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Relativistic theory of magnetic scattering of x rays: Application to ferromagnetic iron

E. Arola and P. Strange
Physics Department, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom

B. L. Gyorffy
H.H. Wills Physics Laboratory, Bristol University, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
(Received 29 August 1996

We present a detailed description of a first-principles formalism for magnetic scattering of circularly polar-
ized x rays from solids in the framework of the fully relativistic spin-polarized multiple-scattering theory. The
scattering amplitudes are calculated using a standard time-dependent perturbation theory to second order in the
electron-photon interaction vertex. Particular attention is paid to understanding the relative importance of the
positive- and negative-energy solutions of the Dirac equation to the scattering amplitude. The advantage of the
present theory as compared with other recent works on magnetic x-ray scattering is that, being fully relativistic,
spin-orbit coupling and spin-polarization effects are treated on an equal footing. Second, the electron Green’s
function expressed in terms of the path operators in the multiple-scattering theory allows us to include the
contribution of the crystalline environment to the scattering amplitude. To illustrate the use of the method we
have done calculations on the anomalous magnetic scattering &t,thg, andL,, absorption edges of
ferromagnetic iron[S0163-18207)00501-9

I. INTRODUCTION which allows the electron binding effects to be accounted
for. Later on Blume and GibBshave further developed the
In spite of the early predictions of light scattering from formula such that, for example, the orbital and spin angular
magnetic moments of spin-1/2 particles by Lband Gell-  momentum contributions of both ferromagnets and antiferro-
Mann and Goldbergérand, later on, Platzman and Tzbar magnets can be separately measured in a variety of geom-
who first proposed the use of x-ray-scattering techniques tetries. Hannoret al1° have presented a nonrelativistic theory
study magnetization densities in solids, progress in magnetiof x-ray resonance exchange scattering with explicit formu-
structure studies using x rays has been limited by the fadas for the electric dipoleE1) and quadrupoleE2) contri-
that the magnetic x-ray-scattering cross section is smallebutions. Using this theory, Fasolimt al** have investigated
than that for charge scattering by the order ofmagnetism in antiferromagnetic UA®1) and ferromagnetic
(hw/mc®)2.3* It was not until recently that de Bergevin and Gd(0001) surfaces. Combining the x-ray resonant magnetic
BruneP demonstrated experimentally the effect of magne-scattering with x-ray surface diffraction, they have found that
tism on x-ray scattering in solids. And it was only after thethe diffraction spectra for linearly polarized light are sensi-
observation of a huge resonant enhancement in the x-rayive to orientation and magnitude of the surface magnetic
scattering cross section of rare-earth metal holmium bymoments. Although Rennéfthas presented a semirelativis-
Gibbset al?® that has launched a great interest in using x-raytic magnetic x-ray-scattering theory in terms of the Green’s
magnetic scattering as a new experimental tool to investigatiinctions, which could be calculated from first principles, to
magnetic properties of solids. Kaet al. have observed a date no such calculations have been performed.
similar effect also at the transition metal ifoand cobalft Current experimental interest in using magnetic effects in
Ly edges for a thin film structure. x-ray scattering is highlighted by the work of Hannon
Furthermore, with the presently available third-generatioret al.,*° Gibbs et al.® Lang et al,'® Giorgetti et al,'* and
high-intensity, high-resolution synchrotron radiation sourcedHill et al!® to mention but a few. The theory we shall
magnetic x-ray-scattering studies have become feasible. Epresent aims to aid the interpretation of these experiments in
pecially, when the photon energy is tuned through an absorgddition to suggesting new useful measurements.
tion edge of a constituent, a large and species selective en- In Sec. Il we present a detailed description of our formal
hancement of the scattering cross section océwsonant, first-principles theory of magnetic scattering of x rays based
anomalous scatteringRemarkably, using polarization prop- on a fully relativistic spin-polarized multiple-scattering
erties of x rays it is possible to distinguish between orbitaltheory using the time-dependent perturbation theory. We il-
and spin scattering, unlike in the neutron case. lustrate its use with a calculation of resonant scattering at the
Some of the recent theoretical and experimental work usk andK absorption edges of ferromagnetic iron in Sec. Ill.
ing linearly or circularly polarized x rays for studying mag- The advantages of the present theory compared to earlier
netic phenomena in condensed matter will be briefly re-ones®®!2are that being fully relativistic it treats spin-orbit
viewed in the following. For a nonrelativistic many-electron coupling and spin-polarization effects on an equal footing.
system interacting with a quantized electromagnetic field, usNotably, our theory includes the contribution of the crystal-
ing perturbation theory, Bluniehas derived a general ex- line environment to the scattering amplitude in a manner
pression for the x-ray magnetic-scattering cross sectionyhich allows an accurate implementation of the theory.
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IIl. OUTLINE OF THE RELATIVISTIC MAGNETIC and () for right circularly polarized photons, arid] is the
X-RAY-SCATTERING THEORY momentum of the photon. The normalization volume of the

Here we describe the details of our formal first- principlesrad'at'on f'eld. IS der)oted' by. t
theory on the magnetic scattering of x rays from solids. It is, 1he quantized Dirac field operatogsand ¢ in occupa-
based on theﬂyﬂigy relativistic spin-polarized multiple- tion number space can be written as
scattering theory ~"in conjunction with the time-dependent - - + -
perturbat?on theory® To sirTJ1pIify the presentation a gtraight- plr.)= EA: bA(us(r)+dy(v,(r) (43
forward canonical perturbation theory will be used instead of
the more sophisticated Keldysh diagram methbtfin Secs. "
Il B and Il C we derive the general expressions for the scat- - - -
tering amplitudes involving positive- and negative-energy lpT(r,t):EA: bj\(t)uX(r)erA(t)vR(r), (4D)
states of the Dirac Hamiltonian, respectively. In Sec. Il D we
present the relevant equations for a special case of magnetihereu, (r) andv ,(r) arepositive-energglectron and pos-
scattering from perfect crystals, i.e., the magnetic Bragg scattron eigenstates of the Dirac Hamiltonian for the crystal, and
tering, and in Sec. Il E we define dichroism from the view-form a complete orthonormal set of four component basis

point of magnetic-scattering experiments. functions in the Dirac space. THpositive-energy electron
annihilation and creation operators are representda,tsnd
A. Basic background b}, respectively, and the corresponding operators for posi-

trons are described by, andd} .23
In the case of anomalou&lastic, resonahtscattering,
which we are interested in, the initial and final states in the

In what follows we shall study the golden rule for the
transition probability per unit time:

- (FIHd DATHRD |2 electron-photon occupation number space can be written in
Wit =7~ <f|Hint|i>+2 E_E S(Ef—E;), the direct product form between many-electron and many-
[ i = B photon states as
where H/, is the time-independent part of the photon- li)=[Vo)®|ng=1ng\ =ngnr=---=0), (53
electron interaction operatofi) and|f) are the initial and [f)=1¥o)®[ng =1ng=ngnr=---=0), (5b)

the final states of the electron-photon system, and the transi-
tion |i)—|f) corresponds to the transitidA)—|B) between ~Where the electron system ground stéte,) in the Fock
many-electron eigenstates of the system. space reads as
In the Dirac theory of the electron the total photon- )
. . . . = < =1: < < =1
electron interaction Hamiltonian3$as [Wo)=Ina (ex,<0) Ling (0<ey<ee)=1;

> XNy, (€r,, > €r)=0), (50)
Hint(t)zf Hint(r,t)d3r=f _jMA’u/CdBI' Anic SNk F
°° °° where the single-particle state indices
i={-1-2,...,—}, j={1,2,... N}, and

= —ef T (r ) aw(rt)-Ar,bHdr, (2 k={1,2,... %} refer to the completely filled Dirac sea of

o negative-energy states, the filled positive-energy core and

where the scalar potential pare4,) of the interaction has band states, and the empty states above the Fermi level, re-
been included to the nonperturbed Hamiltonian. The quanspectively. The labelsgh) and @'\') are related to the

tized radiation field operatoA(r,t) in Heaviside-Lorentz NcOMing and outgoing photons.

(rationalized units can be written as By virtue of the general many-photon state properties
Arrn=>, "\ agngy) = Vnang —1), (6a)
R VI R
N q g N = Vgt 1ngy), (6b)

x[a‘x(t)%me‘q-fjtat (t)’é(x)*e*iq.r], 3 <nq}\|nq,)\/> 5qq Synrs (60

whereagy anda are the photon annihilation and creation and the fact thaH,(t) is linear in the vector potential, the

operators, respectlvely, ad™} is a set of unit, orthogonal, first-order term(f|H{,|i) in Eq. (1) vanishes identically.
polarization vectors. The polarization index= (+) for left Therefore only the second-order term

)
'i>]/(Ei—E.> @

fIH D H
s (Rl [< UM)[ ea- AP () d*

><<I‘waT(F')[—e&~A(F’)]w(F’)d3r




474 E. AROLA, P. STRANGE, AND B. L. GYORFFY 55

Ei—E =(Evact Eot ﬁwq) —(BEvactEg—€xté€xr)
electr > (8A<O)

s 7O | (8A>0)
8F :EA_EAr+ﬁ(Uq (8a)
for the first term with a “no photon”-intermediate state and
~2mc?

Ei_ E| :(Evac+ EOJFﬁ(,()q)

—(EvactEo—€ert ey +Hhogthwg)

Ao/ :EA_GAr_ﬁwqr (Sb)
E

vac

for the second term with a “two photon”-intermediate state.

FIG. 1. A schematic description of the many-electron groundln Eq. (8) E, andE, . are the energies of the many-particle
and intermediatéexcited states in the relativistic x-ray-scattering systems, which correspond to the filled positive-energy states
theory.Ey andE,,. are the many-particle energies corresponding tobelow the Fermi energyer and the completely filled
the filled positive-energy states below the Fermi legeland the  negative-energy seéDirac sed, respectively(see Fig. L
filled negative-energy Dirac sea, respectively. The single-particleThe single-particle energies are subject to the constraints
energies are denoted le ande,.. ex<ep (either positive- or negative-energy stateand
€, >e€g. Figure 1 schematically describes the meaning of

contributes to the scattering amplitutfelndex | runs over the various energy symbols in E().

the intermediate states, whose electron plgt.y contains
excitations from the positive-energy as well as from the
negative-energy states. B. Positive-energy part of the scattering amplitude
Note that there are just two types of intermediate states We limit ourselves here to th where the intermedi-
[I) involved in the scattering process: namely, those which e ourselves here 1o the case where the interme
have no photons and those having incoming and outgoing;e statesl) haye excitations only from the posmvg—energy
photons. The same situation occurs in the second-order ter re or conduction band states,(>0). Then, applying the

of the nonrelativistic scattering theo?y. time- independent expansions of the quantized vector poten-

The denominator of Eq7) can be written in terms of the tial A(f) [cf. Eq.(3)] and of the quantized Dirac field opera-
eigenenergieg, of the effective one-particle Dirac equation tors w(r) and 1//T(r) [cf. Eq.(4)] in Eq. (7), we find, in the
(discussed later gnfor the crystal and the incoming and case of elastic scattenn@,wq hiwgy=ho, for the positive-
outgoing photon energigswg andf g as energy part of the scattering amplitide

fIH D H i
LU LY >—Z drul(Nx}, ,(r)uA,(r)f d*rul ()X (T UA(T ) (€x— €xr +hw)
l,ex>0 E|_E| AA’ A
+ > | dirul( r)Xq}\(r)uA,(r)f d3rrul (1 )X-,A,(r WA(T" ) (ey—€r—Fiw),
AN’
(9a)
|
where the relativistic photon-electron interaction vertex 1 .. . vt -
Xﬁk(F) is defined by —;Img(r,r’,e)=A§”) Upr(r)o(e—ey,u,,(r')
al
i hc2 \ 12 +opi(N)se— v (r"), (10
Xan(N)=—e 2Vw) @ eNeidr, (9b) var(r)dle= ey (r),
q

. wheree, , and e are positive- and negative-energy eigen-
and the one-electron state labdlsand A’ are subject to the EA 6 P 9 gy €19

constraints & e,<er and e, > er . values of the Dirac equation, respectively, and(r) is the

We can cast Eq(9) into an even more useful form by negative-energy electron state directly related to the corre-
recalling the eigenfunction expansion of the Dirac Green'ssponding positive-energy positron statg (r). Then the ex-
function and noting that pression for the first term of Eq9a), which is denoted as a
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scattering amplnudégfpo,?, _turns out to be and y*“(f) is the spin angular functidiand the radial func-
tionsg¥, (r,e) andf”, (r,e) satisfy a set of coupled radial
(502 == [ & [ rulixg,.o Dirac equationd®

As a usual approximation, we limit the valuesidfin Eq.
(13) to { x,— k— 1}, so that all couplings to the partial waves
whose orbital angular momentum value differs fronare

r de ImG(r,r’,€)0(e— €r)
>< —_

o T ez~ €etho neglected. As a consequence, the infinite set of the coupled
-, -, radial equations has been reduced to only two sets of four
XX (rup(r’), (118 coupled equation¥*

which causes thanomalousscattering, when the photon en-  Furthermore, in our calculations we choose the effective
ergy approaches the absorption edge of some atomic cofcalar potential and the spin-only effective exchange fields to
stituent defined by the core leve) . Similarly, the second be

term of Eq.(9a), which we denote as a scattering amplitude V() =3[V, (N +V (], (149
fgx("z:’,sx), , can be written as Be(r)=3[V;(r) =V (1], (14b

P (w)=—2 fd%f dr"ul (N Xau (1)
Pia X Je Ja A where V,(r) and V,(r) are the spin-up and spin-down
spherically symmetric muffin-tin potentials which, for sim-

fw de ImG(r,r’,€) 0(e— ef) plicity, we take from thenonrelativisticself-consistent, spin-
X — —— . . . b
—w T ex—€e—hw polarized electronic structure calculation of Morugtial.
f - R for metals and of Johnscet al for disordered alloys. This
X Xd,k,(r')u,\(r’), (11  should be a good approximation for the potentials of metals

, , , _ , and alloys composed of light atoms, like Fe and'Ni.
where 6 is the standard unit-step function. It is noticeable

that the amplitudd »A(zo,sk),(w) is asmoothfunction of w, and

is therefore responsible for thenresonanscattering. C. Negative-energy part of the scattering amplitude
In Eq. (11) the site-diagonalSD) Green’s functiof’® for We turn to discuss some important peculiarities related to
an infinite array of nonoverlapping muffin-tin potentials canthe negative-energy electron states in the scattering ampli-
be written(cf. Faulkner and Stock§ as tude formula, Eq(7). As is WeIICl2<nown relativistic scattering
s B > nn ot > of low-ener hotonsi{w<<mc?) by free electron$Thom-
Gr(r.r ’6)_A§A:, Za(Tn €Ty 2y (Tn ) son scatter?n)igf/)vill necgssarily i|)1vglve the negative-energy
states. These must be taken into account in computing the
_2 ZA(Fn ,6)\]1(;& e, (12) scattering cross section if we are to obtain the corfeoh-

relativistic result. In fact, the contribution of the positive-

. e s . e - energy states to the scattering cross section is vanishingly
where r,=r—R,, r;=r'—R,, and Z,(r,,e) and gsmall compared to the negative-energy one in Thomson
JA(rn ,€) are the regular and irregular solutions of the spin-scattering’®
polarized Kohn-Sham-Dirac equation, respectively, around Second, we may recaflthat the contribution to the Th-
the nth site muffin-tin potentiat/ omson scattering amplitude by the negative-energy states, as

Because the spin polarization of the sample breaks thderived using the Dirac hole theory in connection with the

crystal symmetry we have to express the solufioir, , €) usual perturbation theory, has a correct magnitude, but a

imilarly J,(F I inatiéf of the ~ Wong sign. o .
E?:sinﬂglssry%(r“’e)] as a linear combinatic of the Guided by the experience in this “subtle sign problem”
in context of the relativistic Thomson scattering, we derive
ZA(Fn €)=7 (;n €)= E 7+ (;n €) (133 the expression for the elastic-scattering amplitude due to vir-
] KM [l k'K [} [

tual excitations from the fillednegative-energystates
(e,<0), i.e., from the Dirac sea into the empty conduction

where R g% (r,e)x%.(T) band states. Proceeding otherwise similarly as we did in the
(re)=|._, PR (13b  positive-energy electron excitation case, the negative-energy
e (T X (T) states contribution to the scattering amplitude turns out to be
fIH D H D
_ (FHind {1 Hind ) > | d¥v %r)X ,)\,(r)uA,(r)f d3rul (1 P Xan(Fva(r ) (ex—epr +hw)
1,ex<0 Ei_EI AA'

- d3rv r)Xq}\(r)uA,(r)f d3r’ uA,(r Xt ,A,(r YWi(r')(ey—er—ho), (15
AN’

where the first and second terms may be usefully identified as the scattering am;ﬂ&y’?é\)s andf qk( q‘igf, , respectively. It

can be directly noted from Eql5) that none of these terms have abrupt resonances in practical circumstances, since
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er— €y < —2mc andiw<2mc?. Furthermore, these scattering amplitudes can be readily expressed in terms of the Green’s
function as

- . (> de Img(F,F',e)H(e—eF) - -
j—(ng@ — 3 3,11 t - ’ ’
o (@) =2 Ld rLd r vﬁr)qu(r)f_m—W c —erha @A) (163
and
_ . . (= de ImG(r,r’,€)0(e— ) . .
—(neg _ 3 3., 1 - T ' '
faniarn (@) ; Ld rLd r vx(r)xq%(r)f_m e —eha Kan (R, (16b)

where {e,} forms an infinite continuumof the negative- ing amplitude. However, this seems to be quite a difficult
energy electron states. We summarize our main reflatfs.  problem, becauséi) unlike the core states, the negative-

(11) and (16)] by writing the fully relativistic, elastic- energy states{v;(r)} form a continuum spectrum
scattering amplitude as (ex<—mdc?), and (i) {vx(r)} are extendedlike states, so

+(p0 (0o that in addition to the site-diagonéBD) Green’s function
foran(@)=FEP% (o) +§:P% () o, -
NN ax;q’ N’ ar;q’n’ also the non-site-diagon@NSD) Green'’s function would be
+ - required for the computation.
e (@) FE0 (o), (A7)
where the first terrn‘J-r(pPS) D. Magnetic Bragg scattering

q)\;q’)\’(w) causes the resonant mag-
netic scattering, whehw— e—€,, and the rest of the In order to show some realization of the general scattering
three terms are smooth functions of frequency. It is interestformula, Eq.(17), we apply it to one of the simplest cases,
ing to compare this with the corresponding nonrelativistichamely, to magnetic Bragg scattering in a perfectly ordered
formula by Durhanf! which has been derived using the infinite ferromagnet. In such a system the Green’s function
more sophisticated Keldysh-diagram techniétieds ex-  G(r,r’,e) and the path operator€™ in Eq. (17) have the
pected, his result bears a close resemblance to our expressiganslational invariance of the lattice, ie.
except that in the nonrelativ.is'tic th‘t‘aory jgst three te”rms APG(r+R, 1+ F-in ,e)=g(F,F’,e) and 7= 7% Also. each
pear, and no conceptually difficult “negative-energy” prob- gjie has an identical contribution to the total scattering am-
lem arises. In the nonrelativistic theory the scattering ampliyjityde. It will be then straightforward to show that the site
tude is obtained as a sum of three contributions: decomposition of the Bragg scattering amplitu@tie to

Fw)= 0+ () + (o), 19) positive-energy excitations onlypecomes as
where 0 represents the frequency-independent charge scat- f(pos)(w):E [f+<P°3(w)+f*<P°5>(w)]e*i@~F3n
tering, f*(w) is responsible for the anomalous scattering, no "
andf~ (w) is a smooth function of frequency. Furthermore,

@n the re!ativistic, Lorentz-invariant fpr.mula for the scatter- :[fg(pos(w)Jrfa(pos(w)]E efidﬁn
ing amplitude, all terms depend explicitly on frequency, and n
there is no separate term for charge scattering. In fact, all

. . . . . —rf+(pos —(pos =
possible scattering sourcésharge scattering, spin scattering, =[fo P (w)+ 1o (@) INaom#gk ,  (19)
etc) are coupled together in an intricate way in various terms TR . .
of I;q 17) P 9 y whereQ=q’ —q, K is a reciprocal lattice vector of the fer-

In spite of the dramatic importance of the negative-energyomagnet, and is a Kronecker delta function betwe€n
states in Thomson scattering, we are going to ignore them@ndK. The resonant part of the amplitude, i & "), is
and only the first two terms of E417) will be retained. This given by
pr?ce)dure may be justified as followsi) Only the
£+ (PoS)Y ) term of Eq.(17) is responsible for the resonance, +(po _ +(pos
anomalous scatteriﬂg behavio? in practical conditions of fo(p S)(w)_AE on:&A:&’w(“’)' (209
ho<2mc. (i) Unlike in Thomson scattering, where all S
electron stategpositive and negative energin the matrix ~ Where theA,-core-state contribution is
elements of Eq.(7) are free-electron-like, the negative-

B . . (pos _ _
energy states in the solid state environment are largely e%—AO;qu,w(w)—
tended while the states near the Fermi level are more local-
ized. Thus, the corresponding matrix elements should be
essentially smaller than in the case where both states in the v JeT €r,~ €Tho+il/2 '
matrix elements would be extended. (20b)

It would be an interesting task itself to evaluate quantita- R
tively the negative-energy states contribution to the scatterand the matrix elemen’nﬁ;(q)\;e) is defined by

wde AT (AN €)IM7Y (M) ¥ (Gh;e)
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Nt = £ e ot o . 5 And, finally, we mention a few practical points about the
my, (aN;e)= J Uy (Fo) X5\ (Fo)Z,(ro,€)dr, matrix elements in Eqg20) and(21). As we show below it
foe o (200 is straightforward to derive numerically tractable approxima-
© tions and selection rules for these matrix elements due to the
wherer,=r—R, is the vector inside the unit cefd, at the  €lectric dipole E£1) or magnetic dipole and electric quadru-
origin. pole (M1+E2) contributions to the photon-electron interac-
Similarly, the nonresonant part of the amplitude, i.e.,tion vertexXg,(r).

*(pOS) . .
fo (@), is given by 1. Matrix elements in electric dipole approximation

fa(pos)(w):E §-(POS (@) (213 In the electric dipole approximationﬁei‘i‘le in Eq.
No  Aoiania’x (9b)], the matrix eIemermﬁO*(qA;e) in the resonant part of
with the A o-core-state contribution as the scattering amplitude can be written as
—(pos R _ hc2 |12
fAO:a)\:dr)\r(w) maﬁ;(q)\;e)=—|e(sz
<de mﬁ;(qr)\';e)lmri(j\,(e)mﬁof*(q)\;e) a/  kg'k
=_ - — ' "
AN Jeg T GAO e—hw (Zlb) x fo Wsdrofozgl,:grko*(rO)ff:'K(rO'é)
where the matrix elememn} ~(q\ ;) is defined by xACMN (@)
0 Ko ' Moi K M
A= 2y o ) TNy (F > 3 Rws 26H0 % ©
my, (N €)= :_a UAO(ro)qu(ro)zA(rof)d lo. - o droro f"o"‘o (ro)g, (ro,€)
0€3%0
(219
7>\ ~
It has to be noticed that the irregular parts of the Green's XA(KO)rMO;KrM(Q)]. (229

function have no contribution at all to the scattering ampli-

tude if the energy integral above the Fermi energy is madé terms of the radial and angular integraRys is the

up using real energy points. However, in our practical calcuWiegner-Seitz radius and the angular integrals are defined
lations we have included a small positive imaginary partby29

(0.01 Ry to our energy points in order to smooth the fea-

tures in the path operator and consequently reduce the com- AN /(a)zf XMT(F)&.g()\)XM:(f)dQ. (220
putation time of the energy integral. But our experience e “ “

shows that in this case the contribution of the irregular part The matrix elementsnal~( e ) can readily be evalu-
of the G function is still very small compared to that of the ) o (AN € . y

regular part. Therefore we have ignored it in E(R0) and  ated by making a replacement-§)—(A) in the angular
(21). In the resonant part of the scattering amplitude, Eqmatrix elements of the right side of E(22a.

(20b), we have introduced’, the only adjustable parameter !N deriving Eq. (22) we have used the fact that
in the theory, to represent the natural width of the intermee™" =" for circularly polarized light. If the photon
diate states. It is noticeable that in the magnetic absorptiopropagates along theaxis (direction of the magnetization
theory by Eberet al® only one type of a matrix element is then the unit polarization vectors for the rigiRCP) and left
required, while in the x-ray magnetic-scattering theory we(LCP)  circularly  polarized photons are e\ )=
needtwo different types of matrix elements: one for the reso-(1/,/2)(1,~i,0) and&{*)=(1/y/2)(1i,0), respectively. For
nant amplitude and one for the nonresonant one. When thgny other propagation directioy=q(8,, #q) off from the
frequency of the incoming x-ray beam is tuned to near thg axis the polarization vectoi&~) ande(*) are given by the
absorptlon e_dge, usyall_y_ only one Iocallze_d core st_ate, Sa¥otation matrixR(6,, ¢,) applied onég‘) and ggﬂl corre-

u, (r), contributes significantly to the elastic-scattering am-spondingly. Using the orthonormality of the spherical har-
plitude. Then the summation index in Eq80g and (21d  monicsY["(r) the angular integrals of Eq22) become of
can be restricted to a single tethpy=A.. the form

A) (@)= 11O g MCU ] = 3 )CU 5 50 = 3,108y 8,0+ 1o B b MC( = 1,3)
XC(I,%J,,Ml‘f‘%,_%)5”réﬂur+l+f21(0q,(ﬁq,)\)C(I%J,M"F%,_%)C(I,% ,;M,_%v%)éll’é\

up' =1

+f22(6q,¢q,)\)C(|%j;,u,-l—%,—%)C(l'%j';,u’-i—%,—%)&“réwu, (23)
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where the element; (6, ¢ N)=(c- g(x))ij . For example, angular integral of the formA("™), while the expression for

if the direction ofq is described by a rotation around tiie maﬁo’(q)\;e) contains A with an opposite polarization

axis by 64 off from the z axis (¢4=0), then state index. These facts can be directly exploited in design-
(fﬂ( burt) Frol6, ) ( ~sin, 1+cosﬂq) ing experimental setups in a magnetic x-ray-scattering mea-

surement.
f21(0q,+)  fa0q,+) cody—1  sing,

24
o (243 2. Matrix elements due to magnetic dipole
for the LCP radiation and and electric quadrupole correction

(fll(gql_) le(qu_)>:
f21(0q,—) Foul 0, —)

—sing, cosfy—1 We derive a general angle-dependent expression for the
1+ cosd sing combined magnetic dipole and electric quadrupole
4 4 (24D (M1+E2) correction to the the electric dipole approxima-

tion (E1) of the matrix elements of Eq§20c) and(210. If
for the RCP radiation. The angular matrix elements of Edyyo now approximatee“i'F~1+id~F in Eq. (9b) for

23) solely determine theelection rulesn the electric dipole - R .
23 y b Xa(r), then the termiq-r is responsible for the

oy NN g
Zgir:r)l( T:}azﬁc.pcr(l)epa;gaﬁcl)% dﬂ;cgn?svzi;n—d;oo;%?;r? (M1+E2) correctionsato the electricidiapole approximated
depending on the polarization state as well as on the propdbatrix elementsnay " (q\;e) andmay ~(q\;e), which we
gation direction of the photon. It is also noticeable that thegenote asnb} ™ (qr;e) andmb) (g ;e), respectively.
selection rules for the matrix elementsa}(q\;e) and It is then agtraightforward matter to show that the matrix
maﬁo’(ﬁ)\;e) are slightly different with respect to the azi- elementmbﬁg(&x;e), related to the resonant part of the

muthal » quantum number, because H29 contains an scattering amplitude, can be written as

A+ 3y .\ he? |2 2 Rws 3,10 % " (=MN) A
mbAO (Q)\,e)——e vaq qK = fo droro gKo’KO (r(),EAO)nyK(ro,E) BKQ’NOJ_K’M(q)
- fRWSdr o3t *(rg,ex 09" (ro,€) BTN (Q) (259
0 070 Tugricg 02 FAM i O —Ko' koK' u '
where the angular integrals are defined by
B?J;W@EJx’;‘*(f)é-%(”ﬁfxff(?)dﬂ, (25b)

where|q|=|f|=1.
A similar expression can be written for the nonresonant part of the scattering amplitude related matrix element
mbﬁo’(ﬁ)\;e) if we make the replaceme®~"(q) elements— —B™(q) elements on the right side of E(R5a.

If we assume a most general photon propagation direé{i@ﬁ(aq ,¢q) in terms of the standard polaf{) and azimuthal
(64) angles, then it is a straightforward but lengthy matter to show that the angular matrix elementsastEgan be written
in the form

(N) A — 3(2|I+1) ’ . ’ ’ - 1 1
B (D= \/mcﬂ 11,000 8); 7,1 u(1", 1,D){ 6, - s C1K 11 C(1" 15 " = 2,0, = 3)

+C1_ 1K (' hu + 3, = Lu—3) + CyyKpC(1 1l " = 3, + L+ 3) + CyoKp,C(1 1l " + 3,0,u+ 3) ]
+8,-u,~1[C1o1KuC(" s’ — 3, = Lu—3)+ C1oKpC(1 ' 11" = 5,0,u+ 3)

+Cy_1KpCU 1" + 3, = Lt 3) ]+ 8, 41 [CuKpaC( 1" =3, + Lu—3)

+CyoK1,C(1" 15" +3,0,u—3) + CKpC ' 1 + 3, + Lt 3)]

+ 6,2 C1o1KuC(" 1" — 3. lu+3)]+ Op—pr+2lC1aK L1 " + 5+ Lu—31} (263
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where the photon propagation direction related coefficients wdn(d’+'d”x"w)—wdg(&—'ﬁ’x"w)

C;_1, C1o, andCy, are given by A(Q;q' N w)= —— —
wgo(q+:q'N o)+ wge(d—;9'\ )
27 o (279
C1-1(0q,9q) = ?sm&q(co&bqﬂsm(bq), where the scattering rat®y,, into a solid space angle()
can be written in terms of the scattering amplitude
e fon.gv(w,0") and the photon denssity of states function
Caof ) = / s pao(fiw’) for the emitted photons &%

2

5 wdnzfT|fdx;d'x/(w'w')|25(Ef_Ei)PdQ(ﬁw')d(ﬁw')
7T - . -

C1a( 0y, q) = — \/?smﬁq(co&ﬁqﬂsm(ﬁq), (26b) 27T|f - Vo2 o o
= — »)\;»/)\r(w A 3% -3 : 27
the Kj; elements are described in terms of the elements fi A (2m)” fic
fij=1j(0q,0q,\) defined in Sec. IID 1 and the Clebsch- where §(E;—E;)=d(h o' —fiw) in the case of elastic scat-
Gordan coefficienf§ C(13j; x—ms,my) as tering. An expression for the differential scattering cross sec-
tion d&/dQ) results(see Sec. lll Aif wya/dQ) is divided by
the incoming photon flux densit@/V.

Kiu=f,C(13j;u—%,5)CU" 3" ;n" —3.3) . . "
117 TRt 2l 212 21 212/ However, in the usual synchrotron experiment conditions
it is very hard to measure the photon polarization state
K= .CU3u—5HCciju +3,-1), (\") of the weak emitted radiation. Therefore, the standard

practice is to measure only the incoming beam polarization
(A==), and then to make a summation over the final state

Ka=f2iClzjiu+32,-2)C(1 3] u' = 3.2), polarization index\’. Accordingly, the magnetic x-ray-
scattering dichroisnfasymmetry ratip used in our calcula-
Kap=f20C(15];u+3,—3)C(I"3j ;" +3,—3), tions will be defined as
(260)

.. 2_ |- -, 2

and the functioru(l’,1,!) is defined by . ; faean (@)= [fg-ian (@)%

. A(Q,9",0)= :

W)= 0 if | =.|, (269 AE (g (@2 +]fa g (w0)|3

1 otherwise. 28)
In Eq. (269 the coefficients lll. RESULTS AND DISCUSSION

C(l'll;pu"—m ,m_,u—m;) are the usual Clebsch-Gordan

coefficientsC(l41,l;m;,m,,m) with the angular momentum
guantum numbek,=1.
Looking at Eq.(26) in the context of expressiof25a for

the matrix elementn bﬁ;(ﬁ)\;e) [or in a context of a similar

We discuss the application of the theory to the resonant
magnetic x-ray scattering dt,, L, , and K absorption
edges of ferromagnetically ordered iron. Althoughin Eq.
(20b) is in general energy dependent, it is obviously a
¢ smooth function of energy, and therefore can be set as a good
expression fomm bﬁ;(q)\;e)], we notice that the selection approximation to a constant value. In the case ofkhend

rules of the M1+ E2) contribution to the scattering can be Lu,n-€dge resonant scattering the atomic core-hole lifetime

determined in terms of the various Kroneck&ffunctions, ~ €stimates 0.8 eg((Ref. 34 and 1.0 eV(Ref. 39 are used for

the u function, the angle-dependent coefficief}, and I respectively?® _

the angle- and polarization-dependent elemdhts}. The The integration in Eq(20b) has.been performed using t_he

resulting selection rules are thém1o=0,~1,+2 with the  €Nergy rangéeg e +40 eV}, which we found to be suffi-

restriction thats— p andp—s be forbidden transitions, and cient to corre.ctly produce the spectral features of interest.

for the azimuthal quantum numbgr— ue=0,+1,+2 de- Even though it seems to be necessary to go beyond 100 eV

pending on the direction and polarization of the photon in-above the Fermi level in order to achieve a full convergence,

volved in the matrix element. we have noted that the spectral features do not change while

moving the upper limit of the integral upwards from 40 eV

above the Fermi energy. Increasing the upper integration

limit from 40 to 100 eV simply increases the uniform back-
Our purpose here is to define what may become a usefiground count.

observable in the state-of-the-art x-ray studies of magnetic

materials, namely, the magnetic x-ray circular dichroism A. Magnetic scattering atL, and L, edges

(MXCD) in context of magnetic x-ray-scattering experi- |n Fig. 2 we present the calculated anomalous scattering

ments. In a most general sense thiehroism (of_ten called  cross sectiordo/dQ)=|f(w)|?V2w? (27hc?)? at the iron

asymmetry ratipin the elastic magnetic scattering of x rays |, andL,, absorption edges for right- and left-handedly po-

can be defined in terms of the parametarsy(,\,\",w) of  larized photons propagating along the magnetization direc-

the “full experiment” as tion.

E. Dichroism in magnetic x-ray scattering
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FIG. 2. Calculated anomalous scattering cross sections at the 35
iron L,, andL, absorption edges. The scattering amplitudes have i_‘i 6x10°
been obtained by summing up thg andL,, core state multiplet 2
contributionssimultaneusly The solid and dashed lines correspond 2 4x10°
to left-handedly ¢+) and right-handedly {) polarized incoming %
photons, respectively. In both cases the incoming and scattered pho-‘—( 2x10°2
tons propagate along the magnetization axis. The solid- and dashed-
line arrows locate the positions of thg, andL,, edges, respec- 0 e i =
tively, and the symbolé\, , A_ andB. , B_ are related td. ;- and 650 670 690 710 730 750
L,-edge resonant-scattering-derived peaks, respectively. Photon energy (eV)

Interestingly, most features of interest in Fig. 2 can be FIG. 3. Partial wave contributions to the scattering amplitude at
qualitatively explained by looking numerically at the nu- the ironL, andL,, absorption edges. The, andL, core state
merator part of Eq(20b) just above the Fermi level, where multiplet contributions have been summed up simultaneusly. The
the d density of states contains a very strong and narrowpolid, dotted, dashed, and .dash-dqtteq lines corre§p0nd to total,
peak. Our experience shows that it is exactly this peak in thész, s, andds;, ds), partial contributions, respectively. i@
unoccupied part of the iron band structure which is respon@nd (b) the incoming photons are left-handedly-) and right-
sible for the overall behavior of the various resonant peakgandedly €) polarized, respectively. The photon beam geometry
A.,A_,B,,andB_ in the spectra. and the arrow symbols are the same as in Fig. 2.

First of all we notice there are two major channelk the
numerator part of Eq(20b)] for the L,-edge resonant scat- case of the peaR_ than in the case of the pe&k_, clearly
tering, while inL,, case there are several more, all of whichexplain the large intensity difference between these two
are of similar order of magnitude. This explains, in generalpeaks in Fig. 2.
why the peak#\, andA_ are larger than B and B_ in Fig. The above observations are well supported by the various
2. The specific character of the transition matrix elementgartial wave contributions to the scattering ampliftidere-
involved in these channels depends on the selection rulegented in Fig. 3. There are two interesting points to note.
together with the symmetry of the?® matrix. The selection  First, the @,,ds,)-like spin-flip elements of the® matrix,
rules for our x-ray-beam geometry arefi approximation Wwhich reflect the crystal field effects, carry essential weight
simply lo—I=%+1, u=pug+1 for LCP radiation, in the Ly-derived resonant feature of Fig. 3. Second, the
and u=puo—1 for RCP radiation. To be specific, we total scattering amplitude for the RCP scattering atlthe
note that the transitions pg,,—1/2)—(ds,,+1/2) and edge is slightly smaller than tha, contribution to the am-
(P12, +1/2)—(dg, +3/2) mainly build up thelL,-edge Pplitude. This is due to the fact that the phase of the
resonant scattering pedk, for LCP radiation and the tran- (ds2,ds;») partial amplitude has been shifted by nearly
sitions  (Pyp, —1/2)—(d3;p,—3/2) and  pq,,+1/2)  180° with respect to the phases of thhg,- and ds-related
—(dgj2, —1/2) mainly contribute to peaR_ for RCP radia- amplitudes of Fig. &).

tion.
On the other hand thg-edge resonant peak does not _ _
possess a well-defined spin angular momentum character, B. Magnetic scattering at theK edge
because bothl;,- and ds;-like intermediate states partici- In Fig. 5 we present the calculated scattering cross section
pate with nearly equal weights in its intensity. do/dQ=|f(w)|?V2w? (27hc?)? at the ironK absorption

We also notice that the matrix elements of the transitionsdge for right-handedly polarized photons propagating along
(P32, —3/2)— (dsjp, — 5/2), (P32, — 1/12)—(ds0, —3/2), and  the magnetization direction. In order to demonstrate the re-
(p3j, +1/12)—(dspn, — 1/2), which are related td,-edge  markable dependence of the scattering atkhedge on the
resonant peak for RCP radiatigpeak A_), are of similar  crystal environment effects, we have shown in Fig. 5 the
size as those two involved in thie,-edge resonant peak single-site scattering contribution to the cross section as well
(peak B_). Therefore ther” matrix elements which are as the squared value of theprojected density of states
coupled to these transitions, and are essentiatlyer in the  above the Fermi level.
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of the band structure, illustrating that band structure effects
FIG. 4. Phase behavior of the partial wave contributions to thegre important for understanding resonant magnetic features
scattering amplitude at the .irdn” ar?d L,, absorption edges. For of X rays.
further details, see the caption to Fig. 3. There is yet another remarkable finding which we demon-
strate within our calculations. Namely, in addition to the full
Evidently, all features of interest in the scattering crosscrystalline scattering cross section which we have discussed
section of Fig. 5(denoted as symbol&, B, andC) can be above, we have repeated the same calculation aKtlad-
qualitatively explained in terms of the squarpeprojected  sorption edge of iron for an isolated muffin-tin potential by
density of states above the Fermi level. Computationally thigising a single-site scattering mattf(€) in place of the path
is due to the following reasons. The matrix elements of Eqoperatorr®(e) in Eq. (20b). Although this only mimics the
(200) are in general smooth functions of the band enargy real atomic resonant scattering, we can immediately see from
Therefore, most structure in the scattering cross sectioRi9. 5 that the multiple-scattering effects drastically alter the

comes from the behavior of the b&o{\’(e) elements of Eq. spectral behavior of the scattering cross section. The flat be-

. ~ B 0 .
(20b). The selection rules for our x-ray-beam geometry are inhawor of p-derived Int () elements above the Fermi level

S . Is responsible for the single peak in the “atomic” scattering

E1 approximation simplylo=I==1, u=wuo+1 for LCP o 'soction, while the overlappipgnave functions via the
radiation, and‘:'“oo_l for RCP radiation. Therefore, only i gnerator® are responsible for the cross section in iron
p states related In?(€) elements are responsible for tee crystal. By contrast, at the,- and L -edge resonant scat-
dependence of the numerator part of E20D). Then, by  tering there is only a small difference between these two
virtue of the multiple-scattering expression for the Green'sqases. This is because the electric dipole transitidE) (
function by Faulkner and StockSjt can been seen that the jnyolve now intermediatel states, which are more localized
numerator part of Eq.20b) is approximately proportional to - than thep states, and consequently multiple-scattering ef-
the p-projected density of states. As it can be seen from Figfects are small.
5, the calculated scattering cross section closely follows the To complete the discussion about tKeedge resonant
features of the square of the normalizediensity of states. scattering of iron one may ask whether the higher multipole

On the other hand, for thig, , -edge resonant scattering contributions are important. To answer this question we
we find that the scattering cross section does not reproducghow the M1+ E2) contribution to the anomalous scatter-
the rapidly varying features of the density of states above ing cross section together with the single-g#¢omio scat-
the Fermi level. This is because in this caselfhgarameter tering spectra and the-projected density of states in Fig. 6.
(1.0 eV) is large enough to wash out the sharp features wheAs is clear from Fig. 6, the overalM 1+E2) contribution
the integration ovek is carried out in Eq(20b). And as a  to the scattering cross section is about 100 times smaller to
result only one pronounced peak will appear in the scatteringhe electric dipole E1) contribution of Fig. 5. However,
spectra nearby each absorption edge. there are some qualitatively interesting features in Fig. 6. In

These important observations have the general implicaaccordance with the theM1+E2) selection rules given in
tion that in favorable conditions the measured resonanthe end of SeclD 2 thed states above the Fermi level build
X-ray-scattering spectra contain much spectroscopic informaip the large resonant peak at tieedge. Interestingly, the
tion about the partial density of states in the unoccupied paitM 1+ E2) contribution to the scattering cross section of
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FIG. 7. The calculated asymmetry ratisolid line) in the elec-
tric dipole approximation together with the asymmetry rétiashed
line) computed in theatomiclimit. The symbolsA, A’, B, andB’
are discussed in the text.

FIG. 6. Calculated M1+ EZ2) contribution to the anomalous
scattering cross section at the irnabsorption edgésolid ling). A
properly normalized, Lorentzian lifetime-broadendd=(0.8 eV)
and squared-projected density of statédashed lingand a single-
site scattering-derived cross secti@ash-dotted linghave been

also presented. The arrow locates the position ofkthabsorption nearby_ the Fermi level, where there is a _Iarge, unoccupied
edge. d density-of-states peak. Because these differences vanish in

a non-spin-polarized relativistic case, the dichroism feature

Fig. 6 possesses similar oscillations as the Lorentzia®® can be interpreted purely in terms of the exchange splitting
lifetime-broadened E 0.8 e\o and Squarew prOJected in the d3/2 like intermediate states near the Fermi level. As
density of states. This further substantiates the useful lingan be deduced from Fig. 3, thl-like states have only a
between the resonant scattering spectra and the partial defnor contribution to the featurB of Fig. 7.
sity of states in the empty part of the band structure. Also we Similarly when analyzing thé-edge-derived dichroism
notice from Fig. 6 that in the single-site scattering case thdeatureA of Fig. 7 we find that the exchange splitting of
(M1+E2) contribution to the cross section is very similar to ds;>-like states is mostly responsible for that feature. How-
that in the crystalline case near tKeabsorption edge. As €Vver, it is mterestlng to notice that thely,,ds,)-like spin-
can be inferred from the” m edge resonant Scattermg Caseﬂlp elements of thei' matrix, which tend to diminish the

above this is solely due to the localized nature ofdhstates ~ Scattering amplitude for the RCP radiatitsee the discus-
above the Fermi level. sion in Sec. Ill A, reduce to a large extent the magnitude of

the featureA. On the other hand, as can be deduced by
looking at the magnitudérig. 3) and phaséFig. 4) behavior
of the partial scattering amplitudes, the diagodg), and

Since the dichroism in the resonant magnetic scattering atl,,,, ds;,) spin-flip elements of°° make hardly any con-
theK edge of iron(exclusivelyE1 derived is about 50 times  tribution to peak$3, andB_. Therefore, the dichroism fea-
smaller than the dichroism at thg,,, edges, we limit our tureB of Fig. 7 is solely due to the diagondy,, elements of
study here solely to thé& ), edges. The magnetic x-ray- 70,
scattering dichroism alt,, edges is in general a delicate It can also be observed from Fig. 7 that the crystalline
combined effect of spin-orbit interaction and spin polariza-(multiple-scatteriny effects do not change the qualitative
tion in the core states and the intermediate states. Howevegicture of the dichroism spectra from the atorfsingle-site
by looking again at the numerator of EQOb) we can easily scattering case. This is in agreement with the computed
envisage the microscopic origin of the various features of thgcattering cross sections at thg,, edges for the crystalline
dichroism spectra of Fig. 7. and atomic casesee the discussion in the end of Sec. )l B

The magnitude of the first important matrix element As a very important technical aspect of our calculation we
of the transition p,/,, —1/2)—(d3;,+1/2) contributing to  note that due to the overlapping feature of thg- and
the L,-derived peakB, of Fig. 2 for LCP radiation L -derived scattering peaks of Fig. 2 it is vital to compute
is nearly equal to the magnitude of the transitionthel, andL,, contributions to the scattering amplitude si-
(P12, +1/2)—(dg,—1/2) contributing to the peakB_  multaneously and add coherently. If they are calculated sepa-
for RCP radiation. Similarly, the magnitude of the secondrately, the dichroismithe sum of the dashed and dashed-
important ~ matrix  element of the transition dotted curves of Fig.)8will not be evaluated correctly as
(P12, + 1/2)—(d3p, +3/2) contributing to thel ;-derived  Fig. 8 shows. Notably, the correct positions of thg- and
peakB, of Fig. 2 for LCP radiation is nearly equal to the L -related features\’ and B’ of Fig. 8 notwithstanding,
magnitude of the transitionpg,, — 1/2)— (ds;z, — 3/2) con-  their intensities do not reproduce the peaksand B cor-
tributing to the pealB_ for RCP radiation. rectly.

Therefore we can conclude that the featuBe of Our calculated spectral features of dichroism agree quali-
Fig. 7 is apprOXImater proportional to the differencestatively with those measured by Ka al.,’ the main differ-
Im7-2+1,2 oip{€)—Im7o% 12:2-12(€) and Irn7-2+3,2 2432(€) ence being that the largest asymmetry ratio, which comes
—Im7-2073,2,2,3,2(e) in the standardxu representaﬂo’ﬁ from the L -edge resonance, is 13% in their measurement

C. Dichroism at L, and L, edges
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demonstrated this by studying resonant magnetic x-ray scat-
tering atL, ,, andK absorption edges of iron. Especially we
have noticed that multiple-scattering effects have an impor-
tant contribution to the x-ray resonant scattering cross sec-
tion at theK edge. On the other hand, at thg, edges there
occur only minor changes due to the more localized nature of
thed electrons. Furthermore, if the lifetime effects are small
enough, then the x-ray resonant scattering measurement al-
lows us to study the partial density-of-states features of the

Scattering Dichroism (I - 11" + I

04 - * \‘:\ A i empty part of the band structure above the Fermi level in
NN addition to information about the magnetic structure encoded

0.6 : - - - in the position of the magnetic Bragg peaks. We have dem-
650 670 6% 710 730 750 onstrated this by computing the x-ray resonant scattering

Photon energy (eV) cross section at th& absorption edge, and compared this

o with the squared value of the partial density of states. The
FIG. 8. The calculated asymmetry ratisolid line) in the elec- agreement between these is amazingly good.
tric dipole approximation in the case wheeth L, andL,, core Being fully relativistic, our formalism treats spin-orbit
states have been used for the scattering amplitude. Also shown 3%upling and spin-polarization effects on an equal footing
the asymmetry ratios produced usiogly Ly (dashed lineor L an4 hence gives an account of the x-ray magnetic circular
(dash-dotted linecore states in thg scattemg amplitude formma'dichroism(XMCD) in magnetic scattering. A fully relativis-
The symbolsA, A", B, andB" are discussed in the text. tic calculation is also important in the case of systems con-

while the corresponding value according to our calculation istammg heavy elements where the spin-orbit interaction can-

about 50%. This discrepancy can be mainly attributed to th(?ot be _treated as a 5|mple_perturbat|on, as n the cases of
. . anthanide or actinide materials where the higher-order mul-
following facts. We have used completely circularly polar-

) ) . : tipole transitions become also important.
ized x rays in our calculations for the bulk iron whereas Kao " _. . . . .
Finally we want to emphasize that in addition to being

et al. have useg-polarized light scattered within a different . . . -

) . ; ; able to include the crystalline environmental contribution to
geometry(specular reflectionfrom a single-crystal iron film. h . litud v the ab ltiol
Also, we have ignored the absorption and experimenta‘ e scattering ampiitude accurately, the above multiple-
broaaenin effects in our calculation. Including them wouldsc"Jltterlrlg theory for the electron Green’s function, &),

i nificantlg decrease the calculated.as mmetgr ratio allows us to make a site decomposition of the general scat-
9 y y y ' tering formula, Eq(17). Therefore applying the above mag-
netic x-ray resonant scattering formalism it will be possible

IV. CONCLUSIONS to focus on studying site-resolved magnetic moment correla-

We have presented a detail derivation of a first-principledions in such technologically important alloys as.Ré; ..

formalism for magnetic scattering of circularly polarized x
rays from magnetic solids which enables us to calculate not
only the magnetic structural information, but also to interpret One of us(E.A.) is indebted to the Academy of Finland
the microscopic nature of various spectral features in thand the Royal Society, under whose auspices part of this
scattering cross section and the dichroism curves. We hawgork has been carried out at the University of Bristol.
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