
Clarifying and Compiling C/C++ Concurrency:
from C++11 to POWER

Mark Batty1 Kayvan Memarian1,2 Scott Owens1 Susmit Sarkar1 Peter Sewell1

1University of Cambridge 2INRIA
{first.last}@cl.cam.ac.uk

Abstract
The upcoming C and C++ revised standards add concurrency to
the languages, for the first time, in the form of a subtlerelaxed
memory model(the C++11 model). This aims to permit compiler
optimisation and to accommodate the differing relaxed-memory
behaviours of mainstream multiprocessors, combining simple se-
mantics for most code with high-performancelow-level atomicsfor
concurrency libraries.

In this paper, we first establish two simpler but provably equiv-
alent models for C++11, one for the full language and another for
the subset without consume operations. Subsetting further to the
fragment without low-level atomics, we identify a subtlety arising
from atomic initialisation and prove that, under an additional condi-
tion, the model is equivalent to sequential consistency for race-free
programs.

We then prove our main result, the correctness of two proposed
compilation schemes for the C++11 load and store concurrency
primitives to Power assembly, having noted that an earlier proposal
was flawed. (The main ideas apply also to ARM, which has a
similar relaxed memory architecture.)

This should inform the ongoing development of production
compilers for C++11 and C1x, clarifies what properties of the
machine architecture are required, and builds confidence in the
C++11 and Power semantics.

Categories and Subject Descriptors C.1.2 [Multiple Data Stream
Architectures (Multiprocessors)]: Parallel processors; D.1.3 [Con-
current Programming]: Parallel programming; F.3.1 [Specifying
and Verifying and Reasoning about Programs]

General Terms Languages, Reliability, Standardization, Theory,
Verification

Keywords Relaxed Memory Models, Semantics

1. Introduction
Most work on semantics and reasoning for shared-memory
concurrency has assumed a sequentially consistent (SC) mem-
ory [Lam79], in which a single shared memory is acted upon by
interleaved threads. In practice, however, mainstream multiproces-
sors (x86, Sparc, Power, ARM, Itanium) provide weaker and more
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subtlerelaxedmemory models, to permit various hardware optimi-
sations. Mainstream concurrent programming languages (e.g. Java,
C, C++) also provide relaxed memory models, although of rather
different kinds, both to permit compiler optimisations and so that
they can be compiled to those processors without excessive use of
hardware memory barriers. Moreover, for several of those multi-
processors and languages, the actual memory model provided has
long been poorly specified and not well understood.

In recent years that situation has improved. Of par-
ticular relevance here, the ISO C++ Standards Committee
(JTC1/SC22/WG21) has introduced a memory model, as out-
lined by Boehm and Adve [BA08], into their revised standard
(C++11) [Bec11], and it is expected that the upcoming revision of
the C standard (informally, C1x) will adopt essentially the same
model. This standard is written in prose, subject to the usual prob-
lems of ambiguity and not directly testable, but in previous work we
produced a formal semantics for C++11 concurrency [BOS+11].
In discussion with members of the WG21 concurrency subgroup,
we identified various issues with earlier drafts [BOS+10], propos-
ing solutions that are now incorporated into the new ISO C++11
standard; the result has a close correspondence between the formal
semantics and the standard prose.

The C++11 memory model is an axiomatic one: presuming
a threadwise operational semantics that defines candidate execu-
tions consisting of the sets of memory read and write events for
threads in isolation, it defines when such a candidate isconsistent
and whether it has a race of some kind; consistency is defined in
terms of a happens-before relation. It is a data-race-free (DRF)
model [AH90]: for a program that has no race in any consistent
execution, the semantics is the set of all such, while other pro-
grams are undefined (and implementations are unconstrained). The
design is stratified: there is a sublanguage with sequentially con-
sistent atomic operations which is intended to have simple seman-
tics for common use, then additional release/acquire and relaxed
atomic operations (needing less hardware synchronisation to im-
plement) for expert use in high-performance concurrency libraries
and system code, and finally release/consume atomics, for maxi-
mum performance on architectures such as Power and ARM where
dependencies provide useful ordering guarantees. The whole is rel-
atively complex — for example, to accommodate release/consume
atomics, it involves a happens-before relation that is, by design, not
necessarily transitive.

The first contribution of this paper is to simplify the C++11
model, proving that it is equivalent to a simpler modelM1, without
the technical concept of “visible sequences of side effects”. Subset-
ting the language to remove release/consume atomics gives a fur-
ther simplification,M2, with a transitive happens-before relation.
Subsetting still further, to the fragment without low-level atomics,
one would like to know that that model is equivalent to a sequen-
tially consistent modelM3. In Section 4 we show that this holds for



programs that are race-free inM2, but that theM2 andM3 notions
of race can differ, with an example involving atomic initialisation;
we give additional conditions under which the two do coincide.

Meanwhile, on the hardware side, Sarkar et al. [SSA+11] have
established a rigorous memory model for Power multiprocessors,
based on extensive testing and discussion with IBM staff. Power
has a more relaxed and more subtle model than Sparc TSO or
x86-TSO, but it and ARM are similar in this respect, and prelimi-
nary testing and discussion with ARM staff suggests that the same
model, with minor differences, applies there (Itanium is also quite
relaxed but rather different). This model is of a very different kind
to that for C++11: it deals with the Power dependencies and barriers
(sync, lwsync, isync) rather than the C++11 atomic primitives;
it gives semantics to all programs, not just race-free programs; and
the presence of speculative execution is observable to the program-
mer on these machines. Accordingly, this model is in an abstract-
machine style rather than an axiomatic style: it defines labelled
transition systems for a thread semantics (with explicit speculation)
and for a storage subsystem (abstracting from the cache hierarchy),
with interactions between the two.

Between programming language and processor, how can one
compile a programming language with the C++11 memory model
to Power or ARM? There are three main parts to this question: one
has to consider how each C++11 atomic operation is compiled to
assembly code, perhaps with barriers and/or preserved dependen-
cies; when conventional compiler optimisations are legal in this
setting; and what new optimisations are needed, e.g. to remove re-
dundant barriers. In the relaxed-memory-concurrency setting, allof
these are sufficiently delicate that it is hard to have any confidence
in correctness without proof. We focus here on the first.

A naive compilation scheme would be to insert the heavyweight
Powersync barrier between every C++11 memory access. Even
here, it is not at all obvious that this would be a correct implemen-
tation (indeed, on Itanium, inserting themf barrier between every
access is not sufficient to regain SC), and for a realistic implemen-
tation, with good performance, it is essential not to introduce un-
necessary synchronisation. McKenney and Silvera have proposed
a mapping of the core C++ atomic primitives to Power assem-
bly [MS11]. For the different flavours of (nonatomic and atomic)
loads and stores, this is:

C++11 Operation Power Implementation
Non-atomic Load ld
Load Relaxed ld
Load Consume ld (and preserve dependency)
Load Acquire ld; cmp; bc; isync
Load Seq Cst sync; ld; cmp; bc; isync
Non-atomic Store st
Store Relaxed st
Store Release lwsync; st
Store Seq Cst sync; st

This compiles some C++11 operations to normal Power loads
and stores, some with a Power lightweight synchronisation barrier
lwsync or heaviersync, and in some cases uses just a combination
of an artificial control dependency (of a comparecmp and condi-
tional branchbc) and anisync.

Our second contribution is to prove the above mapping correct.
While the mapping involves only a few assembly instructions, its
correctness involves much of the behavioural subtlety of the C++11
and Power relaxed memory models, and is far from obvious. In-
deed, the mapping above has been updated in the light of our com-
ments following Sarkar et al. [SSA+11]: an earlier proposal in-
cluded an optimisation that we observed is not sound w.r.t. the
Power architectural intent (we give two counterexamples here). Our
proof relies on the simplified general C++11 modelM1 from the

first part. Along the way we obtain results about the Power archi-
tecture of independent interest, e.g. showing that (and why) insert-
ing a sync between all accesses does restore SC. We also prove
soundness of an alternative mapping, with the SC atomics imple-
mented as below — the “trailingsync” convention, suggested (in
the ARM context, with DMB in place ofsync andlwsync) by
Boehm [Boe11]:

C++11 Operation Power Implementation
Load Seq Cst ld; sync
Store Seq Cst lwsync; st; sync

Depending on the relative frequencies of SC loads and store, and
on the costs of the different hardware barriers (which may vary
significantly from one architecture to another, and also between
implementations), this may have better performance. Note that for
code produced by different compilers to correctly interoperate, they
must all make the same choice of mapping, which should be part
of the ABI.

We also show that both these mapping are local optima: weak-
ening any of the clauses (e.g. replacing async by alwsync) yields
an unsound scheme.

In the first contribution we covered the full C++11 primitives
as in [BOS+11], but for these correctness results we focus just on
the load and store operations in the tables above, omitting dynamic
thread creation, C++11 fences, read-modify-writes, and locks. The
first two are minor simplifications, but the last two are substantial
questions for future work, as their Power implementations involve
the load-reserve/write-conditional instructions, for which we do not
yet have a well-established relaxed-memory semantics.

To make this paper as self-contained as possible, we give a
brief introduction to our source and target starting points, the
C++11 [BOS+11] and Power [SSA+11] models, in Sections 2 and
6 respectively. Section 3 describes our simplifications of C++11
and Section 4 the atomic initialisation issue; Section 5 discusses
the correctness of the above C++11-to-Power compilation schemes
informally, looking at specific examples; and Section 7 discusses
our correctness statement and proof that they are correct in general.
We discuss related work and conclude in Sections 8 and 9.

We focus throughout on the key ideas, as it is not possible to
include full details here (the model definitions alone for C++11
and Power are around 15 and 50 pages of typeset mathematics),
but our definitions and proofs are available on-line [BMO+]. Our
definitions are expressed in Lem [OBZNS11], a lightweight lan-
guage of machine-typechecked type, function, and relation defi-
nitions, from which one can generate LaTeX, prover definitions
in HOL4, Isabelle/HOL, and (in progress) Coq, and executable
OCaml code. Our proofs are a combination of machine-checked
interactive HOL4 proof and rigorous hand proof (with auxiliary
definitions and lemma statements in Lem).

This is a domain in which rigorously proved results are of di-
rect interest to mainstream industrial software development, which
typically relies almost entirely on testing for assurance. The non-
determinism of relaxed memory multiprocessors makes effective
random testing challenging, and the fact that the programming lan-
guage and processor architecture specifications are looser than cur-
rent implementations makes it insufficient even in principle. Com-
piler groups are now implementing C++11 concurrency, and we
are in ongoing discussion with members of the Red Hat GCC and
ARM groups on how this should be done correctly, based in part on
the work we present here (e.g., one early-draft implementation was
found to put the SC storesync on the wrong side of the store).

2. Background: C++11 concurrency
This section gives a general introduction to the C++11 concurrency
primitives and their semantics. We refer the reader to [BOS+11,



Bec11, BA08] for a full discussion of many subtle points that we
cannot cover here.

2.1 The Language: C++11 concurrency primitives

C++11 is a shared-memory-concurrency language with explicit
thread creation and implicit sharing: any location might be read
or written by any thread for which it is reachable from variables
in scope. It is the programmer’s responsibility to ensure that such
accesses arerace-free. For example, in the following program the
spawned thread, executingthread body(&x), writesx while the
main thread readsx, without any synchronisation between the two.

#include <thread>
using namespace std;
void thread_body(int* p) {*p = 2;}
int main() {

int x = 1;
thread t1(thread_body, &x);
int r = x;
t1.join();
return 0; }

These are non-atomic
reads and writes, and
this constitutes adata
race; the fact that the
program exhibits an exe-
cution containing a race
makes the programun-
definedaccording to the
standard: an implemen-
tation has freedom to behave arbitrarily (in particular, compilers
can perform optimisations that are not sound for racy programs,
which means that common thread-local optimisations can still be
done without the compiler needing to determine which accesses
might be shared).

The language provides several mechanisms for concurrent pro-
gramming without races. First, accesses to shared state can be pro-
tected using mutex locks of various kinds, e.g. usingm.lock()
and m.unlock(). We then have varioussequentially consistent
atomicoperations on objects of integral type (bytes, integer types,
etc.): atomic loads, stores, and various read-modify-write opera-
tions. Atomic operations do not race with each other, by definition,
so changing the above to use SC atomic operations forx gives a
well-defined program, and the allowed behaviours are intended to
be those one would naively expect in an SC semantics. The inten-
tion is that locks and SC atomics will suffice for most program-
mers. However, making all racy accesses sequentially consistent is
not always required and can incur a significant performance cost,
so C++11 also provides severallow-levelatomic operations (with
different memory order parameters) for expert use, e.g. in concur-
rency libraries and other systems code. For message-passing id-
ioms, in which one thread writes some (perhaps multi-word) datax
and then a flagy, while another waits to see that flag write before
reading the data, it suffices to make the flag write areleaseand the
flag read anacquireatomic:

int x;
atomic<int> y(0);
// sender thread T0
x=1;
y.store(1,memory_order_release);
// receiver thread T1
while (0==y.load(memory_order_acquire)) {};
int r = x;

The synchronisation between the release and acquire ensures
that the sender’s write ofx will be seen by the receiver, i.e., that
the read ofx must be from the writex=1 rather than from some
uninitialised value.

On multiprocessors with weak memory orders, notably Power
and ARM, release/acquire pairs are cheaper to implement than
SC atomics but still significantly more expensive than plain stores
and loads (c.f. the precedinglwsync for the release and following
cmp; bc; isync for the acquire in Section 1; we return later
to how these act). However, these architectures do guarantee that
certain dependencies in an assembly program are respected, and
in many cases those suffice on the reader side. This motivates a

release/consumevariant of release/acquire atomics. For example,
suppose one thread writes some data (again perhaps multi-word)
then writes the address of that data to a shared atomic pointer, while
the other thread reads the shared pointer, dereferences it and reads
the data.

int x;
atomic<int *> p(0);
// sender thread
x=1;
p.store(&x,memory_order_release);
// receiver thread
int* xp = p.load(memory_order_consume);
int r = *xp;

Here the combination of the release/consume pair and the de-
pendency at the receiver from the read ofp to the read ofx suffices
to ensure the intended behaviour.

Finally, in some cases one needs only very weak guarantees, and
herememory_order_relaxed atomics can be used. The language
also includes explicit fences, in acquire, release, acquire-release,
and SC forms, to ease porting of older fence-based code.

2.2 Semantics: the C++11 axiomatic memory model

Traditional shared-memory operational semantics involves an ex-
plicit memory, with interleaved transitions by threads reading and
writing that memory. That is intrinsically SC, and for a relaxed-
memory language such as C++11 a quite different semantic style is
needed.

We say acandidate executionex of a C++ program comprises
a set of memory actions together with various relations over them.
The actions are of the form:

action ::=
a:Rna x=v non-atomic read

| a:Wna x=v non-atomic write
| a:Rmo x=v atomic read
| a:Wmo x=v atomic write
| a:RMWmo x=v1/v2 atomic read-modify-write
| a:L x lock
| a:U x unlock
| a:Fmo fence

Herea is a unique id (including a thread id),x a location, andv
a value. Memory ordersmo range over those mentioned earlier,
abbreviated thus:SC, RLX, REL, ACQ, CON, andA/R.

The relations include four binary relations determined by a
threadwise operational semantics:sequenced-before(sb), addi-
tional synchronises with(asw),data dependency(dd), andcontrol
dependency(cd); together with three that determine an interrela-
tionship between memory actions of different threads:reads-from
(rf) relates a write to all the reads that read from it; thesequential
consistent order(sc) is a total order over all SC actions; andmod-
ification order (mo) is the union of a per-location total order over
writes to each atomic location.

Given a candidate execution, the semantics defines various
derived relations: release-sequence, hypothetical-release-
sequence(a variant of release-sequenceused in the fence
semantics), synchronizes-with (sw), carries-a-dependency-to
(cad), dependency-ordered-before(dob), inter-thread-happens-
before (ithb), happens-before (hb), visible-side-effect, and
visible-sequences-of-side-effects. These are used to define when a
candidate execution isconsistentand whether it contains arace
of some kind: adata race, unsequenced race, or indeterminate
read, which we collect into a predicaterace ex . A data race is
a pair of accesses to the same address, at least one of which is
a non-atomic write, which are not happens-before related. The



consistentreadsfrom mapping check has subclauses as on the
right below.

consistentexecution=
well formedthreads∧
consistentlocks∧
consistentinter threadhb∧
consistentsc order∧
consistentmodificationorder∧
well formedreadsfrom mapping∧
consistentreadsfrom mapping

consistentreadsfrom mapping=
consistentnon atomic read values∧
consistentatomic read values∧
coherentmemoryuse∧
rmw atomicity∧
sc readsrestricted∧
sc fencesheeded

For a programc prog for which all its consistent executions
are race-free with respect to all three kinds of race (which we
write as drf c prog), the semantics is the set of all those con-
sistent executions; other programs are undefined. For example,
the release-acquire program excerpted above is race-free, and one
of its consistent executions is shown below (suppressing the ini-
tialisation write i:Wna y=0). To give some flavour of the seman-
tics, we describe why this execution is indeed consistent, refer-
ring the reader to [BOS+11] for the detailed definitions. The
well formedthreadsand well formedreadsfrom mappingpredi-
cates are straightforward sanity conditions. For this simple ex-
ample the inter-thread-happens-before (ithb) and happens-before
relation (hb) coincide, and are just the transitive closure of
the union of sequenced-before (sb) and the synchronised-with
(sw) edge created by the release/acquire pair(b, c). The con-
sistentinter threadhappensbefore predicate checks that this is

a:Wna x=1

b:Wrel y=1

d:Rna x=1

c:Racq y=1

sb,hb

sb,hb

rf

rf,sw,hb

acyclic. Theconsistentlocks and con-
sistentsc order checks are vacuous, as
there are no lock or SC atomic opera-
tions in this example. The modification
order (mo) is empty, as there is only one
write to the atomic location, soconsis-
tent modificationorder is vacuous. For
consistentreadsfrom mapping,
the main subclause is consis-
tent non atomic read values, which
checks that the non-atomic read ofx takes the value of avisible side
effect, which in a race-free program is unique and is the most re-
cent write in happens-before. Thenconsistentatomic read values
permits the atomic read ofy to read from any element of a
visible sequence of side effects, which is a set of writes ofy,
ordered by modification order, headed by a visible side effect
and terminated before any write that happens-after the read. The
coherentmemoryuse does not contribute because the happens-
before condition already enforces coherence here. The remaining
three (rmw atomicity, sc readsrestricted, sc fencesheeded) are
vacuous, as there are no RMW operations or SC atomics.

3. Simplifying the C++11 model
In this section, we establish two simplifications of the C++ model
of [BOS+11]. The standard tries to give an intuitive definition of
which values an atomic read might take usingvisible sequences of
side effects. As Batty et al. [BOS+11, BOS+10] note, taken alone
they are too weak, and additional coherence axioms (now incor-
porated into the ISO C++ Standard) are necessary to capture the
intended semantics. Given those, we can prove that the concept of
visible sequences of side effectsis unnecessary, permitting a much
simpler definition ofconsistentatomic read valuesin a modelM1:

consistent atomic read values1 =
∀b∈actions.
(is readb ∧ is at atomic locationlk b) ⇒
(if (∃a vse∈actions. (a vse, b) ∈ vse)
then (∃a∈actions. ((a, b) ∈ rf ) ∧ ¬ ((b, a) ∈ hb))
else ¬ (∃a∈actions. (a, b) ∈ rf ))

THEOREM 1. A C++11 candidate execution is consistent in C++
iff it is consistent inM1, and the races are identical. [Proof: the
happens-before relations coincide; mechanised in HOL4]

This has already been useful in automatic analysis [BWB+11],
as it removes the only use of an existentially quantified set of sets
of actions in the semantics.

Our second simplified model,M2, removes the complications
introduced by atomic consume operations (included only for expert
programmers on Power and ARM) for the subset of the language
without them. The original C++ model andM1 have a complex,
non-transitive definition of happens-before, from the standard:

ithb1 = let r = sw ∪ dob ∪ (sw ; sb) in (r ∪ (sb; r))+

hb1 = sb ∪ ithb

If we subset the language to remove atomic consume operations,
we can give an equivalent modelM2 with a much simpler

hb2 = (sb ∪ sw)+

THEOREM 2. A C++11 candidate execution without consume op-
erations is consistent inM1 iff it is consistent inM2, and the races
are identical.[Proof: the two hb relations coincide; HOL4]

4. Atomic initialisation and SC semantics
Subsetting further to remove release/acquire and relaxed opera-
tions, leaving just nonatomics and SC atomics, one would like to
prove a result along the lines of Boehm and Adve [BA08], show-
ing that for such programs theM2 semantics (and henceM1 and
Standard C++) and an SC-for-DRF-programs semantics are equiv-
alent. Our third simplified model,M3, has the obvious SC notion
of consistent execution, with a total order over all operations, and
requiring reads to read the most recent writes in that. For defining
data races, it uses the same style of definition as C++11, using a
happens-before relation, but calculates that from the total order. To
prove the result, we would need to show that a program is race-free
in M2 iff it is race-free inM3, and, for any race-free program, the
sets of consistent executions are the same.

Unfortunately, this is not true in general. Given a program which
is race-free inM2, we can show that it is race-free inM3 and that
it has the same consistent executions in both:

THEOREM 3.
drf2 c prog ⇒ drf3 c prog ∧

∀ex . opsem c prog ex ⇒
(consistent ex2 ex ⇐⇒ consistent ex3 ex )

(Here we writeopsem c prog ex to mean that candidate execution
ex is admitted by the threadwise operational semanticsopsem for
C++11 programc prog .) This is an easy corollary of the following
lemma:

LEMMA 4.

1. consistent ex2 ex ⇒ consistent ex3 ex ∨ race2 ex

2. consistent ex3 ex ⇒ consistent ex2 ex ∨ race3 ex

3. consistent ex3 ex∧opsem c prog ex ⇒ consistent ex2 ex∨

∃ex ′. consistent ex2 ex ′
∧ race2 ex ′

∧ opsem c prog ex ′

[Proof: the first two are straightforward; for the third, we can
identify a minimal race in theM3 total order and transfer that to
a consistent execution inM2.]

However, the other direction fails, as the program below shows.
In the SCM3 semantics, it is race-free, but inM2 it has a consistent
execution that has races. The example relies on the fact that in
C++11 there can be non-atomic writes to atomic locations: the
initialisation of atomic locations are non-atomic (so that they can
be implemented without fences).



atomic<int> x(0);
atomic<int> y(0);
if (1==x.load(memory_order_seq_cst))

atomic_init(&y,1);
if (1==y.load(memory_order_seq_cst))

atomic_init(&x,1);

In the SCM3 semantics, both loads must read0 and so nei-
ther of the (non-atomic)atomic init writes can take place; the
program has no races and so has defined behaviour. But inM2,
there is a consistent execution in which both loads read1. This
execution has races, and so inM2 the program’s behaviour is un-
defined. (This execution also has dynamic re-initialisation; the pro-
gram might also be considered undefined inM2 for that reason.)

This issue can be eliminated by requiring atomics to be ini-
tialised when constructed, removingatomic init, and requiring
that atomics are accessed via a path through sequenced-before and
reads-from corresponding to data-flow from their creation (i.e., not
by forging pointers). Under these additional restrictions, we have
proved the desired equivalence ofM2 andM3, and hence that for
this fragment C++11 has SC-for-DRF-programs semantics.

THEOREM 5. A C++11 candidate execution that uses only
nonatomic operations, SC-atomic operations, and locks, and that
satisfies the conditions above, is consistent in C++11 iff it is con-
sistent inM3, and the races are identical.

5. Correctness of the mapping, informally
We now instantiate the first mapping of§1 for some key examples,
giving an introduction to the behaviour that Power does and does
not guarantee for them, and hence explaining informally why the
mapping is correct in these specific cases. We also show that both
mappings are locally optimal.

In C++11, synchronisation effects are associated to atomic loads
and stores with particular memory order parameters, but Power
assembly language has just plain loads and stores; it provides
the sync, lwsync, andisync instructions, together with certain
dependencies, to constrain the otherwise highly relaxed memory
model. We introduce these constraints and the model by example
here, the key properties we depend on are summarised in§6. Ap-
plying the §1 mapping to the C++11 release-acquire example of
§2.1 gives a Power assembly program as follows:

y=0

T0 T1

r1=1; r2=&x; r3=&y r2=&x; r3=&y

a: stw r1,0(r2) write x=1 loop:
b: lwsync from write-rel d: lwz r4,0(r3) ready
c: stw r1,0(r3) write y=1 e: cmpwi r4,0

f: beq loop
g: isync from read-acq
h: lwz r5,0(r2) readx

Here stw is a store,lwz a load,cmpwi a compare-immediate,
andbeq a conditional branch. This is essentially the same as the
MP+lwsync+ctrlisync example of [SSA+11]: it has anlwsync
between the two Thread 0 writes and anisync before the sec-
ond Thread 1 read that follows a conditional branch that is data-
dependent (via the compare) on the first Thread 1 read; we call the
latter acontrol-isyncrelationship.

For this to be a correct implementation, that Power synchronisa-
tion must be strong enough to exclude any outcomes that the C++11
semantics forbids. In particular, it must prevent the Thread 1 read
of x from reading the initial state instead of from the Thread 0
write of x=1. The lwsync and control-isync are both necessary
and sufficient. Thelwsync keeps the two Thread 0 writes in or-

der as observed by any other thread (otherwise, as they are to dif-
ferent locations, they might be re-ordered in the storage hierar-
chy, or even committed out-of-order). Replacing thelwsync by an
isync would still permit the former reordering, as is observable on
Power 6 and 7 processors (MP+isync+ctrlisync), and just by typ-
ing it cannot be replaced by a control-isync, as one cannot have a
dependency from a write. Meanwhile, the control-isync relation-
ship ensures that the read ofx cannot be satisfied until theisync
is committed, which requires the program-order-previous branch to
be committed, which requires the read ofy=1 to be committed.

Without theisync, the Power architecture permits a processor
to speculatively satisfy the read ofx out-of-order, before satisfy-
ing the program-order-previous read(s) ofy, despite the intervening
conditional branch. It can thereby read from the initial state, and
this is observable in practice, for a litmus test MP+lwsync+ctrl.
(That test is also C++11-expressible: it is essentially the result
of applying the mapping to the release-acquire example with the
read-acquire replaced by a read-relaxed.) Theisync alone, with-
out the control dependency from the preceding read to a condi-
tional branch, also would not suffice: in this case theisync could
be committed first, enabling readh to be satisfied and commit-
ted before anything else occurs. We have not observed this out-
come in practice on current Power 6 or Power 7 processors (for
test MP+lwsync+isync), but it is architecturally permitted. For the
analogous ARM test MP+dmb+isb, the outcome is observable.

Now consider the release-consume example of§2.1, mapped to:

p=0

T0 T1

r1=1; r2=&x; r3=&p r3=&p

a: stw r1,0(r2) write x=1 d: lwz r4,0(r3) readp
b: lwsync from write-rel e: lwz r5,0(r4) read*xp
c: stw r2,0(r3) write p=&x

The writing side has anlwsync as before, but now the reading side
has no control-isync. It is correct nonetheless, because the Power
architecture respectsaddress dependenciesbetween loads: here the
reade reads from an address in registerr4 which takes its value
from the program-order-previous readd. In such a case the reads
must be satisfied (and indeed also committed) in program order.

The above examples involve only two threads, which turns out
to be a very special case. With three or more threads, one can ob-
serve that on Power a write does not necessarily become visible to
the other threads atomically, and indeed can be propagated to them
in different orders, or even never propagated to some threads. Any
transitive reasoning across multiple threads relies on thecumula-
tivity of the Powersync andlwsync barriers. Consider a three-
thread version of the release-acquire example, with release-acquire
synchronisation between the first pair of threads and between the
second pair:

int x; atomic<int> y(0); atomic<int> z(0);
T0 x=1;

y.store(1,memory_order_release);
T1 while (0==y.load(memory_order_acquire)) {};

z.store(1,memory_order_release);
T2 while (0==z.load(memory_order_acquire)) {};

r = x;

The mapping introduces control-isyncs (from the load-acquires)
andlwsyncs (from the store-releases) as in the candidate Power
execution illustrated below:

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: W[z]=1

e: R[z]=1

Thread 2

f: R[x]=0

lwsync
rf rfctrlisync

lwsync

ctrlisync

rf



Here the effect of the Thread 1 control-isync is subsumed by the
following lwsync (eliminating the former is likely to be an impor-
tant compiler optimisation). That leaves the Thread 2 control-isync,
which acts just as in the first release-acquire example, and the two
lwsyncs. To rule out the C++11-forbidden execution shown, we
need to know that the writesa andd, by different threads and to
different locations, are propagated to Thread 2 in that order. By the
thread-local property oflwsync used above, the Thread 1lwsync
ensures thata andb are propagated to Thread 1 in that order, soa
must have been propagated to Thread 1 beforec reads fromb and
hence before the Thread 1lwsync is committed. This means that
a is in theGroup Aof thatlwsync, the set of writes that have been
propagated to its thread already. In turn, the cumulativity of Power
lwsyncs means thata must be propagated to any other thread,
e.g. Thread 2, before thelwsync is, and hence before writed is.

Now consider the classic four-thread IRIW example (Indepen-
dent Reads of Independent Writes). Here Threads 0 and 2 write to
two different locations; the question is whether Threads 1 and 3 can
see those writes in opposite orders, one readingx=1 theny=0 while
the other readsy=1 thenx=0.

atomic<int> x(0); atomic<int> y(0);

T0 x.store(1,memory_order_release);
T1 r1=x.load(memory_order_acquire);

r2=y.load(memory_order_acquire);
T2 y.store(1,memory_order_release);
T3 r3=y.load(memory_order_acquire);

r4=x.load(memory_order_acquire);

With release-acquire atomics, this is permitted in C++11 (this
is clearly not a sequentially consistent outcome, and so release-
acquire atomics donot guarantee SC), and indeed applying the
mapping gives essentially the Power test IRIW+lwsyncs, which is
architecturally permitted and observable in practice.

With SC atomics, on the other hand, this non-SC outcome is
forbidden in C++11. To forbid it in the implementation requires
a Powersync between both pairs of SC-atomic reads, not just
an lwsync. The sync is stronger in that its Group A writes (or
some coherence-successors thereof), including any program-order-
previous writes, must be propagated to all threads before thesync
completes and subsequent memory access instructions can begin.

A sync is also needed between the other three combinations
of an SC atomic read or write, as shown by our SB+lwsyncs and
R01 examples [SSA+11] for write-to-read and write-to-write, and
by the WRW+WR+lwsync+sync example below for the read-to-
write case, all of which are architecturally permitted. SB+lwsyncs
is also observable on current implementations, whereas we have
not observed the last two. Both of the latter can be explained by
the fact that a Power coherence edge does not add writes into the
Group A of a subsequent barrier (WRW+WR is similar to R01
but with the initial write pulled back along an rf edge). They are
counterexamples to the correctness of a previous version of the
mapping, which proposed anlwsync in place of thesync for SC
stores in normal cacheable memory.

Test WRW+WR+lwsync+sync : Allowed

Thread 0

a: W[x]=1 b: R[x]=1

Thread 1

c: W[y]=1

d: W[y]=2

Thread 2

e: R[x]=0

rf

lwsync
co

sync

rf

The first§1 mapping creates these interveningsyncs by putting a
sync before the load or store of an SC atomic. One could equally
well put them after, as in the second mapping, though in C++11 SC
atomics also have release/acquire semantics, so one then also needs

a precedinglwsync for the SC atomic store (in the first mapping,
the precedingsync does duty for both purposes).

Using the above examples, and some others, we can show:

THEOREM 6. Both the§1 mappings are pointwise locally optimal.

PROOF For each possible weakening there is a C++11 example
with some forbidden behaviour which would map onto a Power
program for which that behaviour is allowed, as checked by our
cppmem [BOS+11] andppcmem [SSA+11] tools using automati-
cally generated executable versions of the models. All these exam-
ples are collected in the supplementary material [BMO+].

• The load-consume dependency cannot be removed
(C++ message-passing with release/consume7→ Power
MP+lwsync+po).

• The load-acquire control-isync cannot be weakened to just a
control dependency (MP+release/acquire7→ MP+lwsync+ctrl),
or to just an isync (7→ MP+lwsync+isync).

• The load-seq-cst sync, whether before or after the load, cannot
be weakened to an lwsync (IRIW+seq-csts7→ IRIW+lwsyncs),
or to an isync (7→ IRIW+ctrlisyncs).

• The load-seq-cst control-isync in the original mapping cannot
be weakened to just control (MP+seq-csts7→ MP+sync+ctrl),
or to just isync (7→ MP+sync+isync).

• The store-release lwsync cannot be weakened to isync
(MP+release/acquire7→ MP+isync+ctrlisync).

• The store-seq-cst sync, whether before or after the store, cannot
be weakened to lwsync (R01+seq-csts7→ R01), or to an isync
( 7→ R+isync+sync).

�

6. Background: the Power memory model
In preparation for the correctness proof in the next section, we
recall the overall structure of the Power memory model [SSA+11],
sketching how the concepts we used informally in§5, e.g. of a write
being “propagated to” a thread, reflect the actual semantics.

As we saw there, the fact that reads can be satisfied specula-
tively, even program-order-after a conditional branch, is observ-
able. This pushes us towards an operational abstract-machine se-
mantics, expressed as a parallel composition of a thread model and
a storage subsystem.

Storage Subsystem

ThreadThread

Write request
Read request

 

Read response
Barrier ackBarrier request

At any one time, a thread may have many in-flight (uncommitted)
instructions; reads can be satisfied and instructions committed out-
of-order, subject to constraints from barriers and dependencies, and
uncommitted instructions are subject to restart or abort. The storage
subsystem abstracts from the cache and store buffering hierarchy
(and does not involve speculation). It does not have an explicit
memory, but instead maintains the global accumulated constraints
on the coherence order between writes to the same address that
have been built up, together with a list for each thread of the writes
and barriers that have been propagated to that thread.

The thread and storage subsystem models are each labelled
transition systems (LTSs) synchronising on labels as in the diagram
above; their composition gives another LTS with labels:

label ::=
| FETCH tid ii
| COMMIT WRITE INSTRUCTION tid ii w



| COMMIT BARRIER INSTRUCTION tid ii barrier
| COMMIT READ INSTRUCTION tid ii rr
| COMMIT REG OR BRANCH INSTRUCTION tid ii
| WRITE PROPAGATE TO THREAD w tid
| BARRIER PROPAGATE TO THREAD barrier tid
| SATISFY READ FROM STORAGE SUBSYSTEMtid ii w
| SATISFY READ BY WRITE FORWARDING tid ii1 w ii2
| ACKNOWLEDGE SYNC barrier
| PARTIAL COHERENCECOMMIT w1 w2

| REGISTER READ PREV tid ii1 reg ii2
| REGISTER READ INITIAL tid ii reg
| PARTIAL EVALUATE tid ii

Here tid ranges over thread ids,ii over instruction instances,w
over write events,rr over read-response events,barrier oversync
or lwsync events, andreg over Power register names.

A Power executiont is simply a trace of abstract-machine states
and these labels; we write machineexecutionspower prog for the
set of all such for a Power programpower prog (Power programs,
of type POWER PROGRAM, are essentially maps from addresses
to assembly instructions, together with the initial register state,
including PC, for each thread.)

Key properties required for the proofs of§7 are derived from
the preconditions and postconditions of the transitions. As an
example, before a barrier (sync or lwsync) is propagated to
a new thread by the BARRIER PROPAGATE TO THREAD transi-
tion, any writes propagated before it to its original thread (the
“Group A” writes) must first be propagated to that thread (by a
WRITE PROPAGATE TO THREAD transition). For async, the cor-
responding ACKNOWLEDGE SYNC transition cannot fire until that
sync is propagated to all threads (and this implies that all its Group
A writes, or coherence successors thereof, must have been propa-
gated to all threads before that in the trace). The combination of
a conditional branch and anisync instruction (“ctrlisync”) stops
program-order-later reads being able to do their SATISFY READ
transitions before the branch is resolved and committed.

To isolate particular events of interest, we let the following
metavariables range over transition labels from a trace as follows:

Metavariable Transition labels ranged over
wc COMMIT WRITE INSTRUCTION

rc COMMIT READ INSTRUCTION

bc COMMIT BARRIER INSTRUCTION

mc (memory) COMMIT WRITE INSTRUCTION

∪ COMMIT READ INSTRUCTION

xc COMMIT WRITE INSTRUCTION

∪ COMMIT BARRIER INSTRUCTION

7. Correct compilation from C++11 to Power
We now prove that the mappings of Section 1 are correct in general,
focusing on the first mapping and then discussing the changes
required for the second.

7.1 Correctness Statement

The usual form of whole-program correctness statement one might
expect for a compiler is an inclusion between the observable be-
haviours of the compiled program and those of the source:

c prog
C++11 semantics

compilation

C++11 execution observations

power prog
Power semantics

Power execution observations

⊆

Here, however, we are proving correctness of compilation schemes
for particular constructs (the C++11 atomic and nonatomic loads
and stores), not correctness of a specific compiler. We therefore
want to factor out as much as possible of the definition of the source

language and of the rest of the compiler, both to remove extraneous
complexity that is irrelevant to the relaxed-memory behaviour and
to let us state a general result that should be re-usable in multiple
later compiler correctness proofs. We do so by axiomatising the
required threadwise properties of a C++11 operational semantics
and a good compiler.

For the source language, we take a C++11 program, of type
C PROGRAM, to be a parallel composition of single-threaded
programs from an abstract typeC PROGRAM THREAD, with an
arbitrary threadwise operational semantics for them that satis-
fies certain rather mild axioms. An operational semantics opsem
is a relation betweenC PROGRAMs and sets of C++11 actions
actionsc equipped with the three relevant operational-semantics
relations of§2.2: sequenced-beforesbc , data-dependencyddc , and
control-dependencycdc , packaged into a recordopc (additional-
synchronises-with is empty in the absence of dynamic thread cre-
ation). Recall that this threadwise operational semantics should
leave the values of memory reads unconstrained, as that is handled
by the C++11 axiomatic memory model of§2.2. We return below
to the axioms we need.

We take a strong intensional notion of observation:
given a Power machine tracet we build read and write
events events t from the COMMIT READ INSTRUCTION and
COMMIT WRITE INSTRUCTION commit labels, together
with a reads-from relationrft . The observation predicate
obseq t actionsc rfc requires that there is an exact correspon-
dence between theseevents t and the actionsc of a C++11
execution, with isomorphic reads-from relationsrft andrfc .

Given a Power tracet , it is also straightforward to construct
analogues of the threadwise C++11 relations over the constructed
events, for program orderpot , data/address dependencyddt , and
control dependencycdt ; by analysing the trace, we can also identify
the events from the same thread that are separated by control-isync,
sync, or lwsync instructions in the trace, constructing relations
ctrlisynct , synct , andlwsynct .

A compiler comp is a function from C PROGRAM to
POWER PROGRAM; it satisfies threadwisegoodcompiler if for any
C++11 programc prog and any Power trace ofcomp c prog , there
is a set of C++11actionsc with associatedsbc , ddc , cdc , andrfc
relations such that

1. the C++11 data has the same observations as the trace:
obseqt actionsc rfc ;

2. the C++11 data is allowed by the threadwise operational-
semantics: opsemc prog actionsc opc ;

3. the C++11 relationssbc , ddc , andcdc are subsets of the cor-
responding relationspot , ddt , and cdt built from the trace
(note that the C++11 sequenced-before relation may not be total
within a thread, as evaluation order is sometimes unconstrained,
but the Power program order is total within a thread); and

4. if one applies the mapping to the C++11 actionsactionsc ,
the result is included in thectrlisynct , synct , and lwsynct
relations constructed from the Power trace.

For example, a C++11 actiona:WREL x=1 can be pre-
sumed to arise from a source program instruction
x.store(e,memory order release), and so a threadwise
good compiler following the mapping should have compiled it into
a Powerlwsync preceding a store, and any trace should contain a
corresponding COMMIT BARRIER INSTRUCTION label followed
(perhaps not immediately) by a COMMIT WRITE INSTRUCTION.

Finally, we express correctness on a per-execution basis and
can assume that the source program is race-free, otherwise C++11
regards it as undefined and compilation is unconstrained. That leads
us to the following statement of our main theorem:



THEOREM 7 (Correctness).
∀comp c prog .
threadwisegoodcompilercomp ∧
drf c prog
⇒
(let power prog = comp c prog in
(∀t∈machineexecutionspower prog .
(∃actionsc opc rfc moc scc .

obseqt actionsc rfc ∧
opsemc prog actionsc opc ∧
consistentexactionsc opc rfc moc scc)))

Our proof follows this structure. Consider a Power tracet of a
Power programpower prog produced by a threadwise-good com-
piler from a C++ programc prog . The threadwisegoodcompiler
assumption tells us that there are some corresponding (up to
obseq) C++11actionsc , opc , andrfc for which the memory ac-
tions of each thread satisfy the threadwise operational semantics.
We now construct a C++11 modification ordermoc and sequential
consistent orderscc , and then have to either prove that the C++11
execution comprising all this data is consistent, or to construct an-
other consistent execution which contains a race, thereby contra-
dicting the drf assumption.

The construction of a C++11 modification ordermoc is straight-
forward, as (likesbc , ddc , cdc , andrfc) there is a direct analogue in
the Power trace: the coherence constraints in the storage subsystem
state increase monotonically along a trace, so we can just take their
union cot , choose an arbitrary per-location linearisation thereof,
and restrict to the atomic locations. Construction of a C++11 SC
orderscc is more involved, as we see below in§7.3.

Note that, in contrast to many compiler correctness proofs, this
is not a simulation argument: the C++11 definition of consistent
execution is a predicate on complete candidate executions; it is not
generated by an operational semantics and does not involve any
notions of a C++11 whole-program state or transition.

7.2 Analysis of a Power trace w.r.t. C++11
inter-thead-happens-before

The C++11 definition of consistent execution comprises seven con-
ditions, as listed in§2.2, almost all of which rely heavily on the
happens-beforerelation, which is the union of sequenced-before
and a complexinter-thread-happens-beforerelation.

To establish those conditions, we need to analyse the Power
trace with the shape of theinter-thread-happens-beforerelation
in mind, making use of various ordering properties of the Power
semantics and the fact that the Power program is obtained using the
given mapping.

In broad terms, if there is a C++11 inter-thread-happens-before
relation from a write to a read, we need to show that the write has
propagated to the reading thread before the read is satisfied. For
read-to-read pairs, we need to show that any write propagated to
the thread of the first read, before it is satisfied, has propagated
similarly. For write-to-write and read-to-write pairs, we need to
ensure propagation before the commit of the final write.

In more detail, we must also allow coherence successors of
writes to be propagated in their place, must consider propagation
of barriers, must refer to the last satisfy label of any read that reads
from a different thread, and must split the different-thread/same-
thread cases. To capture all this, we define apropBefore relation
over memory and barrier commit labels. For labels from different
threads, we say:

• bc
propBefore
−−−−−−→ rc iff the barrier has propagated to the reading

thread before the read is finally satisfied, i.e., if there is a
BARRIER PROPAGATE label for bc trace-order-before the last
SATISFY READ for rc;

• wc
propBefore
−−−−−−→ rc iff the write, or some coherence-successor

write, has propagated to the reading thread before the read is
finally satisfied; and

• wc1
propBefore
−−−−−−→ wc2 iff the write of wc1, or some coherence-

successor write, has propagated to the thread ofwc2 before the
wc2 commit.

For labels from the same thread, we say:

• xc
propBefore
−−−−−−→ rc iff xc is either a write commit label and is

read byrc or it is trace-order-beforerc is finally satisfied; and

• xc
propBefore
−−−−−−→ wc iff xc is trace-order-beforewc.

Consider now the C++11 definition of happens-before (hb).
Without relaxed or consume operations, it only crosses threads with
a reads-from edge of a release/acquire pair that synchronise with
each other. Under the mapping, thisrft edge must be preceded
by synct or lwsynct and followed by actrlisynct . With relaxed
atomics, the acquire might read from something in the release se-
quence of the release it synchronises with. In Power terms, a re-
lease sequence is a series of same-threadcot edges (if we cov-
ered read-modify-write operations, these would not necessarily be
on the same thread). Adding consume atomics, release/consume
synchronisation involves the dependency-ordered-before (dob) re-
lation, which is similar to ithb except that on the right hand side
it only reaches to dependent operations, not to all program-order
successors of the read. In Power terms, in this case thectrlisynct
is replaced byddt∗. All this motivates the definition of a machine
analogue of ithb,machine-ithbt :

(

(synct ∪ lwsynct)
refl; coit

∗; rfet ; (ctrlisynct ∪ ddt
∗)refl

)+

wherecoit is the machine coherence order restricted to pairs of
writes by the same thread, andrfet is the machine reads-from
relation restricted to write/read pairs on distinct threads.

LEMMA 8. Given two C++11 memory actionsm1 andm2 and the

corresponding Power commit eventsmc1 andmc2, if m1
ithbc−−−→

m2 thenmc1
machine-ithbt−−−−−−−−→ mc2.

PROOF By a series of lemmas about the C++11 auxiliary relations,
unfolding the definitions, with reasoning as above. �

To prove the required propagation property (Corollary 10 be-
low), we first consider the left part of this relation:

LEMMA 9 (Propagation).

1. If wc
((synct∪lwsynct )

refl;coit
∗;rfet )

+

−−−−−−−−−−−−−−−−−−−→ rc, thenwc
propBefore
−−−−−−→ rc.

2. If rc1
((synct∪lwsynct )

refl;coit
∗;rfet )

+

−−−−−−−−−−−−−−−−−−−→ rc2, then for any write

commitwc
propBefore
−−−−−−→ rc1, we havewc

propBefore
−−−−−−→ rc2.

PROOF By induction on the transitive closure of the relation. In
the base case, by decomposing the large relation, two intermediate
write commit events appear (wc1 and wc2). In the case where

mc
synct∪lwsynct
−−−−−−−−−→ wc1, if mc is a write, then it falls into the

Group A of the intervening barrier; if it is a read, then any write
propagated to its thread before it is satisfied falls into the Group
A of the barrier. Thecoit∗ relation is a subset ofpot , hence we

also havemc
synct∪lwsynct
−−−−−−−−−→ wc2. Hence, using the A-cumulativity

property of the Power machine and since we know thatwc2 does
propagate to the thread ofrc beforerc is last satisfied (because it
is read from), the writes in the Group A of the barrier (or some
coherence successors) must have previously been propagated to

that thread. This establishes the desired
propBefore
−−−−−−→ relationship. In



the other case,mc = wc1, we just saw thatwc2 does propagate
to the thread ofrc in time and it is here a coherence-successor
of mc. For the inductive case we use the same reasoning as for
the first step to establish that the writes under consideration are
first propagated to the thread of the intermediate read, and then the
induction hypothesis. �

COROLLARY 10 (Propagation w.r.t. ithb).

1. If rc
machine-ithbt−−−−−−−−→ mc then for any write commitwc with

wc
propBefore
−−−−−−→ rc, we havewc

propBefore
−−−−−−→ mc.

2. If wc
machine-ithbt−−−−−−−−→ mc thenwc

propBefore
−−−−−−→ mc.

PROOF ctrlisynct andddt are subsets ofpo so, without loss of
generality, we can neglect all those edges except the last one:

wc
((synct∪lwsynct )

refl;coit
∗;rfet )

+

−−−−−−−−−−−−−−−−−−−→ rc
(ctrlisynct∪ddt

∗)
−−−−−−−−−−→ mc

Lemma 9 establishes propagation to the thread ofrc, then, using
either thectrlisynct or ddt , if mc is a read then it is satisfied after
rc is committed, and ifmc is a write then it is committed afterrc
is committed. �

Several of the C++11 conditions are acyclicity properties (ei-
ther explicitly so, e.g. the consistency of ithb, or requiring consis-
tency between relations, e.g.rf

c
andhbc). To establish these, it is

convenient to reduce them to the acyclicity of trace order, by the
following lemma.

LEMMA 11 (Trace order respectsmachine-ithbt ).

If mc1
machine-ithbt−−−−−−−−→ mc2 thenmc1 is beforemc2 in the trace.

PROOF Along the same lines as the reasoning above, by induction
on the transitive closure ofmachine-ithbt . �

7.3 Analysis of a Power trace to construct a C++11 SC order

C++11 demands a single total order sc over all the SC atomic ac-
tions, subject to some consistency conditions. Broadly, this order
must be consistent with the sequenced-before relation, with modi-
fication order, and for each SC readrc, if it reads from a SC write
wc, thenwc must be the last SC write to that location beforerc
in the SC order, while if it reads from a non-SC writewc′, then
wc′ cannot be after (in happens-before) any SC write to the same
location which is itself afterrc in the SC order.

In Power terms, the first two conditions are straightforward to
express: we need to construct a total order on SC actions which
includes the subparts ofpot andcot (posc

t andcosc
t respectively)

that are restricted to SC actions. However, there is no obvious cor-
responding total order visible in the trace. In particular, recall from
§6 that for write commit labels trace order is not necessarily con-
sistent with the coherence ordercot . It is also not sufficient to use
an arbitrary linearisation of(posc

t ∪ cosc
t )∗ (thoughpot and cot

are individually acyclic), since that may introduce bad intervening
writes to the same location in between a pair of a write and a read
that reads-from it. Consider then an SC readrc, and the writewc
(not necessarily SC) that it reads-from, and recall that we have a
coherence ordercot for writes to that location. We define two new
derived relations on SC reads and writes: from-reads (fr sct ) defined

asrc
frsct−−→ wc1 if wc

cot−−→ wc1, i.e.rc reads-from a coherence pre-
decessor of the SCwc1; and extended-reads-from (erf sct ) defined

aswc1
erf sct−−−→ rc if wc1 is the last SC write in coherence order

equal to or before thewc thatrft reads from. From-reads relations
have been used by various researchers [ABJ+93, AMSS10, Alg10],
and the latter reference proves that if the union of program-order,
coherence, reads-from, and from-reads is acyclic, then the execu-
tion is an SC execution by the traditional definition [Lam79] of a

single global order over all events. We use this characterisation in
Theorem 13 below.

We will use as the SC order an arbitrary linearisation of(posc
t ∪

cosc
t ∪ fr sct ∪ erf sct )∗. We now show that this combination of

relations is acyclic, and hence can be consistently extended to
a total order. First note that if the above relation has a cycle,

there must be at least onemc1
posc

t−−→ mc2 edge in the cycle,
as otherwise it is straightforward to deduce that the coherence
relation implied by the machine trace is itself cyclic. Under the
mapping, this means thatmc1 andmc2 must be separated in the
trace by a sync and its ACKNOWLEDGE SYNC transition. Our main
lemma for this (Lemma 12 below) says that for anymc with

mc
(posc

t ∪cosc
t ∪frsct ∪erf sct )∗

−−−−−−−−−−−−−−−→ mc1, it must be in trace-order before
that ACKNOWLEDGE SYNC transition (call this theS transition),
and this contradictsmc2 being after that transition.

We will prove Lemma 12 by induction on the length of the
relation, case analysing the relation in the first step. We have to
strengthen the inductive hypothesis in two ways to make the proof
go through. For example, consider the case where the first step is a

rc
frsct−−→ wc edge. We know inductively thatwc is beforeS in the

trace, but this does not immediately help us know that the readrc
is also beforeS. What we need is the strong property of the sync
(recall§6), that before the acknowledgement for a sync in the trace,
preceding writes are not merely committed but also they (or some
coherence successors) are propagated to all threads. This suffices,
since ifwc is propagated to the reading thread, and it is not read-
from, the read must already have been done.

For the second strengthening, consider the case where the first

step is awc
rft
−→ rc edge (one kind of anerf sct edge is arft edge).

As above, we will have to inductively establish that the writewc
have been propagated to all threads before the sync acknowledge-
mentS. The Power machine guarantees this for any sync on the
same thread asrc, but not necessarily for syncs on other threads.
To make the induction work, we will find a new intermediate sync
acknowledgementSn, which is on the same thread as an event re-
lated torc in theposc

t -free part of the relation. Since this involves
only cosc

t , fr sct anderf sct edges, these will be on the same location,
andwc will then be correctly related by coherence to a write that is
known to be propagated everywhere beforeSn in the trace.

The final statement is then:

LEMMA 12 (Main Lemma for SC).Supposemc1
pot
−−→ mc2, and

there is a sync ackS betweenmc1 andmc2 in the trace. Suppose

mcn
(posc

t ∪cosc
t ∪frsct ∪erf sct )∗

−−−−−−−−−−−−−−−→ mc1. Then there is anmc′
n

and a
sync ackSn such that:

1. mcn is beforeSn in the trace, andSn is before or equal toS
in the trace;

2. If mcn is a write, then that write or a coherence successor has
propagated to all threads beforeSn in the trace;

3. mc′
n

is beforeSn in the trace;
4. mc′

n
andSn are from the same thread; and

5. mcn
(cosc

t ∪frsct ∪erf sct )∗

−−−−−−−−−−−−→ mc′
n

(the subpart of the relation be-
tweenmcn andmc′

n
is pot -free).

PROOF By induction on the length of the chain

mcn
(posc

t ∪cosc
t ∪frsct ∪erf sct )∗

−−−−−−−−−−−−−−−→ mc1. In the base case,mcn = mc1,
and the required conditions are easily established by taking
mc′

n
= mcn andSn = S.

In the inductive case, we case analyse on the kind of relation in
the first step. Forcosc

t , fr sct anderf sct , we use the same intermedi-
ate event and sync acknowledgement as the inductive hypothesis,
makingmc′

n
= mc′

n−1 andSn = Sn−1. Then, for example, if the



edge iswc1
cosc

t−−→ wc2, we have inductively thatwc2 is propagated
to all threads as required beforeSn, and thus a coherence successor

of wc1 is as well. We outlined therc
frsct−−→ wc andwc

erf sct−−−→ rc
cases in the description above.

In the remaining case,mcn
posc

t−−→ mcn−1, we have two SC
events separated in program order. By the mapping, there must be a
sync between them in program order. LetSn be the acknowledge-
ment transition for that sync, andmc′

n
= mcn. Then the required

conditions are easy to check. �

Notice in the proof that we use the sync program-order between
any two SC actions from the same thread. This is crucial for the
induction to go through. Indeed, as shown in§5, for any pair of SC
actions, if we weaken the sync to anything else (lwsync or weaker),
we have a counterexample to show a program with only SC actions
behaving in a non-sequentially consistent manner.

The proof is applicable in a wider setting than just for C++11.
The key fact we used to create the SC order is that every pair
of SC actions on the same thread is separated (in program order)
by a sync. Looking at the proof for the case that every memory
access is a SC atomic action (i.e. no other memory types, or non-
atomic accesses) shows that such a program has only sequentially
consistent behaviour, an interesting fact in its own right about
Power assembly programs.

THEOREM 13 (Syncs between every pair of accesses restore SC).
Suppose we have a Power (assembly) program with every pair
of memory accesses on the same thread separated in program
order by a sync. Then the program has only sequential consistent
behaviour.

PROOF Given the premises, the proof of Lemma 12 shows that
(pot ∪ cot ∪ frt ∪ rft)

∗ is acyclic, then by [Alg10,§4.2.1.3] the
execution is Lamport-SC. �

7.4 Verification of consistentexecution

We now have the tools to verify the satisfaction of all the conjuncts
of the consistentexecutionpredicate, as listed in§2.2 and sim-
plified by Theorem 1 of§3. The twowell formedconjuncts hold
by the obseq and assumptions on opsem, e.g. that the sequenced-
before relation only relates actions of the same thread. Theconsis-
tent locksconjunct is vacuous in the sublanguage we consider in
this section. For the others, we use the correspondences between
C++11 actions and relations and Power trace events and relations
we established in§7.1 and in§7.2, mostly using Corollary 10 and
Lemma 11.

First, consistent inter thread happens before states the
acyclicity of ithb. Using Lemma 11, we prove by contradiction that
such a cycle implies a cycle in the trace order.

Next we have four coherence conditions for pairs of a read
and a write (CoRR, CoRW, CoWR and CoWW), which are part
of consistentmodificationorder andcoherentmemoryuse(itself
part of consistentreadsfrom mapping). These diagrams involve
rfc andhbc edges relating two writes and some reads, all at the
same atomic location; they require the writes to be correctly or-
dered inmoc . For example:

LEMMA 14 (CoRW).Given C++11 actionsw1, r, andw2, all to
the same location, and anrfc andhbc edge as below, thew1

moc−−→
w2 edge exists.

w1
rfc

moc

r

hbc

w2

PROOF To establish this we first show that the Power writewc1
corresponding tow1 is propagated to the thread of the Power write
wc2 corresponding tow2 beforewc2 is committed. In more detail:

For therfc edge, the inclusion from§7.1 gives us a Powerwc1
rft
−→

rc relation between the corresponding commit events from the
trace. For thehbc edge, by the definition of C++11 happens-before,
either (case 1) there is ansbc edge, in which case we use the
inclusion from§7.1 to showrc

pot−−→ wc2 (and they are on the same
thread), or (case 2) anithbc relationship, in which case there is an

rc
machine-ithbt−−−−−−−−→ wc2 edge. We know (because of the Power rules

involved in a reads-from relation, and with a case split on whether
wc1 andrc are on the same thread or not) thatwc1 propagates to the
thread ofrc beforerc is finally satisfied. Hencewc1 is propagated
to the thread ofwc2 before the latter is committed, either (in case
(1)) because the semantics of the commit transition guarantees that
pot is respected by the trace order for events at a same location, and
using transitivity, or (in case (2)), by Corollary 10.

Finally, by the storage-subsystem semantics for
COMMIT WRITE INSTRUCTION, when a write is committed,
it automatically becomes coherence-after all the writes that have
already been propagated to its thread, sowc1

cot−−→ wc2. And by
the construction ofmoc , that givesw1

moc−−→ w2. �

The other three coherence properties are similar, albeit administra-
tively more complex. Two additionally use the fact that a Power
read can only be satisfied from the last write (to the relevant ad-
dress) that has been propagated to its thread.

Theconsistentsc orderpredicate checks that SC is a strict total
order over the SC actions. The totality is by construction; strictness
is by acyclicity. It also requires thathbc and moc restricted to
SC atomics are included inscc . The first is immediate from the
construction ofhbc from subsets of the relations involved in the
construction ofscc . The second makes use of a lemma stating
the inclusion incot of the relation from which we build the SC-
order when restricted to pairs of writes at a same location, and the
construction ofmoc.

Theconsistentmodificationorderpredicate consists of CoWW,
dealt with above, a totality condition that is immediate from the
construction ofmoc as a linearisation, and a check that it only
relates writes at atomic locations, which is also by construction.

Now we have the subclauses ofconsistentreadsfrom mapping.
Two, rmw atomicity and sc fencesheeded, are vacuous for the
sublanguage we consider. We dealt with the coherence conditions
of coherentmemoryuseabove.

The predicatesc readsrestricted forces any SC read to read
from the lastscc-preceding write (wc) at the same location, or some
non-SC write that is nothbc-beforewc. The proof is by construct-
ing a SC-cycle for each forbidden situation, which contradicts the
results of§7.3.

An interesting observation here is that, through the application
of the acyclicity result of§7.3, we make use for the first time of the
barriers placed by the mapping before the compilation of SC reads.
And in fact, we do not rely anywhere else on these barriers as they
play no part in the propagation property stated by Lemma 9.

Finally, we get to the constraints on read values. Theconsis-
tent non atomic read valuespredicate says that a readr at a non-
atomic location must read from a visible side-effect, i.e., a writew
that happens-beforer such that there is no writew′ that happens-
betweenw andr. Assuming the contrary, there are three possible
situations:

1. r reads from a write that happens-after it;
2. r reads from an hb-hidden write: there exists aw′ that happens-

betweenw andr; or
3. r reads from an hb-unrelated write.



Cases 1 and 2 are lengthy but in the same style as the reasoning for
CoRW and CoWR, showing that writes propagate appropriately.

Case 3 is quite different. Here we have a Power readrc that

reads from a writewc for which neitherw
hbc−−→ r nor r

hbc−−→ w
hold. Intuitively, this is a race, but this is not a consistent execution:

r cannot read fromw in C++ unlessw
hbc−−→ r .

In the next section we show that in this case the original program
has some other candidate execution that is consistent and that has a
race (a data race or indeterminate read), contradicting the top-level
assumption that the program was drf. A similar situation arises for
the last subclause,consistentatomic read values.

Formally, we case split at the top level on the following
rf in hb predicate, capturing additional assumptions that ensure
consistency:

rf in hb = ∀w r .

(w
rfc−−→ r ∧ r is a non-atomic read⇒ w

hbc−−→ r) ∧

(w
rfc−−→ r ∧ r is an atomic read⇒

(∃w ′. is writew ′ ∧ samelocationw w ′ ∧ w ′ hbc−−→ r))

If rf in hb holds, case (3) is excluded andconsis-
tent non atomic read values and consistentatomic read values
can be established directly.

7.5 Construction of a racy consistent execution

In the situation where therf in hb predicate of the previous sec-
tion does not hold, our strategy is to 1) find a prefix of the trace
for which rf in hb holds and build a consistent execution for it by
applying the reasoning of Section 7.4 to that prefix; 2) add an in-
determinate or data-race read to the consistent execution; 3) return
any missing sequenced-before predecessor actions to the consistent
execution; 4) extend the consistent execution until it is a complete
execution of the original program.

For Step 1, we find the first read commitrc on the trace that
causes a violation ofrf in hb, and build a consistent execution for
part of the trace that precedes it. Our ability to use Section 7.4 for
this relies on the fact that the commit labels on the trace respectrft ,
ddt , andcdt , which are in turn consistent withrfc , ddc , andcdc .

Steps 2–4 rely on the following receptiveness axiom about the
C++ threadwise operational semantics, which we believe any rea-
sonable operational semantics should satisfy.
∀c prog actions′c actionsc opc a new a.
opsemc prog actionsc opc ∧

a ∈ (actionsc \ actions′c) ∧ new a ∈ all valuesa ∧
is reada ∧ actions′c ⊂ actionsc ∧

(actions′c ∪ {a}) is downward closed under(ddc ∪ cdc)+

⇒
(∃new actc new opc .
let stay actc = actions′c ∪

{b|b∈actionsc \ actions′c ∧ b 6= a ∧ ¬ a
(ddc ∪ cdc)

+

−−−−−−−−−→ b}
in
stay actc ∩ new actc = ∅ ∧
((opc |(stay actc ∪ {a}))[new a/a] =
new opc |(stay actc ∪ {new a})) ∧

(∀x y. x
(new ddc ∪ new cdc)

+

−−−−−−−−−−−−−−−→ y ∧ x ∈ new actc ⇒
y 6∈ stay actc ∪ {new a}) ∧

opsemc prog (stay actc ∪ {new a} ∪ new actc) new opc)

It states that if the operational semantics can perform a read at a
certain point, it can instead perform any read that is of the same
kind and from the same location, but that reads a (potentially)
different value. This reflects the fact that the threadwise operational
semantics relies on the memory model to determine how memory
reads are satisfied. Furthermore, later actions that do not depend
on the read via(ddc ∪ cdc)

+ are unaffected by the change of
value read. This reflects the fact that the threadwise operational

semantics is required to correctly calculate the notions of control
and data dependence. We now return to the construction of the
racy execution. For Step 2, if there is a visible side effectw ′ of
r (recall thatr is the read that violatedhb in rf ), we create a new
readr ′ according to the opsem axiom and haver ′ read fromw ′.
This r ′ then races with the writew that r read from originally. If
there is no visible side effect, we haver read from nothing, and
the execution has an indeterminate read. We prove that this new
execution is consistent by showing that the happens before relation
is unchanged, except for switchingr to r ′.

Step 3 is necessary because the Power can speculatively exe-
cute reads out of program order, and so the prefix chosen in Step
1 might be missing actions that the C++ threadwise operational
semantics requires. In other words, the trace ordering is not nec-
essarily consistent withpot , and hence the trace prefix might not
be downward closed insbc . The addition of such a missing readr
in Step 3 follows the same reasoning as in Step 2 with the added
observation thatr cannot be (atomic) sequentially consistent or ac-
quire because the Power cannot speculate past the control+isync
dependency that would follow such a read. The addition of missing
writes is straightforward.

Step 4 is straightforward because there are no constraints on
how the execution extended to completion; it already contains the
race, and further application of opsem axiom will not disturb it.

This completes the proof of Theorem 7.

7.6 Alternate trailing-sync mapping

As mentioned in§1, a modified mapping has been proposed that
has async barrier as the last instruction in the mapping for all SC
actions. This keeps async barrier program-order between any pair
of SC actions from the same thread, which ensures the results of
§7.3 hold. The rest of the proof interacts with SC actions through
the SC order, so it can be carried over unchanged. One additional
subtlety is that SC stores are also release stores, and SC loads in
C++ are also acquire loads. The first fact requires thelwsync be-
fore the store for SC stores, as for release stores. The second re-
quires program-order-later loads to be stopped from being satisfied
before the SC load is. The trailingsync suffices here.

8. Related Work
The most closely related work is our correctness proof of a compi-
lation scheme from C++11 to x86 [BOS+11]. That covered RMWs
in addition to loads and stores, but was nonetheless comparatively
simple, as x86 has a strong TSO-based semantics [SSO+10]. For
Section 3, Boehm and Adve gave a definition [BA08] of a mem-
ory model based on an earlier C++11 working paper, broadly in the
same style as the eventual draft standard and [BOS+11], but dif-
fering in many details and with the semantics for low-level atomics
only sketched. They give a hand proof that in that model DRF pro-
grams without low-level atomics have SC semantics.

Some previous work proves correctness of compilers for con-
current languages, rather than compilation schemes for particular
primitives, in a relaxed-memory context.Šev̌ćık et al. prove cor-
rectness of CompCert-TSO [SVZN+11], a compiler from a con-
current C-like language with TSO semantics to the x86 TSO model
(building on Leroy’s single-threaded CompCert [Ler09]). Here the
source and target share the same relatively simple memory model,
and the correctness proof is simulation-based, taking advantage of
the fact that x86-TSO has a simple operational characterisation.
Lochbihler proves correctness of compilation from a formalisation
of multi-threaded Java to a JVM [Loc10], but this assumes SC and
does no optimisation.̌Sev̌ćık [Šev11] proves the correctness (or
otherwise) for various optimisations for DRF languages, though not
specifically for C++11. Burckhardt et al. [BMS10] consider the cor-
rectness of transformations in relaxed models. Vafeiadis and Zappa



Nardelli verify fence elimination optimisations in the context of the
CompCert-TSO compiler [VZN11].

There is an extensive line of work inserting fences to restore SC,
starting with Shasha and Snir [SS88]. Fang et al. [FLM03] do this in
practice for sync on Power 3 machines, but they appear to implicitly
assume that writes are atomic (discussing only thread-local reorder-
ing), which they are not on more recent Power implementations.
Alglave et al. [AMSS10, Alg10, AM11] consider Power fence in-
sertion with respect to an axiomatic memory model, theCAV2010
model. That model was a precursor to the abstract-machine model
of Sarkar et al. [SSA+11] that we use in this paper. As described
there, the CAV2010 model is stronger than the architectural intent
for the R01 test (in this sense it is unsound w.r.t. the architecture, al-
though not observed to be unsound w.r.t. current implementations),
and it is weaker than the architecture (and current implementations)
for cases such as MP+lwsync+addr. The latter might be generated
by the mapping for a C++ release/consume example, so this model
is too weak to prove the mapping correct.

Lea produced a guide to implementing the JSR-133 Java
Memory Model on various multiprocessors [Lea]. Written when
the Power architectural intent was less clear (considerably be-
fore [SSA+11]), its suggested uses ofisync are not correct
w.r.t. the architecture. It also focuses on the synchronisation re-
quired between pairs of operations on the same thread, without
discussing the Power cumulativity properties that are essential for
C++11 release/acquire, release/consume, and SC atomics.

9. Conclusion
We have proved the correctness of a realistic relaxed-memory com-
pilation scheme, from the programming language memory model
proposed for the mainstream C and C++ standards, to a realistic
memory model for Power multiprocessors. The C++11 model was
designed with implementation above the Power (and ARM) model
in mind, among others, and this establishes that it is in fact im-
plementable with what appears to be a reasonable mapping (us-
ing hardware synchronisation mechanisms commensurate with the
C++11 semantics required). Moreover, our development explains
why the mapping is correct and also what properties of the Power
are actually required, increasing understanding and confidence in
both models, and providing a good basis for compiler developers
compiling C++11 and C1x to Power and ARM; we are discussing
this with GCC and ARM compiler groups.

There are many interesting directions for future work. First, the
development should be extended to cover other C++11 features:
read-modify-write and locks operations require first a semantics
for the Power load-reserve/store-conditional instructions, and one
would also like to cover fences and dynamic thread creation.

Second, while a full compiler correctness proof for C++ (or
even C) is still a long way off, we would like to instantiate our
compilation-scheme proof to a concrete operational semantics and
compiler for a small fragment.

Third, the proof suggests the construction of a more abstract
axiomatic Power model, based on the derived properties we use in
the proof. We can see there exactly which machine trace events are
relevant, e.g. the last satisfy label for each committed read, and
certain write propagation events; the more abstract model could
deal just with those. This would give a simpler foundation for
developing analysis and reasoning techniques for Power and ARM
concurrent software.
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