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Abstract
Low frequency ultrasonic mouth state detection uses reflected
audio chirps from the face in the region of the mouth to de-
termine lip state, whether open, closed or partially open. The
chirps are located in a frequency range just above the threshold
of human hearing and are thus both inaudible as well as unaf-
fected by interfering speech, yet can be produced and sensed us-
ing inexpensive equipment. To determine mouth open or closed
state, and hence form a measure of voice activity detection, this
recently invented technique relies upon the difference in the re-
flected chirp caused by resonances introduced by the open or
partially open mouth cavity. Voice activity is then inferred from
lip state through patterns of mouth movement, in a similar way
to video-based lip-reading technologies. This paper introduces
a new metric based on spectrogram features extracted from the
reflected chirp, with a convolutional neural network classifica-
tion back-end, that yields excellent performance without need-
ing the periodic resetting of the template closed-mouth reflec-
tion required by the original technique.
Index Terms: Voice activity detection, speech activity detec-
tion, ultrasonic speech, SaVAD

1. Introduction
The recently published Super-audible voice activity detector
(SaVAD) [1] used low frequency ultrasound (LFUS), in a 20Hz
to 24kHz band, to sense mouth open or closed status of a subject
from a facially-reflected chirp. The method was shown to yield
discriminative signals from the two states at various angles of
incidence and sensor distances from the face. The physical sig-
nals and method were explored further and simulated in [2] and
[3] then developed into a voice activity detector (VAD) in [1].

The SaVAD equipment comprises a loudspeaker or sounder
and a microphone. These are placed within a few centimetres
of a human face, and could be mounted within the body of a
mobile telephone used during a telephone conversation. Be-
cause the SaVAD signals are outside the human hearing and
speech frequency range, they do not cause or suffer from inter-
ference when used during a voice call. In use, the loudspeaker,
oriented towards the mouth region of the users’ face, outputs
a periodic LFUS chirp. This LF ultrasonic signal is then re-
flected from the surface of the face and received by a micro-
phone mounted nearby, as shown in Fig. 1. When the face,
microphone and loudspeaker are pseudo-stationary with respect
to each other, standing waves are possible, primarily dependent
upon the straight-line distances between source and receiver. If
the reflection area includes the mouth, a significant difference
in reflected signal is evident when the lips are open, compared
to when they are closed. This main physical cause of the change

in reflection characteristics is the resonant chamber formed by
the mouth cavity and vocal tract which affects only the signal
during the ‘mouth open’ condition.

A number of signal analysis techniques for SaVAD were
explored in [2] while a simple signal processing-based detection
metric was introduced in [1] and used to implement a VAD. The
underlying LFUS signal propagation characteristics and linear
predictive analysis methods were explored in [4].

1.1. Contribution

The present paper uses the same physical arrangements as the
previously published systems, but develops a new set of fea-
tures based on spectrogram images which are particularly suited
to a convolutional neural network (CNN) based classifier. The
CNN is trained on recorded segments containing both open and
closed mouth conditions, and evaluated against both the origi-
nal SaVAD technique [1] and the standard G.792 VAD in the
presence of background multi-speaker babble. The CNN-based
LFUS VAD is shown to significantly outperform both other
methods, particularly in high noise conditions. In addition, the
effectiveness of a CNN trained for a single user is compared to
training for all individual users, and this highlights the ability of
the CNN system to operate even when the physical alignment
between user, microphone and loudspeaker changes – a partic-
ular weakness of the previous techniques.

1.2. Impact

The active LFUS chirp signal is inaudible to users, and is low
power. It also has the great advantages of being compatible
with many consumer-targeted digital audio hardware solutions,
including those in modern smartphones, which can sample at up
to 48 kHz in 16 bits. Similarly, it can be output by most standard
micro-loudspeakers of reasonable quality and is detectable by

Figure 1: Block diagram of the SaVAD operating arrangement.



typical high fidelity microphones.
When implemented in a mobile telephone, this technology

yields the ability to determine mouth movement patterns of the
user. In the presence of high levels of background noise, cur-
rent devices are unable to determine whether a sound picked up
by the microphone originates from the user’s speech, or from
the background noise. The LFUS VAD signal provides a clear
indicator of whether the user is currently speaking as well as
a potential indication of syllabic rate, in terms of instances of
voiced phoneme production.

The basic LFUS VAD also works for whispered or mimed
speech – it does not require the presence of voicing – and thus
can be a useful technique for silent speech systems.

2. SaVAD and the new spectrogram image
feature

The SaVAD excitation signal is a linear cosine chirp of duration
τ which spans a frequency range f1 to f2:

x(t) = cos{2π(f1t+ (f2 − f1)t2/2τ)} (1)

and is repeated continually with no pause during operation. For
testing purposes, subjects are seated such that their lips are
placed in front of the SaF signal source, at an axial distance
of between 1–6 cm, and the microphones located slightly to the
side of their face, at a distance of between 2–8 cm. The exact
positioning of the microphone is less critical [5], and both angle
and distance effects been investigated in [2, 1]. During record-
ing, it is important to ensure that the SaF excitation is able to
enter the mouth of a subject when their lips are open, or is re-
flected back from their face when lips are closed.

Microphone input signal, m(t), is sampled at rate Fs
(where Fs ≥ 2f2). This is first bandpass filtered using a
33-order infinte impulse response (IIR) filter matching the f1
and f2 extents, before being demodulated to a baseband fre-
quency, m′(t) = m(t).sin(2πf1t), and then down sampled.
The frequencies and other system parameters used in practice
are shown in Table 1.

The filtered and down-sampled received reflected signals
are first cross-correlated with the transmitted prototype chirp
to determine precise timings, before being divided into frames
s(n) of sizeN = F ′s×τ samples. These blocks are then formed
into a spectrogram f(l, k) by stacking power spectra obtained
from highly overlapped (by Ws−Ol samples) Hamming win-
dowed w(n) regions of size Ws, using a P -point FFT. Spectral
element k for the lth window is thus:

f(l, k) =

∣∣∣∣∣
P−1∑
n=0

s(n).w(n).e−j2πnk/P

∣∣∣∣∣ (2)

Each spectrogram f is then correlated across both dimen-
sions with its predecessor (i.e. the spectrogram from the previ-
ous chirp) f ′ to provide a measure of spectral change, yielding
a correlation image, c(l, k);

c(l, k) =

M−1∑
m=0

N−1∑
n=0

f(m,n)f ′(m− k, n− l) (3)

for (1 −M) ≤ k ≤ (M − 1) and (1 − N) ≤ l ≤ (N −
1), given that f(l, k) has a size of M by N . The resulting
correlation matrix, c(l, k) has size M ′ = 2M + 1 by N ′ =
2N+1. This is then normalised and augmented by its marginals

Figure 2: Feature extraction process showing initial spec-
trogram formation, differential correlation and formation of
marginals.

(i.e. summed column vector and summed row vector) to form a
2M + 2 by 2N + 2 feature vector matrix, v(l, k) as follows:


ζc(0, 0) ζc(0, 1) . . . ζc(0, N ′)

∑
c(0, n)

ζc(1, 0) ζc(1, 1) . . . ζc(1, N ′)
∑
c(1, n)

. . . . . . . . . . . . . . .
ζc(M ′, 0) ζc(M ′, 1) . . . ζc(M ′, N ′)

∑
c(M ′, n)∑

c(m, 0) . . . . . . . . .
∑
c


where ζ = 1/max{c(m,n)}. A diagram of the feature

extraction process is given in Figure 2.

3. CNN structure
CNNs are multiple layered neural networks that consist of con-
volution, subsampling and fully interconnected layers. In gen-
eral, convolution and then subsampling layers are alternated be-
fore a final fully interconnected layer forms the output into the
final classification form. The network complexity (and hence
capability) is relatively high due to the large amount of connec-
tivity, although the use of shared weights within layers acts to
reduce the number of parameters that need to be trained prior to
operation. However, CNNs still generally require quite a large

Table 1: Specifications used in the SaVAD experiments.
f1 = 20 kHz f2 = 24 kHz
Fs = 96 kHz F ′s = 8 kHz
τ = 0.1 s P = 127
Ws = 100 Ol = 11
Output device: KEF C3 tweeter

(GP Acoustics, Kent, UK)
Input device: Zoom H4n

(Zoom Corp., Tokyo, Japan)
Test subjects: 4 female & 4 male
Noise levels: -10, -5, 0, 5, 10dB babble



Figure 3: CNN structure used for classification of the spectrogram-based features.

amount of training data in comparison with some simpler ma-
chine learning algorithms. For a convolutional layer l − 1, we
form layer output maps from

xl
j = f

∑
i∈Mj

xl−1
i ∗ kl

ij + blj

 , (4)

where xl−1
i is the ith input map, xl

j is the jth output map,
Mj represents a selection of input maps and kl

ij denotes the
kernel which is being used [6].

Subsampling layers are simpler than the convolutional lay-
ers, xl

j = f(βlj∇(xl−1
i ) + blj) where ∇(.) represents the pro-

cess of sub-sampling and both β and b are bias terms [6].
The final output layer is fully interconnected, effectively

being a dual layer multi-layer perceptron (MLP) network. Its
input layer size depends upon the total number of nodes in the
final CNN subsampling layer, and its output size is defined by
the number of classes. The CNN can be learned just like an
MLP using gradient descent by following the back-propagation
algorithm. Since units in the same feature map share the same
parameters, the gradient of a shared weight is easily computed
as the sum of the shared parameter gradients.

CNNs are widely applied in image processing [7, 8], with
generally good results. They have also been applied success-
fully to ASR and other speech fields [9, 10].

A spectrogram is an image containing different patterns re-
lating to the time-frequency distribution of the analysed sounds.
When differentially correlated, the image of a reflected chirp
highlights the areas of similarity (and hence dissimilarity) be-
tween the spectrograms of neighbouring reflected features. Al-
though the underlying chirp signal appears as a diagonal high
energy line in a spectrogram, the effects of the resonant cavity
are to introduce zeros along an axial stripe centred on that diag-
onal line, in potentially any location or distribution. Thus local
relationships are important, but these have only weak absolute
locality, which is commonly known to be a strength of CNNs.

The final structure of the CNN used for SaVAD classifica-
tion is shown diagrammatically in Fig. 3, with the major fea-
tures listed in Table 2. The CNN toolbox [11] is used for the
experimental implementation of the classifier.

4. Experiments and results
4.1. Evaluation material

The initial recorded material used for this evacuation is a sub-
set of the test material used for the simple VAD in [1], namely
recordings from four female and four male volunteers. These
recordings were made in a soundproofed room in the presence

Table 2: Specification of the CNN.
layer 1, convolution with 6 output maps, kernel size=5
layer 2, subsampling by 2
layer 3, convolution with 3 output maps, kernel size=5
layer 4, subsampling by 2
layer 5, convolution with 2 output maps, kernel size=3
layer 6, pass through
layer 7, fully connected with two output classes
batchsize=50, epochs=4

of added wideband background noise, with volunteers asked to
read a repeating sequence of 20 TIMIT sentences with a mean
gap of approximately 7 seconds gap between sentences. Unlike
in the previous system, the data is partitioned into subsets for
training and testing, totalling 50.3 and 12.6 minutes of speech
for each subset respectively. During speech, the SaVAD equip-
ment was positioned to output a chirp, and record the reflected
response, recorded simultaneously with a voice-band recording
of the subjects’ speech. Subjects were seated and asked to min-
imise their head movements if possible, remaining within about
5 cm of the SaVAD loudspeaker cone and microphone.

Ground truth was obtained by a manual analysis of the
voice-band recording, tracking sound power in the range 0-
4 kHz, and thus serves as a measure of speaking rather than a
measure of mouth opening. This is framed in alignment with
the chirps, and summed to yield two classes of ‘speech’ and ‘no
speech’, with intermediate states split between the two classes.

Training (and testing) data is prepared, one feature per
chirp, in accordance with the process described in Section 2 and
used to train the CNN along with the ground-truth. Only four
epochs were necessary to achieve discriminative results, with a
batchsize of 50. Given 10 chirps per second, the total training
data comprised more than 30,000 features, with each feature
being the 2D correlation between the current chirp spectrogram
and previous chirp spectrogram, augmented with marginal in-
formation (sum-of-rows and sum-of-columns).

During evaluation, additional noise was added at levels
of between -10 and 10 dB SNR, using the babble recording
from [1] and following the methodology of that experiment. To
compute SNR, the ‘signal’ refers to the mean power level of
the 0 to 4 kHz original recording (i.e. mainly speech plus ad-
ditional acoustic noise), while the ‘noise’ power refers to the
mean power level of the 0 to 4 kHz noise recording. Due to the
speech-like nature of the noise, the LFUS region noise power
is at least 18dB below the low frequency region power. To be
clear, the entire recording of wideband babble noise is added,
concatenated if necessary to match the test recording length, at



the given levels, corrupting both the voice band recording and
the LFUS region used for SaVAD.

4.2. Evaluation method

The evaluation compares the results from three methods. First
is the G.729 VAD, referred to here as G.729, using the standard
G.729C+ Appendix II VAD hangover, framed into 0.1 s analysis
frames to match the evaluation unit of the SaVAD system. This
is applied to the voice band 0-4 kHz recordings that were used
to obtain the ground truth, although with the different levels of
additive noise, and compared against the ground truth. The sec-
ond method, referred to here as Ultra, is the basic signal pro-
cessing approach to SaVAD classification used in [1], applied
to the LFUS band recordings with added noise, and compared
against the ground truth. The third method, referred to here as
CNN, uses the same noisy data as Ultra, but reforms the classifi-
cation using a trained CNN. For both the original Ultra and the
new CNN methods, the raw binary mouth open/closed classi-
fication output is smoothed using a Savitzky-Golay smoothing
filter [12] with a 3rd order polynomial over a 41-sample win-
dow and 31-sample window respectively and then thresholded
to transform it to a simple binary estimate of voice activity.

Performance was evaluated using the standard criteria of
Beritelli etc. al. [13], counting four types of error as follows:

• Front-end clipping (FEC) which counts errors made
when transitioning from a non-speech region to a speech
region.

• Mid-speech clipping (MSC) is the proportion of speech
frames erroneously classified as being non-speech.

• OVER counts errors made when transitioning from
speech to non-speech.

• Noise detected as speech (NDS) is the proportion of non-
speech frames which are misclassified as being speech.

These mutually exclusive counters were incremented for each
erroneous frame, then divided by the total number of frames in
the test. Their sum yields the total error rate for each condition.

4.3. Results and discussion

For the first experiment, a CNN is trained separately for each
recording session and used to classify voice activity from the
spectrogram-based features. The results, obtained for additional
SNR levels ranging from -10 dB to +10 dB, are shown in Fig. 4.

Figure 4: Stacked bar chart showing the component error rates
for three VAD methods in the presence of additional SNR.

Table 3: Overall error rate for mismatched training conditions.
-10dB -5dB 0dB 5dB 10dB

G.729 41 36 32 30 29
Ultra 37 33 30 26 25
CNN1 31 31 29 26 20
CNN2 35 33 32 27 19
1 Including test material corresponding to the training data.
2 Excluding test material corresponding to the training data.

It is clear that the CNN method proposed in this paper signifi-
cantly outperforms both the previous SaVAD based method (Ul-
tra) as well as the G.729 VAD for all noise conditions. Interest-
ingly, it has a relatively higher FEC and OVER score than other
measures - indicating a delay in detecting the start or end of
a speech region, which may be due to the causal nature of the
spectrogram formation (i.e. forming a spectrogram from past
analysis windows) or to the differential nature of the measure.
Note that the error types between Ultra, CNN and G.729 are
quite different: For example G.729, has a low rate of OVER
errors, even in high noise levels, Ultra contributes few FEC er-
rors, while CNN contributes the lowest rate of NDS errors. This
evidence suggests that a metric combining all techniques, may
outperform each individual metric.

A further experiment was conducted where the CNN was
trained using material from only a single recording (i.e. one
sitting, one user) but used to evaluate other recordings. In this
case, the training material is obviously not indicative of all con-
ditions, and thus CNN performance is reduced significantly. Ta-
ble 3 reports average results where the CNN is trained using
frames from one recording session, but evaluated using other
session. Separate CNN results are shown for whether the re-
maining unused frames from the training session are included
in the evaluation score or not. Performance is shown to de-
grade significantly compared to the results in Fig. 4 (although
is still generally better than the alternative methods), particu-
larly when the unused test session frames are not included in
the evaluation. These findings indicates that the trained CNN
includes some user-specific information, which leads to the in-
teresting possibility that the SaVAD information maybe useful
for speaker verification.

5. Conclusion
The paper has proposed the use of a convolutional neural net-
work (CNN) for voice activity detection in the low-frequency
ultrasound region using reflected chirps from the mouth re-
gion of the face. It has been evaluated for recorded speech
in the presence of background noise and compared with the
popular G.729 VAD operating on audible information, as well
as a signal-processing based VAD published previously which
makes use of the same low-frequency ultrasonic information as
the proposed classifier. Results show that it outperforms both
G.729 as well as the previous VAD metric under all tested con-
ditions where the system is trained with user-specific informa-
tion, but degrades when training and testing are mismatched.
The proposed CNN-based classification technique is shown to
be extremely robust to environmental noise, particularly that as-
sociated with speech, such as babble,
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[8] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner, “Gradient-based learning applied to document
recognition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998.

[9] Ossama Abdel-Hamid, Abdel-rahman Mohamed, Hui
Jiang, and Gerald Penn, “Applying convolutional neural
networks concepts to hybrid nn-hmm model for speech
recognition,” in Acoustics, Speech and Signal Processing
(ICASSP), 2012 IEEE International Conference on. IEEE,
2012, pp. 4277–4280.

[10] Tara N Sainath, Abdel-rahman Mohamed, Brian Kings-
bury, and Bhuvana Ramabhadran, “Deep convolutional
neural networks for lvcsr,” in Acoustics, Speech and Sig-
nal Processing (ICASSP), 2013 IEEE International Con-
ference on. IEEE, 2013, pp. 8614–8618.

[11] Rasmus Berg Palm, “Prediction as a candidate for learning
deep hierarchical models of data,” Technical University of
Denmark, Palm, 2012.

[12] R.W. Schafer, “What is a Savitzky-Golay filter? [lecture
notes],” Signal Processing Magazine, IEEE, vol. 28, no.
4, pp. 111–117, 2011.

[13] Francesco Beritelli, Salvatore Casale, and A Cavallaero,
“A robust voice activity detector for wireless communica-
tions using soft computing,” Selected Areas in Communi-
cations, IEEE Journal on, vol. 16, no. 9, pp. 1818–1829,
1998.


