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Using EEG and NIRSfor Brain-computer Interface and Cognitive Performance Measures: A

Pilot Study

Abstract

This study addresses two important problem statesmeamely, selection of training datasets for
online Brain-computer Interface (BCI) classifieraiting and determination of participant
concentration levels during an experiment. The walbo attempted a pilot study to integrate
Electroencephalogram (EEG) and Near Infra Red &pmaipy (NIRS) for possible applications such
as BCI and measuring cognitive levels. Two expeniimare presented, the first being a mathematical
task interleaved with rest states using NIRS omliext integration of EEG-NIRS with reference to
P300 based BCI systems as well as the experimeatalitions designed to elicit the concentration
levels (denoted as ON and OFF states here) durnm@aradigm are presented. The first experiment
indicates that NIRS can be used to differentiatm@centrated (i.e. mental activity) level from rest
However, the second experiment reveals statisficidjnificant results using EEG only. We present
details about equipment used, participants as waellsignal processing and machine learning
techniques implemented to analyse the EEG and NER& After discussing the results, we conclude
by describing the research scope as well as th&lpegitfalls in this work from a NIRS viewpoint,
which presents an opportunity for future researgplagation for BCl and cognitive performance

measures.

Keywords. Brain-computer Interface, Cognitive Performance, Electroencephalogram, Near Infra Red

Spectroscopy, P300

1. Introduction

Among the numerous possible modalities for meagusiain activity in Brain-computer Interface (BCI)
systems, scalp EEG [1, 2] and optical NIRS [3-5}jehbeen popular; since they are non-invasive, gmpl
and comparatively user friendly. Recently, BCl eys¢ are being explored for novel applications like

computer cursor control [6], authentication [7] amgming [8], therefore gauging participant



concentration or motivational levels during the erimental sessions is of great interest. In spitthe
rich complementary information provided by concatrEEG and NIRS recordings, very few research
groups have worked in that perspective. So fadietu[9-11] have focussed on simultaneous EEG-NIRS
recordings in occipital cortex or around midlinebés, showing synchronisation of neural and
hemodynamic activity during task. Authors in [9psled that regions of peak hemodynamic activity are
in closest proximity to areas of peak electricalvity during an auditory oddball paradigm. In [1@n
increase in HbO and a decrease in Hb were reptwteztidball stimuli during auditory paradigms, ugin
optodes placed on either side of midline lobe. WMoek presented in [11] on concomitant recording of
EEG-NIRS highlight that concentration variationsedily reflect the increase in blood oxygenations
required to support the neural activity during aual stimulus paradigm. In these studies, the EEG
electrodes and NIRS optodes were primarily placedral the visual cortex area of the brain. Although
early attempts to integrate EEG and NIRS for maeimtp brain function have been made, there is
definitely a lot of scope for research in this dtren for BCl and cognitive applications.

EEG-NIRS integration could be used to address tpmi@ations namely, selection of training
dataset for online BCI classifier and participamm@entration monitoring during an experiment. Sebec
of training datasets to train a classifier is oft@nprecursor for all online BCI experiments. The
performance of online classification depends elgtiom the training dataset used to train the clessi
Factors like level of concentration, fatigue andiklmad cannot be gauged from EEG data (in standard
BCI paradigms) to select the training dataset onitoo participant performance. With this scenano i
mind, we embarked on a pilot study to integrate EE@ NIRS to help gauge the participant levels of
concentration while the person performs the expamimNIRS optodes were placed in the frontal cortex
(i.,e. Brodmann area 10) responsible for memory amdcutive function, while EEG electrodes
responsible for electrical activity during visuahrpdigm were chosen as in [1], around the midline
parietal region. To the best of the author’s knagks this is a novel approach where concomitant-EEG
NIRS recording is used for challenging BCI probleffikis integration could be performed for any BCI

based paradigm (such as Donchin’s P300, motor imagiew cortical potentials etc).



2. Methodology - Signal Acquisition, Design and Participant Setup

The design, setup and positioning of EEG electramle$ NIRS optodes is shown in Figure 1. The
participants were seated in a chair facing a coerputonitor at distance of 70 cm. Automated
synchronised recording of multi-modal signals asenmonly used but due to difficulties in setting a
common trigger for the EEG and NIRS devices prochpieto manually employ two BCI researchers to
perform the synchronised recording sessions toibie concurrent EEG-NIRS recordings while the

participant was performing the experiment.

2.1 EEG data collection

The electroencephalogram (EEG) data were colleet#ld a Biosemi Active Two system using a
sampling rate of 256 Hz. Since the purpose of ghigly was to investigate the integration of EEGhwit
NIRS, eight optimum channels for BCI reported ith §& configuration-Il for able bodied participants
were used. Two recorded mastoid channels were aseeference channels bringing the total number of
EEG channels to 10. The Graphical User Interfadgl@&as developed using Visual Basic software and
integrated into the Biosemi data logging softwaliéne participants were asked to refrain from bingki
during the experiment, which was performed in anrahielded from electromagnetic interference. A

short break was given after every session.

2.2 NIRS data collection

A multichannel CW-NIRS Instrument from Artinis Medi Systems (Oxymon MK Ill) was used for data
acquisition. Two sources and two detectors werenteslion a custom designed headgear, made to hold
the optodes on the participant’s forehead. Eachcecemits two wavelengths at 764 and 859 nm and the
data was recorded at a sampling rate of 10 Hz. hdsgear was made of linoleum and holes were
punched to hold the optodes 3 cm apart. The distah8 cm was selected due to the depth of tidsate t
NIRS can interrogate, which is dependent on théadi® between the source and detector. A greater
separation in size between source and detectordwesllt in a greater imaging depth. However, & th
separation is greater than 5 cm, the optical sigrmalld weaken and might become be unusable [12-14].

The optodes were carefully set-up, so as to nacathe EEG electrodes. Since it was placed on the



forehead, care was also taken that artifacts dimaitoare not introduced. Oxysoft software providgd
Artinis Medical systems was used to record bothdh@nnels (T1 and T2) at a sampling frequency of

10Hz, which were then analyzed in Matlab.

{Insert Figure 1 around here}

2.3 Signal Processing for EEG and NIRS
The EEG and NIRS data collected were analysed aharand the signal processing techniques are

detailed below.

2.3.1 Signal Processing for EEG

The data were referenced to average of the mastbaisnels and a forward-reverse Butterworth band-
pass filter with cut off frequencies (1 Hz and 12) Mias used to filter the data, to obtain the digimathe
P300 spectral range. Filters with forward and reediltering to avoid phase distortion were useacle
trial was 256 samples in length and phase lockdfidcstimulus occurrence. To remove eye-blinks and
artifact activity, windsorising as described in J#&s implemented, due to its simplicity and effestiess.

The data was normalised and the recorded eighhetmwere used for classification.

2.3.2 Signal Processing for NIRS

The optical data was filtered to remove motionfacts and systematic physiological activities, sash
breathing and heartbeat by using an elliptical bzasbs filter with 0.01 Hz and 0.8 Hz as cut-off
frequencies. These values are similar with otheties [13-15]. These filter parameters also remdkied

baseline drift as shown by the authors in [16, 17].

2.4 Experimental Study
Two experimental studies were performed during tegearch work. In the first study, we accessed the
performance of NIRS during mathematical and relgustates. In the second study, we embarked on the

EEG-NIRS integration addressing two applicationsely, selection of training dataset for online BCI



classifier and participant concentration monitorigigiring an experiment. During both studies,
participants were seated in a chair facing a coarpuonitor at distance of 70 cm and the purpose of
experiments was explained for motivated involvem@rte participants voluntarily signed a written

consent form and the experiments were approveetifics.

2.4.1 Mathematical and Relaxation Tasks using NIRS

During this study, three participants were askegba@dorm ten mathematical tasks, which involved a
combination of high level subtraction and additidollowing BODMAS rule (Brackets of Division
Multiplication Addition and Subtraction) order operations. The mathematical tasks were interleaved,
with periods of relaxation (around 60 seconds)jmduwhich the participant relaxed/gazed at a white

screen. Baseline recordings were also recorddwdigginning and end of the experiment.

{Insert Table 1 around here}

3. Analysis, Results and Discussion of First Experiment

Signal processing was performed as discussed iaatiier section. The first 15 seconds duringtési
and relaxation phases were considered, becausssiteported as the durations of rapid change irSNIR
oxygenation levels in recent studies [11, 18]. #ar accumulated task and relaxation trials, enkemb
averages were calculated. The results for thregcipamts are depicted in Figures 2-4. Ten intemel
periods of task and relaxation are depicted inRlgures 2-4 using coloured stem lines. The period
between stems red and blue indicate rest, whilgé¢hed between stems blue to red indicates tagk.st
The recorded baselines are also illustrated irfihges. To give a clearer picture, two instancetask
and relaxation phases are expanded and shown ureFig. As anticipated, we noticed a higher
oxygenation mean values from the ensembled triafsnd math task than the relaxation phase for all

participants. This is presented in Table 2.



Table 3 tabulates means of every interleaved, aaskrelaxation phases. A t-test was performed using
ttest2 MATLAB command and statistically significadifferences were observed at 5 % significance

level for participants one and two only which ibubated in Table 3.

{Insert Figures 2-4 around here}

{Insert Table 2-3 around here}

4. Experimental Design of EEG-NIRS I ntegration for P300 BCls
Integration of EEG-NIRS for BCI application wasdited with reference to P300 oddball paradigm. A 4-
class BCI oddball paradigm was used for this EEG®lintegration study. The EEG and NIRS data were
recorded concurrently from four participants, whke participant perceived different colour flasloes
white background within a single square block asashin Figure 5. Two level tasks were used wherein
stimulus with black and red colours were used sgetecues while colours green and blue flashed more
frequently and were denoted as non-targets. Thicipant was instructed to focus and keep a coiint o
the cue (target) colour during the first two sessi¢S1 and S2), referred to as Task or ON statéde wh
he/she gazes/relaxes (rest or OFF state) duringhihé session (S3). The participants in this case
effectively concentrate on the target colour anel ¢bunting of the number of target blocks requires
concentration. The experiment and protocols deesldp this study have been designed to gain more
insight about the workload experienced by a pardict during task (‘ON’ state) and rest (‘OFF staley
prevent habituation, the number of recorded blakttkehg each session was varied. The recorded ssssio
were as follows:
e Session S1 - 36 blocks to train the classifier, imethe participant counts cue flashes mentally (O
state);
e Session S2 - 40 blocks for each cue, wherein thticipant counts the cue flashes mentally (ON

state);



» Session S3 - 40 blocks for each cue, wherein thejpant gazes at the flashes (OFF state).

The experimental time during session S1 was 4.081t®$, while S2 and S3 sessions were 4.53 minutes
in duration. A baseline recording of 60 seconds masle before each session. The impedance levels of
EEG electrodes and positioning of NIRS optodes alas checked after each session during the break.
The experiments were designed to infer the efféataining classifiers with data wherein the papamnt
concentrates on the experiments (ON state) andglurstances when he/she does not concentrateson th
experiment (i.e. gets onto the OFF state). A caeciirecording of EEG-NIRS provides complementary

hemodynamic information from NIRS parameters.

{Insert Figure 5 around here}

5. Analysis and Results of the Second Experiment
The signal processing techniques for EEG and NIRf dvere implemented as discussed in earlier
section. The concurrently recorded sessions of BRG NIRS were analyzed in two different ways to

study the utility of simultaneous recordings for IEXpplications.

5.1 Training Dataset Selection

Two Bayes Linear Discriminant Analysis (LDA) cld#sis with the same parameters were trained using
S1 session (participant concentrates) and S3 segsoticipant does not concentrate) datasets blduk

by block classification accuracy for each coloue,colack and red over time using session S2 data, f
classifiers trained on S1 session (participant eptrates) and S3 session (participant does not
concentrate) datasets are shown diagrammaticalfygure 6(a) for one participant. Similar resultsrev
obtained for the other participants. The singlaltclassification accuracies achieved for both the

discussed cases are depicted in the first and demdnmns of Table 4 for four participants. Eacbsgan



(S2 and S3) had 40 blocks with each having fouoursl Each colour was flashed for 100 ms with an

ISI* of 750 ms.

The x-axis in Figure 6(a) represents time, highliggnhblock by block EEG classification accuracywho
by y-axis. The time is calculated as 40 blockscokburs x 850 ms/1000 ms = 136 seconds. Stemirplot
the figures highlights the classification over timevalue of 1 on y axis indicates correct detectmd a
0 indicates incorrect detection for each block (foolour flashes). Green ovals represent EEG bhoisk

classifications above two in sequence.

In another analysis, Bayes LDA classifier was &dinsing S1 dataset (concentrating) and S3 dgtastet
concentrating) was used as testing data. Poor B&SSification was achieved and is depicted in thal f
column of Table 4. The mean and standard devidtorthe sessions S2 (concentrating) and S3 (no
concentration) were calculated for the NIRS datasdo gauge the possibility of selecting an eiffect
training dataset from NIRS parameters. Howeverrdsilts obtained were not statistically significant
different between the two sessions (S2 and S3)amdcorded NIRS data. Nevertheless, the resoits fr
EEG indicate the importance of selecting trainiatpdvhere the participant concentrates as shovtheby

higher number green ovals — 11 ovals as compargatals.

{Insert Table 4-5 around here}

5.2 Participant Concentration Monitoring

The use of concomitant EEG-NIRS in monitoring réale participant concentration levels was also
explored as depicted in Figure 6(b). Due to spacdraints, only the concomitant EEG-NIRS from one
participant is shown here. EEG block mis-classifitegs above two in sequence were considered and the
corresponding NIRS levels were analysed as illtestran Figures 6(b). During most instances wheia po

classification accuracy for EEG was obtained (asvshby the ovals), a corresponding low/minimum in

! Inter —stimulus interval (ISI), which is the tirbetween two flashes.



the oxygenated blood of the NIRS was noticed asvshiay the red and purple arrows (purple arrow
shows the correct dip in NIRS close to the poossifecation accuracy while red arrow does not iatic
a dip). However, consistent results were not olekfer all the poor classification instances as loan

seen from Figure 6(b). Nevertheless, as this ig amlilot study, the results obtained are repaniee.

{Insert Figure 6 around here}

6. Discussion

The use of EEG-NIRS integration in selecting tragnidatasets as well as real-time monitoring of
participant concentration was attempted. Howevesults due to integration were not statistically
significant from an NIRS viewpoint. The possibléfadis/speculations in this study could be the abse

of trigger information and synchronisation of EE@daNIRS recordings, which would have helped in
doing an accurate averaging analysis of NIRS detm EEG being a higher frequency signal than NIRS
which is a lower frequency signal, concurrent t@ak analysis might not have given effective result
NIRS was recorded from the forehead, while EEG measrded in the midline parietal region, wherein
this temporal difference (i.e. differences due kacement of EEG electrodes and NIRS optodes) might
have caused the poor results. Also NIRS speedearatipn is limited by the nature of metabolic res®

as well as the inherent delay, thereby making ties-concurrent analysis a difficult task. Also B30
being a relatively fast paced paradigm, directelation was perhaps not possible to achieve. Adl sae
important motivation observed in this pilot studyaswvthe positive results obtained from an EEG
viewpoint, highlighting the importance of selectitite correct training dataset to achieve good enlin

classification. However, it is hoped that this warill motivate further research on these lines.

7. Conclusion

EEG has been popular as a modality for applicatseueh as BCl and measuring cognitive levels. In
recent times, research groups have started exglti@muse of NIRS to obtain the control commands fo
BCI based applications. Taking this idea forwanm attempt to integrate EEG-NIR to solve challenging

BCI issues, namely training dataset selection atigpant concentration monitoring was made. This



study presented the recording setup using EEG retkst and NIRS optodes, signal processing
techniques and experiments performed. The studgiiimg mathematical tasks and relaxation states
provided motivating results conforming those in liberature where oxygenation mean values from the
ensembled trials during math task were higher tthen relaxation phase for all participants. It was
envisaged that the complementary information preditty NIRS could be effectively used to select
training datasets and monitor participant conc¢intrausing EEG-NIRS integration. Motivating results

were obtained using EEG datasets only, as illestran Tables 4-5. Possibly, having a synchronised
system with triggers for EEG as well as NIRS andingan attempt on a lesser fast paced paradigam lik
motor imagery could probably give better succeswugh EEG-NIRS integration studies are still in

infancy, this work is hopefully a motivation forrther exploration on that front for the BCI resdmarc

community and cognitive performance measures.
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Figure 1: Design, setup and positioning of NIRSodps (upper half) and EEG electrodes (lower half).
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Table 1: Examples of mathematical tasks for NIR@st

Task 1 (107 + 235) — (78 — (-12)) + 49 = ?

Task 2 (155 — 65) - (-18 — (-24)) + 79 =2

Task 3 (138 - (-27)) - (121 +42) +21 ="




Table 2: Mean and standard deviation of the tefemaatical tasks and relaxation phases

Participant Mean and std of task trials Mean and std of rest trials
(Channel 1, HbO) (Channel 1, HbO)
1 0.1741+ 0.1973 -0.039+ 0.1498
2 0.0863+ 0.1932 -0.0887+ 0.1280
3 0.151+0.234 -0.0195+ 0.324




Table 3: Statistical analysis for mathematical seekd relaxation phases (first 15 seconds)

Participant 1 Participant 2 Participant 3
(Channel 1, HbO) (Channel 1, HbO) (Channel 1, HbO)
Mean of Mean of Mean of Mean of | Mean of | Mean of
each task eachrest | eachtask| eachrest| eachtask| each rest
phase phase phase phase phase phase
0.3159 0.2478 0.4678 -0.2544 0.0260 0.0705
0.5057 -0.1712 0.1806 -0.2064 0.416p -0.20B83
0.3538 -0.0534 -0.2222 0.0197 0.063p 02
0.2492 -0.1043 0.0248 0.1164 -0.3758 0.1361
0.0724 -0.0456 0.0831 0.0043 0.425p 0.0408
-0.1266 -0.2180 0.1130 -0.0654 0.154P -0.0038
-0.0757 -0.0747 0.0687 -0.2864 0.0977 -0.3413
0.1938 0.0299 -0.1199 -0.1026 0.2722 0.0882
0.2106 0.1645| 0.2650 -0.0254 0.1139| -0.4214
0.0423 -0.1741 0.0017 -0.08643 0.3209 0.7139
t-test p=0.0137 t-test p=0.0282 t-test p=0.1937




Table 4: EEG classification accuracies (%) for masicombinations of training and testing datasets.

Participant

S1-Training Dataset
(Concentrating),
S2-Testing Dataset

(Concentrating)

S3-Training Dataset,
(No Concentration)
S2-Testing Data

(Concentrating)

S1-Training Dataset,
(Concentrating)
S3-Testing Data

(No Concentration)

1 73.75 % 27.50% 23.75%
2 48.75% 25.00% 16.25%
3 62.50% 32.50% 22.5%
4 56.25% 30.00% 23.75%




Table 5: Mean and standard deviation of NIRS datséssions S2 (concentrating) and S3 (no

concentration).

S2: Mean and std, HbO (um) S3: Mean and std, Hb®) (
Participant| Colour 1 Colour 2 Total Colour 1 Colour 2 Total
1 0.0185+0.33| -0.0055+0.230.0068+0.29| 0.0212+0.38 -0.0113+0.830.0052+0.35

0.0644+0.03| -0.0141+0.380.0248+0.36| -0.0232+0.390.0246+0.39| -0.0007+0.40

2
3 0.0016+0.19| 0.0021+0.18 0.0018+0.18 -0.0241+0.23021+0.21) -0.0111+0.22
4 0.0231+0.45| -0.0457+0.26-0.0111+0.37 -0.0079+0.28 0.0095+0.39| 0.0007+0.34




