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Using EEG and NIRS for Brain-computer Interface and Cognitive Performance Measures: A 

Pilot Study 

Abstract 

This study addresses two important problem statements namely, selection of training datasets for 

online Brain-computer Interface (BCI) classifier training and determination of participant 

concentration levels during an experiment. The work also attempted a pilot study to integrate 

Electroencephalogram (EEG) and Near Infra Red Spectroscopy (NIRS) for possible applications such 

as BCI and measuring cognitive levels. Two experiments are presented, the first being a mathematical 

task interleaved with rest states using NIRS only.  Next integration of EEG-NIRS with reference to 

P300 based BCI systems as well as the experimental conditions designed to elicit the concentration 

levels (denoted as ON and OFF states here) during the paradigm are presented. The first experiment 

indicates that NIRS can be used to differentiate a concentrated (i.e. mental activity) level from rest. 

However, the second experiment reveals statistically significant results using EEG only. We present 

details about equipment used, participants as well as signal processing and machine learning 

techniques implemented to analyse the EEG and NIRS data. After discussing the results, we conclude 

by describing the research scope as well as the possible pitfalls in this work from a NIRS viewpoint, 

which presents an opportunity for future research exploration for BCI and cognitive performance 

measures. 

 

Keywords: Brain-computer Interface, Cognitive Performance, Electroencephalogram, Near Infra Red 

Spectroscopy, P300   

 

1. Introduction 

Among the numerous possible modalities for measuring brain activity in Brain-computer Interface (BCI) 

systems, scalp EEG [1, 2] and optical NIRS [3-5] have been popular; since they are non-invasive, simple 

and comparatively user friendly. Recently, BCI systems are being explored for novel applications like 

computer cursor control [6], authentication [7] and gaming [8], therefore gauging participant 



concentration or motivational levels during the experimental sessions is of great interest. In spite of the 

rich complementary information provided by concurrent EEG and NIRS recordings, very few research 

groups have worked in that perspective. So far, studies [9-11] have focussed on simultaneous EEG-NIRS 

recordings in occipital cortex or around midline lobes, showing synchronisation of neural and 

hemodynamic activity during task. Authors in [9] showed that regions of peak hemodynamic activity are 

in closest proximity to areas of peak electrical activity during an auditory oddball paradigm. In [10], an 

increase in HbO and a decrease in Hb were reported for oddball stimuli during auditory paradigms, using 

optodes placed on either side of midline lobe. The work presented in [11] on concomitant recording of 

EEG-NIRS highlight that concentration variations directly reflect the increase in blood oxygenations 

required to support the neural activity during a visual stimulus paradigm. In these studies, the EEG 

electrodes and NIRS optodes were primarily placed around the visual cortex area of the brain. Although 

early attempts to integrate EEG and NIRS for monitoring brain function have been made, there is 

definitely a lot of scope for research in this direction for BCI and cognitive applications. 

EEG-NIRS integration could be used to address two applications namely, selection of training 

dataset for online BCI classifier and participant concentration monitoring during an experiment. Selection 

of training datasets to train a classifier is often a precursor for all online BCI experiments. The 

performance of online classification depends entirely on the training dataset used to train the classifier. 

Factors like level of concentration, fatigue and workload cannot be gauged from EEG data (in standard 

BCI paradigms) to select the training dataset or monitor participant performance. With this scenario in 

mind, we embarked on a pilot study to integrate EEG and NIRS to help gauge the participant levels of 

concentration while the person performs the experiment. NIRS optodes were placed in the frontal cortex 

(i.e. Brodmann area 10) responsible for memory and executive function, while EEG electrodes 

responsible for electrical activity during visual paradigm were chosen as in [1], around the midline 

parietal region. To the best of the author’s knowledge, this is a novel approach where concomitant EEG-

NIRS recording is used for challenging BCI problems. This integration could be performed for any BCI 

based paradigm (such as Donchin’s P300, motor imagery, slow cortical potentials etc). 

 

 



2. Methodology - Signal Acquisition, Design and Participant Setup 

The design, setup and positioning of EEG electrodes and NIRS optodes is shown in Figure 1. The 

participants were seated in a chair facing a computer monitor at distance of 70 cm. Automated 

synchronised recording of multi-modal signals are commonly used but due to difficulties in setting a 

common trigger for the EEG and NIRS devices prompted us to manually employ two BCI researchers to 

perform the synchronised recording sessions to obtain the concurrent EEG-NIRS recordings while the 

participant was performing the experiment.   

 

2.1 EEG data collection  

The electroencephalogram (EEG) data were collected with a Biosemi Active Two system using a 

sampling rate of 256 Hz. Since the purpose of this study was to investigate the integration of EEG with 

NIRS, eight optimum channels for BCI reported in [1] as configuration-II for able bodied participants 

were used. Two recorded mastoid channels were used as reference channels bringing the total number of 

EEG channels to 10. The Graphical User Interface (GUI) was developed using Visual Basic software and 

integrated into the Biosemi data logging software.  The participants were asked to refrain from blinking 

during the experiment, which was performed in a room shielded from electromagnetic interference. A 

short break was given after every session. 

 

2.2 NIRS data collection  

A multichannel CW-NIRS Instrument from Artinis Medical Systems (Oxymon Mk III) was used for data 

acquisition. Two sources and two detectors were mounted on a custom designed headgear, made to hold 

the optodes on the participant’s forehead. Each source emits two wavelengths at 764 and 859 nm and the 

data was recorded at a sampling rate of 10 Hz. The headgear was made of linoleum and holes were 

punched to hold the optodes 3 cm apart. The distance of 3 cm was selected due to the depth of tissue that 

NIRS can interrogate, which is dependent on the distance between the source and detector. A greater 

separation in size between source and detector would result in a greater imaging depth. However, if the 

separation is greater than 5 cm, the optical signal would weaken and might become be unusable [12-14]. 

The optodes were carefully set-up, so as to not affect the EEG electrodes. Since it was placed on the 



forehead, care was also taken that artifacts due to hair are not introduced. Oxysoft software provided by 

Artinis Medical systems was used to record both the channels (T1 and T2) at a sampling frequency of 

10Hz, which were then analyzed in Matlab. 

 

{Insert Figure 1 around here} 

 

2.3  Signal Processing for EEG and NIRS 

The EEG and NIRS data collected were analysed separately and the signal processing techniques are 

detailed below. 

 

2.3.1 Signal Processing for EEG 

The data were referenced to average of the mastoids channels and a forward-reverse Butterworth band-

pass filter with cut off frequencies (1 Hz and 12 Hz) was used to filter the data, to obtain the signals in the 

P300 spectral range. Filters with forward and reverse filtering to avoid phase distortion were used. Each 

trial was 256 samples in length and phase locked to the stimulus occurrence. To remove eye-blinks and 

artifact activity, windsorising as described in [1] was implemented, due to its simplicity and effectiveness. 

The data was normalised and the recorded eight channels were used for classification. 

 

2.3.2 Signal Processing for NIRS 

The optical data was filtered to remove motion artifacts and systematic physiological activities, such as 

breathing and heartbeat by using an elliptical band-pass filter with 0.01 Hz and 0.8 Hz as cut-off 

frequencies. These values are similar with other studies [13-15]. These filter parameters also removed the 

baseline drift as shown by the authors in [16, 17]. 

 

2.4  Experimental Study 

Two experimental studies were performed during this research work. In the first study, we accessed the 

performance of NIRS during mathematical and relaxing states. In the second study, we embarked on the 

EEG-NIRS integration addressing two applications namely, selection of training dataset for online BCI 



classifier and participant concentration monitoring during an experiment. During both studies, 

participants were seated in a chair facing a computer monitor at distance of 70 cm and the purpose of 

experiments was explained for motivated involvement. The participants voluntarily signed a written 

consent form and the experiments were approved for ethics. 

 

2.4.1 Mathematical and Relaxation Tasks using NIRS 

During this study, three participants were asked to perform ten mathematical tasks, which involved a 

combination of high level subtraction and addition, following BODMAS rule (Brackets of Division 

Multiplication Addition and Subtraction) order of operations. The mathematical tasks were interleaved, 

with periods of relaxation (around 60 seconds), during which the participant relaxed/gazed at a white 

screen. Baseline recordings were also recorded at the beginning and end of the experiment. 

 

{Insert Table 1 around here} 

 

3. Analysis, Results and Discussion of First Experiment 

Signal processing was performed as discussed in the earlier section.  The first 15 seconds during the task 

and relaxation phases were considered, because it was reported as the durations of rapid change in NIRS 

oxygenation levels in recent studies [11, 18].  For the accumulated task and relaxation trials, ensemble 

averages were calculated. The results for three participants are depicted in Figures 2-4. Ten interleaved 

periods of task and relaxation are depicted in the Figures 2-4 using coloured stem lines. The period 

between stems red and blue indicate rest, while the period between stems blue to red indicates task state. 

The recorded baselines are also illustrated in the figures. To give a clearer picture, two instances of task 

and relaxation phases are expanded and shown in Figure 2. As anticipated, we noticed a higher 

oxygenation mean values from the ensembled trials during math task than the relaxation phase for all 

participants. This is presented in Table 2.  

 



Table 3 tabulates means of every interleaved, task and relaxation phases. A t-test was performed using 

ttest2 MATLAB command and statistically significant differences were observed at 5 % significance 

level for participants one and two only which is tabulated in Table 3. 

 

{Insert Figures 2-4 around here} 

 

{Insert Table 2-3 around here} 

 

 

4. Experimental Design of EEG-NIRS Integration for P300 BCIs  

Integration of EEG-NIRS for BCI application was studied with reference to P300 oddball paradigm. A 4-

class BCI oddball paradigm was used for this EEG-NIRS integration study. The EEG and NIRS data were 

recorded concurrently from four participants, when the participant perceived different colour flashes on 

white background within a single square block as shown in Figure 5. Two level tasks were used wherein 

stimulus with black and red colours were used as target cues while colours green and blue flashed more 

frequently and were denoted as non-targets. The participant was instructed to focus and keep a count of 

the cue (target) colour during the first two sessions (S1 and S2), referred to as Task or ON state, while 

he/she gazes/relaxes (rest or OFF state) during the third session (S3). The participants in this case 

effectively concentrate on the target colour and the counting of the number of target blocks requires 

concentration. The experiment and protocols developed in this study have been designed to gain more 

insight about the workload experienced by a participant during task (‘ON’ state) and rest (‘OFF state). To 

prevent habituation, the number of recorded blocks during each session was varied. The recorded sessions 

were as follows: 

• Session S1 - 36 blocks to train the classifier, wherein the participant counts cue flashes mentally (ON 

state); 

• Session S2 - 40 blocks for each cue, wherein the participant counts the cue flashes mentally (ON 

state); 



• Session S3 - 40 blocks for each cue, wherein the participant gazes at the flashes (OFF state).  

 

The experimental time during session S1 was 4.08 minutes, while S2 and S3 sessions were 4.53 minutes 

in duration. A baseline recording of 60 seconds was made before each session. The impedance levels of 

EEG electrodes and positioning of NIRS optodes was also checked after each session during the break. 

The experiments were designed to infer the effect of training classifiers with data wherein the participant 

concentrates on the experiments (ON state) and during instances when he/she does not concentrate on the 

experiment (i.e. gets onto the OFF state). A concurrent recording of EEG-NIRS provides complementary 

hemodynamic information from NIRS parameters.  

 

{Insert Figure 5 around here} 

 

5.  Analysis and Results of the Second Experiment 

The signal processing techniques for EEG and NIRS data were implemented as discussed in earlier 

section. The concurrently recorded sessions of EEG and NIRS were analyzed in two different ways to 

study the utility of simultaneous recordings for BCI applications. 

 

5.1 Training Dataset Selection 

Two Bayes Linear Discriminant Analysis (LDA) classifiers with the same parameters were trained using 

S1 session (participant concentrates) and S3 session (participant does not concentrate) datasets. The block 

by block classification accuracy for each colour cue, black and red over time using session S2 data, for 

classifiers trained on S1 session (participant concentrates) and S3 session (participant does not 

concentrate) datasets are shown diagrammatically in Figure 6(a) for one participant. Similar results were 

obtained for the other participants. The single trial classification accuracies achieved for both the 

discussed cases are depicted in the first and second columns of Table 4 for four participants. Each session 



(S2 and S3) had 40 blocks with each having four colours. Each colour was flashed for 100 ms with an 

ISI1 of 750 ms.  

 

The x-axis in Figure 6(a) represents time, highlighting block by block EEG classification accuracy shown 

by y-axis.  The time is calculated as 40 blocks x 4 colours x 850 ms/1000 ms = 136 seconds. Stem plot in 

the figures highlights the classification over time. A value of 1 on y axis indicates correct detection and a 

0 indicates incorrect detection for each block (four colour flashes). Green ovals represent EEG block mis-

classifications above two in sequence.  

 

In another analysis, Bayes LDA classifier was trained using S1 dataset (concentrating) and S3 dataset (not 

concentrating) was used as testing data. Poor EEG classification was achieved and is depicted in the final 

column of Table 4. The mean and standard deviation for the sessions S2 (concentrating) and S3 (no 

concentration) were calculated for the NIRS data so as to gauge the possibility of selecting an effective 

training dataset from NIRS parameters. However the results obtained were not statistically significant 

different between the two sessions (S2 and S3) in the recorded NIRS data. Nevertheless, the results from 

EEG indicate the importance of selecting training data where the participant concentrates as shown by the 

higher number green ovals – 11 ovals as compared to 5 ovals. 

 

 

{Insert Table 4-5 around here} 

 

 

5.2 Participant Concentration Monitoring 

The use of concomitant EEG-NIRS in monitoring real-time participant concentration levels was also 

explored as depicted in Figure 6(b). Due to space contraints, only the concomitant EEG-NIRS from one 

participant is shown here. EEG block mis-classifications above two in sequence were considered and the 

corresponding NIRS levels were analysed as illustrated in Figures 6(b). During most instances where poor 

classification accuracy for EEG was obtained (as shown by the ovals), a corresponding low/minimum in 

                                                           
1 Inter –stimulus interval (ISI), which is the time between two flashes. 



the oxygenated blood of the NIRS was noticed as shown by the red and purple arrows (purple arrow 

shows the correct dip in NIRS close to the poor classification accuracy while red arrow does not indicate 

a dip). However, consistent results were not observed for all the poor classification instances as can be 

seen from Figure 6(b). Nevertheless, as this is only a pilot study, the results obtained are reported here. 

 

{Insert Figure 6 around here} 

 

6. Discussion  

The use of EEG-NIRS integration in selecting training datasets as well as real-time monitoring of 

participant concentration was attempted. However, results due to integration were not statistically 

significant from an NIRS viewpoint. The possible pitfalls/speculations in this study could be the absence 

of trigger information and synchronisation of EEG and NIRS recordings, which would have helped in 

doing an accurate averaging analysis of NIRS data. Also EEG being a higher frequency signal than NIRS 

which is a lower frequency signal, concurrent real-time analysis might not have given effective results. 

NIRS was recorded from the forehead, while EEG was recorded in the midline parietal region, wherein 

this temporal difference (i.e. differences due to placement of EEG electrodes and NIRS optodes) might 

have caused the poor results. Also NIRS speed of operation is limited by the nature of metabolic response 

as well as the inherent delay, thereby making real-time concurrent analysis a difficult task. Also P300 

being a relatively fast paced paradigm, direct correlation was perhaps not possible to achieve. All said one 

important motivation observed in this pilot study was the positive results obtained from an EEG 

viewpoint, highlighting the importance of selecting the correct training dataset to achieve good online 

classification. However, it is hoped that this work will motivate further research on these lines. 

 

7. Conclusion 

EEG has been popular as a modality for applications such as BCI and measuring cognitive levels. In 

recent times, research groups have started exploring the use of NIRS to obtain the control commands for 

BCI based applications. Taking this idea forward, an attempt to integrate EEG-NIR to solve challenging 

BCI issues, namely training dataset selection and participant concentration monitoring was made. This 



study presented the recording setup using EEG electrodes and NIRS optodes, signal processing 

techniques and experiments performed. The study involving mathematical tasks and relaxation states 

provided motivating results conforming those in the literature where oxygenation mean values from the 

ensembled trials during math task were higher than the relaxation phase for all participants. It was 

envisaged that the complementary information provided by NIRS could be effectively used to select 

training datasets and monitor participant concentration using EEG-NIRS integration. Motivating results 

were obtained using EEG datasets only, as illustrated in Tables 4-5. Possibly, having a synchronised 

system with triggers for EEG as well as NIRS and making an attempt on a lesser fast paced paradigm like 

motor imagery could probably give better success. Though EEG-NIRS integration studies are still in 

infancy, this work is hopefully a motivation for further exploration on that front for the BCI research 

community and cognitive performance measures.  
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Figure 1: Design, setup and positioning of NIRS optodes (upper half) and EEG electrodes (lower half). 
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Figure 2: NIRS signal during ten interleaved task and relaxation phases for participant 1 with two 

instances expanded for easier understanding. 
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Figure 3: NIRS signal during ten interleaved task and relaxation phases for participant 2. 
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Figure 4: NIRS signal during ten interleaved task and relaxation phases for participant 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

            Figure 5: One colour block illustrating a sequence of flashes (total number blocks in each 

session was either 36 or 40). Note that only one block flashed on screen at a time. The cue was the 

target colour (either black or red). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                  

 
EEG classification block by block accuracy with S1-training dataset(concentrating), S2-testing dataset 

(concentrating) 

 
EEG classification block by block accuracy with S3-training dataset(not concentrating), S2-testing 

dataset(concentrating) 
a) Training dataset selection 

 

 

 
 

Concurrent EEG-NIR analysis {for misclassifications in EEG blocks} and EEG classification with S1-
training dataset (concentrating), S2-testing dataset (concentrating) 

b) Participant concentration monitoring 
 
 

Figure 6: Simultaneous EEG-NIR recording for one participant  
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Table 1: Examples of mathematical tasks for NIRS study 

Task 1 (107 + 235) – (78 – (-12)) + 49 = ? 

Task 2 (155 – 65) - (-18 – (-24)) + 79  = ? 

Task 3 (138 – (-27)) - (121 + 42) + 21 = ? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 2: Mean and standard deviation of the ten mathematical tasks and relaxation phases 

Participant Mean and std of task trials  

(Channel 1, HbO) 

Mean and std of rest trials 

(Channel 1, HbO) 

1 0.1741± 0.1973 -0.039± 0.1498 

2 0.0863± 0.1932 -0.0887± 0.1280 

3 0.151± 0.234 -0.0195± 0.324 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 3: Statistical analysis for mathematical tasks and relaxation phases (first 15 seconds) 

Participant 1 

(Channel 1, HbO) 

Participant 2 

(Channel 1, HbO) 

Participant 3 

(Channel 1, HbO) 

Mean of 

each task 

phase 

Mean of 

each rest 

phase 

Mean of 

each task 

phase 

Mean of 

each rest 

phase 

Mean of 

each task 

phase 

Mean of 

each rest 

phase 

0.3159     0.2478    0.4678 -0.2544 0.0260 0.0705    

0.5057     -0.1712    0.1806 -0.2064 0.4162 -0.2083    

0.3538     -0.0534    -0.2222 0.0192 0.0632    -0.2702     

0.2492     -0.1043    0.0248 0.1164 -0.3758 0.1361     

0.0724    -0.0456    0.0831 0.0043 0.4252     0.0408    

-0.1266    -0.2180    0.1130 -0.0654 0.1549     -0.0038    

-0.0757     -0.0747     0.0687 -0.2864 0.0977     -0.3413     

0.1938 0.0299 -0.1199 -0.1026 0.2722 0.0882 

0.2106         0.1645    0.2650 -0.0254 0.1139     -0.4214     

0.0423 -0.1741 0.0017 -0.0863 0.3209 0.7139 

t-test p=0.0137 t-test p=0.0282  t-test p=0.1937 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 4: EEG classification accuracies (%) for various combinations of training and testing datasets. 

 

Participant 

 

 

S1-Training Dataset 

(Concentrating),  

S2-Testing Dataset 

(Concentrating) 

 

 

  S3-Training Dataset,  

    (No Concentration) 

      S2-Testing Data 

      (Concentrating) 

 

S1-Training Dataset,  

(Concentrating) 

S3-Testing Data 

    (No Concentration) 

1 73.75 % 27.50% 23.75% 

2 48.75% 25.00% 16.25% 

3 62.50% 32.50% 22.5% 

4 56.25% 30.00% 23.75% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 5: Mean and standard deviation of NIRS data for sessions S2 (concentrating) and S3 (no 

concentration). 

 S2: Mean and std, HbO (µm) S3: Mean and std, HbO (µm) 

Participant Colour 1 Colour 2 Total Colour 1 Colour 2 Total 

1 0.0185±0.33 -0.0055±0.23 0.0068±0.29 0.0212±0.38 -0.0113±0.31 0.0052±0.35 

2 0.0644±0.03 -0.0141±0.38 0.0248±0.36 -0.0232±0.39 0.0246±0.39 -0.0007±0.40 

3 0.0016±0.19 0.0021±0.18 0.0018±0.18 -0.0241±0.23 0.0021± 0.21 -0.0111±0.22 

4 0.0231±0.45 -0.0457±0.26 -0.0111±0.37 -0.0079±0.28 0.0095±0.39 0.0007±0.34 

 

 


