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Relativistic theory of magnetic scattering of x rays: Application to ferromagnetic iron
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We present a detailed description of a first-principles formalism for magnetic scattering of circularly polar-
ized x rays from solids in the framework of the fully relativistic spin-polarized multiple-scattering theory. The
scattering amplitudes are calculated using a standard time-dependent perturbation theory to second order in the
electron-photon interaction vertex. Particular attention is paid to understanding the relative importance of the
positive- and negative-energy solutions of the Dirac equation to the scattering amplitude. The advantage of the
present theory as compared with other recent works on magnetic x-ray scattering is that, being fully relativistic,
spin-orbit coupling and spin-polarization effects are treated on an equal footing. Second, the electron Green’s
function expressed in terms of the path operators in the multiple-scattering theory allows us to include the
contribution of the crystalline environment to the scattering amplitude. To illustrate the use of the method we
have done calculations on the anomalous magnetic scattering at theK, L II , and L III absorption edges of
ferromagnetic iron.@S0163-1829~97!00501-8#
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I. INTRODUCTION

In spite of the early predictions of light scattering fro
magnetic moments of spin-1/2 particles by Low,1 and Gell-
Mann and Goldberger,1 and, later on, Platzman and Tzoa2

who first proposed the use of x-ray-scattering technique
study magnetization densities in solids, progress in magn
structure studies using x rays has been limited by the
that the magnetic x-ray-scattering cross section is sma
than that for charge scattering by the order
(\v/mc2)2.3,4 It was not until recently that de Bergevin an
Brunel5 demonstrated experimentally the effect of magn
tism on x-ray scattering in solids. And it was only after t
observation of a huge resonant enhancement in the x-
scattering cross section of rare-earth metal holmium
Gibbset al.6 that has launched a great interest in using x-
magnetic scattering as a new experimental tool to investig
magnetic properties of solids. Kaoet al. have observed a
similar effect also at the transition metal iron7 and cobalt8

L II,III edges for a thin film structure.
Furthermore, with the presently available third-generat

high-intensity, high-resolution synchrotron radiation sourc
magnetic x-ray-scattering studies have become feasible.
pecially, when the photon energy is tuned through an abs
tion edge of a constituent, a large and species selective
hancement of the scattering cross section occurs~resonant,
anomalous scattering!. Remarkably, using polarization prop
erties of x rays it is possible to distinguish between orb
and spin scattering, unlike in the neutron case.

Some of the recent theoretical and experimental work
ing linearly or circularly polarized x rays for studying ma
netic phenomena in condensed matter will be briefly
viewed in the following. For a nonrelativistic many-electro
system interacting with a quantized electromagnetic field,
ing perturbation theory, Blume3 has derived a general ex
pression for the x-ray magnetic-scattering cross sect
550163-1829/97/55~1!/472~13!/$10.00
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which allows the electron binding effects to be accoun
for. Later on Blume and Gibbs9 have further developed th
formula such that, for example, the orbital and spin angu
momentum contributions of both ferromagnets and antifer
magnets can be separately measured in a variety of ge
etries. Hannonet al.10 have presented a nonrelativistic theo
of x-ray resonance exchange scattering with explicit form
las for the electric dipole (E1) and quadrupole (E2) contri-
butions. Using this theory, Fasolinoet al.11 have investigated
magnetism in antiferromagnetic UAs~001! and ferromagnetic
Gd~0001! surfaces. Combining the x-ray resonant magne
scattering with x-ray surface diffraction, they have found th
the diffraction spectra for linearly polarized light are sen
tive to orientation and magnitude of the surface magne
moments. Although Rennert12 has presented a semirelativi
tic magnetic x-ray-scattering theory in terms of the Gree
functions, which could be calculated from first principles,
date no such calculations have been performed.

Current experimental interest in using magnetic effects
x-ray scattering is highlighted by the work of Hanno
et al.,10 Gibbs et al.,6 Lang et al.,13 Giorgetti et al.,14 and
Hill et al.15 to mention but a few. The theory we sha
present aims to aid the interpretation of these experimen
addition to suggesting new useful measurements.

In Sec. II we present a detailed description of our form
first-principles theory of magnetic scattering of x rays bas
on a fully relativistic spin-polarized multiple-scatterin
theory using the time-dependent perturbation theory. We
lustrate its use with a calculation of resonant scattering at
L andK absorption edges of ferromagnetic iron in Sec. I
The advantages of the present theory compared to ea
ones3,9,16,12are that being fully relativistic it treats spin-orb
coupling and spin-polarization effects on an equal footin
Notably, our theory includes the contribution of the cryst
line environment to the scattering amplitude in a man
which allows an accurate implementation of the theory.
472 © 1997 The American Physical Society



les
t i
e-
t
t-
o

a
g
we
ne
ca
w-

e

n-

n

n-

a

n
,

he

nd
sis

osi-

the
n in
ny-

s

f
and
l, re-

55 473RELATIVISTIC THEORY OF MAGNETIC SCATTERING . . .
II. OUTLINE OF THE RELATIVISTIC MAGNETIC
X-RAY-SCATTERING THEORY

Here we describe the details of our formal first-princip
theory on the magnetic scattering of x rays from solids. I
based on the fully relativistic spin-polarized multipl
scattering theory17–19in conjunction with the time-dependen
perturbation theory.20 To simplify the presentation a straigh
forward canonical perturbation theory will be used instead
the more sophisticated Keldysh diagram method.21,22In Secs.
II B and II C we derive the general expressions for the sc
tering amplitudes involving positive- and negative-ener
states of the Dirac Hamiltonian, respectively. In Sec. II D
present the relevant equations for a special case of mag
scattering from perfect crystals, i.e., the magnetic Bragg s
tering, and in Sec. II E we define dichroism from the vie
point of magnetic-scattering experiments.

A. Basic background

In what follows we shall study the golden rule for th
transition probability per unit time:

wi f5
2p

\ U^ f uH int8 u i &1(
I

^ f uH int8 uI &^I uH int8 u i &
Ei2EI

U2d~Ef2Ei !,

~1!

where H int8 is the time-independent part of the photo
electron interaction operator,u i & and u f & are the initial and
the final states of the electron-photon system, and the tra
tion u i &→u f & corresponds to the transitionuA&→uB& between
many-electron eigenstates of the system.

In the Dirac theory of the electron the total photo
electron interaction Hamiltonian is20 as

H int~ t !5 È Hint~rW,t !d
3r5 È 2 j mAm /cd

3r

52eÈ c†~rW,t !aW c~rW,t !•AW ~rW,t !d3r , ~2!

where the scalar potential part (eA0) of the interaction has
been included to the nonperturbed Hamiltonian. The qu
tized radiation field operatorAW (rW,t) in Heaviside-Lorentz
~rationalized! units can be written as

AW ~rW,t !5(
qW l

S \c2

2Vvq
D 1/2

3@aqW l~ t !ê~l!eiq
W
•rW1aqW l

†
~ t !ê~l!*e2 iqW •rW#, ~3!

whereaqW l andaqW l
† are the photon annihilation and creatio

operators, respectively, and$ê (l)% is a set of unit, orthogonal
polarization vectors. The polarization indexl5 ~1! for left
s

f

t-
y

tic
t-

si-

n-

and (2) for right circularly polarized photons, and\qW is the
momentum of the photon. The normalization volume of t
radiation field is denoted byV.

The quantized Dirac field operatorsc andc† in occupa-
tion number space can be written as

c~rW,t !5(
L

bL~ t !uL~rW !1dL
† ~ t !vL~rW ! ~4a!

and

c†~rW,t !5(
L

bL
† ~ t !uL

† ~rW !1dL~ t !vL
† ~rW !, ~4b!

whereuL(rW) andvL(rW) arepositive-energyelectron and pos-
itron eigenstates of the Dirac Hamiltonian for the crystal, a
form a complete orthonormal set of four component ba
functions in the Dirac space. The~positive-energy! electron
annihilation and creation operators are represented bybL and
bL
† , respectively, and the corresponding operators for p
trons are described bydL anddL

† .23

In the case of anomalous~elastic, resonant! scattering,
which we are interested in, the initial and final states in
electron-photon occupation number space can be writte
the direct product form between many-electron and ma
photon states as

u i &5uC0& ^ unqW l51,nqW 8l85nqW 9l95•••50&, ~5a!

u f &5uC0& ^ unqW 8l851,nqW l5nqW 9l95•••50&, ~5b!

where the electron system ground stateuC0& in the Fock
space reads as

uC0&5unL i
~eL i

,0!51;nL j
~0,eL j

<eF!51;

3nLN1k
~eLN1k

.eF!50&, ~5c!

where the single-particle state indice
i5$21,22, . . . ,2`%, j5$1,2, . . . ,N%, and
k5$1,2, . . . ,`% refer to the completely filled Dirac sea o
negative-energy states, the filled positive-energy core
band states, and the empty states above the Fermi leve
spectively. The labels (qW l) and (qW 8l8) are related to the
incoming and outgoing photons.

By virtue of the general many-photon state properties

aqW lunqW l&5AnqW lunqW l21&, ~6a!

aqW l
† unqW l&5AnqW l11unqW l&, ~6b!

^nqW lunqW 8l8&5dqWqW 8dll8, ~6c!

and the fact thatH int(t) is linear in the vector potential, the
first-order term^ f uH int8 u i & in Eq. ~1! vanishes identically.
Therefore only the second-order term
(
I

^ f uH int8 uI &^I uH int8 u i &
Ei2EI

5(
I

H K fU È c†~rW !@2eaW •AW ~rW !#c~rW !d3rUI L
3K IU È c†~rW8!@2eaW •AW ~rW8!#c~rW8!d3r 8U i L J Y ~Ei2EI ! ~7!
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contributes to the scattering amplitude.24 Index I runs over
the intermediate states, whose electron partuI elect& contains
excitations from the positive-energy as well as from t
negative-energy states.

Note that there are just two types of intermediate sta
uI & involved in the scattering process: namely, those wh
have no photons and those having incoming and outgo
photons. The same situation occurs in the second-order
of the nonrelativistic scattering theory.3

The denominator of Eq.~7! can be written in terms of the
eigenenergieseL of the effective one-particle Dirac equatio
~discussed later on! for the crystal and the incoming an
outgoing photon energies\vq and\vq8 as

FIG. 1. A schematic description of the many-electron grou
and intermediate~excited! states in the relativistic x-ray-scatterin
theory.E0 andEvac are the many-particle energies corresponding
the filled positive-energy states below the Fermi leveleF and the
filled negative-energy Dirac sea, respectively. The single-part
energies are denoted byeL andeL8.
ex

y
n’
s
h
g
rm

Ei2EI5~Evac1E01\vq!2~Evac1E02eL1eL8!

5eL2eL81\vq ~8a!

for the first term with a ‘‘no photon’’-intermediate state an

Ei2EI5~Evac1E01\vq!

2~Evac1E02eL1eL81\vq1\vq8!

5eL2eL82\vq8 ~8b!

for the second term with a ‘‘two photon’’-intermediate stat
In Eq. ~8! E0 andEvac are the energies of the many-partic
systems, which correspond to the filled positive-energy sta
below the Fermi energyeF and the completely filled
negative-energy sea~Dirac sea!, respectively~see Fig. 1!.
The single-particle energies are subject to the constra
eL<eF ~either positive- or negative-energy state!, and
eL8.eF . Figure 1 schematically describes the meaning
the various energy symbols in Eq.~8!.

B. Positive-energy part of the scattering amplitude

We limit ourselves here to the case where the interme
ate statesuI & have excitations only from the positive-energ
core or conduction band states (eL.0). Then, applying the
time-independent expansions of the quantized vector po
tial AW (rW) @cf. Eq. ~3!# and of the quantized Dirac field opera
torsc(rW) andc†(rW) @cf. Eq. ~4!# in Eq. ~7!, we find, in the
case of elastic scattering,\vq5\vq8[\v, for the positive-
energy part of the scattering amplitude25

d

o

le
(
I ,eL.0

^ f uH int8 uI &^I uH int8 u i &
Ei2EI

5 (
LL8

E d3ruL
† ~rW !XqW 8l8

†
~rW !uL8~r

W !E d3r 8uL8
†

~rW8!XqW l~rW8!uL~rW8!/~eL2eL81\v!

1 (
LL8

E d3ruL
† ~rW !XqW l~rW !uL8~r

W !E d3r 8uL8
†

~rW8!XqW 8l8
†

~rW8!uL~rW8!/~eL2eL82\v!,

~9a!
n-

rre-
where the relativistic photon-electron interaction vert
XqW l(rW) is defined by

XqW l~rW ![2eS \c2

2Vvq
D 1/2aW • ê ~l!eiq

W
•rW, ~9b!

and the one-electron state labelsL andL8 are subject to the
constraints 0,eL<eF andeL8.eF .

We can cast Eq.~9! into an even more useful form b
recalling the eigenfunction expansion of the Dirac Gree
function and noting that
s

2
1

p
ImG~rW,rW8,e!5 (

L8~all!

uL8~r
W !d~e2eL8

u
!uL8

†
~rW8!

1v L̄8~r
W !d~e2e

L̄8
v

!v L̄8
†

~rW8!, ~10!

whereeL8
u ande

L̄8
v are positive- and negative-energy eige

values of the Dirac equation, respectively, andv L̄8(r
W) is the

negative-energy electron state directly related to the co
sponding positive-energy positron statevL8(r

W). Then the ex-
pression for the first term of Eq.~9a!, which is denoted as a



-
co

de

le

an

in
n

th

l

s

pled
four

ive
s to

n
-

tals

to
pli-

y
the

-
ngly
son

-
s, as
he
t a

’’
ve
vir-

on
the
rgy
be
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scattering amplitudef qW l;qW 8l8
1(pos) , turns out to be

f qW l;qW 8l8
1~pos!

~v!52(
L

È d3r È d3r 8uL
† ~rW !XqW 8l8

†
~rW !

3E
2`

` de

p

ImG~rW,rW8,e!u~e2eF!

eL2e1\v

3 XqW l~rW8!uL~rW8!, ~11a!

which causes theanomalousscattering, when the photon en
ergy approaches the absorption edge of some atomic
stituent defined by the core leveleL . Similarly, the second
term of Eq.~9a!, which we denote as a scattering amplitu
f qW l;qW 8l8

2(pos) , can be written as

f qW l;qW 8l8
2~pos!

~v!52(
L

È d3r È d3r 8uL
† ~rW !XqW l~rW !

3E
2`

` de

p

ImG~rW,rW8,e!u~e2eF!

eL2e2\v

3 XqW 8l8
†

~rW8!uL~rW8!, ~11b!

whereu is the standard unit-step function. It is noticeab
that the amplitudef qW l;qW 8l8

2(pos) (v) is asmoothfunction ofv, and
is therefore responsible for thenonresonantscattering.

In Eq. ~11! the site-diagonal~SD! Green’s function26 for
an infinite array of nonoverlapping muffin-tin potentials c
be written~cf. Faulkner and Stocks27! as

G1~rW,rW8,e!5 (
LL8

ZL~rWn ,e!tLL8
nn ZL8

†
~rWn8 ,e!

2(
L

ZL~rWn ,e!JL
† ~rWn8 ,e!, ~12!

where rWn[rW2RW n , rWn8[rW82RW n , and ZL(rWn ,e) and

JL(rWn ,e) are the regular and irregular solutions of the sp
polarized Kohn-Sham-Dirac equation, respectively, arou
thenth site muffin-tin potential.17,28

Because the spin polarization of the sample breaks
crystal symmetry we have to express the solutionZL(rWn ,e)
@and similarly JL(rWn ,e)# as a linear combination29 of the
bispinors as

ZL~rWn ,e!5Zkm~rWn ,e!5(
k8

Zk8k
m

~rWn ,e!, ~13a!

where

Zk8k
m

~rW,e![S gk8k
m

~r ,e!xk8
m

~ r̂ !

i f k8k
m

~r ,e!x2k8
m

~ r̂ !
D , ~13b!
n-

-
d

e

andxk
m( r̂ ) is the spin angular function19 and the radial func-

tionsgk8k
m (r ,e) and f k8k

m (r ,e) satisfy a set of coupled radia
Dirac equations.18

As a usual approximation, we limit the values ofk8 in Eq.
~13! to $k,2k21%, so that all couplings to the partial wave
whose orbital angular momentum value differs froml are
neglected. As a consequence, the infinite set of the cou
radial equations has been reduced to only two sets of
coupled equations.18,30

Furthermore, in our calculations we choose the effect
scalar potential and the spin-only effective exchange field
be

Veff~r !5 1
2 @V↑~r !1V↓~r !#, ~14a!

Beff~r !5 1
2 @V↑~r !2V↓~r !#, ~14b!

where V↑(r ) and V↓(r ) are the spin-up and spin-dow
spherically symmetric muffin-tin potentials which, for sim
plicity, we take from thenonrelativisticself-consistent, spin-
polarized electronic structure calculation of Moruzziet al.31

for metals and of Johnsonet al.32 for disordered alloys. This
should be a good approximation for the potentials of me
and alloys composed of light atoms, like Fe and Ni.17

C. Negative-energy part of the scattering amplitude

We turn to discuss some important peculiarities related
the negative-energy electron states in the scattering am
tude formula, Eq.~7!. As is well known relativistic scattering
of low-energy photons (\v!mc2) by free electrons~Thom-
son scattering! will necessarily involve the negative-energ
states. These must be taken into account in computing
scattering cross section if we are to obtain the correct~non-
relativistic! result. In fact, the contribution of the positive
energy states to the scattering cross section is vanishi
small compared to the negative-energy one in Thom
scattering.20

Second, we may recall20 that the contribution to the Th
omson scattering amplitude by the negative-energy state
derived using the Dirac hole theory in connection with t
usual perturbation theory, has a correct magnitude, bu
wrong sign.

Guided by the experience in this ‘‘subtle sign problem
in context of the relativistic Thomson scattering, we deri
the expression for the elastic-scattering amplitude due to
tual excitations from the fillednegative-energystates
(eL,0), i.e., from the Dirac sea into the empty conducti
band states. Proceeding otherwise similarly as we did in
positive-energy electron excitation case, the negative-ene
states contribution to the scattering amplitude turns out to
, since
2 (
I ,eL,0

^ f uH int8 uI &^I uH int8 u i &
Ei2EI

52 (
LL8

E d3rv L̄

†
~rW !XqW 8l8

†
~rW !uL8~r

W !E d3r 8uL8
†

~rW8!XqW l~rW8!v L̄~rW8!/~eL2eL81\v!

2 (
LL8

E d3rv L̄

†
~rW !XqW l~rW !uL8~r

W !E d3r 8uL8
†

~rW8!XqW 8l8
†

~rW8!v L̄~rW8!/~eL2eL82\v!, ~15!

where the first and second terms may be usefully identified as the scattering amplitudesf qW l;qW 8l8
1(neg) and f qW l;qW 8l8

2(neg) , respectively. It
can be directly noted from Eq.~15! that none of these terms have abrupt resonances in practical circumstances
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eL2eL8,22mc2 and\v!2mc2. Furthermore, these scattering amplitudes can be readily expressed in terms of the G
function as

f qW l;qW 8l8
1~neg!

~v!5(
L

È d3r È d3r 8v L̄

†
~rW !XqW 8l8

†
~rW !E

2`

` de

p

ImG~rW,rW8,e!u~e2eF!

eL2e1\v
XqW l~rW8!v L̄~rW8! ~16a!

and

f qW l;qW 8l8
2~neg!

~v!5(
L

È d3r È d3r 8v L̄

†
~rW !XqW l~rW !E

2`

` de

p

ImG~rW,rW8,e!u~e2eF!

eL2e2\v
XqW 8l8
†

~rW8!v L̄~rW8!, ~16b!
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where $eL% forms an infinitecontinuumof the negative-
energy electron states. We summarize our main results@Eqs.
~11! and ~16!# by writing the fully relativistic, elastic-
scattering amplitude as

f qW l;qW 8l8~v!5 f qW l;qW 8l8
1~pos!

~v!1 f qW l;qW 8l8
2~pos!

~v!

1 f qW l;qW 8l8
1~neg!

~v!1 f qW l;qW 8l8
2~neg!

~v!, ~17!

where the first termf qW l;qW 8l8
1(pos) (v) causes the resonant ma

netic scattering, when\v→eF2eL , and the rest of the
three terms are smooth functions of frequency. It is intere
ing to compare this with the corresponding nonrelativis
formula by Durham,21 which has been derived using th
more sophisticated Keldysh-diagram technique.22 As ex-
pected, his result bears a close resemblance to our expre
except that in the nonrelativistic theory just three terms
pear, and no conceptually difficult ‘‘negative-energy’’ pro
lem arises. In the nonrelativistic theory the scattering am
tude is obtained as a sum of three contributions:

f ~v!5 f 01 f1~v!1 f2~v!, ~18!

where f 0 represents the frequency-independent charge s
tering, f1(v) is responsible for the anomalous scatterin
and f2(v) is a smooth function of frequency. Furthermor
in the relativistic, Lorentz-invariant formula for the scatte
ing amplitude, all terms depend explicitly on frequency, a
there is no separate term for charge scattering. In fact
possible scattering sources~charge scattering, spin scatterin
etc.! are coupled together in an intricate way in various ter
of Eq. ~17!.

In spite of the dramatic importance of the negative-ene
states in Thomson scattering, we are going to ignore th
and only the first two terms of Eq.~17! will be retained. This
procedure may be justified as follows.~i! Only the
f1(pos)(v) term of Eq.~17! is responsible for the resonanc
anomalous scattering behavior in practical conditions
\v!2mc2. ~ii ! Unlike in Thomson scattering, where a
electron states~positive and negative energy! in the matrix
elements of Eq.~7! are free-electron-like, the negative
energy states in the solid state environment are largely
tended while the states near the Fermi level are more lo
ized. Thus, the corresponding matrix elements should
essentially smaller than in the case where both states in
matrix elements would be extended.

It would be an interesting task itself to evaluate quant
tively the negative-energy states contribution to the scat
t-

ion
-
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at-
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,

f
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l-
e
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-
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ing amplitude. However, this seems to be quite a diffic
problem, because~i! unlike the core states, the negativ
energy states $v L̄(rW)% form a continuum spectrum
(eL,2mc2), and ~ii ! $v L̄(rW)% are extendedlike states, s
that in addition to the site-diagonal~SD! Green’s function
also the non-site-diagonal~NSD! Green’s function would be
required for the computation.

D. Magnetic Bragg scattering

In order to show some realization of the general scatter
formula, Eq.~17!, we apply it to one of the simplest case
namely, to magnetic Bragg scattering in a perfectly orde
infinite ferromagnet. In such a system the Green’s funct
G(rW,rW8,e) and the path operatorstnn in Eq. ~17! have the
translational invariance of the lattice, i.e
G(rW1RW n ,rW81RW n ,e)5G(rW,rW8,e) and tnn5t00. Also, each
site has an identical contribution to the total scattering a
plitude. It will be then straightforward to show that the si
decomposition of the Bragg scattering amplitude~due to
positive-energy excitations only! becomes as

f ~pos!~v!5(
n

@ f n
1~pos!~v!1 f n

2~pos!~v!#e2 iQW •RW n

5@ f 0
1~pos!~v!1 f 0

2~pos!~v!#(
n

e2 iQW •RW n

5@ f 0
1~pos!~v!1 f 0

2~pos!~v!#NatomsdQW KW , ~19!

whereQW [qW 82qW , KW is a reciprocal lattice vector of the fer
romagnet, anddQW KW is a Kronecker delta function betweenQW

andKW . The resonant part of the amplitude, i.e.,f 0
1(pos)(v), is

given by

f 0
1~pos!~v!5(

L0

fL0 ;q
W l;qW 8l8

1~pos!
~v!, ~20a!

where theL0-core-state contribution is

fL0 ;q
W l;qW 8l8

1~pos!
~v!5

2 (
LL8

E
eF

`de

p

mL0

L1~qW 8l8;e!ImtLL8
00

~e!mL0

L81* ~qW l;e!

eL0
2e1\v1 iG/2

,

~20b!

and the matrix elementmL0

L1(qW l;e) is defined by



e.

n
li
ad
cu
ar
a
o
c
a
e

q
r
e
tio
s
w
o
t
th
sa
m

e

a-
the
u-
c-

f

ned

t

r-

55 477RELATIVISTIC THEORY OF MAGNETIC SCATTERING . . .
mL0

L1~qW l;e![E
rW0PV0

uL0

† ~rW0!XqW l
†

~rW0!ZL~rW0 ,e!d3r 0 ,

~20c!

whererW0[rW2RW 0 is the vector inside the unit cellV0 at the
origin.

Similarly, the nonresonant part of the amplitude, i.
f 0

2(pos)(v), is given by

f 0
2~pos!~v!5(

L0

fL0 ;q
W l;qW 8l8

2~pos!
~v!, ~21a!

with theL0-core-state contribution as

fL0 ;q
W l;qW 8l8

2~pos!
~v!

52 (
LL8

E
eF

`de

p

mL0

L2~qW 8l8;e!ImtLL8
00

~e!mL0

L82* ~qW l;e!

eL0
2e2\v

,

~21b!

where the matrix elementmL0

L2(qW l;e) is defined by

mL0

L2~qW l;e![E
rW0PV0

uL0

† ~rW0!XqW l~rW0!ZL~rW0 ,e!d3r 0 .

~21c!

It has to be noticed that the irregular parts of the Gree
function have no contribution at all to the scattering amp
tude if the energy integral above the Fermi energy is m
up using real energy points. However, in our practical cal
lations we have included a small positive imaginary p
~0.01 Ry! to our energy points in order to smooth the fe
tures in the path operator and consequently reduce the c
putation time of the energy integral. But our experien
shows that in this case the contribution of the irregular p
of theG function is still very small compared to that of th
regular part. Therefore we have ignored it in Eqs.~20! and
~21!. In the resonant part of the scattering amplitude, E
~20b!, we have introducedG, the only adjustable paramete
in the theory, to represent the natural width of the interm
diate states. It is noticeable that in the magnetic absorp
theory by Ebertet al.30 only one type of a matrix element i
required, while in the x-ray magnetic-scattering theory
needtwodifferent types of matrix elements: one for the res
nant amplitude and one for the nonresonant one. When
frequency of the incoming x-ray beam is tuned to near
absorption edge, usually only one localized core state,
uLc

(rW), contributes significantly to the elastic-scattering a
plitude. Then the summation index in Eqs.~20a! and ~21a!
can be restricted to a single termL05Lc .
,
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And, finally, we mention a few practical points about th
matrix elements in Eqs.~20! and~21!. As we show below it
is straightforward to derive numerically tractable approxim
tions and selection rules for these matrix elements due to
electric dipole (E1) or magnetic dipole and electric quadr
pole (M11E2) contributions to the photon-electron intera
tion vertexXqW l(rW).

1. Matrix elements in electric dipole approximation

In the electric dipole approximation@eiq
W
•rW'1 in Eq.

~9b!#, the matrix elementmL0

L1(qW l;e) in the resonant part o

the scattering amplitude can be written as

maL0

L1~qW l;e!52 ieS \c2

2Vvq
D 1/2 (

k08k8

3H F E
0

RWS
dr0r 0

2g
k08k0

m0 * ~r 0! f k8k
m

~r 0 ,e!G
3Ak08m0 ;2k8m

~2l!
~ q̂!

2F E
0

RWS
dr0r 0

2f
k08k0

m0 * ~r 0!gk8k
m

~r 0 ,e!G
3A2k08m0 ;k8m

~2l!
~ q̂!J , ~22a!

in terms of the radial and angular integrals;RWS is the
Wiegner-Seitz radius and the angular integrals are defi
by29

Akm;k8m8
~l!

~ q̂![E xk
m†~ r̂ !sW • ê ~l!xk8

m8~ r̂ !dV. ~22b!

The matrix elementsmaL0

L2(qW l;e) can readily be evalu-

ated by making a replacement (2l)→(l) in the angular
matrix elements of the right side of Eq.~22a!.

In deriving Eq. ~22! we have used the fact tha
ê (l)*5 ê (2l) for circularly polarized light. If the photon
propagates along thez axis ~direction of the magnetization!,
then the unit polarization vectors for the right~RCP! and left
~LCP! circularly polarized photons are êz

(2)5

(1/A2)(1,2 i ,0) and êz
(1)5(1/A2)(1,i ,0), respectively. For

any other propagation directionq̂5q̂(uq ,fq) off from the
z axis the polarization vectorsê (2) andê (1) are given by the
rotation matrixR(uq ,fq) applied onêz

(2) and êz
(1) , corre-

spondingly. Using the orthonormality of the spherical ha
monicsYl

m( r̂ ) the angular integrals of Eq.~22! become of
the form
Akm;k8m8
~l!

~ q̂!5 f 11~uq ,fq ,l!C~ l 12 j ;m2 1
2 ,

1
2 !C~ l 8 1

2 j 8;m82 1
2 ,

1
2 !d l l 8dmm81 f 12~uq ,fq ,l!C~ l 12 j ;m2 1

2 ,
1
2 !

3C~ l 8 1
2 j 8;m81 1

2 ,2
1
2 !d l l 8dmm8111 f 21~uq ,fq ,l!C~ l 12 j ;m1 1

2 ,2
1
2 !C~ l 8 1

2 j 8;m82 1
2 ,

1
2 !d l l 8dmm821

1 f 22~uq ,fq ,l!C~ l 12 j ;m1 1
2 ,2

1
2 !C~ l 8 1

2 j 8;m81 1
2 ,2

1
2 !d l l 8dmm8, ~23!
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where the elementsf i j (uq ,fq ,l)[(sW • ê (l)) i j . For example,
if the direction ofqW is described by a rotation around they
axis byuq off from the z axis (fq50), then

S f 11~uq ,1 ! f 12~uq ,1 !

f 21~uq ,1 ! f 22~uq ,1 !
D 5S 2sinuq 11cosuq

cosuq21 sinuq
D
~24a!

for the LCP radiation and

S f 11~uq ,2 ! f 12~uq ,2 !

f 21~uq ,2 ! f 22~uq ,2 !
D 5S 2sinuq cosuq21

11cosuq sinuq
D
~24b!

for the RCP radiation. The angular matrix elements of E
~23! solely determine theselection rulesin the electric dipole
approximation. Clearlyl2 l 0561 for RCP and for LCP ra-
diation in any propagation direction, whilem2m050,61,
depending on the polarization state as well as on the pro
gation direction of the photon. It is also noticeable that
selection rules for the matrix elementsmaL0

L1(qW l;e) and

maL0

L2(qW l;e) are slightly different with respect to the az

muthalm quantum number, because Eq.~22a! contains an
.

a-
e

angular integral of the formA(2l), while the expression for

maL0

L2(qW l;e) containsA(l) with an opposite polarization

state index. These facts can be directly exploited in des
ing experimental setups in a magnetic x-ray-scattering m
surement.

2. Matrix elements due to magnetic dipole
and electric quadrupole correction

We derive a general angle-dependent expression for
combined magnetic dipole and electric quadrup
(M11E2) correction to the the electric dipole approxim
tion (E1) of the matrix elements of Eqs.~20c! and~21c!. If
we now approximateeiq

W
•rW'11 iqW •rW in Eq. ~9b! for

XqW l(rW), then the term iqW •rW is responsible for the
(M11E2) corrections to the electric dipole approximat
matrix elementsmaL0

L1(qW l;e) andmaL0

L2(qW l;e), which we

denote asmbL0

L1(qW l;e) andmbL0

L2(qW l;e), respectively.

It is then a straightforward matter to show that the mat
elementmbL0

L1(qW l;e), related to the resonant part of th

scattering amplitude, can be written as
lement
mbL0

L1~qW l;e!52eS \c2

2Vvq
D 1/2q (

k08k8
H F E

0

RWS
dr0r 0

3g
k08k0

m0 * ~r 0 ,eL0
! f k8k

m
~r 0 ,e!GBk08m0 ;2k8m

~2l!
~ q̂!

2F E
0

RWS
dr0r 0

3f
k08k0

m0 * ~r 0 ,eL0
!gk8k

m
~r 0 ,e!GB2k08m0 ;k8m

~2l!
~ q̂!J , ~25a!

where the angular integrals are defined by

Bkm;k8m8
~l!

~ q̂![E xk
m†~ r̂ !sW • ê ~l!q̂• r̂xk8

m8~ r̂ !dV, ~25b!

whereuq̂u5u r̂ u51.
A similar expression can be written for the nonresonant part of the scattering amplitude related matrix e

mbL0

L2(qW l;e) if we make the replacementB(2l)(q̂) elements→ 2B(l)(q̂) elements on the right side of Eq.~25a!.

If we assume a most general photon propagation directionq̂5q̂(uq ,fq) in terms of the standard polar (uq) and azimuthal
(uq) angles, then it is a straightforward but lengthy matter to show that the angular matrix elements of Eq.~25b! can be written
in the form

Bkm;k8m8
~l!

~ q̂!5A3~2l 811!

4p~2l11!
C~ l 81l ;000!d u l2 l 8u,1~0!u~ l 8,1,l !$dm2m8,0@C10K11C~ l 81l ;m82 1

2 ,0,m2 1
2 !

1C121K12C~ l 81l ;m81 1
2 ,21,m2 1

2 !1C11K21C~ l 81l ;m82 1
2 ,11,m1 1

2 !1C10K22C~ l 81l ;m81 1
2 ,0,m1 1

2 !#

1dm2m8,21@C121K11C~ l 81l ;m82 1
2 ,21,m2 1

2 !1C10K21C~ l 81l ;m82 1
2 ,0,m1 1

2 !

1C121K22C~ l 81l ;m81 1
2 ,21,m1 1

2 !#1dm2m8,11@C11K11C~ l 81l ;m82 1
2 ,11,m2 1

2 !

1C10K12C~ l 81l ;m81 1
2 ,0,m2 1

2 !1C11K22C~ l 81l ;m81 1
2 ,11,m1 1

2 !#

1dm2m8,22@C121K21C~ l 81l ;m82 1
2 ,21,m1 1

2 !#1dm2m8,12@C11K12C~ l 81l ;m81 1
2 ,11,m2 1

2 !#%, ~26a!
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where the photon propagation direction related coefficie
C121, C10, andC11 are given by

C121~uq ,fq!5A2p

3
sinuq~cosfq1 isinfq!,

C10~uq!5A4p

3
cosuq ,

C11~uq ,fq!52A2p

3
sinuq~cosfq2 isinfq!, ~26b!

the Ki j elements are described in terms of the eleme
f i j5 f i j (uq ,fq ,l) defined in Sec. II D 1 and the Clebsch

Gordan coefficients33 C( l 12 j ;m2ms ,ms) as

K115 f 11C~ l 12 j ;m2 1
2 ,

1
2 !C~ l 8 1

2 j 8;m82 1
2 ,

1
2 !,

K125 f 12C~ l 12 j ;m2 1
2 ,

1
2 !C~ l 8 1

2 j 8;m81 1
2 ,2

1
2 !,

K215 f 21C~ l 12 j ;m1 1
2 ,2

1
2 !C~ l 8 1

2 j 8;m82 1
2 ,

1
2 !,

K225 f 22C~ l 12 j ;m1 1
2 ,2

1
2 !C~ l 8 1

2 j 8;m81 1
2 ,2

1
2 !,

~26c!

and the functionu( l 8,1,l ) is defined by

u~ l 8,1,l !5H 0 if l 85 l ,

1 otherwise.
~26d!

In Eq. ~26a! the coefficients
C( l 81l ;m82ms8 ,ml2

,m2ms) are the usual Clebsch-Gorda

coefficientsC( l 1l 2l ;m1 ,m2 ,m) with the angular momentum
quantum numberl 251.

Looking at Eq.~26! in the context of expression~25a! for
the matrix elementmbL0

L1(qW l;e) @or in a context of a similar

expression formbL0

L2(qW l;e)#, we notice that the selectio

rules of the (M11E2) contribution to the scattering can b
determined in terms of the various Kroneckerd functions,
the u function, the angle-dependent coefficients$Clm%, and
the angle- and polarization-dependent elements$Ki j %. The
resulting selection rules are thenl2 l 050,61,62 with the
restriction thats→p andp→s be forbidden transitions, an
for the azimuthal quantum numberm2m050,61,62 de-
pending on the direction and polarization of the photon
volved in the matrix element.

E. Dichroism in magnetic x-ray scattering

Our purpose here is to define what may become a us
observable in the state-of-the-art x-ray studies of magn
materials, namely, the magnetic x-ray circular dichroi
~MXCD! in context of magnetic x-ray-scattering expe
ments. In a most general sense thedichroism ~often called
asymmetry ratio! in the elastic magnetic scattering of x ra
can be defined in terms of the parameters (qW ,qW 8,l,l8,v) of
the ‘‘full experiment’’ as
ts

ts

-

ul
ic

A~qW ;qW 8l8;v![
vdV~qW 1;qW 8l8;v!2vdV~qW 2;qW 8l8;v!

vdV~qW 1;qW 8l8;v!1vdV~qW 2;qW 8l8;v!
,

~27a!

where the scattering ratevdV into a solid space angledV
can be written in terms of the scattering amplitu
f qW l;qW 8l8(v,v8) and the photon density of states functio
rdV(\v8) for the emitted photons as20,3

vdV5E 2p

\
u f qW l;qW 8l8~v,v8!u2d~Ef2Ei !rdV~\v8!d~\v8!

5
2p

\
u f qW l;qW 8l8~v!u2

V

~2p!3
v2

\c3
dV, ~27b!

whered(Ef2Ei)5d(\v82\v) in the case of elastic scat
tering. An expression for the differential scattering cross s
tion dd/dV results~see Sec. III A! if vdV/dV is divided by
the incoming photon flux densityC/V.

However, in the usual synchrotron experiment conditio
it is very hard to measure the photon polarization st
(l8) of the weak emitted radiation. Therefore, the stand
practice is to measure only the incoming beam polarizat
(l56), and then to make a summation over the final st
polarization indexl8. Accordingly, the magnetic x-ray
scattering dichroism~asymmetry ratio! used in our calcula-
tions will be defined as

A~qW ,qW 8,v![

(
l8

$u f qW 1;qW 8l8~v!u22u f qW 2;qW 8l8~v!u2%

(
l8

$u f qW 1;qW 8l8~v!u21u f qW 2;qW 8l8~v!u2%
.

~28!

III. RESULTS AND DISCUSSION

We discuss the application of the theory to the reson
magnetic x-ray scattering atL II , L III , and K absorption
edges of ferromagnetically ordered iron. AlthoughG in Eq.
~20b! is in general energy dependent, it is obviously
smooth function of energy, and therefore can be set as a g
approximation to a constant value. In the case of theK- and
L II,III -edge resonant scattering the atomic core-hole lifeti
estimates 0.8 eV~Ref. 34! and 1.0 eV~Ref. 35! are used for
G, respectively.36

The integration in Eq.~20b! has been performed using th
energy range@eF ,eF140 eV#, which we found to be suffi-
cient to correctly produce the spectral features of inter
Even though it seems to be necessary to go beyond 100
above the Fermi level in order to achieve a full convergen
we have noted that the spectral features do not change w
moving the upper limit of the integral upwards from 40 e
above the Fermi energy. Increasing the upper integra
limit from 40 to 100 eV simply increases the uniform bac
ground count.

A. Magnetic scattering at L II and L III edges

In Fig. 2 we present the calculated anomalous scatte
cross sectionds/dV5u f (v)u2V2v2/(2p\c2)2 at the iron
L II andL III absorption edges for right- and left-handedly p
larized photons propagating along the magnetization dir
tion.
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480 55E. AROLA, P. STRANGE, AND B. L. GYORFFY
Interestingly, most features of interest in Fig. 2 can
qualitatively explained by looking numerically at the n
merator part of Eq.~20b! just above the Fermi level, wher
the d density of states contains a very strong and narr
peak. Our experience shows that it is exactly this peak in
unoccupied part of the iron band structure which is resp
sible for the overall behavior of the various resonant pe
A1 , A2 , B1 , andB2 in the spectra.

First of all we notice there are two major channels@cf. the
numerator part of Eq.~20b!# for the L II-edge resonant sca
tering, while inL III case there are several more, all of whi
are of similar order of magnitude. This explains, in gene
why the peaksA1 andA2 are larger than B1 and B2 in Fig.
2. The specific character of the transition matrix eleme
involved in these channels depends on the selection r
together with the symmetry of thet00 matrix. The selection
rules for our x-ray-beam geometry are inE1 approximation
simply l 02 l561, m5m011 for LCP radiation,
and m5m021 for RCP radiation. To be specific, w
note that the transitions (p1/2,21/2)→(d3/2,11/2) and
(p1/2,11/2)→(d3/2,13/2) mainly build up theL II-edge
resonant scattering peakB1 for LCP radiation and the tran
sitions (p1/2,21/2)→(d3/2,23/2) and (p1/2,11/2)
→(d3/2,21/2) mainly contribute to peakB2 for RCP radia-
tion.

On the other hand theL III -edge resonant peak does n
possess a well-defined spin angular momentum chara
because bothd3/2- and d5/2-like intermediate states partic
pate with nearly equal weights in its intensity.

We also notice that the matrix elements of the transitio
(p3/2,23/2)→(d5/2,25/2), (p3/2,21/2)→(d5/2,23/2), and
(p3/2,11/2)→(d5/2,21/2), which are related toL III -edge
resonant peak for RCP radiation~peakA2), are of similar
size as those two involved in theL II-edge resonant pea
~peak B2). Therefore thet00 matrix elements which are
coupled to these transitions, and are essentiallylarger in the

FIG. 2. Calculated anomalous scattering cross sections a
iron L II andL III absorption edges. The scattering amplitudes h
been obtained by summing up theL II andL III core state multiplet
contributionssimultaneusly. The solid and dashed lines correspo
to left-handedly (1) and right-handedly (2) polarized incoming
photons, respectively. In both cases the incoming and scattered
tons propagate along the magnetization axis. The solid- and das
line arrows locate the positions of theL II and L III edges, respec
tively, and the symbolsA1 , A2 andB1 , B2 are related toL III - and
L II-edge resonant-scattering-derived peaks, respectively.
e
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case of the peakA2 than in the case of the peakB2 , clearly
explain the large intensity difference between these t
peaks in Fig. 2.

The above observations are well supported by the vari
partial wave contributions to the scattering amplitude25 pre-
sented in Fig. 3. There are two interesting points to no
First, the (d3/2,d5/2)-like spin-flip elements of thet

00 matrix,
which reflect the crystal field effects, carry essential weig
in the L III -derived resonant feature of Fig. 3. Second, t
total scattering amplitude for the RCP scattering at theL III
edge is slightly smaller than thed5/2 contribution to the am-
plitude. This is due to the fact that the phase of t
(d3/2,d5/2) partial amplitude has been shifted by nea
180° with respect to the phases of thed3/2- andd5/2-related
amplitudes of Fig. 4~b!.

B. Magnetic scattering at theK edge

In Fig. 5 we present the calculated scattering cross sec
ds/dV5u f (v)u2V2v2/(2p\c2)2 at the ironK absorption
edge for right-handedly polarized photons propagating al
the magnetization direction. In order to demonstrate the
markable dependence of the scattering at theK edge on the
crystal environment effects, we have shown in Fig. 5
single-site scattering contribution to the cross section as w
as the squared value of thep-projected density of state
above the Fermi level.

he
e

ho-
ed-

FIG. 3. Partial wave contributions to the scattering amplitude
the iron L II and L III absorption edges. TheL II and L III core state
multiplet contributions have been summed up simultaneusly.
solid, dotted, dashed, and dash-dotted lines correspond to t
d3/2, d5/2, andd3/2, d5/2 partial contributions, respectively. In~a!
and ~b! the incoming photons are left-handedly~1! and right-
handedly (2) polarized, respectively. The photon beam geome
and the arrow symbols are the same as in Fig. 2.
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55 481RELATIVISTIC THEORY OF MAGNETIC SCATTERING . . .
Evidently, all features of interest in the scattering cro
section of Fig. 5~denoted as symbolsA, B, andC) can be
qualitatively explained in terms of the squaredp-projected
density of states above the Fermi level. Computationally
is due to the following reasons. The matrix elements of
~20c! are in general smooth functions of the band energye.
Therefore, most structure in the scattering cross sec
comes from the behavior of the ImtLL8

00 (e) elements of Eq.
~20b!. The selection rules for our x-ray-beam geometry are
E1 approximation simply:l 02 l561, m5m011 for LCP
radiation, andm5m021 for RCP radiation. Therefore, onl
p states related Imt00(e) elements are responsible for thee
dependence of the numerator part of Eq.~20b!. Then, by
virtue of the multiple-scattering expression for the Gree
function by Faulkner and Stocks,27 it can been seen that th
numerator part of Eq.~20b! is approximately proportional to
thep-projected density of states. As it can be seen from F
5, the calculated scattering cross section closely follows
features of the square of the normalizedp density of states.

On the other hand, for theL II,III -edge resonant scatterin
we find that the scattering cross section does not reprod
the rapidly varying features of thed density of states abov
the Fermi level. This is because in this case theG parameter
~1.0 eV! is large enough to wash out the sharp features w
the integration overe is carried out in Eq.~20b!. And as a
result only one pronounced peak will appear in the scatte
spectra nearby each absorption edge.

These important observations have the general impl
tion that in favorable conditions the measured reson
x-ray-scattering spectra contain much spectroscopic infor
tion about the partial density of states in the unoccupied

FIG. 4. Phase behavior of the partial wave contributions to
scattering amplitude at the ironL II andL III absorption edges. Fo
further details, see the caption to Fig. 3.
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of the band structure, illustrating that band structure effe
are important for understanding resonant magnetic feat
of x rays.

There is yet another remarkable finding which we dem
strate within our calculations. Namely, in addition to the fu
crystalline scattering cross section which we have discus
above, we have repeated the same calculation at theK ab-
sorption edge of iron for an isolated muffin-tin potential b
using a single-site scattering matrixt0(e) in place of the path
operatort00(e) in Eq. ~20b!. Although this only mimics the
real atomic resonant scattering, we can immediately see f
Fig. 5 that the multiple-scattering effects drastically alter t
spectral behavior of the scattering cross section. The flat
havior of p-derived Imt0(e) elements above the Fermi leve
is responsible for the single peak in the ‘‘atomic’’ scatteri
cross section, while the overlappingp wave functions via the
path operatort00 are responsible for the cross section in ir
crystal. By contrast, at theL II- andL III -edge resonant scat
tering there is only a small difference between these t
cases. This is because the electric dipole transitions (E1)
involve now intermediated states, which are more localize
than thep states, and consequently multiple-scattering
fects are small.

To complete the discussion about theK-edge resonan
scattering of iron one may ask whether the higher multip
contributions are important. To answer this question
show the (M11E2) contribution to the anomalous scatte
ing cross section together with the single-site~atomic! scat-
tering spectra and thed-projected density of states in Fig. 6
As is clear from Fig. 6, the overall (M11E2) contribution
to the scattering cross section is about 100 times smalle
the electric dipole (E1) contribution of Fig. 5. However,
there are some qualitatively interesting features in Fig. 6
accordance with the the (M11E2) selection rules given in
the end of Sec. II D 2 thed states above the Fermi level buil
up the large resonant peak at theK edge. Interestingly, the
(M11E2) contribution to the scattering cross section

FIG. 5. Calculated electric dipole (E1) contribution to the
anomalous scattering cross section at the ironK absorption edge
~solid line!. The incoming and scattered photons propagate al
the magnetization axis. The squaredp-projected density of state
~dashed line! has been normalized according to the maximum va
of peakC. In order to notice the dramatic difference between t
crystalline and atomic case the single-site scattering-derived c
section has been presented~dash-dotted line!. The arrow locates the
position of theK absorption edge.
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Fig. 6 possesses similar oscillations as the Lorentz
lifetime-broadened (G50.8 eV! and squaredd-projected
density of states. This further substantiates the useful
between the resonant scattering spectra and the partial
sity of states in the empty part of the band structure. Also
notice from Fig. 6 that in the single-site scattering case
(M11E2) contribution to the cross section is very similar
that in the crystalline case near theK absorption edge. As
can be inferred from theL II,III -edge resonant scattering ca
above this is solely due to the localized nature of thed states
above the Fermi level.

C. Dichroism at L II and L III edges

Since the dichroism in the resonant magnetic scatterin
theK edge of iron~exclusivelyE1 derived! is about 50 times
smaller than the dichroism at theL II,III edges, we limit our
study here solely to theL II,III edges. The magnetic x-ray
scattering dichroism atL II,III edges is in general a delica
combined effect of spin-orbit interaction and spin polariz
tion in the core states and the intermediate states. Howe
by looking again at the numerator of Eq.~20b! we can easily
envisage the microscopic origin of the various features of
dichroism spectra of Fig. 7.

The magnitude of the first important matrix eleme
of the transition (p1/2,21/2)→(d3/2,11/2) contributing to
the L II-derived peakB1 of Fig. 2 for LCP radiation
is nearly equal to the magnitude of the transiti
(p1/2,11/2)→(d3/2,21/2) contributing to the peakB2

for RCP radiation. Similarly, the magnitude of the seco
important matrix element of the transitio
(p1/2,11/2)→(d3/2,13/2) contributing to theL II-derived
peakB1 of Fig. 2 for LCP radiation is nearly equal to th
magnitude of the transition (p1/2,21/2)→(d3/2,23/2) con-
tributing to the peakB2 for RCP radiation.

Therefore we can conclude that the featureB of
Fig. 7 is approximately proportional to the differenc
Imt211/2;211/2

00 (e)2Imt221/2;221/2
00 (e) and Imt213/2;213/2

00 (e)
2Imt223/2;223/2

00 (e) in the standardkm representation20

FIG. 6. Calculated (M11E2) contribution to the anomalou
scattering cross section at the ironK absorption edge~solid line!. A
properly normalized, Lorentzian lifetime-broadened (G50.8 eV!
and squaredd-projected density of states~dashed line! and a single-
site scattering-derived cross section~dash-dotted line! have been
also presented. The arrow locates the position of theK absorption
edge.
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nearby the Fermi level, where there is a large, unoccup
d density-of-states peak. Because these differences vani
a non-spin-polarized relativistic case, the dichroism feat
B can be interpreted purely in terms of the exchange splitt
in the d3/2-like intermediate states near the Fermi level.
can be deduced from Fig. 3, thed5/2-like states have only a
minor contribution to the featureB of Fig. 7.

Similarly when analyzing theL III -edge-derived dichroism
featureA of Fig. 7 we find that the exchange splitting o
d5/2-like states is mostly responsible for that feature. Ho
ever, it is interesting to notice that the (d3/2,d5/2)-like spin-
flip elements of thet00 matrix, which tend to diminish the
scattering amplitude for the RCP radiation~see the discus-
sion in Sec. III A!, reduce to a large extent the magnitude
the featureA. On the other hand, as can be deduced
looking at the magnitude~Fig. 3! and phase~Fig. 4! behavior
of the partial scattering amplitudes, the diagonald5/2 and
~d3/2, d5/2! spin-flip elements oft00 make hardly any con-
tribution to peaksB1 andB2. Therefore, the dichroism fea
tureB of Fig. 7 is solely due to the diagonald3/2 elements of
t00.

It can also be observed from Fig. 7 that the crystalli
~multiple-scattering! effects do not change the qualitativ
picture of the dichroism spectra from the atomic~single-site
scattering! case. This is in agreement with the comput
scattering cross sections at theL II,III edges for the crystalline
and atomic cases~see the discussion in the end of Sec. III B!.

As a very important technical aspect of our calculation
note that due to the overlapping feature of theL II- and
L III -derived scattering peaks of Fig. 2 it is vital to compu
the L II andL III contributions to the scattering amplitude s
multaneously and add coherently. If they are calculated se
rately, the dichroism~the sum of the dashed and dashe
dotted curves of Fig. 8! will not be evaluated correctly a
Fig. 8 shows. Notably, the correct positions of theL III - and
L II-related featuresA8 and B8 of Fig. 8 notwithstanding,
their intensities do not reproduce the peaksA and B cor-
rectly.

Our calculated spectral features of dichroism agree qu
tatively with those measured by Kaoet al.,7 the main differ-
ence being that the largest asymmetry ratio, which com
from the L II-edge resonance, is 13% in their measurem

FIG. 7. The calculated asymmetry ratio~solid line! in the elec-
tric dipole approximation together with the asymmetry ratio~dashed
line! computed in theatomic limit. The symbolsA, A8, B, andB8
are discussed in the text.
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while the corresponding value according to our calculation
about 50%. This discrepancy can be mainly attributed to
following facts. We have used completely circularly pola
ized x rays in our calculations for the bulk iron whereas K
et al.have usedp-polarized light scattered within a differen
geometry~specular reflection! from a single-crystal iron film.
Also, we have ignored the absorption and experimen
broadening effects in our calculation. Including them wou
significantly decrease the calculated asymmetry ratio.

IV. CONCLUSIONS

We have presented a detail derivation of a first-princip
formalism for magnetic scattering of circularly polarized
rays from magnetic solids which enables us to calculate
only the magnetic structural information, but also to interp
the microscopic nature of various spectral features in
scattering cross section and the dichroism curves. We h

FIG. 8. The calculated asymmetry ratio~solid line! in the elec-
tric dipole approximation in the case whereboth LII andL III core
states have been used for the scattering amplitude. Also show
the asymmetry ratios produced usingonly LII ~dashed line! or L III
~dash-dotted line! core states in the scattering amplitude formu
The symbolsA, A8, B, andB8 are discussed in the text.
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demonstrated this by studying resonant magnetic x-ray s
tering atL II,III andK absorption edges of iron. Especially w
have noticed that multiple-scattering effects have an imp
tant contribution to the x-ray resonant scattering cross s
tion at theK edge. On the other hand, at theL II,III edges there
occur only minor changes due to the more localized natur
thed electrons. Furthermore, if the lifetime effects are sm
enough, then the x-ray resonant scattering measuremen
lows us to study the partial density-of-states features of
empty part of the band structure above the Fermi leve
addition to information about the magnetic structure enco
in the position of the magnetic Bragg peaks. We have de
onstrated this by computing the x-ray resonant scatte
cross section at theK absorption edge, and compared th
with the squared value of thep partial density of states. The
agreement between these is amazingly good.

Being fully relativistic, our formalism treats spin-orb
coupling and spin-polarization effects on an equal foot
and hence gives an account of the x-ray magnetic circ
dichroism~XMCD! in magnetic scattering. A fully relativis-
tic calculation is also important in the case of systems c
taining heavy elements where the spin-orbit interaction c
not be treated as a simple perturbation, as in the case
lanthanide or actinide materials where the higher-order m
tipole transitions become also important.

Finally we want to emphasize that in addition to bei
able to include the crystalline environmental contribution
the scattering amplitude accurately, the above multip
scattering theory for the electron Green’s function, Eq.~12!,
allows us to make a site decomposition of the general s
tering formula, Eq.~17!. Therefore applying the above mag
netic x-ray resonant scattering formalism it will be possib
to focus on studying site-resolved magnetic moment corr
tions in such technologically important alloys as NicFe12c .
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