Clarifying and Compiling

C/C++ Concurrency:

from C++11 to POWER

Mark Batty!  Kayvan Memariah?

!University of Cambridge

Scott Owens  Susmit Sarkdr

Peter Sewell
2INRIA

{first.last}@cl.cam.ac.uk

Abstract

The upcoming C and C++ revised standards add concurrency to
the languages, for the first time, in the form of a subdiaxed
memory modefthe C++11 mode). This aims to permit compiler
optimisation and to accommodate the differing relaxed-memory
behaviours of mainstream multiprocessors, combining simple se-
mantics for most code with high-performarioe-level atomicgor
concurrency libraries.

In this paper, we first establish two simpler but provably equiv-
alent models for C++11, one for the full language and another for

the subset without consume operations. Subsetting further to the

fragment without low-level atomics, we identify a subtlety arising
from atomic initialisation and prove that, under an additional condi-
tion, the model is equivalent to sequential consistency for race-free
programs.

We then prove our main result, the correctness of two proposed
compilation schemes for the C++11 load and store concurrency
primitives to Power assembly, having noted that an earlier proposal
was flawed. (The main ideas apply also to ARM, which has a
similar relaxed memory architecture.)

This should inform the ongoing development of production
compilers for C++11 and C1x, clarifies what properties of the
machine architecture are required, and builds confidence in the
C++11 and Power semantics.

Categoriesand Subject Descriptors  C.1.2 Multiple Data Stream
Architectures (Multiprocessork)Parallel processors; D.1.8pn-

current Programming Parallel programming; F.3.1Specifying
and Verifying and Reasoning about Progrgms

General Terms Languages, Reliability, Standardization, Theory,
Verification

Keywords Relaxed Memory Models, Semantics

1. Introduction

subtlerelaxedmemory models, to permit various hardware optimi-
sations. Mainstream concurrent programming languages (e.g. Java
C, C++) also provide relaxed memory models, although of rather
different kinds, both to permit compiler optimisations and so that
they can be compiled to those processors without excessive use of
hardware memory barriers. Moreover, for several of those multi-
processors and languages, the actual memory model provided has
long been poorly specified and not well understood.

In recent years that situation has improved. Of par-
ticular relevance here, the 1SO C++ Standards Committee
(JTC1/SC22/WG21) has introduced a memory model, as out-
lined by Boehm and Adve [BAO08], into their revised standard
(C++11) [Becll1], and it is expected that the upcoming revision of
the C standard (informally, C1x) will adopt essentially the same
model. This standard is written in prose, subject to the usual prob-
lems of ambiguity and not directly testable, but in previous work we
produced a formal semantics for C++11 concurrency [BOSE.

In discussion with members of the WG21 concurrency subgroup,
we identified various issues with earlier drafts [BQI®)], propos-

ing solutions that are now incorporated into the new ISO C++11
standard; the result has a close correspondence between the formal
semantics and the standard prose.

The C++11 memory model is an axiomatic one: presuming
a threadwise operational semantics that defines candidate execu-
tions consisting of the sets of memory read and write events for
threads in isolation, it defines when such a candidat®isistent
and whether it has a race of some kind; consistency is defined in
terms of a happens-before relation. It is a data-race-free (DRF)
model [AH90]: for a program that has no race in any consistent
execution, the semantics is the set of all such, while other pro-
grams are undefined (and implementations are unconstrained). The
design is stratified: there is a sublanguage with sequentially con-
sistent atomic operations which is intended to have simple seman-
tics for common use, then additional release/acquire and relaxed
atomic operations (needing less hardware synchronisation to im-
plement) for expert use in high-performance concurrency libraries

Most work on semantics and reasoning for shared-memory and system code, and finally release/consume atomics, for maxi-
concurrency has assumed a sequentially consistent (SC) memmum performance on architectures such as Power and ARM where
ory [Lam79], in which a single shared memory is acted upon by dependencies provide useful ordering guarantees. The whole is rel-
interleaved threads. In practice, however, mainstream mu|tipr00€S-ati\/e|y complex — for example, to accommodate release/consume
sors (x86, Sparc, Power, ARM, Itanium) provide weaker and more atomics, it involves a happens-before relation that is, by design, not
necessarily transitive.

The first contribution of this paper is to simplify the C++11
model, proving that it is equivalent to a simpler modé|, without
the technical concept of “visible sequences of side effects”. Subset-
ting the language to remove release/consume atomics gives a fur-
ther simplification,M;, with a transitive happens-before relation.
Subsetting still further, to the fragment without low-level atomics,
one would like to know that that model is equivalent to a sequen-
tially consistent models. In Section 4 we show that this holds for

Permission to make digital or hard copies of all or part of this work for personal
classroom use is granted without fee provided that copies are not made outbstrib
for profit or commercial advantage and that copies bear this notice and the fubiritati
on the first page. To copy otherwise, to republish, to post on servers or ttritedes

to lists, requires prior specific permission and/or a fee.

POPL’12, January 25-27, 2012, Philadelphia, PA, USA
Copyright(© 2012 ACM 978-1-4503-1083-3/12/01. .. $10.00



programs that are race-free ., but that thelM/, and M3 notions first part. Along the way we obtain results about the Power archi-
of race can differ, with an example involving atomic initialisation; tecture of independent interest, e.g. showing that (and why) insert-
we give additional conditions under which the two do coincide. ing a sync between all accesses does restore SC. We also prove
Meanwhile, on the hardware side, Sarkar et al. [$$2&] have soundness of an alternative mapping, with the SC atomics imple-
established a rigorous memory model for Power multiprocessors, mented as below — the “trailingync” convention, suggested (in
based on extensive testing and discussion with IBM staff. Power the ARM context, with DMB in place ogync and lwsync) by
has a more relaxed and more subtle model than Sparc TSO orBoehm [Boel1l]:
x86-TSO, but it and ARM are similar in this respect, and prelimi-
nary testing and discussion with ARM staff suggests that the same
model, with minor differences, applies there (Itanium is also quite
relaxed but rather different). This model is of a very different kind
to that for C++11.: it deals with the Power dependencies and barriers Depending on the relative frequencies of SC loads and store, and
(sync, lwsync, isync) rather than the C++11 atomic primitives; on the costs of the different hardware barriers (which may vary
it gives semantics to all programs, not just race-free prograngs; an significantly from one architecture to another, and also between
the presence of speculative execution is observable to the programimplementations), this may have better performance. Note that for
mer on these machines. Accordingly, this model is in an abstract- code produced by different compilers to correctly interoperate, they
machine style rather than an axiomatic style: it defines labelled must all make the same choice of mapping, which should be part
transition systems for a thread semantics (with explicit speculation) of the ABI.
and for a storage subsystem (abstracting from the cache hierarchy), We also show that both these mapping are local optima: weak-
with interactions between the two. ening any of the clauses (e.qg. replacingyac by alwsync) yields
Between programming language and processor, how can onean unsound scheme.
compile a programming language with the C++11 memory model In the first contribution we covered the full C++11 primitives
to Power or ARM? There are three main parts to this question: one as in [BOS 11], but for these correctness results we focus just on
has to consider how each C++11 atomic operation is compiled to the load and store operations in the tables above, omitting dynamic
assembly code, perhaps with barriers and/or preserved dependenthread creation, C++11 fences, read-modify-writes, and locks. The
cies; when conventional compiler optimisations are legal in this first two are minor simplifications, but the last two are substantial
setting; and what new optimisations are needed, e.g. to remove re-questions for future work, as their Power implementations involve
dundant barriers. In the relaxed-memory-concurrency settingf all  the load-reserve/write-conditional instructions, for which we do not
these are sufficiently delicate that it is hard to have any confidence yet have a well-established relaxed-memory semantics.
in correctness without proof. We focus here on the first. To make this paper as self-contained as possible, we give a
A naive compilation scheme would be to insert the heavyweight brief introduction to our source and target starting points, the
Powersync barrier between every C++11 memory access. Even C++11 [BOS 11] and Power [SSA11] models, in Sections 2 and
here, it is not at all obvious that this would be a correct implemen- 6 respectively. Section 3 describes our simplifications of C++11
tation (indeed, on Itanium, inserting the barrier between every  and Section 4 the atomic initialisation issue; Section 5 discusses
access is not sufficient to regain SC), and for a realistic implemen- the correctness of the above C++11-to-Power compilation schemes
tation, with good performance, it is essential not to introduce un- informally, looking at specific examples; and Section 7 discusses
necessary synchronisation. McKenney and Silvera have proposedour correctness statement and proof that they are correct in §enera
a mapping of the core C++ atomic primitives to Power assem- We discuss related work and conclude in Sections 8 and 9.

C++11 Operation| Power Implementation
Load Seq Cst 1d; sync
Store Seq Cst lwsync; st; sync

bly [MS11]. For the different flavours of (nonatomic and atomic) We focus throughout on the key ideas, as it is not possible to
loads and stores, this is: include full details here (the model definitions alone for C++11
] _ and Power are around 15 and 50 pages of typeset mathematics),

C++11 Operation| Power Implementation but our definitions and proofs are available on-line [BMOOur
Non-atomic Load| 1d definitions are expressed in Lem [OBZNS11], a lightweight lan-
Load Relaxed 1d guage of machine-typechecked type, function, and relation defi-
Load Consume | 1d (and preserve dependency nitions, from which one can generate LaTeX, prover definitions
Load Acquire 1d; cmp; bc; isync in HOL4, Isabelle/HOL, and (in progress) Coq, and executable
Load Seq _CSt sync; 1d; cmp; bc; isync OCaml code. Our proofs are a combination of machine-checked
Non-atomic Store| st interactive HOL4 proof and rigorous hand proof (with auxiliary
Store Relaxed st definitions and lemma statements in Lem).
Store Release lwsync; st This is a domain in which rigorously proved results are of di-
Store Seq Cst sync; st rect interest to mainstream industrial software development, which

typically relies almost entirely on testing for assurance. The non-
determinism of relaxed memory multiprocessors makes effective
random testing challenging, and the fact that the programming lan-
guage and processor architecture specifications are looser than cur-
rent implementations makes it insufficient even in principle. Com-
piler groups are now implementing C++11 concurrency, and we
are in ongoing discussion with members of the Red Hat GCC and
correctness involves much of the behavioural subtlety of the C++11 ﬁ]Rel\\flvg:E l\jvpesgelgecml L@fes(h:; !(,j:ﬁedggﬁy?grr;?ﬁtrlxbﬂa;gﬂtlgt%?]rtv\gls

and Power relaxed memory models, and is far from obvious. In- :
deed, the mapping above has been updated in the light of our Com_found to put the SC storgync on the wrong side of the store).

ments following Sarkar et al. [SSA1]: an earlier proposal in- .
cluded an optimisation that we observed is not sound w.r.t. the 2. Background: C++11 concurrency

Power architectural intent (we give two counterexamples here). Our This section gives a general introduction to the C++11 concurrency
proof relies on the simplified general C++11 modé| from the primitives and their semantics. We refer the reader to [BOS

This compiles some C++11 operations to normal Power loads
and stores, some with a Power lightweight synchronisation barrier
lwsync or heaviersync, and in some cases uses just a combination
of an artificial control dependency (of a compargp and condi-
tional branclbc) and anisync.

Our second contribution is to prove the above mapping correct.
While the mapping involves only a few assembly instructions, its



Becl1, BAO08] for a full discussion of many subtle points that we release/consumeariant of release/acquire atomics. For example,

cannot cover here. suppose one thread writes some data (again perhaps multi-word)
o then writes the address of that data to a shared atomic pointer, while
2.1 The Language: C++11 concurrency primitives the other thread reads the shared pointer, dereferences it and reads

C++11 is a shared-memory-concurrency language with explicit the data.
thread creation and implicit sharing: any location might be read
or written by any thread for which it is reachable from variables int x;
in scope. It is the programmer’s responsibility to ensure that such atomic<int *> p(0);
accesses amace-free For example, in the following program the }/{ i fender thread
spawned thread, executingread_body (&x), writesx while the p.sfcore(&x,memory order_release)
main thread reads, without any synchronisation between the two. /] receiver thread =
These are non-atomic . int* xp = p.load(memory_order_consume);
reads and writes, and*inciude <thread> int rp= *ip; 7
. . using namespace std;
this constitutes adata ;4 thread_body (int* p) {*p = 2;}
race the fact that the jp¢ main() {
program exhibits an exe- int x = 1;

Here the combination of the release/consume pair and the de-
pendency at the receiver from the read ob the read ok suffices

cution containing a race  thread t1(thread_body, &x); to ensure the intended behaviour.

makes the programin-  int r = x; Finally, in some cases one needs only very weak guarantees, and
definedaccording to the ~ tt-join(); herememory_order_relaxed atomics can be used. The language
standard: an implemen- Teturn 0; } also includes explicit fences, in acquire, release, acquire-release,

tation has freedom to behave arbitrarily (in particular, compilers @nd SC forms, to ease porting of older fence-based code.

can perform optimisations that are not sound for racy programs,

which means that common thread-local optimisations can still be 2.2 Semantics: the C++11 axiomatic memory model

done without the compiler needing to determine which accessesTyagitional shared-memory operational semantics involves an ex-

might be shared). _ plicit memory, with interleaved transitions by threads reading and
The language provides several mechanisms for concurrent pro-yjting that memory. That is intrinsically SC, and for a relaxed-

gramming without races. First, accesses to shared state can be Pr%emory language such as C++11 a quite different semantic style is

tected using mutex locks of various kinds, e.g. usingock () needed.

andm.unlock(). We then have variousequentially consistent We say acandidate executiorz of a C++ program comprises

atomicoperations on objects of integral type (bytes, integer types, 4 get of memory actions together with various relations over them.
etc.): atomic loads, stores, and various read-modify-write opera- The actions are of the form-

tions. Atomic operations do not race with each other, by definition,

so changing the above to use SC atomic operations fiives a action = )
well-defined program, and the allowed behaviours are intended to a:Rpa x=v non-atomic read
a:Wpa x=v non-atomic write

be those one would naively expect in an SC semantics. The inten- \ A
tion is that locks and SC atomics will suffice for most program- | a:Rmox=v atomic read
mers. However, making all racy accesses sequentially consistent is | a:Wmo x=v atomic write ) ]
not always required and can incur a significant performance cost, } a:RMWnmo x=v1/v2  atomic read-modify-write
\
|

so C++11 also provides sevetaiv-levelatomic operations (with CHEpS lock
different memory order parameters) for expert use, e.g. inurenc a:U x unlock
rency libraries and other systems code. For message-passing id- a:Fmo fence

ioms, in which one thread writes some (perhaps multi-word) data Herea is a unique id (including a thread id},a location, ands

and dyher:ha f(ljagiy, v%hileﬁqnotrt\er Wakitst;]o sﬂee thq’: fllag writ% tt)ﬁfore a value. Memory ordermo range over those mentioned earlier,
reading the data, it sultices to make the flag writelaaseand the  previated thuSC, RLX, REL, ACQ, CON, andA/R.

flag read amcquireatomic: The relations include four binary relations determined by a
threadwise operational semanticsequenced-beforésb), addi-

::Zm}i{éqnw 7(0); tional synchronises witfasw),data dependencfdd), andcontrol
/7 sender thread TO dependencycd); together with three that determine an interrela-
x=1; tionship between memory actions of different threadads-from
y.store(l,memory_order_release) ; (rf) relates a write to all the reads that read from it; Segjuential
/7 receiver thread Tl consistent orde(sc) is a total order over all SC actions; amcd-

while (0==y.load(memory_order_acquire)) {};

int T = x- ification order(mo) is the union of a per-location total order over

writes to each atomic location.
The synchronisation between the release and acquire ensures Given a candidate execution, the semantics defines various
that the sender’s write af will be seen by the receiver, i.e., that derived relations: release-sequence hypothetical-release-
the read ofx must be from the writex=1 rather than from some  sequence(a variant of release-sequencaised in the fence
uninitialised value. semantics), synchronizes-with (sw), carries-a-dependency-to
On multiprocessors with weak memory orders, notably Power (cad), dependency-ordered-beforédob), inter-thread-happens-
and ARM, release/acquire pairs are cheaper to implement thanbefore (ithb), happens-before (hb), visible-side-effect and
SC atomics but still significantly more expensive than plain stores visible-sequences-of-side-effecibese are used to define when a
and loads (c.f. the precedingisync for the release and following  candidate execution isonsistentand whether it contains eace
cmp; be; isync for the acquire in Section 1; we return later of some kind: adata race unsequenced racer indeterminate
to how these act). However, these architectures do guarantee thatead which we collect into a predicatence ex. A data race is
certain dependencies in an assembly program are respected, and pair of accesses to the same address, at least one of which is
in many cases those suffice on the reader side. This motivates aa non-atomic write, which are not happens-before related. The



consistentreadsfrom_mapping check has subclauses as on the
right below.

consistentexecution=
well_formedthreads\

consistenreadsfrom_mapping=
consistentnon.atomicreadvalues

consistenfocksa consistenfatomicread values.
consistentinter_thread hba coherentmemoryusen
consistenisc.ordera rmw_atomicity A
consistenimodificationordera screadsrestricteda

well_formedreadsfrom.mapping. scfencesheeded
consistentreadsfrom_mapping

For a programe_prog for which all its consistent executions
are race-free with respect to all three kinds of race (which we
write as drf c_prog), the semantics is the set of all those con-
sistent executions; other programs are undefined. For example
the release-acquire program excerpted above is race-free, and on
of its consistent executions is shown below (suppressing the ini-
tialisation writei:W,, y=0). To give some flavour of the seman-
tics, we describe why this execution is indeed consistent, refer-
ring the reader to [BOS11] for the detailed definitions. The
well_formedthreadsand well_formedreadsfrom_mappingpredi-
cates are straightforward sanity conditions. For this simple ex-

THEOREM1. A C++11 candidate execution is consistent in C++
iff it is consistent inM/1, and the races are identical. [Proof: the
happens-before relations coincide; mechanised in HOLA4]

This has already been useful in automatic analysis [BWH,
as it removes the only use of an existentially quantified set of sets
of actions in the semantics.

Our second simplified model\/;, removes the complications
introduced by atomic consume operations (included only for expert
programmers on Power and ARM) for the subset of the language
without them. The original C++ model and; have a complex,
non-transitive definition of happens-before, from the standard:

ithb; let r = sw U dob U (sw; sb) in (r U (sb;r))*
. hbs sb U ithb

If we subset the language to remove atomic consume operations,
we can give an equivalent mod&l, with a much simpler

hbs = (sb U sw)™

THEOREM 2. A C++11 candidate execution without consume op-
erations is consistent in/; iff it is consistent inM/», and the races
are identical.[Proof: the two hb relations coincide; HOL4]

ample the inter-thread-happens-before (ithb) and happens-before

relation (hb) coincide, and are just the transitive closure of
the union of sequenced-before (sb) and the synchronised-with
(sw) edge created by the release/acquire phijrc). The con-
sistentinter_thread happensbefore predicate checks that this is
acyclic. Theconsistenfocks and con-

sistentsc order checks are vacuous, as aW,,x=1

there are no lock or SC atomic opera- b hb,
tions in this example. The modification

order (mo) is empty, as there is only one AN

write to the atomic location, soonsis- rf,sw,hb
tentmodificationorder is vacuous. For cRaggy=1
consistentreadsfrom_mapping sb,hbﬁ

the main subclause is consis- d:Rop x=1
tentnonatomicreadvalues  which

checks that the non-atomic readxafkes the value of @isible side
effect which in a race-free program is unique and is the most re-
cent write in happens-before. Theansistentatomicreadvalues
permits the atomic read of to read from any element of a
visible sequence of side effectshich is a set of writes of,

ordered by modification order, headed by a visible side effect

4. Atomic initialisation and SC semantics

Subsetting further to remove release/acquire and relaxed opera-
tions, leaving just nonatomics and SC atomics, one would like to
prove a result along the lines of Boehm and Adve [BA08], show-
ing that for such programs th&/> semantics (and hende; and
Standard C++) and an SC-for-DRF-programs semantics are equiv-
alent. Our third simplified modelM/s, has the obvious SC notion
of consistent execution, with a total order over all operations, and
requiring reads to read the most recent writes in that. For defining
data races, it uses the same style of definition as C++11, using a
happens-before relation, but calculates that from the total order. To
prove the result, we would need to show that a program is race-free
in Mo iff it is race-free inM3, and, for any race-free program, the
sets of consistent executions are the same.

Unfortunately, this is not true in general. Given a program which
is race-free inM, we can show that it is race-free i3 and that
it has the same consistent executions in both:

THEOREM 3.

and terminated before any write that happens-after the read. Thed”fz c-prog = drfsc_prog

coherentmemoryuse does not contribute because the happens-

before condition already enforces coherence here. The remaining

three (mw_atomicity, screadsrestricted scfencesheedell are
vacuous, as there are no RMW operations or SC atomics.

3. Simplifying the C++11 model

In this section, we establish two simplifications of the C++ model
of [BOS"11]. The standard tries to give an intuitive definition of
which values an atomic read might take usuigjble sequences of
side effectsAs Batty et al. [BOS 11, BOS"10] note, taken alone
they are too weak, and additional coherence axioms (now incor-

porated into the ISO C++ Standard) are necessary to capture the

intended semantics. Given those, we can prove that the concept o
visible sequences of side effertsinnecessary, permitting a much
simpler definition otonsistentatomicread valuesin a modelM; :

consistent_atomic_read_values; =
VbeEactions.
(is_readb A is_atatomiclocationik b) =
(if (Ja-vse€actions. (a_vse, b) € wvse)
then (3a€actions. ((a, b) € rf) A = ((b, a) € hbd))
else = (Ja€actions. (a, b) € rf))

Vex. opsem c_prog ex =
(consistent_exs ex <= consistent_exs eac)

(Here we writeopsem ¢_prog ez to mean that candidate execution
ex is admitted by the threadwise operational semantjggm for
C++11 progranc_prog.) This is an easy corollary of the following
lemma:

LEMMA 4.

. consistent_exs er = consistent_exrs ex v races ex
2. consistent_exs ex = consistent_exs ex v races ex
3. consistent_exrs exnopsem c_prog ex = consistent_exs exv
Jdex’. consistent_exs ex’ A races ex’ A opsem c_prog ex’

f[Proof: the first two are straightforward; for the third, we can
identify a minimal race in thé\/s total order and transfer that to
a consistent execution its.]

However, the other direction fails, as the program below shows.
In the SCM3 semantics, it is race-free, butid, it has a consistent
execution that has races. The example relies on the fact that in
C++11 there can be non-atomic writes to atomic locations: the
initialisation of atomic locations are non-atomic (so that they can
be implemented without fences).



atomic<int> x(0);

atomic<int> y(0);

if (1==x.load(memory_order_seq_cst))
atomic_init (&y,1);

if (1==y.load(memory_order_seq_cst))
atomic_init(&x,1);

In the SC M3 semantics, both loads must readind so nei-
ther of the (non-atomicktomic_init writes can take place; the
program has no races and so has defined behaviour. Bufzin
there is a consistent execution in which both loads reaitihis
execution has races, and solf, the program’s behaviour is un-
defined. (This execution also has dynamic re-initialisation; the pro-
gram might also be considered undefinedin for that reason.)

This issue can be eliminated by requiring atomics to be ini-
tialised when constructed, removiagomic_init, and requiring

der as observed by any other thread (otherwise, as they are to dif-
ferent locations, they might be re-ordered in the storage hierar-
chy, or even committed out-of-order). Replacing teync by an
isync would still permit the former reordering, as is observable on
Power 6 and 7 processors (MP+isync+ctrlisync), and just by typ-
ing it cannot be replaced by a control-isync, as one cannot have a
dependency from a write. Meanwhile, the control-isync relation-
ship ensures that the read:otannot be satisfied until thiesync
is committed, which requires the program-order-previous branch to
be committed, which requires the readyefl to be committed.
Without theisync, the Power architecture permits a processor
to speculatively satisfy the read afout-of-order, before satisfy-
ing the program-order-previous read(syotlespite the intervening
conditional branch. It can thereby read from the initial state, and
this is observable in practice, for a litmus test MP+lwsync+ctrl.
(That test is also C++11-expressible: it is essentially the result

that atomics are accessed via a path through sequenced-before angf applying the mapping to the release-acquire example with the

reads-from corresponding to data-flow from their creation (i.e., not
by forging pointers). Under these additional restrictions, we have
proved the desired equivalence i, and M3, and hence that for
this fragment C++11 has SC-for-DRF-programs semantics.

THEOREM5. A C++11 candidate execution that uses only
nonatomic operations, SC-atomic operations, and locks, and that
satisfies the conditions above, is consistent in C++11 iff it is con-
sistent inM3, and the races are identical.

5. Correctness of the mapping, informally

We now instantiate the first mapping &f for some key examples,
giving an introduction to the behaviour that Power does and does
not guarantee for them, and hence explaining informally why the

mapping is correct in these specific cases. We also show that both

mappings are locally optimal.

read-acquire replaced by a read-relaxed.) T&enc alone, with-

out the control dependency from the preceding read to a condi-

tional branch, also would not suffice: in this case thgnc could

be committed first, enabling reddto be satisfied and commit-

ted before anything else occurs. We have not observed this out-

come in practice on current Power 6 or Power 7 processors (for

test MP+lwsync+isync), but it is architecturally permitted. For the

analogous ARM test MP+dmb-+isb, the outcome is observable.
Now consider the release-consume exampk2adf, mapped to:

p=0

TO
ri=1; r2=&x; r3=&p

T1
r3=&p

a:stw r1,0(r2) writex=1 d:1lwz r4,0(xr3) readp
b: lwsync from write-rele: 1wz r5,0(xr4) readxp
c:stw r2,0(r3)  write p=&x

In C++11, synchronisation effects are associated to atomic loads The writing side has ahwsync as before, but now the reading side

and stores with particular memory order parameters, but Power

has no control-isync. It is correct nonetheless, because the Power

assembly language has just plain loads and stores; it providesarchitecture respectgidress dependencibstween loads: here the

the sync, lwsync, and isync instructions, together with certain

reade reads from an address in regisier which takes its value

dependencies, to constrain the otherwise highly relaxed memoryfrom the program-order-previous reddIn such a case the reads
model. We introduce these constraints and the model by examplemust be satisfied (and indeed also committed) in program order.

here, the key properties we depend on are summarisgél. iAp-
plying the §1 mapping to the C++11 release-acquire example of
§2.1 gives a Power assembly program as follows:

y=0
TO T1
ri=1; r2=&x; r3=&y r2=4x; r3=&y

a:stw r1,0(r2) write x=1 loop:

b: lwsync from write-reld: 1wz r4,0(x3) ready

c:stw r1,0(r3)  writey=1 e: cmpwi r4,0
f: beq loop
g: isync from read-acq
h: 1wz r5,0(r2) readx

Here stw is a store,lwz a load, cmpwi a compare-immediate,
andbeq a conditional branch. This is essentially the same as the
MP-+lwsync-+ctrlisync example of [SSALL]: it has anlwsync
between the two Thread 0 writes and async before the sec-
ond Thread 1 read that follows a conditional branch that is data-

dependent (via the compare) on the first Thread 1 read; we call the

latter acontrol-isyncrelationship.
For this to be a correct implementation, that Power synchronisa-

tion must be strong enough to exclude any outcomes that the C++11

semantics forbids. In particular, it must prevent the Thread 1 read
of x from reading the initial state instead of from the Thread 0
write of x=1. The lwsync and control-isync are both necessary
and sufficient. Th&wsync keeps the two Thread 0 writes in or-

The above examples involve only two threads, which turns out
to be a very special case. With three or more threads, one can ob-
serve that on Power a write does not necessarily become visible to
the other threads atomically, and indeed can be propagated to them
in different orders, or even never propagated to some threads. Any
transitive reasoning across multiple threads relies orctimsula-
tivity of the Powersync andlwsync barriers. Consider a three-
thread version of the release-acquire example, with release-acquire
synchronisation between the first pair of threads and between the
second pair:

int
TO

X5
x=1;
y.store(1,memory_order_release) ;

while (0==y.load(memory_order_acquire)) {};
z.store(1,memory_order_release);

while (0==z.load(memory_order_acquire)) {};
r = x;

atomic<int> y(0); atomic<int> z(0);

T1

T2

The mapping introduces control-isyncs (from the load-acquires)
and lwsyncs (from the store-releases) as in the candidate Power
execution illustrated below:

Thread 0 Thread 1 Thread 2
a: W[x]=1 ¢ Rly]=1 e: R[z]=1
) lctr“sync f ctrlisync]|
Iwsync
Iwsync l —
b: Wlyl=1 d: Wizl=1 T R=0



Here the effect of the Thread 1 control-isync is subsumed by the
following 1wsync (eliminating the former is likely to be an impor-
tant compiler optimisation). That leaves the Thread 2 control-isync,

which acts just as in the first release-acquire example, and the two

lwsyncs. To rule out the C++11-forbidden execution shown, we
need to know that the writes andd, by different threads and to
different locations, are propagated to Thread 2 in that order. By the
thread-local property afwsync used above, the Threadliisync
ensures thad andb are propagated to Thread 1 in that orderaso
must have been propagated to Thread 1 befaeads fromb and
hence before the Threadl¥sync is committed. This means that

a is in theGroup Aof thatlwsync, the set of writes that have been
propagated to its thread already. In turn, the cumulativity of Power
lwsyncS means thab must be propagated to any other thread,
e.g. Thread 2, before tharsync is, and hence before writeis.

Now consider the classic four-thread IRIW example (Indepen-
dent Reads of Independent Writes). Here Threads 0 and 2 write to
two different locations; the question is whether Threads 1 and 3 can
see those writes in opposite orders, one reagd#igtheny=0 while
the other readg=1 thenx=0.

atomic<int> x(0);
TO
T1

atomic<int> y(0);
x.store(1l,memory_order_release);
r1=x.load(memory_order_acquire);
r2=y.load(memory_order_acquire) ;
y.store(1l,memory_order_release) ;
r3=y.load (memory_order_acquire) ;
r4=x.load (memory_order_acquire) ;

T2
T3

With release-acquire atomics, this is permitted in C++11 (this

is clearly not a sequentially consistent outcome, and so release-

acquire atomics dmot guarantee SC), and indeed applying the
mapping gives essentially the Power test IRIW+lwsyncs, which is
architecturally permitted and observable in practice.

With SC atomics, on the other hand, this non-SC outcome is
forbidden in C++11. To forbid it in the implementation requires
a Powersync between both pairs of SC-atomic reads, not just
an lwsync. The sync is stronger in that its Group A writes (or
some coherence-successors thereof), including any progmen-or
previous writes, must be propagated to all threads beforeythe
completes and subsequent memory access instructions can begin.

A sync is also needed between the other three combinations
of an SC atomic read or write, as shown by our SB+lwsyncs and
RO1 examples [SSA11] for write-to-read and write-to-write, and
by the WRW+WR+lwsync+sync example below for the read-to-
write case, all of which are architecturally permitted. SB+lwsyncs

is also observable on current implementations, whereas we have

not observed the last two. Both of the latter can be explained by

the fact that a Power coherence edge does not add writes into the

Group A of a subsequent barrier (WRW+WR is similar to RO1
but with the initial write pulled back along an rf edge). They are
counterexamples to the correctness of a previous version of the
mapping, which proposed awsync in place of thesync for SC
stores in normal cacheable memory.

Thread 0 Thread 2
a: W[x]=1 b: R[x]=1 d: W[y]=2
co
lwsync sync
.\
c: Wly]=1 rf e R[x]=0

Test WRW+WR+Ilwsync+sync : Allowed

The first§1 mapping creates these intervenigcs by putting a
sync before the load or store of an SC atomic. One could equally
well put them after, as in the second mapping, though in C++11 SC

a precedindlwsync for the SC atomic store (in the first mapping,
the precedingync does duty for both purposes).
Using the above examples, and some others, we can show:

THEOREM 6. Both the§1 mappings are pointwise locally optimal.

PROOF For each possible weakening there is a C++11 example
with some forbidden behaviour which would map onto a Power
program for which that behaviour is allowed, as checked by our
cppmen [BOS'11] andppcmem [SSAT11] tools using automati-
cally generated executable versions of the models. All these exam-
ples are collected in the supplementary material [BMO

e The Iload-consume dependency cannot be removed
(C++ message-passing with release/consume Power
MP+lwsync+po).

e The load-acquire control-isync cannot be weakened to just a
control dependency (MP+release/acquiseMP+lwsync+ctrl),
or to just an isync{> MP+lwsync+isync).

¢ The load-seq-cst sync, whether before or after the load, cannot
be weakened to an lwsync (IRIW+seq-ostsIRIW+lwsyncs),
or to an isync = IRIW+ctrlisyncs).

¢ The load-seq-cst control-isync in the original mapping cannot
be weakened to just control (MP+seg-cstsMP+sync+ctrl),
or to just isync & MP+sync+isync).

e The store-release Ilwsync cannot be weakened to isync
(MP+release/acquirey MP+isync+ctrlisync).

¢ The store-seg-cst sync, whether before or after the store, cannot
be weakened to lwsync (RO1+seqg-cstsR01), or to an isync
(— R+isync+sync).

O

6. Background: the Power memory model

In preparation for the correctness proof in the next section, we
recall the overall structure of the Power memory model [$$4,
sketching how the concepts we used informall§3ne.g. of a write
being “propagated to” a thread, reflect the actual semantics.

As we saw there, the fact that reads can be satisfied specula-
tively, even program-order-after a conditional branch, is observ-
able. This pushes us towards an operational abstract-machine se-
mantics, expressed as a parallel composition of a thread model and

a storage Subsystem.
Thread Thread

Write request
Read request
Barrier request

Read response
Barrier ack

‘ Storage Subsystem ‘

At any one time, a thread may have many in-flight (uncommitted)
instructions; reads can be satisfied and instructions committed out-
of-order, subject to constraints from barriers and dependendids, a
uncommitted instructions are subject to restart or abort. The storage
subsystem abstracts from the cache and store buffering hierarchy
(and does not involve speculation). It does not have an explicit
memory, but instead maintains the global accumulated constraints
on the coherence order between writes to the same address that
have been built up, together with a list for each thread of the writes
and barriers that have been propagated to that thread.

The thread and storage subsystem models are each labelled
transition systems (LTSs) synchronising on labels as in the diagram
above; their composition gives another LTS with labels:

label ::=
| FETCH tid it

atomics also have release/acquire semantics, so one then also needg CoMMIT _WRITE_LINSTRUCTION tid i w



| COMMIT _BARRIER_INSTRUCTION tid ii barrier language and of the rest of the compiler, both to remove extraneous

COMMIT _READ_INSTRUCTION tid 43 rr complexity that is irrelevant to the relaxed-memory behaviour and
COMMIT_REG.ORBRANCH.INSTRUCTION tid to let us state a general result that should be re-usable in multiple
WRITE-PROPAGATETO-THREAD w tid later compiler correctness proofs. We do so by axiomatising the

| BARRIER.PROPAGATETO_THREAD barrier tid

| SATISFY_READ_FROM_STORAGE.SUBSYSTEMtid i w
SATISFY_READ_BY_WRITE_-FORWARDING tid i1 w i
ACKNOWLEDGE.SYNC barrier

required threadwise properties of a C++11 operational semantics
and a good compiler.
For the source language, we take a C++11 program, of type

PARTIAL _COHERENCECOMMIT w; ws C_PROGRAM to be a parallel composition of single-threaded
REGISTERREAD_PREV tid i1 Teg iia programs from an abstract type PROGRAM.THREAD, With an
REGISTERREAD.INITIAL tid ii Teg arbitrary threadwise operational semantics for them that satis-
PARTIAL _EVALUATE tid ii fies certain rather mild axioms. An operational semantics opsem

is a relation betweert_PROGRAMs and sets of C++11 actions
actions. equipped with the three relevant operational-semantics
relations 0f§2.2: sequenced-beford., data-dependenayd,, and
control-dependencyd., packaged into a recordp. (additional-
synchronises-with is empty in the absence of dynamic thread cre-
ation). Recall that this threadwise operational semantics should
leave the values of memory reads unconstrained, as that is handled
by the C++11 axiomatic memory model §.2. We return below

to the axioms we need.

We take a strong intensional notion of observation:
given a Power machine tracé we build read and write
events events, from the GOMMIT_READ_INSTRUCTION and
COMMIT _WRITE_INSTRUCTION  commit labels, together
with a reads-from relationrf;. The observation predicate
obseqt actions. rf. requires that there is an exact correspon-
dence between thesevents; and the actions. of a C++11
execution, with isomorphic reads-from relatiotfs andrf,.

Given a Power trace, it is also straightforward to construct

Here tid ranges over thread ids; over instruction instancesy
over write eventsyr over read-response evenksyrier Oversync
or lwsync events, andeg over Power register names.

A Power executiort is simply a trace of abstract-machine states
and these labels; we write machiegecutionpower_prog for the
set of all such for a Power prograpawer_prog (Power programs,
of type POWERPROGRAM, are essentially maps from addresses
to assembly instructions, together with the initial register state,
including PC, for each thread.)

Key properties required for the proofs §f are derived from
the preconditions and postconditions of the transitions. As an
example, before a barriersfnc or lwsync) is propagated to
a new thread by the BRRIER_.PROPAGATETO_THREAD transi-
tion, any writes propagated before it to its original thread (the
“Group A’ writes) must first be propagated to that thread (by a
WRITE_.PROPAGATETO_THREAD transition). For async, the cor-

responding AKNOWLEDGE_SYNC transition cannot fire until that . :
P N analogues of the threadwise C++11 relations over the constructed

sync is propagated to all threads (and this implies that all its Group
A writes, or coherence successors thereof, must have been propaevents' for program ordego:, data/address dependengy;, and

gated to all threads before that in the trace). The combination of control dependencyd;; by analysing the trace, we can also |den'g|fy
a conditional branch and arsync instruction (“ctrlisync”) stops the events from the same thread that are separated by control-isync,

program-order-later reads being able to do theirISFY_READ sync, or lwsync instructions in the trace, constructing relations
transitions before the branch is resolved and committed. ctrlisynce, sync,, andlwsync:.

To isolate particular events of interest, we let the following POV'?/EFi(;ngI(IBeRrACOi?fatilssﬁez thftjenac(;lv?/ir; gg?fcc?ﬁ? F;I?e(r;i??o'\;latno
metavariables range over transition labels from a trace as follows: M g P Y

C++11 programc_prog and any Power trace @bmp c_prog, there

Metavariable  Transition labels ranged over is a set of C++1lactions. with associatedb., dd., cd., andrf.
we COMMIT _WRITE_INSTRUCTION relations such that
rc COMMIT _READ_INSTRUCTION
be COMMIT _BARRIER_INSTRUCTION 1. the C++11 data has the same observations as the trace:
mc (memory)  GMMIT _WRITE_INSTRUCTION obseqt actions, rfe;

U COMMIT_READ_INSTRUCTION 2. the C++11 data is allowed by the threadwise operational-
zc COMMIT _WRITE_INSTRUCTION

semantics: opsemLprog actions. opc;

3. the C++11 relationsb., dd., and cd. are subsets of the cor-
ilati responding relationgo:, dd:;, and cd; built from the trace

7. Correct compilation from C++11 to Power (note that the C++11 sequenced-before relation may not be total
We now prove that the mappings of Section 1 are correctin general,  within a thread, as evaluation order is sometimes unconstrained,
focusing on the first mapping and then discussing the changes  put the Power program order is total within a thread); and
required for the second. 4. if one applies the mapping to the C++11 actiangions.,
the result is included in thetrlisync:, sync:, and lwsync;
relations constructed from the Power trace.

U COMMIT _BARRIER_INSTRUCTION

7.1 Correctness Statement

The usual form of whole-program correctness statement one might
expect for a compiler is an inclusion between the observable be- For example, a C++11 actiora:Wgeg. x=1 can be pre-
haviours of the compiled program and those of the source: sumed to arise from a source program instruction
C4+11 semantics x.store(e,memory_order_release), and so a threadwise
c-prog | C++11 execution observations good compiler following the mapping should have compiled it into
o I I a Powerlwsync preceding a store, and any trace should contain a
compilation C .
corresponding GMMIT _BARRIER.INSTRUCTION label followed
power_prog Power semantics _ o, | ver execution observations (perhaps not immediately) by {:\CE/IMIT,WRITE,INSTRU_CTION. _
Finally, we express correctness on a per-execution basis and
Here, however, we are proving correctness of compilation schemescan assume that the source program is race-free, otherwise C++11
for particular constructs (the C++11 atomic and nonatomic loads regards it as undefined and compilation is unconstrained. That leads
and stores), not correctness of a specific compiler. We therefore us to the following statement of our main theorem:
want to factor out as much as possible of the definition of the source




~ Bw . .
THEOREM7 (Correctness). o we LIOPBAOTE L iff the write, or some coherence-successor

Vcomp c-prog. ) write, has propagated to the reading thread before the read is
threadwisegood compilercomp A finally satisfied; and
drf c_prog propBefore

® wc, ——— weo iff the write of weq, or some coherence-

= successor write, has propagated to the threadcgfbefore the

(let power_prog = comp c_prog in

(Yt€machineexecutiongower_prog. we commit.
(Jactions. op. rf. mo. sce. For labels from the same thread, we say:

obseqt actions. rf. A propBefore ) o ) ) )

opsemc_prog actions. op. A e x¢ —————— rc iff zc is either a write commit label and is

consistenex actions. ope f. mo. sc.))) read byrc or it is trace-order-beforec is finally satisfied; and

rop Before . .
Our proof follows this structure. Consider a Power trac# a o se LR yeiff ac is trace-order-beforerc.

Power programpower_prog produced by a threadwise-good com- Consider now the C++11 definition of happens-before (hb).
piler from a C++ programe_prog. The threadwisgjood.compiler Without relaxed or consume operations, it only crosses threads with
assumption tells us that there are some corresponding (Up t0g reads-from edge of a release/acquire pair that synchronise with
obseq) C++1lactions., opc, andrf. for which the memory ac- ~ each other. Under the mapping, thi§ edge must be preceded

tions of each thread satisfy the threadwise operational semantics.py sync, or lwsync, and followed by actrlisync,. With relaxed
We now construct a C++11 modification ordep. and sequential  atomics, the acquire might read from something in the release se-
consistent ordesc,, and then have to either prove that the C++11 gyence of the release it synchronises with. In Power terms, a re-
execution comprising all this data is consistent, or to construct an- jease sequence is a series of same-threacedges (if we cov-
other consistent execution which contains a race, thereby contra-ered read-modify-write operations, these would not necessarily be
dicting the drf assumption. o . , on the same thread). Adding consume atomics, release/consume
The construction of a C++11 modification ordev. is straight- synchronisation involves the dependency-ordered-before (&eb) r
forward, as (likesb, dd., cd., andrf.) there is a direct analogue in - |ation, which is similar to ithb except that on the right hand side
the Power trace: the coherence constraints in the StOI'age Subsysterﬁ On|y reaches to dependent Operations' not to all program_order
state increase monotonically along a trace, so we can just take theirgyccessors of the read. In Power terms, in this casetth@ync,

union co¢, choose an arbitrary per-location linearisation thereof, s replaced byid,*. All this motivates the definition of a machine
and restrict to the atomic locations. Construction of a C++11 SC analogue of ithbmachine-ithb,:

ordersc, is more involved, as we see below§n.3. N
Note that, in contrast to many compiler correctness proofs, this ((synct U lwsynct)feﬂ; coi™; Tfes; (ctrlisync, U ddt*)fef')
is not a simulation argument: the C++11 definition of consistent
execution is a predicate on complete candidate executions; it is notwhere coi; is the machine coherence order restricted to pairs of
generated by an operational semantics and does not involve anywrites by the same thread, ande; is the machine reads-from

notions of a C++11 whole-program state or transition. relation restricted to write/read pairs on distinct threads.
7.2 Analysis of a Power trace w.rt. C++11 LEMMA 8. Given two C++11 memory actions; andm. and the
inter-thead-happens-before corresponding Power commit eventsz; and mca, if my e

machine-ithb;

The C++11 definition of consistent execution comprises seven con- mo thenmc:
ditions, as listed ir§2.2, almost all of which rely heavily on the . . .
happens-beforeelation, which is the union of sequenced-before PROOF By a series of lemmas about the C++11 auxiliary relations,
and a compleinter-thread-happens-beforelation. unfolding the definitions, with reasoning as above. |

To establish those conditions, we need to analyse the Power
trace with the shape of thimter-thread-happens-beforelation
in mind, making use of various ordering properties of the Power
sgmantics a_nd the fact that the Power program is obtained using thel emma 9 (Propagation).
given mapping. . . e

In broad terms, if there is a C++11 inter-thread-happens-before 1 |f o, ((syretDtiwsyned)ZiconTimfe) T yhanye 2ropBelore,
relation from a write to a read, we need to show that the write has )
propagated to the reading thread before the read is satisfied. For2. If rc1 rce, then for any write
read-to-read pairs, we need to show that any write propagated to  commitwc _propBefore, re1, we havewc propBefore, res.
the thread of the first read, before it is satisfied, has propagated
similarly. For write-to-write and read-to-write pairs, we need to PROOF By induction on the transitive closure of the relation. In
ensure propagation before the commit of the final write. the base case, by decomposing the large relation, two intermediate

In more detail, we must also allow coherence successors of write commit events appeatw¢: and wcz). In the case where
writes to be propagated in their place, must consider propagation ,,, ynctJtwsynet, wer, if me is a write, then it falls into the
of barriers, must refer to the last satisfy label of any read that reads Group A of the intervening barrier; if it is a read, then any write
from a different thread, and must split the different-thread/same- propagated to its thread before it is satisfied falls into the Group

thread cases. To capture all this, we definerap Before relation A of the barrier. Thecoi,* relation is a subset gfo;, hence we
over memory and barrier commit labels. For labels from different also haveme S¥retbiwsyne: weg. Hence, using the A-cumulativity

threads, we say: property of the Power machine and since we know that does
propBefore ; ; i ropagate to the thread o beforerc is last satisfied (because it
o pe PO, e iff the barrier has propagated to the reading Propag o = (
thread before the read is finally satisfied, i.e., if there is a IS read from), the writes in the Group A of the barrier (or some
BARRIER PROPAGATE label for be trace-order-before the last ~ coherence successors) must have previously been propagated to

ropBefore

SATISFY_READ for rc; that thread. This establishes the desiéd="""; relationship. In

To prove the required propagation property (Corollary 10 be-
low), we first consider the left part of this relation:

((synctU lwsync‘)reﬂ; coit *;rfet) +




the other casemc = wci, we just saw thatwc, does propagate
to the thread ofrc in time and it is here a coherence-successor

of me. For the inductive case we use the same reasoning as for

single global order over all events. We use this characterisation in
Theorem 13 below.
We will use as the SC order an arbitrary linearisatio(ef® U

the first step to establish that the writes under consideration are co;® U fri° U erf°)*. We now show that this combination of
first propagated to the thread of the intermediate read, and then therelations is acyclic, and hence can be consistently extended to

induction hypothesis. O

COROLLARY 10 (Propagation w.r.t. ithb).

1. 1f re machine-ithb;
propBefore
we ————— re, we havewce

chine-ithb
2. If we 22 e thenwe

mc then for any write commitwe with
propBefore
— MC.

propBefore
— Mc.

PROOF ctrlisync, and dd; are subsets gbo so, without loss of
generality, we can neglect all those edges except the last one:

((synct Ulwsynct)mﬂ;cait *irfer) T (ctrlisyncyUdd:™)
rc

wc mc

Lemma 9 establishes propagation to the threadcpthen, using
either thectrlisync; or ddy, if mc is a read then it is satisfied after
rc is committed, and ifnc is a write then it is committed aftew

is committed. O

Several of the C++11 conditions are acyclicity properties (ei-
ther explicitly so, e.g. the consistency of ithb, or requiring consis-
tency between relations, ef. andhb.). To establish these, it is
convenient to reduce them to the acyclicity of trace order, by the
following lemma.

LEMMA 11 (Trace order respectsachine-ithb;).

wchine-ithb, . .
If mey 2 mes thenme: is beforemes in the trace.

PROOF Along the same lines as the reasoning above, by induction
on the transitive closure ofiachine-ithb;. O

7.3 Analysis of a Power trace to construct a C++11 SC order

C++11 demands a single total order sc over all the SC atomic ac-
tions, subject to some consistency conditions. Broadly, this order
must be consistent with the sequenced-before relation, with modi-
fication order, and for each SC read if it reads from a SC write

we, thenwe must be the last SC write to that location before

in the SC order, while if it reads from a non-SC write’, then

wc’ cannot be after (in happens-before) any SC write to the same
location which is itself afterc in the SC order.

In Power terms, the first two conditions are straightforward to
express: we need to construct a total order on SC actions which
includes the subparts gl; and co: (po;¢ and co;“ respectively)
that are restricted to SC actions. However, there is no obvious cor-
responding total order visible in the trace. In particular, recall from
86 that for write commit labels trace order is not necessarily con-
sistent with the coherence order;. It is also not sufficient to use
an arbitrary linearisation ofpo;¢ U co;i¢)* (though po: and co:
are individually acyclic), since that may introduce bad intervening
writes to the same location in between a pair of a write and a read
that reads-from it. Consider then an SC readand the writewc
(not necessarily SC) that it reads-from, and recall that we have a
coherence ordefo, for writes to that location. We define two new
derived relations on SC reads and writes: from-re#d$ ) defined

fri€ . cot .
asrc —— wey if we — wes, i.€.rc reads-from a coherence pre-
decessor of the S@c;; and extended-reads-fromar(f;’°) defined

aswcey ﬁ—rf‘—» re if wey is the last SC write in coherence order
equal to or before thec thatrf; reads from. From-reads relations
have been used by various researchers [A88] AMSS10, Alg10],

and the latter reference proves that if the union of program-order,
coherence, reads-from, and from-reads is acyclic, then the €xecu
tion is an SC execution by the traditional definition [Lam79] of a

a total order. First note that if the above relation has a cycle,

there must be at least onec; — mes edge in the cycle,

as otherwise it is straightforward to deduce that the coherence
relation implied by the machine trace is itself cyclic. Under the
mapping, this means thatc; and mce, must be separated in the
trace by a sync and itsS@&NOWLEDGE_SYNC transition. Our main
lemma for this (Lemma 12 below) says that for amye with

(pojUcofUfricUerf¢)™* . .
me ——L ¢ ; me1, it must be in trace-order before

that ACKNOWLEDGE_SYNC transition (call this theS transition),
and this contradictsic being after that transition.

We will prove Lemma 12 by induction on the length of the
relation, case analysing the relation in the first step. We have to
strengthen the inductive hypothesis in two ways to make the proof
go through. For example, consider the case where the first step is a

re fr—'> wc edge. We know inductively thatc is beforeS in the
trace, but this does not immediately help us know that the read
is also beforeS. What we need is the strong property of the sync
(recall§6), that before the acknowledgement for a sync in the trace,
preceding writes are not merely committed but also they (or some
coherence successors) are propagated to all threads. Thissuffice
since if wc is propagated to the reading thread, and it is not read-
from, the read must already have been done.

For the second strengthening, consider the case where the first

step is awc e edge (one kind of aarf;’° edge is arf; edge).
As above, we will have to inductively establish that the write
have been propagated to all threads before the sync acknowledge-
ment.S. The Power machine guarantees this for any sync on the
same thread agc, but not necessarily for syncs on other threads.
To make the induction work, we will find a new intermediate sync
acknowledgement,,, which is on the same thread as an event re-
lated torc in the po;“-free part of the relation. Since this involves
only coi¢, fr{¢ anderf’ edges, these will be on the same location,
andwc will then be correctly related by coherence to a write that is
known to be propagated everywhere befSfgein the trace.

The final statement is then:

LEMMA 12 (Main Lemma for SC).Supposenc, - mcz, and

there is a sync acl§' betweennc, and mcs in the trace. Suppose
(poj®Ucoj“Ufri°Uerf )™

mcn mec1. Then there is annc), and a

sync ackS,, such that:

1. mc, is beforeS,, in the trace, andS,, is before or equal t&d
in the trace;

2. If me,, is a write, then that write or a coherence successor has
propagated to all threads befoig, in the trace;

3. mc,, is beforeS,, in the trace;

4. mc,, and S, are from the same thread; and

5. mcy, w mec,, (the subpart of the relation be-
tweenmc,, andmc,, is po;-free).

the

mecy. In the base casepc,, = mci,
ns are easily established by taking

PROOF By induction on the chain

(po;®Uco;®UfricUerf )"

length of

and the required conditio
mec, = mcy, andS, = S.

In the inductive case, we case analyse on the kind of relation in
the first step. Foro;“, fr/¢ anderf’, we use the same intermedi-
ate event and sync acknowledgement as the inductive hypothesis,
makingmec,, = mc,,_, andS,, = S, _1. Then, for example, if the



edge iswcy Lo wez, we have inductively thatc, is propagated
to all threads as required befa$g, and thus a coherence successor

. . froe orfse
of wey is as well. We outlined thec —— wc andwe —— rc
cases in the description above.

.. posc
In the remaining casenc, —— mc,_1, we have two SC

PROOF To establish this we first show that the Power write;
corresponding tav; is propagated to the thread of the Power write

wee corresponding tave beforewcs is committed. In more detail:

For therf. edge, the inclusion fror§i7.1 gives us a Powenc; RN

rc relation between the corresponding commit events from the
trace. For théib. edge, by the definition of C++11 happens-before,

events separated in program order. By the mapping, there must be aither (case 1) there is asb. edge, in which case we use the

sync between them in program order. L%t be the acknowledge-
ment transition for that sync, andc,, = mc,. Then the required
conditions are easy to check.

Notice in the proof that we use the sync program-order between
any two SC actions from the same thread. This is crucial for the
induction to go through. Indeed, as showr§f for any pair of SC
actions, if we weaken the sync to anything else (lwsync or weaker),
we have a counterexample to show a program with only SC actions
behaving in a non-sequentially consistent manner.

The proof is applicable in a wider setting than just for C++11.
The key fact we used to create the SC order is that every pair

inclusion from§7.1 to showre 22 wes, (and they are on the same
thread), or (case 2) aithb, relationship, in which case there is an

machine-ithb;

rc ——— wce edge. We know (because of the Power rules

involved in a reads-from relation, and with a case split on whether

wcy andre are on the same thread or not) that; propagates to the

thread ofrc beforerc is finally satisfied. Hencesc; is propagated

to the thread ofwcs before the latter is committed, either (in case

(1)) because the semantics of the commit transition guarantees that

po. is respected by the trace order for events at a same location, and

using transitivity, or (in case (2)), by Corollary 10.
Finallyy, by the storage-subsystem

semantics  for

of SC actions on the same thread is separated (in program order)COMMIT_WRITE_INSTRUCTION, when a write is committed,
by a sync. Looking at the proof for the case that every memory it automatically becomes coherence-after all the writes that have

access is a SC atomic actioie( no other memory types, or non-

atomic accesses) shows that such a program has only sequentiallyhe construction ofno., that givesw; —< ws.

consistent behaviour, an interesting fact in its own right about
Power assembly programs.

THEOREM 13 (Syncs between every pair of accesses restore SC).
Suppose we have a Power (assembly) program with every pair

cot

already been propagated to its threaduga — wce. And by

d

The other three coherence properties are similar, albeit administra-
tively more complex. Two additionally use the fact that a Power
read can only be satisfied from the last write (to the relevant ad-
dress) that has been propagated to its thread.

of memory accesses on the same thread separated in program  Theconsistensscorder predicate checks that SC is a strict total
order by a sync. Then the program has only sequential consistent order over the SC actions. The totality is by construction; strictness

behaviour.

PROOF Given the premises, the proof of Lemma 12 shows that
(por U cor U fry U rf;)* is acyclic, then by [Alg10§4.2.1.3] the
execution is Lamport-SC. O

7.4 Verification of consistentexecution

We now have the tools to verify the satisfaction of all the conjuncts
of the consistentexecutionpredicate, as listed i§2.2 and sim-
plified by Theorem 1 0§3. The twowell_formed conjuncts hold

by the obseq and assumptions on opsem, e.g. that the sequenced
before relation only relates actions of the same thread cohsis-
tentlocks conjunct is vacuous in the sublanguage we consider in

C++11 actions and relations and Power trace events and relation
we established i§7.1 and in§7.2, mostly using Corollary 10 and
Lemma 11.

First, consistent_inter_thread_happens_before states the
acyclicity of ithb. Using Lemma 11, we prove by contradiction that
such a cycle implies a cycle in the trace order.

Next we have four coherence conditions for pairs of a read
and a write (CoRR, CoRW, CoWR and CoWW), which are part
of consistentmodificationorder and coherentmemoryuse (itself
part of consistenfreadsfrommapping. These diagrams involve
rf. and hb. edges relating two writes and some reads, all at the
same atomic location; they require the writes to be correctly or-
dered inmo.. For example:

LEMMA 14 (CoRW).Given C++11 actionsws, r, andws, all to
the same location, and arf. and hb. edge as below, the; —<»
wy edge exists.

rfe

wy ——7T

\ lhbc
moc

w2

S

is by acyclicity. It also requires thatb. and mo. restricted to

SC atomics are included isc.. The first is immediate from the
construction ofhb. from subsets of the relations involved in the
construction ofsc.. The second makes use of a lemma stating
the inclusion inco; of the relation from which we build the SC-
order when restricted to pairs of writes at a same location, and the
construction ofno..

Theconsistenimodificationorder predicate consists of CoWW,
dealt with above, a totality condition that is immediate from the
construction ofmo. as a linearisation, and a check that it only
relates writes at atomic locations, which is also by construction.

Now we have the subclausesaainsistentreadsfrom-mapping
Two, rmw_atomicity and scfencesheeded are vacuous for the
gublanguage we consider. We dealt with the coherence conditions
of coherentmemoryuseabove.

The predicatescreadsrestrictedforces any SC read to read
from the lastsc.-preceding write {c) at the same location, or some
non-SC write that is notb.-beforewc. The proof is by construct-
ing a SC-cycle for each forbidden situation, which contradicts the
results of§7.3.

An interesting observation here is that, through the application
of the acyclicity result 0§7.3, we make use for the first time of the
barriers placed by the mapping before the compilation of SC reads.
And in fact, we do not rely anywhere else on these barriers as they
play no part in the propagation property stated by Lemma 9.

Finally, we get to the constraints on read values. thesis-
tentnon.atomicread.valuespredicate says that a reacht a non-
atomic location must read from a visible side-effect, i.e., a write
that happens-beforesuch that there is no write’ that happens-
betweenw andr. Assuming the contrary, there are three possible
situations:

1. r reads from a write that happens-after it;

2. r reads from an hb-hidden write: there exists’ahat happens-
betweenw andr; or

3. r reads from an hb-unrelated write.



Cases 1 and 2 are lengthy but in the same style as the reasoning fosemantics is required to correctly calculate the notions of control
CoRW and CoWR, showing that writes propagate appropriately. and data dependence. We now return to the construction of the

Case 3 is quite different. Here we have a Power reathat racy execution. For Step 2, if there is a visible side effettof
reads from a writawe for which neitherw 25 r nor r 22 w r (recall thatr is the read that violatetlb_in_rf), we create a new

hold. Intuitively, this is a race, but this is not a consistent execution: "€adr’ according to the opsem axiom and haveread fromw’,
cannot read fromo in C++ unlessy This r’ then races with the writev thatr read from originally. If
r — T.

Inth t secti how that in thi the original there is no visible side effect, we haveread from nothing, and
h nthe nei<hsec log'\évets ow ? |nth|st(_:ase g;)rlg;tlnadp)trr]og;trﬁm the execution has an indeterminate read. We prove that this new
as some other candidate execution that IS consistent and that has g, o tjon is consistent by showing that the happens before relation
race (a data race or indeterminate read), contradicting the top-level

; S S - is unchanged, except for switchimgo '
assumption that the program was drf. A similar situation arises for Step 3 is necessary because the Power can speculatively exe-
the last subclausepnsisteniatomicread.values

. . cute reads out of program order, and so the prefix chosen in Ste
Formally, we case split at the top level on the following prog P P

o hb dicat i dditional " that 1 might be missing actions that the C++ threadwise operational
rf-in_hb predicate, capturing additional assumptions that ensure gomantics requires. In other words, the trace ordering is not nec-

consistency: essarily consistent witho,, and hence the trace prefix might not
rf-in-hb = Vw 7. be downward closed isb.. The addition of such a missing read
(w ey 1 A ris a non-atomic reads w 2% ) A in Step 3 follows the same reasoning as in Step 2 with the added
(w 7% 1 A ris an atomic read= ob;ervatlon that cannot be (atomic) sequentially consistent or ac-
o ] b quire because the Power cannot speculate past the control+isync
(Bw’. is.write w’ A samelocationw w’ A w' —= 7)) dependency that would follow such a read. The addition of missing
If rf_in_hb holds, case (3) is excluded andonsis- writes is straightforward.
tentnonatomicreadvalues and consistenfatomicread.values Step 4 is straightforward because there are no constraints on
can be established directly. how the execution extended to completion; it already contains the
) ) ) race, and further application of opsem axiom will not disturb it.
7.5 Construction of a racy consistent execution This completes the proof of Theorem 7.

In the situation where thef _in_hb predicate of the previous sec-
tion does not hold, our strategy is to 1) find a prefix of the trace ] ) - ]
for which rf _in_hb holds and build a consistent execution for itby ~As mentioned in§1, a modified mapping has been proposed that
applying the reasoning of Section 7.4 to that prefix; 2) add an in- has async barrier as the last instruction in the mapping for all SC
determinate or data-race read to the consistent execution; 3) returractions. This keepssync barrier program-order between any pair
any missing sequenced-before predecessor actions to the consiste®f SC actions from the same thread, which ensures the results of
execution; 4) extend the consistent execution until it is a complete §7.3 hold. The rest of the proof interacts with SC actions through
execution of the original program. the SC order, so it can be carried over unchanged. One additional
For Step 1, we find the first read commit on the trace that subtlety is that SC stores are also release stores, and SC loads in
causes a violation off _in_kb, and build a consistent execution for ~C++ are also acquire loads. The first fact requiresltireync be-
part of the trace that precedes it. Our ability to use Section 7.4 for fore the store for SC stores, as for release stores. The second re-
this relies on the fact that the commit labels on the trace resfigct ~ quires program-order-later loads to be stopped from being satisfied
dd;, and cds, which are in turn consistent Wiﬂffc, dd,, andcd.. before the SC load is. The tralllng/nc suffices here.
Steps 2—4 rely on the following receptiveness axiom about the
C++ threadwise operational semantics, which we believe any rea-8. Related Work

sonable operational semantics should satisfy. The most closely related work is our correctness proof of a compi-

7.6 Alternate trailing- sync mapping

Vec_prog actions|, actions. op. a new_a. lation scheme from C++11 to x86 [BOR1]. That covered RMWs
opsemc._prog actions Ope A in addition to loads and stores, but was nonetheless comparatively
a € (actions. \ actions;) A new_a € all.valuesa A simple, as x86 has a strong TSO-based semantics {38 For

issreada A actions., C actionse A

(actions! U {a}) is downward closed undérd,. U cd.)*
=

(Inew_act. new_opc.

Section 3, Boehm and Adve gave a definition [BA08] of a mem-
ory model based on an earlier C++11 working paper, broadly in the
same style as the eventual draft standard and [BO1§ but dif-

let stay_act. = actions’, U fering in many details and with the semantics for low-level atomics
_ o, (ddy U edo)t only sketched. They give a hand proof that in that model DRF pro-
{blbEactions. \ actions; A b # a A ma ——— b} grams without low-level atomics have SC semantics.

in
stay_act. N new_acte = 0 A
((OPC‘(stuy,actc u {a}))[new*a/a] =
newfopt"(smy,actc u {new,a})) A
(new-dd, U new,cdc)+

Some previous work proves correctness of compilers for con-
current languages, rather than compilation schemes for particular
primitives, in a relaxed-memory contex@e\ik et al. prove cor-
rectness of CompCert-TSO [SVZN1], a compiler from a con-

(Vzy. .z YNz € new-acte = current C-like language with TSO semantics to the x86 TSO model
y & stay-acte U {new-a}) A (building on Leroy’s single-threaded CompCert [Ler09]). Here the
opsemc.prog (stay-acte U {new-a} U new-actc) new-opc) source and target share the same relatively simple memory model,

It states that if the operational semantics can perform a read at aand the correctness proof is simulation-based, taking advantage of
certain point, it can instead perform any read that is of the same the fact that x86-TSO has a simple operational characterisation.
kind and from the same location, but that reads a (potentially) Lochbihler proves correctness of compilation from a formalisation
different value. This reflects the fact that the threadwise operational of multi-threaded Java to a JVM [Loc10], but this assumes SC and
semantics relies on the memory model to determine how memory does no optimisationSe\tik [Sev11] proves the correctness (or
reads are satisfied. Furthermore, later actions that do not dependtherwise) for various optimisations for DRF languages, though not
on the read via(dd, U cd.)" are unaffected by the change of specifically for C++11. Burckhardt et al. [BMS10] consider the cor-
value read. This reflects the fact that the threadwise operationalrectness of transformations in relaxed models. Vafeiadis and Zappa



Nardelli verify fence elimination optimisations in the context of the References

CompCert-TSO compiler [VZN11]. [ABJ193] Mustaque Ahamad, Rida A. Bazzi, Ranjit John, Prince Kohli
There is an extensive line of work inserting fences to restore SC, and Gil Neiger. The power of processor consistency. In

starting with Shasha and Snir [SS88]. Fang et al. [FLM03] do this in Proc. SPAA1993.

practice for sync on Power 3 machines, but they appear to implicitly [AH9Q] S. V. Adve and M. D. Hill. Weak ordering — a new definitio

assume that writes are atomic (discussing only thread-local reorder- In Proc. ISCA 1990.

ing), which they are not on more recent Power implementations. [Alg10] J. Alglave. A Shared Memory Poetic®hD thesis, Universit

Alglave et al. [AMSS10, Alg10, AM11] consider Power fence in- Paris 7.and INRIA, 2010. -

sertion with respect to an axiomatic memory model, @#/2010 [AM11] J. Alglave and L. Maranget. Stability in weak memory mod-

els. InProc. CAV 2011.
[AMSS10] J. Alglave, L. Maranget, S. Sarkar, and P. Seweéindes in
weak memory models. IRroc. CAV, 2010.
[BAO8] H.-J. Boehm and S.V. Adve. Foundations of the C++ eonc
rency memory model. IRroc. PLDI, 2008.
[Bec11] P. Becker, editorProgramming Languages — C++2011.

model That model was a precursor to the abstract-machine model
of Sarkar et al. [SSA11] that we use in this paper. As described

there, the CAV2010 model is stronger than the architectural intent
for the RO1 test (in this sense it is unsound w.r.t. the architecture, al-
though not observed to be unsound w.r.t. current implementations),

and it is weaker than the architecture (and current ?mplementations) ISO/IEC 14882:2011. A non-final but recent version is avail-

for cases such as MP+lwsync+addr. The latter might be generated able at http://www.open-std.org/jtcl/sc22/ug21/

by the mapping for a C++ release/consume example, so this model docs/papers/2011/n3242. pdf.

is too weak to prove the mapping correct. [BMOT] M. Batty, K. Memarian, S. Owens, S. Sarkar, and P. Sewell.
Lea produced a guide to implementing the JSR-133 Java http://www.cl.cam.ac.uk/users/pes20/cppppc.

Memory Model on various multiprocessors [Lea]. Written when [BMS10] S. Burckhardt, M. Musuvathi, and V. Singh. Verifgiocal

the Power architectural intent was less clear (considerably be- transformations on relaxed memory modelsCig, 2010.

fore [SSA+11]), its suggested uses dfsync are not correct [Boell] Hans Boehm. Atomic synchronization sequences, 2011.

w.r.t. the architecture. It also focuses on the synchronisation re- Mailing list communication, July 18th.

quired between pairs of operations on the same thread, without [BOS™10] M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. WeberhMat

discussing the Power cumulativity properties that are essential for ematizing C++ concurrency: The post-Rapperswil model.

Technical Report N3132, ISO IEC JTC1/SC22/WG21, Au-
gust 2010. http://www.open-std.org/jtcl/sc22/
wg21/docs/papers/2010/n3132. pdf.
. [BOST11] M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. WeberhMat
9. Conclusion ematizing C++ concurrency. Iroc. POPL 2011.

We have proved the correctness of a realistic relaxed-memory com- [BWB*11] J. C. Blanchette, T. Weber, M. Batty, S. Owens, and S.&8ark

C++11 release/acquire, release/consume, and SC atomics.

pilation scheme, from the programming language memory model Nitpicking C++ concurrency. liProc. PPDR 2011
proposed for the mainstream C and C++ standards, to a realistic [FLMO3] X. Fang, J. Lee, and S. P. Midkiff. Automatic fenceéntion
memory model for Power multiprocessors. The C++11 model was for shared memory multiprocessing. fmoc. ICS 2003.

designed with implementation above the Power (and ARM) model ~ [Lam79] L. Lamport. How to make a multiprocessor computer that cor
in mind, among others, and this establishes that it is in fact im- ?gg’g’fgg‘étegﬁu'ltgp;gcess progrartisEE Trans. Comput.
plementable with what appears to be a reasonable mapping (us- -28(9):690-691, : ) ]

ing hardware synchronisation mechanisms commensurate with the [Lea] D. Lea. The JSR-133 cookbook for compiler writenstp:

d . . //gee.cs.oswego.edu/dl/jmm/cookbook.html.
C++11 semantics required). Moreover, our development explains [Ler09] X. Leroy. A formally verified compiler back-endournal of

why the mapping_ is correct ar_1d also what prpperties of th_e Power Automated Reasoning3(4):363—446, 2009.
are actually required, increasing under;tandlng anq confidence in [Loc10] A. Lochbihler. Verifying a compiler for Java threaddn
both models, and providing a good basis for compiler developers Proc. ESOP'102010.
compiling C++11 and C1x to Power and ARM; we are discussing [MS11] P. E. McKenney and R. Silvera.  Example POWER
this with GCC and ARM compiler groups. implementation for C/C++ memory model. http:
There are many interesting directions for future work. First, the //vwww.rdrop. com/users/paulmck/scalability/
development should be extended to cover other C++11 features: paper/N2745r.2011.03.04a.html, 2011.
read-modify-write and locks operations require first a semantics [OBZNS11] S. Owens, P.&m, F. Zappa Nardelli, and P. Sewell. Lem:
for the Power load-reserve/store-conditional instructions, and one A lightweight tool for heavyweight semantics. Rroc. ITP,
would also like to cover fences and dynamic thread creation. 3 LNCS 68982011. “Rough Diamond” section.
Second' while a full Comp”er correcthess proof for C++ (Or [SeVll] JSewik. Safe Optimisations for shared-memory concurrent

even C) is still a long way off, we would like to instantiate our programs. IrProc. PLDI, 2011.

compilation-scheme proof to a concrete operational semantics and ~ [SS88] D. Shasha and M. Snir. Efficient and correct executibn
compiler for a small fragment. parallel programs that share memofOPLAS 10:282-312,

Third, the proof suggests the construction of a more abstract 1988.

. - - - " [SSAt11] S. Sarkar, P. Sewell, J. Alglave, L. Maranget, and D. Mifis.
axiomatic Power model, based on the derived properties we use in Understanding POWER multiprocessors PInDI, 2011.

the proof. We can see there exactly which machine trace events are [SSO+10] P. Sewell, S. Sarkar, S. Owens, F. Zappa Nardelli, and M. O

relevant, e.g. the last satisfy label for each committed read, and Myreen. x86-TSO: A rigorous and usable programmer's
certain write propagation events; the more abstract model could model for x86 multiprocessorE. ACM, 53(7):89-97, 2010.
deal just with those. This would give a simpler foundation for [syzN+11] J. Sewik, V. Vafeiadis, F. Zappa Nardelli, S. Jagannathan,
developing analysis and reasoning techniques for Power and ARM and P. Sewell. Relaxed-memory concurrency and verified
concurrent software. compilation. InProc. POPL, 2011.

[VZN11] V. Vafeiadis and F. Zappa Nardelli. Verifying feneéimina-
Acknowledgements We thank Hans Boehm, Paul McKenney, tion optimisations. IrProc. SAS2011.

JaroslavSewik, and Francesco Zappa Nardelli for discussions
on this work, and acknowledge funding from EPSRC grants
EP/F036345, EP/H005633, and EP/H027351.



