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Abstract
QuickCheck allows us to verify software against particular proper-
ties. A property can be regarded as an abstraction over many unit
tests. QuickCheck uses generated random input data to test such
properties. If a counterexample is found, it becomes immediately
clear what we have tested. This is not the case when all tests pass,
since we do not (and shall not) see the actual generated test cases.
How can we be sure about what is tested? QuickCheck has the
ability to gather statistics about the test cases, which is insightful.
But still it does not tell us whether the particular unit test scenarios
we have in mind are included. For this reason, we have developed a
tool that can answer this question. It checks if a given unit test can
be generated by a property, making it easier to judge the property’s
quality. We have applied our tool to an industrial use case of testing
the AUTOSAR basic software modules and shows that it can handle
complex models and large unit tests.

Categories and Subject Descriptors D.2.3 [Software Engineer-
ing]: Coding Tools and Techniques; D.2.5 [Software Engineering]:
Testing and Debugging

Keywords QuickCheck, Unit tests, Property-Based Testing, Erlang

1. Introduction
QuickCheck [6] is a tool that tests universally quantified properties,
which are abstract specifications of the system under test. Using the
Erlang QuickCheck library [1, 9], properties can be expressed via
Erlang function definitions. For example, a property of the delete
function from the Erlang lists module can be written as

prop_delete() ->
?FORALL({X, Xs}, {int(), list(int())},

not lists:member(X, lists:delete(X, Xs))).

The property states that if we delete an integer from a list of integers
it should no longer be present in the list returned by the delete
function. QuickCheck verifies properties like this by generating a
large number of random test cases, and reports test cases for which
the property fails. When QuickCheck finds a failing test case, a so-
called counterexample, it shrinks the failing test case automatically,

by searching for similar, but smaller test cases that fail as well. The
result of shrinking is a minimal failing test case simplifying the
debugging process.

Properties are powerful: a good property gives a strong specifica-
tion for a large set of test data. But the more powerful the property,
the greater the risk that it becomes abstract and inscrutable. Unit
tests are the opposite. A single unit test describes exactly one be-
haviour of the system. As a result, unit tests are concrete and easy
to understand. It is not uncommon to have some unit tests in mind
when defining a property. If we, for example, want to test the above
mentioned delete function, we may want to have a test case that
validates that every occurrence of an element is actually removed
from the list. For example, if we delete 3 from [1,2,3,1,3] it
should yield the following list: [1,2,1]. Another test case we can
think of is that the list remains unchanged if we try to delete an
element that is not present in the list.

Generalising these kind of unit tests leads to properties such as
prop_delete(), which certainly captures the logic considerations,
and the test data generator {int(), list(int())} produces
pairs of an integer and a list of integers as test cases. Running
quickcheck then performs (by default) 100 random tests of the
property, and in this case, they all passed—each dot represents a
successful test:

1> eqc:quickcheck(prop_delete()).
......................................................
..............................................
OK, passed 100 tests

We may think at this point, after a hundred successful tests, that
we have tested the delete function well enough. However, if we
apply the delete function on the unit test case we had in mind, we
get an unexpected result:

2> lists:delete(3, [1,2,3,1,3]).
[1,2,1,3]

As it turns out the delete function only removes the first
occurrence of an element in the list, and not all as we expected! So
why did QuickCheck not find this error? In retrospect, it’s clear why:
X is chosen from int(), while Xs is chosen from list(int()),
and for the property to fail then X must occur in Xs not just once,
but twice. The probability of finding a random integer twice in a
randomly generated list is not very high!

A consequence of using QuickCheck is that we no longer
see the generated test data. In fact, we do not want to see it,
because QuickCheck generates many test cases. As a result, we
may be tricked into a false sense of security by a large number of
passing tests, but fail to notice that the distribution is badly skewed.
QuickCheck offers the possibility to measure the probabilities
of different kinds of test data. We can do so by instrumenting a



QuickCheck property to collect statistics during testing. In the case
of prop_delete() the generator is quite simple and was relatively
straightforward to see what the source of the poor data distribution
was. However, in more advanced test scenarios, such as QuickCheck
state machine models, it not always that easy. Although gathering
statistics about the test data is good practice and shall always be
done, would it not be more convenient if we had a tool that can
directly answer the question if a property can generate the unit test
cases we have in mind?

The tool we are going to present in this paper does exactly
this. Giving a QuickCheck (finite) state machine model property
and a unit test, it will tell you whether the unit test will be gener-
ated by the property. For the delete example, our tool will say
no to the unit test (3, [1,2,3,1,3]), a direct warning to the
tester that the property (more specifically the test data generator
{int(), list(int())}) needs to be improved.

A First Example As a teaser, we demonstrate our tool at work with
the delete example. Since the focus is the more general state ma-
chine properties, we transform the simple property prop_delete()
by wrapping it up in a minimal state machine:

initial_state() ->
not_used.

delete_args(_S) ->
[int(), list(int())].

delete(X, Xs) ->
lists:delete(X, Xs).

delete_post(_S, [X, _], Res) ->
not(lists:member(X, Res)).

prop_delete() ->
?FORALL(Cmds, commands(?MODULE), prop_delete(Cmds)).

prop_delete(Cmds) ->
{H,S,Res} = run_commands(?MODULE, Cmds),
pretty_commands(?MODULE, Cmds, {H,S,Res}, Res == ok).

We will explain the details of state machines in Section 2. For now, it
is sufficient to know that we model the same property as previously:
the call to delete is given the same input data (defined in the
delete_args function), and checks the same condition (defined in
the delete_post function).

To run our tool we first create a unit test U, which calls the
delete function with the chosen arguments. The annotations on the
arguments, such as {say, 3}, state that the actual values are not
important, as long as they are the same as the other occurrences. As
a result, logically equivalent unit tests such as (3, [1,2,3,1,3])
and (30, [10,5,30,10,30]) are considered the same. The result
of the delete call is bound to {var,1} and is checked against the
expected outcome. Note that the actual number of the variable, 1 in
this case, does not matter.

2> U=[{set,{var,1},
{call,delete,delete,

[{say,3},[{say,1},{say,2},3,1,3]]},
{var,1} == [1,2,1]}].

3> possible:possible(delete, U).
Cannot generate

V1 = lists:delete({say,3}, [{say,1},{say,2},3,1,3])
false

The function possible:possible/2 applies to a state machine
module (delete in this case) and a unit test. The execution result
above correctly predicts that U or any of its equivalent variants
cannot be generated by the property.

On the other hand, the other unit test we had in mind, testing
the scenario that a list remains unchanged when the number for
deletion is not present in the list, can be generated by the property
as predicted by our tool:

4> U=[{set,{var,1},
{call,delete,delete,

[{say, 1}, [{say, 2}, {say, 3}, {say, 4}]]},
{var,1} == [2, 3, 4]}].

5> possible:possible(delete, U).
............................................
OK, passed 1000 tests
true

Note that the annotations to the numbers are essential; otherwise
our tool will report false since the probability for generating exactly
these numbers is very low.

In the sequel, we explain in detail the design of our tool (Sec-
tion 3) and its application to large scale industrial AUTOSAR mod-
els (Section 4), before concluding in Section 5.

2. Background: State Machine Specification
The original Haskell QuickCheck [6] has inspired different versions
for many programming languages, such as Java [10] and ML [11].
We use the QuviQ QuickCheck implementation for the Erlang
programming language in this paper. Quviq QuickCheck [1, 9],
further referred to as QuickCheck in this paper, is a commercial
version of QuickCheck with a rich set of additional libraries. One
of these libraries is the eqc statem [1] library for testing software
against a state machine model. This library generates and tests
random sequences of API calls to the software under test that are
well-formed according to the model. In addition to the eqc_statem
QuviQ QuickCheck also offers a library for finite state machine,
called eqc_fsm.

In this section we explain the QuickCheck finite state machine
facility with an example of bounded queue implementation. The
implementation offers four operations:

• Q = new(N), creates and returns a new queue of capacity N,
• put(Q, X), puts X into the queue,
• get(Q), removes and returns an element from the queue,
• size(Q), returns the number of elements stored in the queue.

The state of the system consists of the elements in the queue and
the maximum size of its buffer. We use an Erlang record with three
fields to represent this state:

-record(state, {queue, size, contents = []}).

The queue field is a pointer to the actual queue. The elements
that are stored in the queue are modelled as a list in the contents
field. When defining a finite state machine model it is mandatory to
specify the initial state, the initial state data, and a state transition
function for each state. We define these as follows:

initial_state() ->
init.

initial_state_data() ->
#state{}.

init() ->
[{created, new}].

created() ->



[{created, put},
{created, get},
{created, size}].

We start in the init state with an empty state record. The only
way to go the created state is by calling the new operation, and in
this state we can call the other operations. Thus we ensure that we
perform new before the other operations.

For each operation we specify how to generate random argu-
ments for it and we define a precondition, specifying when the
operation can be part of the test case. Given the present state and the
result of the operation, we specify the next state and the postcondi-
tion that should hold after the operation has been completed. These
are specified as callback functions and share the same name as the
operation but have a suffix indicating their purpose. All callbacks,
with the exception of _args, have a default implementation. By
omitting a callback we use this default implementation. The default
for a pre- or post-condition is true, and for the next state is the
current state.

For the new operation we give the following specification (we
use a grouped style specification, where each API function is
specified separately as opposed to defining single functions for
the preconditions, next state, etc.):

new_args(_, _, _S) ->
[choose(1, 10)].

new(Size) ->
q:new(Size).

new_next(_, _, S, Q, [Size]) ->
S#state{queue = Q, size = Size, contents = []}.

The new function is called in the module q (the software under
test) with a size between one and ten. The size is generated by the
argument generator new_args. Since new has arity 1, new_args
generates a list with one argument. The state is updated by the
new_next function and stores the pointer to the queue and the
generated size in the state record. The new call should always
return a valid pointer to the queue but we do not check this in
a postcondition. Note that the first two arguments of the callback
functions are the ‘from’ and ‘to’ state, which we do not use in this
model.

We continue with the put operation, which is specified as
follows:

put_args(_, _, S) ->
[S#state.queue, int()].

put_pre(_, _, S, _) ->
S#state.size > length(S#state.contents).

put(Q, X) ->
q:put(Q, X).

put_next(_, _, S, _, [_, X]) ->
S#state{contents = S#state.contents ++ [X]}.

The put_args function generates two arguments: the pointer
to the queue and a random integer to put into the queue. The
precondition for putting an element in the queue is that there is
at least one more free space left. Note that a precondition is checked
during test case generation. A precondition on the generation of test
cases depends only on the state of the model and not on the actual
execution of the software under test. The state is updated by adding
the generated element to the contents of the queue.

Specifying the get operation is straightforward:

get_args(_, _, S) ->
[S#state.queue].

get_pre(_, _, S, _) ->
S#state.contents /= [].

get() ->
q:get().

get_next(_, _, S, _, _) ->
S#state{contents = tl(S#state.contents)}.

get_post(_, _, S, _, Res) ->
eq(Res, hd(S#state.contents)).

The precondition ensures that the queue is not empty. We can
therefore safely use the partial functions hd and tl, since we know
the contents list is not empty. We specify in the postcondition that
the result of get() should match the first element of the queue, and
remove the element from the contents in the next state function. The
model state S used in the postcondition is the state before the action
has taken place.

We define the final operation size as follows:

size_args(_, _, S) ->
[S#state.queue].

size() ->
q:size().

size_post(_, _, S, _, Res) ->
eq(Res, length(S#state.contents)).

We have now completed the specification of all operations in the
state machine model. To validate the software under test using this
model we define the following QuickCheck property:

prop_queue() ->
?FORALL(Cmds, commands(?MODULE),
begin

{H, S, Res} = run_commands(?MODULE, Cmds),
pretty_commands(?MODULE, Cmds, {H, S, Res},

Res == ok)
end).

The above property is nearly identical to the example property
in Section 1 and states that any sequence of operations that satisfies
the preconditions, will satisfy the postconditions. For each test of
this property a random buffer size between 1 and 10 is created, and
a random sequence of put, get, and size calls on a queue of that
size is generated. Then a fresh buffer is created (taking care to shut
down any previously running buffer) and the operation sequence is
executed (by run_commands). This produces a result and a trace of
the execution. If the result is ok the property passes, otherwise the
property fails and the buffer size and execution trace is printed.

3. Have I tested this?
If we already have an idea what a property should test, we would
like to check that idea by writing some test cases and seeing if the
property captures them. Or perhaps we already have a test suite,
and we would like to see which of our test cases the property
captures. This is hard, error-prone work by hand. We have developed
a technique that can say with high probability whether a property
captures a given test case. The tool is applicable to QuickCheck



(finite) state machine model properties. We check both that the
property can generate the sequence of commands in a given unit
test case and that the property checks the same assertions as the test
case. We start by describing how to check if a property subsumes a
given test case.

Our technique deals exclusively with (finite) state machine
specifications. A state machine specification can be considered to
consist of two parts: a test case generator and an oracle. There are
three steps in running a property:

1. Generate a test case, i.e. a random sequence of commands. For
our queue example a simple test case might be:

[{set,{var,1},{call,q,new,[3]}},
{set,{var,2},{call,q,put,[{var,1},2]}},
{set,{var,4},{call,q,size,[{var,1}]}},
{set,{var,5},{call,q,get,[{var,1}]}}]

In the remainder of this section we will use a short hand notation,
which is a bit more easy to read:

Q = q:new(3)
q:put(Q, 2)
q:size(Q)
q:get(Q)

2. Execute the test case, and record the result of each function call.
In the example above, the result of new is a queue of some kind,
the result of put is simply ok, size returns 1, and the result of
get is 2.

3. Check the result of the test case. The oracle is given the test
case and its result and returns either “OK” or “not OK”; in the
example above, it would check that size returned 1 and that the
return value of get was 2.

Following this pattern, we split our problem into two parts. First,
given a property and a test case, can the property’s generator produce
the sequence of calls in the test case? Secondly, does the property’s
oracle check at least as much as the assertions in the test case? We
will describe both parts in turn.

3.1 Testing with State Machines
We first need to describe state machines in more detail than the
generator/oracle view. A (finite) state machine specification models
the system under test as manipulating some sort of abstract state;
executing a command conceptually modifies that state. The set of
allowed commands, and the expected behaviour of those commands,
can vary based on the current state. The specification consists of five
parts:

• An initial state that the system starts in.
• A command generator that randomly picks the next command

to execute. It is given access to the current state.
• A precondition function that takes the current state and a

command and checks whether we are allowed to execute the
command.

• A postcondition function that takes the current state, a command
and its result and checks whether the result was correct.

• A state transition function that takes the current state, a com-
mand and its result and computes the new state.

For example, if we are specifying the queue example, and
supposing for simplicity that we remove new and only model one
unbounded queue, the abstract state will be the list of elements
contained in the queue. The rest of the specification is as follows:

• The initial state is the empty list.
• The command generator randomly picks one of put (with a

random argument) and get.
• The precondition for get checks that the abstract state is not the

empty list; for put the precondition always returns true.
• The postcondition for get checks that the returned value was

the first element in the abstract state; for put it checks that the
returned value is the atom ok.

• The state transition function for get removes the first element
from the abstract state; for put it appends the new element to
the end of the abstract state.

It is quite easy to see how to generate and execute a test case in
this setting: start in the initial state, apply the command generator
to get a command, check if the precondition holds, if not, try the
command generator again. Once we have a command that satisfies
the precondition, run it, record its result, check that the postcondition
holds. Finally, use the state transition function to compute a new
state and repeat.

One complication when generating test cases is that executing a
command can bind a variable, which we refer to later. Look at Q in
our example test case:

Q = q:new(3)
q:put(Q, 1)
q:get(Q)

In order to produce test cases with variables in, we cannot use the
simple generation and execution method described above. Rather,
QuickCheck separates generation from execution. During test case
generation, QuickCheck behaves differently from our description in
two ways:

1. It does not check postconditions.

2. When calling the state transition function, instead of passing it
the actual result of the command (which has not been run yet),
it generates a fresh symbolic variable and passes that instead.
These symbolic variables may make their way into the state,
from where they might be selected to appear in subsequent
commands.

The final stage is to execute the symbolic test case. This works
exactly as our naive algorithm above, except that it is given a
particular test case to execute instead generating commands at
random. During execution, the state will not contain symbolic
variables but only concrete values.

3.2 Checking the Sequence of Calls
We are now in a position to describe how to check if a state machine
property can generate a particular test case. Our idea is simple.
Instead of generating a random command each time, we have a
target command that must appear next, and we check if the command
generator can generate the target command in the current state. Other
than that, we run the test case generation algorithm as in normal
QuickCheck. Once we have established that we can generate the
target command in the current state, we can use the state transition
function as normal to compute the next state, so this technique scales
linearly with the number of commands in the test case. If we can’t
generate the target command, then we stop and complain that we
couldn’t generate the test case as a whole.

But how to check if we can generate the target command?
It seems that we have replaced one problem—“can the test case
generator generate this test case?”—with almost the same one: “can
the command generator generate this command?” To solve this



new problem, we use brute force: generate ten thousand random
commands, and see if any of them is the target command! If so, the
generator could generate the command; if not, it couldn’t.

The reader may be horrified by this! If we fail to generate the
target command in 10000 attempts, we assert that we can’t generate
it at all. How can this blind brute force be reasonable or principled?

We claim that it is. Here is why. If we fail to generate the target
command in 10000 attempts, the probability of generating it at
random must be low, and so during normal testing, we would be
unlikely to come up with this command too—let alone the rest of
the commands in the test case. We are therefore justified in saying
that it is very unlikely that the property generates the test case—and
if we are very unlikely to test it, we perhaps shouldn’t claim that we
can test it.

Just how unlikely is it that we can generate a particular command,
if we failed to find it in 10000 attempts? We can compute this.
Letting p be the probability that the command generator can generate
our command, and supposing we want to conclude something about
p with 99% certainty, we reason that

(1− p)10000 < 0.01

⇒ 1− p < 0.011/10000

⇒ p > 1− 0.011/10000

which comes out to p > 0.9995, i.e., we can say with 99% certainty
that our command generator picks this command less than 1/2000
of the time, starting from the current state—let alone generating the
rest of the test case. Thus any test case we reject is not going to be
tested by our property in practice.

Why is it OK to use brute force for testing single commands, but
not whole test cases? In other words, why couldn’t we just generate
10000 random test cases and see if any of them were the one we
are looking for? Clearly, this wouldn’t work: the problem is that the
number of possible test cases grows exponentially with the length of
the test case. Our technique rests on the assumption, which seems
to be true in most QuickCheck models, that the number of possible
individual commands is normally quite low.

3.3 Small Variations
Sticking with our queue example, a common technique to obtain
good random tests is to generate data values from a small domain.
For example, we might decide to only put values in the range 0 to
10. We can express this when writing our generator for values:

value() ->
choose(0, 10).

Now, imagine that our test case reads:

Q = q:new(10)
q:put(Q, 100)
q:put(Q, 200)
q:size(Q) -> 2
q:get(Q) -> 100
q:get(Q) -> 200

Our algorithm will claim that our property can not generate this
test case. This is true, strictly speaking! But we can generate a very
similar test case:

Q = q:new(10)
q:put(Q, 1)
q:put(Q, 2)
q:size(Q) -> 2

q:get(Q) -> 1
q:get(Q) -> 2

We might like to consider these two test cases to be equivalent,
even though they are syntactically different. It’s not safe to do this
automatically, because it requires domain knowledge, so instead
the user must help us by annotating the unit test. We introduce the
function say to mark irrelevant values

Q = q:new(10)
q:put(Q, say(100))
q:put(Q, say(200))
q:size(Q) -> 2
q:get(Q) -> 100
q:get(Q) -> 200

By writing say, the user specifies that the particular values we put
into the queue are not important, only the relationship between the
various values (which ones are equal and which are not equal). We
will then accept the generated 1/2 test case by comparing it with
the annotated 100/200 test case, because 1 “might as well” be 100
while 2 “might as well” be 200. Note that we should not annotate
the 2 returned by size, because this really needs to be exactly 2
since we have put two elements in the queue.

In more detail, we look for any annotated values in a command
from the unit test case. We treat these annotated values as symbolic
variables and first-order match the generated command against the
generated command from the command generator. If this succeeds, it
yields a substitution. We then make sure, if we see the same value in
a later command, to apply the substitution to it. In our example, after
we have matched the q:put(Q, say(100)) with q:put(Q, 1),
whenever we later on match a command with the value 100 we will
replace it with 1.

We only allow to annotate a particular value once. If we happen to
have a unit test with two equal values, which do not necessarily need
to be the same, we have to make them distinct. This is unfortunate
and we may improve this in the future. We could, for example,
extend the value annotation with a variable name, which can be used
in the rest of the unit test.

A final note. In our example we only generate values in the range
[0 . . . 10]. This means that if the test case considers, say, 20 distinct
values, we will say that the property cannot test it. This seems like a
limitation—but is in fact honest, since our property can’t generate
tests with 20 distinct values! Our implementation will report an error
as soon as the 12th value appears; the user can take this as a hint to
alter the property.

3.4 Checking Assertions
A test case is not just a sequence of commands: it can also contain
assertions. We separate the assertions from the commands: the
commands themselves do not check anything (except implicitly that
there are no runtime exceptions), but we can attach an assertion that
checks the result of the command. For our example one test case
would be

Q = q:new(10)
q:put(Q, say(100))
q:put(Q, say(200))
X = q:size(Q), assert(X == 2)
Y = q:get(Q), assert(Y == 100)
Z = q:get(Q), assert(Z == 200)

We would like to check that, when our property generates this test
case, it also checks the assertions. Formally, the postcondition of



each command should imply the assertion for that command, or:
when the assertion fails the postcondition is false.

We check this property by simply using QuickCheck. After we
have generated a particular prefix of the test case, we will have a
particular symbolic state—a state containing symbolic variables:
our property is that, whichever concrete values we choose for the
variables in the state and test case, if the assertion fails for those
variables then so does the postcondition.

Currently, the user must define a generator that gives reasonable
values that each command might conceivably return—reasonable
in the sense of being well-typed, not necessarily correct. When
generating random values for the variables we pick from this set.

3.5 An Example
We will briefly describe the behaviour of our tool on four variants
of an example: one that is accepted by the property, one where the
assertion is not checked, one where a precondition fails, and one
which is not generated at all.

Q = q:new(10)
q:put(Q, say(15))
q:put(Q, say(23))
V = q:size(Q), assert(V == 2)
q:put(Q, say(8))
W = q:get(Q), assert(W == 15)
q:put(Q, say(11))
X = q:get(Q), assert(X == 23)
Y = q:get(Q), assert(Y == 8)
Z = q:get(Q), assert(Z == 11)

This example should be generated by our property, and indeed, our
tool confirms this and discharges the assertions instantly. Suppose
now that we remove the call q:put(Q, say(11)). The final get
should no longer be allowed, because the queue is empty. Our tool
complains that it can’t generate the final get—the postcondition is
false. Now suppose instead that we change one of the assertions—
perhaps we assert that Y should be 11. The tool then complains that
the postcondition might succeed when the assertion does not, and
gives a counterexample—what if Y is 8?

All three examples are checked instantly. As a final example,
suppose that we insert a call to a completely different function, such
as erlang:spawn, in the the test case. Our tool reports that it cannot
generate the call to spawn. In this case, it takes a second or so before
it gives up.

Even though our technique relies on brute force to some extend,
it scales up to arbitrarily long test cases. We continue with the
evaluation of it in a more demanding setting: Quviq’s models for
testing AUTOSAR basic software components.

4. Case study: AUTOSAR Unit Tests
AUTOSAR is a software standard developed by the automotive
industry, to lower costs by enabling manufacturers to buy off-the-
shelf components [3]. The AUTOSAR basic software, which is part
of the operating system, contains a number of protocol stacks, such
as CAN (Controller Area Network) and Ethernet, a communication
and routing module, network management, and diagnostics. Each
module is specified by a document, typically a few hundred pages,
describing a C-API and hundreds of requirements. In this section
we focus on the CAN stack.

QuviQ developed QuickCheck state machine models [13] for
each module, which follow the specification as close as possible.
These models can be regarded as executable formal specifications.
These models are used for acceptance tests for vendor implementa-
tions of AUTOSAR modules. Each model can be used on in isolation
to generate random test cases for the module it specifies. An AUTO-

SAR module often depends on and makes calls to other AUTOSAR
modules. These external modules are mocked [14]; the models in-
clude a specification of which (mocked) calls to other modules are
to be expected, and what results they should return. In addition to
testing a model on its own, it is also possible to combine models
together in a cluster. The matching mocked calls from one module to
API calls of another are constructed automatically. The CAN stack
is specified as a cluster of modules, including for example CanIf
and CanSm.

The AUTOSAR consortium developed acceptance tests as well,
including six tests for the CAN stack [4]. We encoded these test
cases in our format, and before the current tool is developed, we
had already tried manually to validate them against the model. This
validation is hard-coded and was specifically implemented for these
six tests. Our effort showed that three of the six tests agreed with
the model, and the other 3 were not accepted and turned out to be
incorrect [2]. We have since corrected the mistakes. Of course, we
would like to validate whether our tool is able to save us the effort
and perform this validation automatically.

We then extended our tool such that it can handle QuickCheck
component models and clusters, which are somewhat different from
the normal QuickCheck state machine models. Before running
our tool on the CAN cluster and the six acceptance tests, we first
needed to annotate the unit tests. For example, the unit tests contain
commands that transmit random payloads of binary data. To give an
impression of the size of the AUTOSAR unit tests we show one of
the six tests:

[{call,canif_spec,init,[],[]},
{call,cansm_403_spec,init,[],[]},
{call,cansm_403_spec,main,[],[]},
{call,canif_spec,controller_mode_indication,

[’CanIfConf_CanIfCtrlCfg_ECU2COMCan12’,
’CANIF_CS_STOPPED’],

[]},
{call,cansm_403_spec,main,[],[]},
{call,canif_spec,controller_mode_indication,

[’CanIfConf_CanIfCtrlCfg_ECU2COMCan12’,
’CANIF_CS_SLEEP’],

[]},
{call,cansm_403_spec,main,[],[]},
{call,canif_spec,trcv_mode_indication,

[’CanIfConf_CanIfTrcvCfg_CanIfTrcvCfg_0’,
’CANTRCV_TRCVMODE_NORMAL’],

[]},
{call,cansm_403_spec,main,[],[]},
{call,canif_spec,trcv_mode_indication,

[’CanIfConf_CanIfTrcvCfg_CanIfTrcvCfg_0’,
’CANTRCV_TRCVMODE_STANDBY’],

[]},
{call,cansm_403_spec,main,[],[]},
{call,cansm_403_spec,request_com_mode,

[’CanSMConf_CanSMManagerNetwork_CanNetwork_0’,
’COMM_FULL_COMMUNICATION’],

[]},
{call,cansm_403_spec,main,[],[]},
{call,canif_spec,trcv_mode_indication,

[’CanIfConf_CanIfTrcvCfg_CanIfTrcvCfg_0’,
’CANTRCV_TRCVMODE_NORMAL’],

[]},
{call,cansm_403_spec,main,[],[]},
{call,canif_spec,controller_mode_indication,

[’CanIfConf_CanIfCtrlCfg_ECU2COMCan12’,
’CANIF_CS_STOPPED’],

[]},
{call,cansm_403_spec,main,[],[]},
{call,canif_spec,controller_mode_indication,

[’CanIfConf_CanIfCtrlCfg_ECU2COMCan12’,
’CANIF_CS_STARTED’],



[]},
{call,cansm_403_spec,main,[],[]},
{call,canif_spec,transmit,

[’CanIfConf_CanIfTxPduCfg_P02’,
<<70,151,71,255,9,83>>],

[]},
{call,canif_spec,tx_confirmation,

[’CanIfConf_CanIfTxPduCfg_P02’],
[]},

{call,cansm_403_spec,many_main,"",[]},
{call,canif_spec,controller_busoff,

[’CanIfConf_CanIfCtrlCfg_ECU2COMCan12’],
[]},

{call,cansm_403_spec,main,[],[]},
{call,canif_spec,controller_mode_indication,

[’CanIfConf_CanIfCtrlCfg_ECU2COMCan12’,
’CANIF_CS_STARTED’],

[]},
{call,cansm_403_spec,many_main,"d",[]},
{call,canif_spec,transmit,

[’CanIfConf_CanIfTxPduCfg_P02’,
<<70,151,71,255,9,83>>],

[]},
{call,canif_spec,tx_confirmation,

[’CanIfConf_CanIfTxPduCfg_P02’],
[]},

{call,cansm_403_spec,get_current_com_mode,
[’CanSMConf_CanSMManagerNetwork_CanNetwork_0’],
[]},

{call,cansm_403_spec,many_main,"",[]},
{call,cansm_403_spec,get_current_com_mode,

[’CanSMConf_CanSMManagerNetwork_CanNetwork_0’],
[]},

{call,canif_spec,transmit,
[’CanIfConf_CanIfTxPduCfg_P02’,
<<70,151,71,255,9,83>>],

[]},
{call,canif_spec,tx_confirmation,

[’CanIfConf_CanIfTxPduCfg_P02’],
[]}]

Using our tool to determine if the six tests can be generated by
the CAN cluster showed a surprising result. Only five out of the six
“correct” tests could be generated! After careful inspection with a
CAN cluster expert it turned out that a small error slipped into that
particular unit test. This is exactly what our tool aims to do: give
insight into the model/property and increase our confidence that we
are testing the right thing.

5. Related work and Conclusions
Most of the research that concerns the relationship between prop-
erties and unit tests is in the area of automated test generation.
QuickCheck properties typically serve the dual role of templates
for generated test inputs and oracles for verifying correctness. This
can be seen as a specific instance of the more general concept of
model-based testing [12], where test inputs may be derived from an
abstract model of the system under test, and if being executable the
models may double as the oracles.

For more complex test inputs, especially custom data structures
with invariants, specialised generators are still needed to avoid
inefficiency (i.e., non-invariant compliant) and redundancy (i.e.,
poor distribution). QuickCheck provides a domain-specific language
for defining specialised generators, and techniques in constraint
satisfaction domain may be used [5, 7]. For deriving uniformly
distributed test inputs, there exist automatic generation methods
based on clever enumeration for arbitrary datatypes [8]. However,
such enumeration-based techniques are stand-alone and not linked
to properties.

None of the techniques mentioned above is able to connect
individual tests to the properties that supposedly produce them. To
answer the question “Have I tested this?”, one has no choice but to
manually study the very often complicated properties and generation
methods. As far as we are aware, our work is the first to establish
this missing link through an automated system. Giving a property
and a unit test, our tool is able to tell whether the particular unit test
or an equivalent variant will be generated by the property with a
reasonable probability. The scalability of our system is demonstrated
with a case study of testing the AUTOSAR basic software modules.

In the future, we would like to look into more precise control
over acceptable deviations from the test case. At the moment, we
require that annotated values are distinct, but for some applications
we might need more than that: for example, in testing a binary
search tree, we may want the annotated value 1 matches to be less
than the annotated value 2 matches, since 1 < 2. Moreover, our
assertion-checking mechanism is quite simplistic at the moment,
though it has worked just fine so far. We can imagine checking the
assertions more smartly than pure random testing. One possibility
is to use symbolic reasoning on the postcondition and the assertion:
this at least should give us a hint about what sort of random data to
test with.
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