and L̄ for a small example.

parallel solvers for these problems.

With this approach, each processor would need only to store the comparatively

small matrices M and K (as well as Mb and Nb for boundary control problems), a

few (relatively small) vectors, and a number of scalars such as τ and β. We therefore

conclude that our preconditioners can be feasibly modified to make their application

parallelizable, meaning that the practical scope of our methods could potentially

become much wider.

8.2.3 Spectral Properties of Preconditioned Matrices

We now briefly discuss the spectral properties of the preconditioned matrix systems

generated using our methods, as such properties will indicate the effectiveness of our

solvers. How clustered the eigenvalues of the preconditioned system are will depend

on the effectiveness of our approximations of the (1, 1)-block and Schur complement.

Naturally, as the (1, 1)-blocks of the matrix systems (or perturbed matrix systems)

are all diagonal matrices, our “approximations” of these blocks are ideal ones. To

justify the effectiveness of our solvers, we therefore consider the eigenvalues of the

preconditioned Schur complements using our approximations.

Consider first the eigenvalues of the preconditioned Schur complement for the

boundary control problem of Section 8.1.2 – we wish to argue in the same way as

for the time-independent case in Section 4.1. As then, we present analysis for the
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2D case, with the 3D case being similar. We hope to argue that the eigenvalues of

Ŝ−1
2 S are contained within bounds of O(1) (we may carry out a similar argument for

Ŝ−1
1 S).

We therefore consider the Rayleigh quotient

vTSv

vT Ŝ2v
=

1
τ
vTKM−1

1/2KTv + τ
β
vTNM−1

b,1/2N Tv

1
τ
vTK

(
hM̂Γ

)−1KTv + τ
β
vTM̂

(
hM̂Γ

)−1M̂v + 2√
β
vTK

(
hM̂Γ

)−1M̂v
.

Consider first the case where v ∈ null
(
M̂
)
. By the definition of M̂, this would mean

that v ∈ null
(
blkdiag (MΓ, ...,MΓ)

)
= null

(
blkdiag

(
NbM

−1
b NT

b , ..., NbM
−1
b NT

b

) )
,

and therefore that v ∈ null
(
N T
)

also. As a result,

vTSv

vT Ŝ2v
=

1
τ
vTKM−1

1/2KTv

1
τ
vTK

(
hM̂Γ

)−1KTv
= O(1),

using the spectral equivalence of M1/2 and hM̂Γ. In the case v /∈ null
(
M̂
)
, we look

at the Rayleigh quotient written in the form

1

τ−1vTK(hcMΓ)
−1
KTv+τβ−1vT cM(hcMΓ)

−1 cMv

τ−1vTKM−1
1/2
KTv+τβ−1vTNM−1

b,1/2
NTv

+ 1√
β

vT
“
K(hcMΓ)

−1 cM+cM(hcMΓ)
−1
KT
”
v

τ−1vTKM−1
1/2
KTv+τβ−1vTNM−1

b,1/2
NTv

.

Neglecting multiplicative constants for now, we see that hM̂Γ ≈ M1/2 ≈ h2I and

M̂Γ ≈ M̂
(
hM̂Γ

)−1M̂ ≈ hI, and so

τ−1vTK
(
hM̂Γ

)−1KTv + τβ−1vTM̂
(
hM̂Γ

)−1M̂v

τ−1vTKM−1
1/2KTv + τβ−1vTNM−1

b,1/2N Tv
= O(1).

To simplify the analysis, we now once more approximate K by its block diagonal,

that is L̄ ≈ K. We again refer to Figure 8.1 for a demonstration of this feature.

We use this to approximate the quotient

1√
β

vT
(
K
(
hM̂Γ

)−1M̂+ M̂
(
hM̂Γ

)−1KT
)

v

τ−1vTKM−1
1/2KTv + τβ−1vTNM−1

b,1/2N Tv
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by

1√
β

vT
(
L̄
(
hM̂Γ

)−1M̂+ M̂
(
hM̂Γ

)−1L̄
)

v

τ−1vT L̄M−1
1/2L̄v + τβ−1vTNM−1

b,1/2N Tv
=:

T5

T6

.

Applying the same strategy as in Section 4.1 for the time-independent boundary

control problem then gives that (neglecting multiplicative constants)

T5

T6

=
2β−1/2ξh−2h1/2h

τ−1h−2ξ2 + τβ−1h
=

2β−1/2h−1/2ξ

τ−1h−2(ξ2 + τ 2β−1h3)
=

2τβ−1/2h3/2ξ

ξ2 + τ 2β−1h3
=

2υτξ

ξ2 + υ2
τ

≤ 1,

with υτ = τβ−1/2h3/2, and ξ corresponding to the relevant eigenvalue of L̄. We can

also mimic our argument of Section 4.1 for the time-independent boundary control

case, to obtain that T5

T6
is typically non-negative. We may utilize these bounds for T5

T6

to obtain that

λmin(Ŝ−1
2 S) ≥ c̃5, λmax(Ŝ−1

2 S) ≤ C̃5,

where c̃5 and C̃5 are positive constants independent of h, β and τ .

As for the time-independent boundary control case, we have provided a heuristic

argument that the eigenvalues of the preconditioned Schur complement are bounded

within an interval of O(1), but we are unable to rigorously pin the eigenvalues into a

precise range.

Let us now consider a similar argument for the distributed control problems. We

focus here on the all-times case using the discretize-then-optimize approach, but we

may also apply this argument to the (perturbed) Schur complements for the other

two distributed control problems we discussed.

Here, the relevant Rayleigh quotient is given by

vTSv

vT Ŝv
=

1
τ
vTKM−1

1/2KTv + τ
β
vTMM−1

1/2Mv
1
τ
vTKM−1

1/2KTv + τ
β
vTMM−1

1/2Mv + 2√
β
vTKM−1

1/2Mv

=
1

1 + 1√
β

vTKM−1
1/2
Mv+vTMM−1

1/2
KTv

τ−1vTKM−1
1/2
KTv+τβ−1vTMM−1

1/2
Mv

,
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and so the quantity which we consider is

1√
β

vTKM−1
1/2Mv + vTMM−1

1/2KTv

τ−1vTKM−1
1/2KTv + τβ−1vTMM−1

1/2Mv
=

aTb + bTa

aTa + bTb
, (8.7)

where a = τ−1/2M−1/2
1/2 KTv and b = β−1/2τ 1/2M−1/2

1/2 Mv. Using a similar argument

as for convection-diffusion control in Theorem 13 of Chapter 5, we conclude that
aTb+bT a
aT a+bTb

≤ 1 (as this is equivalent to writing ‖a− b‖2 ≥ 0). To demonstrate a lower

bound, as for the boundary control problem above, let us approximate (8.7) by

1√
β

vT L̄M−1
1/2Mv + vTMM−1

1/2L̄v

τ−1vT L̄M−1
1/2L̄v + τβ−1vTMM−1

1/2Mv
, (8.8)

of which the denominator is clearly strictly positive, since both the individual terms

must be, and the numerator is equal to 2√
β
vTblkdiag(2Ld, Ld, ..., Ld, 2Ld)v > 0, as

Ld is positive definite. Combining these observations gives that the quantity (8.8) is

positive. These arguments concerning bounds for (8.7) place the values of vTSv

vT bSv
, and

hence the eigenvalues of Ŝ−1S, within the range
[

1
2
, 1
)
.

We may arrive at similar conclusions regarding the eigenvalues of the precondi-

tioned Schur complements for the all-times case using the optimize-then-discretize

approach, as well as the final-time case. We highlight once more that for these prob-

lems the Schur complements of the matrix systems do not exist, so an argument may

only be applied to the perturbed system. However, as the numerical results of the

next section indicate, our approach yields convergence in few iterations nonetheless.

8.3 Numerical Results

We have developed solvers for a range of time-dependent PDE-constrained optimiza-

tion problems that involve storing only a few matrices which are very small compared

to the matrix system we wish to solve. We now demonstrate the effectiveness of our

solvers for each of the problems by carrying out numerical experiments.

All results shown are computed within the deal.II [4] framework using Q1 finite

element basis functions.34 We use a smoothed aggregation algebraic multigrid routine

to approximate the relevant matrices, within the Trilinos ML package [44]. We apply

34The author acknowledges that all figures and numerical results in this chapter were created
using code written by Martin Stoll as part of a collaboration with the author.
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(a) Control (b) Desired state (c) Computed state

Figure 8.2: Control, desired state and state for the all-times case example with β =
10−4, at the 15-th time-step.

Iterations CPU Time

h DoF β = 10−2 β = 10−4 β = 10−6 β = 10−2 β = 10−4 β = 10−6

2−4 4, 913 10 12 12 2 2 2

2−5 35, 937 10 12 12 14 17 18

2−6 274, 625 10 12 12 148 171 170

Table 8.1: Number of Minres iterations and CPU times to solve the discretize-then-
optimize formulation of the all-times case example, for a range of h and β. Also
stated are the number of spatial degrees of freedom.

the Minres algorithm, and solve to a tolerance of 10−4.35 The experiments are carried

out with T = 1 in all cases, and with τ = 0.05 (corresponding to 20 time-steps). We

take the domain Ω to be the unit cube [0, 1]3.

We first consider the following distributed control problem corresponding to the

all-times case:

min
y,u

J1(y, u)

s.t yt −∇2y = u, for (x, t) ∈ Ω× [0, T ],

y = 0, on ∂Ω,

y = 0, at t = 0,

35The computations were carried out on a Centos Linux machine with Intel(R) Xeon(R) CPU
X5650, 2.67GHz CPUs and 48GB of RAM.
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Iterations CPU Time

h DoF β = 10−2 β = 10−4 β = 10−6 β = 10−2 β = 10−4 β = 10−6

2−4 4, 913 12 10 8 3 2 1

2−5 35, 937 12 10 10 16 14 14

2−6 274, 625 14 10 10 196 152 147

Table 8.2: Number of Minres iterations and CPU times to solve the optimize-then-
discretize formulation of the all-times case example, for a range of h and β. DoF is
the number of variables in space only.

where

ŷ = 64t sin

(
2π

((
x1 −

1

2

)2

+

(
x2 −

1

2

)2

+

(
x3 −

1

2

)2
))

,

and with x = [x1, x2, x3]T denoting the spatial coordinates. We present an illustra-

tion of the computed state, computed control and desired state, at one particular

time-step, in Figure 8.2. The iteration numbers and CPU times for solving the

discretize-then-optimize formulation of this problem, using the preconditioner de-

scribed in Section 8.1.1, are given in Table 8.1. The corresponding results for the

optimize-then-discretize strategy, using the preconditioner derived in Section 8.1.1,

are shown in Table 8.2. In all tables in this section, the degrees of freedom shown

correspond to the number of points in the spatial discretization. The overall size of

the matrix system being solved is much larger – for instance for distributed control

problems the size is 3 × Nt = 3 × 20 times this number. The largest matrix system

we solve is thus 16, 477, 500× 16, 477, 500.

To demonstrate the feasibility of our approach for the final-time case, we consider

the following test problem for the final-time case of the distributed control problem:

min
y,u

J2(y, u)

s.t yt −∇2y = u, for (x, t) ∈ Ω× [0, T ],

y = 0, on ∂Ω,

y = 0, at t = 0,
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where

ŷ = −64x1 exp

(
−

((
x1 −

1

2

)2

+

(
x2 −

1

2

)2

+

(
x3 −

1

2

)2
))

.

An illustration of the computed state, computed control and desired state, at one

particular time-step, is shown in Figure 8.3. In Table 8.3 we present the iteration

numbers and CPU times for solving this problem using the preconditioner described

in Section 8.1.1.

Our results for these distributed control problems indicate that our preconditioners

are highly robust with respect to h and β, with convergence achieved in low iteration

numbers in all three cases, for all problems considered. Even when our solution

strategy involves perturbing the original matrix system to create the preconditioner,

this does not seem to affect the performance significantly.

(a) Control (b) Desired state (c) Computed state

Figure 8.3: Control, desired state and state for the final-time case example with
β = 10−4, at the final time-step.

Iterations CPU Time

h DoF β = 10−2 β = 10−4 β = 10−6 β = 10−2 β = 10−4 β = 10−6

2−4 4, 913 14 13 9 9 9 6

2−5 35, 937 16 13 12 72 59 55

2−6 274, 625 16 15 13 624 677 531

Table 8.3: Number of Minres iterations and CPU times to solve the final-time case
example, for a range of h and β. DoF is the number of variables in space only.
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(a) Control (b) Desired state (c) Computed state

Figure 8.4: Control, desired state and state for time-dependent boundary control
example with β = 10−6, at the 10-th time-step.

(a) Control (b) Desired state (c) Computed state

Figure 8.5: Control, desired state and state for time-dependent boundary control
example with β = 10−6, at the final time-step.
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Ŝ1 Iterations CPU Time

h DoF β = 10−2 β = 10−4 β = 10−6 β = 10−2 β = 10−4 β = 10−6

2−4 4, 913 34 38 28 7 7 6

2−5 35, 937 38 48 38 49 62 48

2−6 274, 625 48 62 58 620 800 725

Ŝ2 Iterations CPU Time

h DoF β = 10−2 β = 10−4 β = 10−6 β = 10−2 β = 10−4 β = 10−6

2−4 4, 913 40 42 36 8 8 7

2−5 35, 937 50 59 42 65 73 54

2−6 274, 625 62 80 68 808 1002 855

Table 8.4: Number of Minres iterations and CPU times to solve the discretize-then-
optimize formulation of the time-dependent boundary control example, for a range
of h and β. Results are given when the Schur complement approximations Ŝ1 and Ŝ2

are used. DoF is the number of variables in space only.

To highlight the effectiveness of our approach for time-dependent boundary control

problems, we also consider the following example:

min
y,u

J3(y, u)

s.t yt −∇2y = 0, for (x, t) ∈ Ω× [0, T ],

∂y

∂n
= u, on ∂Ω,

y = 0, at t = 0,

where

ŷ =

{
sin t+ x1x2x3 if x1 >

1
2

and x2 <
1
2
,

1 otherwise.

In Figures 8.4 and 8.5, we show the computed state, computed control and desired

state for this test problem at different time-steps. In Table 8.4, we present iteration

numbers and CPU times for solving this problem using the preconditioner described

in Section 8.1.2, with Schur complement approximations Ŝ1 and Ŝ2. We see that the

iteration numbers are higher than for the distributed control case, but very reason-

able considering the added complexity of the problem. We observe that the Schur
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complement approximation Ŝ1 performs marginally better than Ŝ2 for this problem.

Overall, we conclude that our preconditioning strategy for time-dependent optimal

control problems is a highly effective one, and computational tests indicate that our

preconditioners result in convergence of Minres in a small number of iterations for

a wide range of h, β and τ .

8.4 Summary

In this chapter, we have established that we may derive a strategy analogous to

our approach for time-independent optimal control problems in order to develop fast

iterative solvers for optimal control problems with an additional time-dependent el-

ement. As for time-independent problems, we were able to develop preconditioners

for distributed and boundary control problems.

To do so in the distributed control case, we needed to take more care in gener-

ating our Schur complement approximation than for time-independent problems, so

as to incorporate the time-stepping scheme involved. We also needed to include a

perturbation of the (1, 1)-block for some problems where this matrix was singular,

and we were able to develop a heuristic approach to determine the optimal choice of

the relevant perturbation parameter. For the Neumann boundary control case, we

proposed Schur complement approximations using similar heuristics as for the time-

independent problem. By building these strategies into our preconditioners, we were

able to develop solvers robust with respect to h and β, as well as the time-step τ

used.

Finding a way of dealing with such time-dependent optimal control problems can

potentially open the door to finding methods for solving a wide range of complex

physical problems, so we believe the work presented in this chapter is a crucial step

towards this. An important additional aspect of this work is that the implementation

required the storage of only a few matrices (M and K for distributed control problems,

and additionally Mb and Nb for boundary control problems), which are very small

compared to the matrix system as a whole. Furthermore, only a sparse matrix-vector

multiply with the big matrix is required in the Minres method we employ. The fact

that in our method the large system exists “only in our head” leads to the possibility

of parallelization of the solvers presented here – this is one major piece of future work

which we wish to explore.
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Optimal Control of Chemical Processes

In this chapter, we turn our attention to a problem motivated by a real-world applica-

tion, namely the optimal control of a reaction-diffusion problem arising from chemical

processes.36 The matrix systems that result from the numerical solution of this prob-

lem are considerably more complex than the systems which we have considered so far,

and the methods needed to solve them will require components used to solve many

of the problems previously discussed in this thesis, for instance nonlinear solvers,

techniques for incorporating control constraints, and use of time-stepping schemes.

Having introduced the problem that we will consider, and derived the resulting ma-

trix systems, the iterative solution of which we seek, we explain how each of these

components of our iterative solver should be applied. For brevity, we omit some of

the technical details of our working, and refer the reader to [89] for the complete

derivation.

This chapter is structured as follows. In Section 9.1, we state the optimal control

problem to be considered, and derive the relevant matrix systems that we are required

to solve. In Section 9.2, we describe the iterative solver and preconditioning strategy

we use to solve these matrix systems. In Section 9.3, we present numerical results to

verify the effectiveness of our recommended approach, and in Section 9.4, we make

36This chapter is based on the following paper, which is Ref. [89]:
J. W. Pearson, and M. Stoll, Fast Iterative Solution of Reaction-Diffusion Control Problems

Arising from Chemical Processes, SIAM Journal on Scientific Computing, 35, pp.B987–B1009, 2013.
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some concluding remarks.

9.1 Problem Formulation and Matrix Systems

The problem that we consider in this chapter is based on the framework introduced

by Barthel, John and Tröltzsch in [5], Griesse in [49, 50], and Griesse and Volkwein

in [51, 52]. The cost functional within the optimal control problem is given by

J(u, v, c) =
αu
2
‖u− uQ‖2

L2(Q) +
αv
2
‖v − vQ‖2

L2(Q)

+
αTU

2
‖u(x, T )− uΩ‖2

L2(Ω) +
αTV

2
‖v(x, T )− vΩ‖2

L2(Ω) +
αc
2
‖c‖2

L2(∂Q) .

Here we work on a space-time domain Q := Ω × [0, T ], where the spatial domain

Ω ⊂ Rd, d ∈ {2, 3}. We define the space-time boundary by ∂Q := ∂Ω × [0, T ]. The

variables u and v represent concentrations of chemical reactants, and are the state

variables of the problem.37 The variable c is the control variable. We have four

desired states in this problem: two on the entire space-time domain (uQ and vQ) and

two solely defined at the final time (uΩ and vΩ). These quantities usually arise from

measurement or experimental observation.

The PDE constraints subject to which J(u, v, c) is minimized are given by the

following reaction-diffusion system describing chemical reactions:

ut −D1∇2u+ k1u = − γ1uv, in Q, (9.1)

vt −D2∇2v + k2v = − γ2uv, in Q, (9.2)

D1
∂u

∂n
+ b(x, t, u) = c, on ∂Ω, (9.3)

D2
∂v

∂n
+ ε̃v = 0, on ∂Ω, (9.4)

u(x, 0) = u0(x), on Ω, (9.5)

v(x, 0) = v0(x), on Ω, (9.6)

ca ≤ c ≤ cb, a.e. on ∂Ω. (9.7)

In our problem set-up, the constants D1, D2, k1, k2, γ1, γ2, αu, αv, αTU , αTV , αc and ε̃

are all non-negative; some constants such as D1, D2 and αc must be strictly positive.

37We note the change in notation from previous chapters, where u represented a control variable
– we make the change here to be consistent with the notation of the literature on this subject.
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Equation (9.7) is an additional box constraint on the control variable expressed in

terms of known functions ca and cb. For the remainder of this chapter, we assume

that b(x, t, u) = 0 and ε̃ = 0, as done in [51]. We see from the structure of the above

set-up that we are dealing with a boundary control problem.

Due to the wide potential applicability of problems of this form, it is highly de-

sirable to investigate the numerical solution of such problems. To do so, we must

first find a way of handling the nonlinearity of the PDE constraints. We may do

this by using a Sequential Quadratic Programming (SQP) method, otherwise known

as a Lagrange-Newton method. We first consider Lagrange-Newton iteration for the

problem without control constraints – that is an optimal control problem with the

state equations given by (9.1)–(9.6), but without the condition (9.7). In this case,

we may use an optimize-then-discretize strategy for constructing the matrix systems,

with the continuous Lagrangian given by

LOTD(u, v, c, p, q) = J(u, v, c) +

∫
Q

pQ(ut −D1∇2u+ k1u+ γ1uv) dQ

+

∫
Q

qQ(vt −D2∇2v + k2v + γ2uv) dQ

+

∫
∂Q

p∂Q

(
D1

∂u

∂n
− c
)

ds+

∫
∂Q

q∂Q

(
D2

∂v

∂n

)
ds,

where p and q are the two adjoint variables; we have split these up into interior and

boundary parts (pQ & p∂Q, and qQ & q∂Q).

We now wish to generate optimality conditions from this continuous Lagrangian.38

We will consider the case αTU = αTV = 0 from now on, but note that the case

where these constants are non-zero is similar (this relates to the final-time case of

the previous chapter). Differentiating the cost functional LOTD with respect to the

adjoint variables p and q gives us back the state equations (9.1)–(9.6). We may also

38As stated above, this is an optimize-then-discretize approach. We may also consider a discretize-
then-optimize approach, and we again note that it is desirable to select discretization schemes such
that the two approaches coincide.
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differentiate LOTD with respect to u and v to obtain the adjoint equations

−pt −D1∇2p+ k1p+ γ1pv + γ2qv = αu(uQ − u), in Q,

−qt −D2∇2q + k2q + γ1pu+ γ2qu = αv(vQ − v), in Q,

D1
∂p

∂n
= 0, on ∂Ω,

D2
∂q

∂n
= 0, on ∂Ω,

p(x, T ) = 0, on Ω,

q(x, T ) = 0, on Ω,

and differentiate LOTD with respect to c to obtain the gradient equation

αcc− p = 0, in Q.

As the state and gradient equations are a nonlinear system of equations, we now

need to apply a method for linearizing the equations. In this work, we use a Newton

iteration to do so. Let us write

u = ū+ δu, v = v̄ + δv, c = c̄+ δc, p = p̄+ δp, q = q̄ + δq,

at each Newton step, where ū, v̄, c̄, p̄, q̄ denote the previous Newton iterates, and δu,

δv, δc, δp, δq denote the updates in the solution at the particular Newton step. We

may use this notation to write for the state equations that

(ū+ δu)t −D1∇2(ū+ δu) + k1(ū+ δu) + γ1(ū+ δu)(v̄ + δv) = 0,

(v̄ + δv)t −D2∇2(v̄ + δv) + k2(v̄ + δv) + γ2(ū+ δu)(v̄ + δv) = 0,

D1
∂(ū+ δu)

∂n
− (c̄+ δc) = 0, on ∂Ω,

D2
∂(v̄ + δv)

∂n
= 0, on ∂Ω,

(ū+ δu)(x, 0) = u0(x),

(v̄ + δv)(x, 0) = v0(x),
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which after simplication gives that

(δu)t −D1∇2(δu) + k1(δu) + γ1(v̄(δu) + ū(δv)) = − (ūt −D1∇2ū+ k1ū+ γ1ūv̄),

(δv)t −D2∇2(δv) + k2(δv) + γ2(v̄(δu) + ū(δv)) = − (v̄t −D2∇2v̄ + k2v̄ + γ2ūv̄),

D1
∂(δu)

∂n
− δc = 0, on ∂Ω,

D2
∂(δv)

∂n
= 0, on ∂Ω,

(δu)(x, 0) = 0,

(δv)(x, 0) = 0,

neglecting second order terms in the Newton updates.

We may apply a similar strategy to the adjoint equations, to obtain that

−(p̄+ δp)t −D1∇2(p̄+ δp) + k1(p̄+ δp) + γ1(p̄+ δp)(v̄ + δv)

+γ2(q̄ + δq)(v̄ + δv) = αu(uQ − (ū+ δu)),

−(q̄ + δq)t −D2∇2(q̄ + δq) + k2(q̄ + δq) + γ1(p̄+ δp)(ū+ δu)

+γ2(q̄ + δq)(ū+ δu) = αv(vQ − (v̄ + δv)),

D1
∂(p̄+ δp)

∂n
= 0, on ∂Ω,

D2
∂(q̄ + δq)

∂n
= 0, on ∂Ω,

(p̄+ δp)(x, T ) = 0,

(q̄ + δq)(x, T ) = 0,
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which gives after simple manipulation (again neglecting second order terms) that

−(δp)t −D1∇2(δp) + k1(δp) + γ1(p̄(δv) + v̄(δp)) + γ2(q̄(δv) + v̄(δq)) + αu(δu)

= αuuQ − (−p̄t −D1∇2p̄+ k1p̄+ (γ1p̄+ γ2q̄)v̄ + αuū),

−(δq)t −D2∇2(δq) + k2(δq) + γ1(p̄(δu) + ū(δp)) + γ2(q̄(δu) + ū(δq)) + αv(δv)

= αvvQ − (−q̄t −D2∇2q̄ + k2q̄ + (γ1p̄+ γ2q̄)ū+ αvv̄),

D1
∂(δp)

∂n
= 0, on ∂Ω,

D2
∂(δq)

∂n
= 0, on ∂Ω,

(δp)(x, T ) = 0,

(δq)(x, T ) = 0.

Finally, applying Newton iteration to the gradient equation is a simple process,

and gives at each step that

αc(δc)− δp = −(αcc̄− p̄).

The equations resulting from the above Newton process may be summed up in

continuous form (excluding boundary conditions of the PDEs) as the following matrix

system at the (k + 1)-th Newton step:

A


u(k+1)

v(k+1)

c(k+1)

p(k+1)

q(k+1)

 = A


u(k) + δu

v(k) + δv

c(k) + δc

p(k) + δp

q(k) + δq

 =


αuuQ + (γ1p(k) + γ2q(k))v(k)

αvvQ + (γ1p(k) + γ2q(k))u(k)

0

γ1u(k)v(k)

γ2u(k)v(k)

 =: b̃,

where

A =


αuId γ1p(k) + γ2q(k) 0 L′u γ2v(k)

γ1p(k) + γ2q(k) αvId 0 γ1u(k) L′v
0 0 αcD

−1
1 Id −D−1

1 Id 0

Lu γ1u(k) −D−1
1 Id 0 0

γ2v(k) Lv 0 0 0

 , (9.8)
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with Id corresponding to the identity operator, and

Lu =
∂

∂t
−D1∇2 + k1Id+ γ1v(k), L′u = − ∂

∂t
−D1∇2 + k1Id+ γ1v(k),

Lv =
∂

∂t
−D2∇2 + k2Id+ γ2u(k), L′v = − ∂

∂t
−D2∇2 + k2Id+ γ2u(k).

Here, u(k), v(k), c(k), p(k), q(k) denote the approximations of u, v, c, p, q at the k-th

Newton step.

We may now discretize the system of equations (9.8) obtained at each Newton

step. Doing this results in the following system at the (k + 1)-th step: τM̃ 0 K̃T

0 αcτD
−1
1 Mb −τD−1

1 Ñ T

K̃ −τD−1
1 Ñ 0


 y(k+1)

c(k+1)

p(k+1)

 = b, (9.9)

where y(k+1) relates to the discrete values of u(k+1) and v(k+1) at each time-step in

turn, p(k+1) similarly corresponds to the discrete values of p(k+1) and q(k+1) at each

time-step, and c(k+1) relates to the values of c(k+1) at each time-step. Here, the matrix

M̃ is given as follows:

M̃ =



M̃ (1)

M̃ (2)

. . .

M̃ (Nt−1)

M̃ (Nt)


,

where

M̃ (j) =

[
αuM γ1Mpj + γ2Mqj

γ1Mpj + γ2Mqj αvM

]
, j = 1, ..., Nt,

with Mpj and Mqj matrices containing terms of the form
∫

Ω
p̄(x, jτ)φiφl dΩ and∫

Ω
q̄(x, jτ)φiφl dΩ at the (i, l)-th entries. Also, the matrix K̃, which corresponds to
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the forward problem, is given by

K̃ =



L̃(1)

−M̃2 L̃(2)

. . . . . .

−M̃2 L̃(Nt−1)

−M̃2 L̃(Nt)


,

where

L̃(j) =

[
M + τ(D1K + k1M + γ1Mvj) τγ1Muj

τγ2Mvj M + τ(D2K + k2M + γ2Muj)

]
,

M̃2 =

[
M 0

0 M

]
,

with Muj and Mvj matrices containing entries of the form
∫

Ω
ū(x, jτ)φiφl dΩ and∫

Ω
v̄(x, jτ)φiφl dΩ, and

Ñ =



Nb

0

Nb

0
. . .

Nb

0


,

with Nb as defined in (2.13). The matrixMb is given by blkdiag (Mb,Mb, ...,Mb,Mb),

and consists of boundary mass matrices Mb defined by (2.14). Finally, the vector b

corresponds to the discrete representation of
αuuQ + (γ1p(k) + γ2q(k))v(k)

αvvQ + (γ1p(k) + γ2q(k))u(k)

0

γ1u(k)v(k)

γ2u(k)v(k)

 .
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Incorporation of Control Constraints

Suppose now that we wish to additionally include the condition (9.7) in our model,

that is, we impose an additional control constraint of the form

ca ≤ c ≤ cb.

For problems with this additional constraint, we wish to utilize the Moreau-Yosida

regularization technique introduced in Section 2.1.3.

We therefore consider minimizing

J(u, v, c) +
1

2ε
‖min{0, c− ca}‖2

L2(∂Q) +
1

2ε
‖max{0, c− cb}‖2

L2(∂Q) .

At each SQP step, this involves solving matrix systems of the form τM̃ 0 K̃T

0 αcτD
−1
1 Lb −τD−1

1 Ñ T

K̃ −τD−1
1 Ñ 0


 y(k)

c(k)

p(k)

 = b (9.10)

at the k-th step of the Active Set method (or semi-smooth Newton method) – see

Section 2.1.3. Here,

Lb =


Mb + ε−1GA(1)MbGA(1)

. . .

Mb + ε−1GA(Nt)MbGA(Nt)

 ,
with GA(j) , j = 1, ..., Nt, corresponding to the active set A±, in the notation of Section

2.1.3, at each time-step.

We therefore consider the iterative solution of the matrix system (9.10), as well as

the system (9.9) for the case without control constraints. As in the previous chapter,

the matrix systems involved can be extremely large, so the development of effective

iterative methods is crucial to solve the systems efficiently.

9.2 Iterative Solution of Matrix Systems

Let us now examine how one might solve the matrix systems derived in the pre-

vious section using preconditioned iterative methods. We first consider developing
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preconditioners for the matrix system (9.9), relating to the problem without control

constraints. Once again, this system is of saddle point form, with

Φ =

[
τM̃ 0

0 αcτD
−1
1 Mb

]
, Ψ =

[
K̃ −τD−1

1 Ñ
]
, Θ =

[
0
]
.

We highlight at this point that we use lumped mass matrices for our computations

in this chapter.

Once more, the essential ingredients of a potent solver for the system (9.9) are

good approximations of the (1, 1)-block Φ and the Schur complement S = ΨΦ−1ΨT .

We will incorporate these approximations within block triangular preconditioners of

the form

P̂2 =

[
Φ̂ 0

Ψ −Ŝ

]
.

For reasons discussed later in this section, the preconditioners we develop are unsuit-

able for use with Minres or other methods for which block diagonal methods are

appropriate. We therefore restrict our attention to block triangular preconditioners

of the above form.

9.2.1 Approximation of the (1, 1)-block

We first wish to develop an effective approximation of the (1, 1)-block Φ. For this ma-

trix system, our approximation is of the form Φ̂ = blkdiag
(
τM̃approx, αcτD

−1
1 Mb

)
,

where M̃approx denotes a suitable approximation of M̃. We note that αcτD
−1
1 Mb is

a diagonal matrix, and so is trivial to invert.

To form our approximation of M̃, we must construct approximations of M̃ (j) for

j = 1, ..., Nt. Based on our discussions of saddle point theory in Section 2.2, and

because we find this to be an effective choice in practice, we approximate M̃ (j) by[
αuM − α−1

v (γ1Mpj + γ2Mqj)M
−1(γ1Mpj + γ2Mqj) 0

γ1Mpj + γ2Mqj αvM

]
.

This may be fed into our approximation Φ̂. We believe that if we were to consider

consistent mass matrices, we may use a similar approximation, but replace the mass

matrix M by its diagonal where M−1 is taken.
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9.2.2 Approximation of the Schur Complement

Our main task is now to devise an effective approximation of the Schur complement

of the matrix system considered:

S =
1

τ
K̃M̃−1K̃T +

τ

αcD1

ÑM−1
b Ñ

T .

We motivate our approximation using a heuristic “matching” strategy that we have

utilized in Chapters 4 and 8 for other boundary control problems.

Specifically, we attempt to generate an approximation of the form

Ŝ =
1

τ

(
K̃ +

τ
√
αc
M̂
)
M̃−1

(
K̃ +

τ
√
αc
M̂
)T

=
1

τ
K̃M̃−1K̃T +

τ

αc
M̂M̃−1M̂+

1
√
αc

(
K̃M̃−1M̂+ M̂M̃−1K̃T

)
,

where, as before, the second term of Ŝ is sought to approximate the second term of

S. Therefore, we require that

τ

αc
M̂M̃−1M̂ ≈ τ

αcD1

ÑM−1
b Ñ

T . (9.11)

We note that the left and right hand sides of (9.11) are both block diagonal ma-

trices, and so the problem reduces to finding M̂ (1), M̂ (2), ..., M̂ (Nt) such that M̂ =

blkdiag
(
M̂ (1), 0, M̂ (2), 0, ..., M̂ (Nt), 0

)
, and

[
M̂ (j) 0

0 0

][
αuM γ1Mpj + γ2Mqj

γ1Mpj + γ2Mqj αvM

]−1 [
M̂ (j) 0

0 0

]
(9.12)

≈ 1

D1

[
NbM

−1
b NT

b 0

0 0

]
, j = 1, ..., Nt.

We first wish to address the

[
αuM γ1Mpj + γ2Mqj

γ1Mpj + γ2Mqj αvM

]−1

term. To do

this we note that, given suitable invertibility conditions, the inverse of a general 2×2
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block matrix is given by[
A11 A12

A21 A22

]−1

=

[
(A11 − A12A

−1
22 A21)−1 −(A11 − A12A

−1
22 A21)−1A12A

−1
22

−(A22 − A21A
−1
11 A12)−1A21A

−1
11 (A22 − A21A

−1
11 A12)−1

]
,

which may be easily checked. From this expression, we see that we can obtain an

approximation of M̂ (j) satisfying (9.12) by selecting the matrices M̂ (j) to satisfy

M̂ (j)
(
αuM − α−1

v

(
γ1Mpj + γ2Mqj

)
M−1

(
γ1Mpj + γ2Mqj

) )−1

M̂ (j) ≈ 1

D1

MΓ, (9.13)

using the definition of MΓ introduced in Chapter 4. Using the fact that all matrices

in (9.13) are diagonal, we may re-write the expression as(
M̂ (j)

)2

≈ 1

D1

A
(j)
0 MΓ, A

(j)
0 := αuM − α−1

v

(
γ1Mpj + γ2Mqj

)
M−1

(
γ1Mpj + γ2Mqj

)
.

Now, there are some issues here: firstly, the diagonal entries of A
(j)
0 may be negative,

and secondly, the diagonal entries of MΓ are zero for all interior nodes. Bearing in

mind these considerations we postulate that a sensible choice of M̂ (j) is a diagonal

matrix with its diagonal entries m̂
(j)
ii given by

m̂
(j)
ii =

{
1√
D1
|a(j)

0,ii|1/2m
1/2
Γ,ii if i-th node is on ∂Ω,

0 otherwise.
(9.14)

Here a
(j)
0,ii represents the i-th diagonal entry of A

(j)
0 , with mΓ,ii the i-th diagonal entry

of MΓ. We may thus use the choice of M̂ (j) in (9.14) within our matrix M̂. This gives

an approximation Ŝ of the Schur complement of the matrix system considered. We

may therefore build our approximations Φ̂ and Ŝ into a block triangular preconditioner

of the form P̂2.

As our preconditioner is not symmetric, nor necessarily positive definite, we cannot

use it within the Minres algorithm; we instead apply the BiCG algorithm introduced

in Section 2.3.7. As discussed in [89], there is no reason why we could not consider
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instead approximations of S of the form

Ŝ =
1

τ

(
K̃ +

τ
√
αc
M̂1

)
M̃−1

(
K̃ +

τ
√
αc
M̂2

)T
,

where M̂1 6= M̂2. However, we find that in practice our choice of Ŝ derived in this

section is a pragmatic one.

9.2.3 Preconditioning for Problems with Control Constraints

We now comment on preconditioning the matrix system (9.10), which pertains to

the control constrained problem. The (1, 1)-block may be approximated within our

preconditioner in the same way as in the case without control constraints. We may

view it in a similar way, as the only change in the matrix system when control

constraints are introduced (the replacement of Mb by Lb) does not introduce any

extra difficulties, due to both matrices being diagonal and positive definite.

The extra difficulty arises from the fact that the Schur complement is changed –

in the control constrained case this is given by

S =
1

τ
K̃M̃−1K̃T +

τ

αcD1

ÑL−1
b Ñ

T .

We again wish to devise an approximation of the form

Ŝ =
1

τ

(
K̃ +

τ
√
αc
M̂
)
M̃−1

(
K̃ +

τ
√
αc
M̂
)T

,

where this time

τ

αc
M̂M̃−1M̂ ≈ τ

αcD1

ÑL−1
b Ñ

T .

Applying similar working as in the previous section gives us that we wish to find

M̂ = blkdiag
(
M̂ (1), 0, M̂ (2), 0, ..., M̂ (Nt), 0

)
with

M̂ (j)A
−(j)
0 M̂ (j) ≈ 1

D1

Nb

(
L

(j)
b

)−1

NT
b ,

for j = 1, ..., Nt, where L
(j)
b = Mb + ε−1GA(j)MbGA(j) and A

−(j)
0 :=

(
A

(j)
0

)−1
. We now

make use of the fact that all the above matrices are diagonal, and denote the matrix
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Nb

(
L

(j)
b

)−1
NT
b by L

(j)
Γ in our working. This leads to the desired approximation

(
M̂ (j)

)2

≈ 1

D1

A
(j)
0 L

(j)
Γ .

Again noting that A
(j)
0 may contain negative entries on its diagonal, and that L

(j)
Γ may

contain zeros on its diagonal, we conclude that a good choice for M̂ (j) is a diagonal

matrix with diagonal entries given by

m̂
(j)
ii =

{
1√
D1
|a(j)

0,ii|1/2
(
l
(j)
Γ,ii

)1/2
if i-th node is on ∂Ω,

0 otherwise,

where here l
(j)
Γ,ii denotes the i-th diagonal entry of L

(j)
Γ . We may build this approxima-

tion of M̂ (j) into our Schur complement approximation Ŝ for the control constrained

case. We again incorporate our approximations Φ̂ and Ŝ into a preconditioned BiCG

solver.

9.3 Numerical Results

In this section, we wish to carry out numerical experiments to demonstrate the per-

formance of our proposed preconditioners. We again compute all results within the

deal.II [4] framework using Q1 finite element basis functions.39 We once more use a

smoothed aggregation algebraic multigrid routine to approximate the inverse of ma-

trices representing elliptic operators, where appropriate, within the Trilinos ML pack-

age [44] – we take 6 V-cycles of this multigrid routine with 10 Chebyshev smoothing

steps, as we attempt to minimize the sensitivity of the multigrid routine to parameter

changes. We apply the BiCG algorithm, and typically solve to a tolerance of 10−4,

with the outer SQP iteration terminated whenever the relative change between two

consecutive solutions is smaller than a given tolerance, typically 10−4 also.40 The

experiments are carried out with T = 1 in all cases, with τ = 0.05 (corresponding to

20 time-steps).

39The author acknowledges that all figures and numerical results in this section were created using
code written by Martin Stoll as part of a collaboration with the author.

40The computations were carried out on a Centos Linux machine with Intel(R) Xeon(R) CPU
X5650, 2.67GHz CPUs and 48GB of RAM.
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(a) Domain (b) Desired state for first reactant

Figure 9.1: Cylindrical domain on which the first example was solved, and the desired
state for the first reactant.

(a) Computed state for first reactant (b) Computed control

Figure 9.2: Computed state for the first reactant and computed control, at the 8-th
time-step, with αu = αv = 1 and αc = 10−5.
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DoF
αc = 10−3 αc = 10−5

Time SQP Iterations Time SQP Iterations

538, 240 1, 995 Step 1 17 1, 726 Step 1 16

Step 2 20 Step 2 16

Step 3 20 Step 3 16

3, 331, 520 14, 757 Step 1 28 14, 904 Step 1 28

Step 2 31 Step 2 27

Step 3 29 Step 3 34

Table 9.1: BiCG iterations for each SQP step, and total CPU time, for the first
example with varying values of mesh-size and αc. DoF here represents the total
dimension of the matrix system.

The first example on which we test our iterative method is the following problem:

min
u,v,c

αu
2
‖u− uQ‖2

L2(Q) +
αv
2
‖v − vQ‖2

L2(Q) +
αc
2
‖c‖2

L2(∂Q) (9.15)

such that

ut −D1∇2u+ k1u = − γ1uv, in Q,

vt −D2∇2v + k2v = − γ2uv, in Q,

D1
∂u

∂n
= c, on ∂Ω,

D2
∂v

∂n
+ ε̃v = 0, on ∂Ω,

u(x, 0) = 0, on Ω,

v(x, 0) = 0, on Ω,

where the spatial domain Ω is a cylindrical shell domain with inner radius 0.8, outer

radius 1 and height 3. The desired states are given by

uQ = 2t| sin(2x1x2x3)|+ 0.3, vQ = 0,

with uQ shown in Figure 9.1 along with the spatial domain we work with. For this

test we set the parameter values D1 = D2 = k1 = k2 = 1 and γ1 = γ2 = 0.15. The

coordinate system is again denoted by x = [x1, x2, x3]T .

In Figure 9.2, we show computed solutions for the first reactant u and the control
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(a) Desired state (b) Computed state for first re-
actant

(c) Computed control

Figure 9.3: Desired and computed states for the first reactant and computed control,
at the 8-th time-step, with αu = αv = 1 and αc = 10−5.

c. In Table 9.1, we provide the BiCG iteration numbers at each SQP step, as well as

the total CPU time, to solve this problem for different problem sizes and values of αc.

All iteration numbers seem to be very reasonable given the complexity of the problem,

and though there is some benign dependence on mesh-size (as for Neumann boundary

control problems previously tested), our solver seems to perform well for a range of

parameters. We note that, at present, we re-initialize the AMG preconditioner at

each SQP step and for each time-step, which is an expensive process – we aim in

future to reduce the CPU times significantly by finding alternative ways around this

problem.

For our next experiment, we test a similar example, on a ‘Hyper L’ domain, which

consists of the cube [−1, 1]3, with the cube (0, 1]3 removed. The desired states this

time are given by

uQ =

{
0.7 if x ∈

[
0, 1

2

]3
0.2 otherwise

, vQ = 0.

Figure 9.3 gives solution plots for this problem, and in Table 9.2 we give numerical

results for a range of mesh-sizes and values of αc, with fixed parameters D1 = D2 =

k1 = k2 = 1 and γ1 = γ2 = 0.15. In Table 9.3, we demonstrate the results of a more
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DoF
αc = 10−3 αc = 10−5

Time SQP Iterations Time SQP Iterations

60, 920 369 Step 1 19 457 Step 1 23

Step 2 20 Step 2 25

Step 3 20 Step 3 25

382, 840 2, 624 Step 1 27 2, 819 Step 1 29

Step 2 30 Step 2 35

Step 3 33 Step 3 33

2, 670, 200 19, 128 Step 1 36 22, 976 Step 1 46

Step 2 44 Step 2 52

Step 3 44 Step 3 53

Table 9.2: BiCG iterations for each SQP step, and total CPU time, for the second
example with varying values of mesh-size and αc. DoF here represents the total
dimension of the matrix system.

Parameters
αc = 10−3 αc = 10−5

Time SQP Iterations Time SQP Iterations

D1 = D2 = 0.1 1, 744 Step 1 18 2, 083 Step 1 19

Step 2 20 Step 2 27

Step 3 19 Step 3 20

D1 = D2 = 100 1, 161 Step 1 16 1, 783 Step 1 28

Step 2 22 Step 2 33

γ1 = γ2 = 0.05 2, 199 Step 1 22 2, 426 Step 1 25

Step 2 25 Step 2 29

Step 3 25 Step 3 29

γ1 = γ2 = 0.75 3, 796 Step 1 24 3, 240 Step 1 20

Step 2 36 Step 2 60

Step 3 72 Step 3 32

tol = 10−6 2, 702 Step 1 27 3, 226 Step 1 34

Step 2 33 Step 2 38

Step 3 33 Step 3 38

tol = 10−8 3, 289 Step 1 33 3, 749 Step 1 39

Step 2 39 Step 2 46

Step 3 42 Step 3 46

Table 9.3: BiCG iterations for each SQP step, and total CPU time, for the parameter
study example with fixed dimension 382, 840.
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detailed parameter study, by fixing the problem size and target states

uQ =

{
0.3 if x ∈

[
0, 1

2

]3
0.2 otherwise

, vQ = 0,

and varying a number of other parameters (αc, D1, D2, γ1 and γ2, and the tolerance

to which the BiCG method was run to). These results give further evidence of the

robustness of our solver for a wide range of parameters involved. (We note again

the large number of parameters within the problem set-up: h, τ , αu, αv, αc, D1,

D2, k1, k2, γ1 and γ2.) From experimental evidence, we find that the most difficult

parameter regime occurs when γ1 and γ2 are large (and hence the (1, 1)-block of

the matrix system has large negative eigenvalues) and αc is small (when the second

term of our Schur complement approximation dominates, and the indefiniteness of

the Schur complement is not captured by our approximation of it). We note also that

when γ1 and γ2 are large, the convergence rate at different SQP steps may vary more

than when γ1 and γ2 are small, as in this case the values of p and q at the previous

SQP step determine the extent of the indefiniteness of the (1, 1)-block.

DoF
αc = 10−3 αc = 10−5

Time SQP NM/∅ BiCG Time SQP NM/∅ BiCG

60, 920 1, 066 Step 1 3/18 859 Step 1 3/22

Step 2 3/21 Step 2 2/25.5

Step 3 3/21

382, 840 5, 498 Step 1 2/26 13, 358 Step 1 5/28.6

Step 2 2/36 Step 2 5/32.6

Step 3 2/35 Step 3 5/32.8

Table 9.4: Number of semi-smooth Newton and average number of BiCG iterations
for each SQP step, and total CPU time, for the control constrained example with
varying values of mesh-size and αc. DoF here represents the total dimension of the
matrix system, and ∅ denotes an average number.

In order to highlight the effectiveness of our strategy when control constraints are

present, we also carry out numerical tests on the problem (9.15) within the ‘Hyper
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DoF
ε = 10−2 ε = 10−4 ε = 10−6

SQP NM/∅ BiCG SQP NM/∅ BiCG SQP NM/∅ BiCG

60, 920 Step 1 3/32.3 Step 1 3/24.6 Step 1 3/20.6

Step 2 3/36.3 Step 2 3/26.6 Step 2 3/22.3

Table 9.5: Number of semi-smooth Newton and average number of BiCG iterations
at each SQP step for the control constrained example, with fixed dimension 60, 920,
αc = 10−3, and varying values of penalty parameter ε. DoF here represents the total
dimension of the matrix system, and ∅ denotes an average number.

L’ domain, with

uQ = t| sin(2x1x2x3) cos(2x1x2x3)|, vQ = 0,

D1 = D2 = k1 = k2 = 1, γ1 = γ2 = 0.15,

but also with the additional control constraint

c ≤ 3

2
.

In Table 9.4, we present results (including total CPU times, as well as the number

of semi-smooth Newton steps to deal with the control constraint and BiCG itera-

tions at each outer SQP step) for a range of mesh-sizes and values of αc. In Table

9.5, we present results using our method for different values of the Moreau-Yosida

regularization parameter ε. We observe low iteration numbers (both outer iterations

and BiCG iterations) for a range of such problems. This indicates the potential of

our approach for solving a further range of reaction-diffusion control problems with

additional control constraints imposed.

9.4 Summary

In this chapter, we have been able to build on the knowledge we have acquired about

the iterative solution of simpler PDE-constrained optimization problems, in order to

tackle a problem motivated by a real-life application, namely that of the optimal

control of chemical processes. To solve this problem, we have utilized and extended

the building blocks introduced in nearly every previous chapter of this thesis – we

have exploited fundamental saddle point theory as for other optimal control problems,
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used a Schur complement approximation of the type first developed for distributed

Poisson control problems and then extended to boundary control problems, dealt with

nonlinearity in the underlying PDEs as for Navier-Stokes control, and incorporated

a time-stepping scheme as for the optimal control of the heat equation.

Naturally, due to the difficulty of the problem being looked at in this chapter,

and in particular the complexity in structure of the matrix systems being solved, our

approach for this problem is based much more on heuristic argument than for the

much simpler problems discussed earlier in this thesis. However, we were still able to

obtain very encouraging numerical results using our proposed solvers for the matrix

systems arising from this problem, with low iteration numbers achieved for a wide

range of problems and parameters.

We therefore conclude that the methods we have constructed during the course

of this thesis have the potential to tackle complex, real-world problems. This opens

up the possibility of developing methods which may be used to create feasible and

robust solvers for problems of great interest to the scientific community.
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Concluding Remarks and Outlook

In this thesis, we have aimed to develop fast and effective preconditioned iterative

methods, using Minres, Bramble-Pasciak CG, Gmres and BiCG, for problems in

the field of PDE-constrained optimization. We have considered a range of such prob-

lems, and proposed preconditioned iterative methods which converged robustly with

respect to all parameters involved in the problem set-up. The problems we tack-

led included the distributed, boundary and subdomain control of Poisson’s equation,

convection-diffusion control, Stokes and Navier-Stokes control, the optimal control of

time-dependent problems involving the heat equation, and the optimal control of a

reaction-diffusion control problem motivated by chemical processes.

We have shown that it is possible, using the theory of saddle point systems, to

develop, for these problems, parameter-independent solvers which achieve rapid con-

vergence and are extremely practical. This in turn requires accurate approximations

of the (1, 1)-block and Schur complement of the matrices involved – the Schur com-

plement approximations were invariably the hardest component of the preconditioner

to derive. In some sense the most crucial result presented in this thesis was The-

orem 8 of Section 3.2 concerning our Schur complement approximation for Poisson

control, as this result opened the door to many other effective approximations. From

this, the results for convection-diffusion control, boundary control and subdomain

control were motivated. Furthermore, the preconditioners we detailed for Stokes and

Navier-Stokes control were derived using the Schur complement results for Poisson
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control and convection-diffusion control, along with suitable commutator arguments.

We have also extended the ideas behind these Schur complement approximations to a

number of time-dependent optimal control problems. This family of preconditioners

presents a framework and guidance for solving harder problems of this type.

Distributed
Poisson

(Chapter 3)

Convection-
Diffusion

(Chapter 5)

Boundary &
Subdomain
(Chapter 4)

Stokes
(Chapter 6)

Time-
Dependent
(Chapter 8)

Navier-Stokes
(Chapter 7)

Chemical
Processes

(Chapter 9)

b

a
c

g ed

j
k

f

i

h

Figure 10.1: Flow chart outlining the problems of which we have sought the numerical
solution in this thesis, and their links to each other from a preconditioning point-of-
view.

Figure 10.1 summarizes the links we have observed between the methods for the

various problems we have considered. We have seen, for instance, that the matrix sys-

tems for the distributed Poisson control problem and the analogous boundary control

or subdomain control problems are very similar in structure, except that the blocks

corresponding to the state and control variables are of different sizes for boundary

and subdomain control. We thus use a very similar preconditioning strategy for each

of these problems (hence link a), but are able to prove the effectiveness of our Schur

complement approximation more easily for the distributed control problem, and also
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observe lower iteration numbers. Also, for the convection-diffusion control problem,

the same process was used to develop our proposed preconditioners and the same

outcome achieved, but the proof of the Schur complement approximation required a

slightly weaker assumption about the structure of the problem (link b). As we ex-

plored the Stokes control problem, we saw that we were able to exploit our methods for

Poisson control to solve this problem as well, with the aid of additional commutator ar-

guments (c). We dealt with the Navier-Stokes control problem in the same way as for

Stokes control (e), but this time utilizing our approach for convection-diffusion control

problems (d). We were able to solve time-dependent PDE-constrained optimization

problems (in particular heat equation control problems) by motivating precondition-

ers of the same form as for the (time-independent) Poisson control problem (f), using

a Schur complement approximation motivated similarly as for convection-diffusion

control (g). The reaction-diffusion control problem we considered was of much more

complex structure, but we were able to use many of the techniques we had explored

for simpler problems. In particular, we utilized the saddle point structure and type

of Schur complement approximation we applied to the distributed Poisson control

problem (h), the theory of boundary control problems considered for Poisson control

(i), the matrix structure and time-stepping methods used for heat equation control

(j), and the embedding of our solvers into an outer iteration in order to deal with

nonlinear terms as for Navier-Stokes control (k).

Figure 10.1 also highlights the three main stages in the development of our pre-

conditioning methodologies. The problems coloured blue were solved using saddle

point theory with carefully chosen Schur complement approximations. When solving

the problems coloured red, we used the methods for the problems coloured blue, but

also required tricks relating to the reordering of the matrix systems, as well as spe-

cialized commutator arguments. Finally, solving the problems coloured green needed

knowledge previously acquired by solving the problems coloured blue and red, but

also required time-stepping techniques and preconditioning strategies to deal with the

increased size of the matrix system that resulted from the time-dependent nature of

the problems.

In deriving our proposed methods for the problems we considered, the heuristic

development of our preconditioners and the analytic proof of their effectiveness went

hand-in-hand. As the problems became more complex, demonstrations of the effec-

tiveness of the Schur complement approximation in particular became more heuristic,

by necessity. It is possible that the frontier of what can be proved readily about the
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effectiveness of preconditioners for such optimal control problems has been reached,

and that if we were to tackle even harder problems of this type, more heuristic guid-

ance will be required to derive these approximations. But I believe it will be useful

in these cases to understand why the theory developed in this thesis does not hold;

this will enable the understanding of which parameter regimes preconditioners will or

will not be effective for, and why.

In the future, there are many variations on the problems discussed in this thesis

which could be explored, using aspects of the methodology introduced here. For

instance, a greater focus may be placed on boundary control problems as discussed in

Section 4.1 and Chapter 9, as such problems are generally more physically realistic.

We may also consider PDE-constrained optimization problems in which the functional

contains norms which are not the L2-norm (as done in [102] for example), problems

in which the control is applied in only part of the domain, or problems where the

“distance” between the state and desired state is only measured in some subdomain.

Apart from problems such as these, the main area which we believe should now

be explored is that of developing feasible and fast iterative solvers for optimal con-

trol problems arising in real-world applications. The content of Chapter 9 was geared

towards such an industrial application, with a view to demonstrating that our method-

ology may be applicable to such problems. There are a huge number of other PDE-

constrained optimization problems that arise from real-world problems, such as those

described in [59] and detailed in Section 2.1. Looking ahead, it seems that researchers

in this field may now be in a position to derive iterative methods that can be used to

solve such important problems, using in part the methodology and theory described

in this thesis.
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[105] M. Rozlozńık, and V. Simoncini, Krylov Subspace Methods for Saddle Point

Problems with Indefinite Preconditioning, SIAM Journal on Matrix Analysis and

Applications, 24, pp.368–391, 2002.
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