
Beadle, Lawrence and Johnson, Colin G. (2009) Semantically Driven Mutation
in Genetic Programming. In: 2009 IEEE Congress on Evolutionary Computation.
IEEE, pp. 1336-1342. ISBN 978-1-4244-2958-5.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/24113/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1109/CEC.2009.4983099

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/24113/
https://doi.org/10.1109/CEC.2009.4983099
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Semantically Driven Mutation in Genetic
Programming

Lawrence Beadle and Colin G Johnson

Abstract—Using semantic analysis, we present a technique
known as semantically driven mutation which can explicitly
detect and apply behavioural changes caused by the syntactic
changes in programs that result from the mutation operation.
Using semantically driven mutation, we demonstrate increased
performance in genetic programming on seven benchmark ge-
netic programming problems over two different domains.

Index Terms—Genetic programming, program semantics, se-
mantically driven mutation, reduced ordered binary decision
diagrams.

I. INTRODUCTION

In this paper we demonstrate the Semantically Driven Muta-
tion (SDM) algorithm, which is used to improve the mutation
operation in genetic programming (GP). The SDM algorithm
has been developed based on semantic analysis of the changes
caused by the mutation operator. The SDM algorithm works
to improve performance by not allowing mutated programs to
be produced when they are behaviourally equivalent to the
original program. The aim of this is to avoid returning to
sections of the search space that have effectively already been
traversed. We compare the SDM algorithm to standard sub
tree mutation in seven GP problems taken from the Boolean
and artificial ant domains and demonstrate the superiority in
performance produced by SDM.

In addition to the development of the SDM algorithm, we
present results that combine this algorithm with our Semanti-
cally Driven Crossover (SDC) algorithm , in order to demon-
strate the overall effects of semantically driven operators in
GP. The key feature of the semantically driven operators is
the ability to canonically represent candidate programs such
that we can compare for the equivalence of behaviours.

In section II we review techniques to improve sub tree
mutation. In section III we present the techniques we have
used to abstract behaviours and our SDM algorithm. Section
IV presents our results and section V presents a discussion of
the results. In sections VI and VII, we present our conclusions
and suggestions for future work respectively.

II. LITERATURE REVIEW

The SDM algorithm brings together two distinct areas of
research. These are: the development of mutation techniques;
and, the development of our ability to model the behaviour of
programs. In section II-A we review several different mutation
techniques and in section II-B we discuss techniques for
modeling semantics in GP.

Lawrence Beadle and Colin G. Johnson are with the Computing Laboratory,
University of Kent, Canterbury, Kent, CT2 7NF, UK (email: {L.Beadle-276,
C.G.Johnson}@kent.ac.uk).

A. Mutation Techniques

Sub tree mutation selects a random point in a program tree
and swaps the sub tree with another generated sub tree. In
1992 Koza [1] introduced sub tree mutation, but questioned the
value of the operator (which was later demonstrated by Luke
and Spector [2] to be comparable to crossover) and chose to
perform most of his experiments without the mutation operator
in use. Whilst the concept of sub tree mutation is relatively
simple, there are more detailed practicalities that influence the
relative performance of the GP with the use of the mutation
operator.

The main variance is how different authors have constructed
the new sub tree to replace the sub tree that was removed.
Two examples of solutions to this are by Kinnear [3] and
Langdon [4]. Kinnear created subtrees such that they could not
increase the program depth by more than 15% after mutation.
Langdon’s size-fair sub tree mutation utilised a system which
ensured that the new subtrees were on average the same size
50%-150% as the previously removed sub tree. A further
variant of sub tree mutation is known as shrink mutation. In
this system, a random sub tree is replaced by a terminal. Whilst
Angeline [5] uses this type of mutation to aid his investigation
into the sensitivity of the frequency of leaf selection in GP, he
also shows that it helps to reduce program size.

Point mutation (or node replacement mutation) [6] picks
a node and replaces it with a node of equivalent arity. This
essentially simulates a single bit flip mutation from genetic
algorithms. A similar idea is that of permutation, which selects
a node and mutates the arguments of this node. Koza [1]
used this technique in one experiment with little success. By
contrast, Maxwell [7] had more success with a variant of
permutation called swap.

Hoist mutation selects a sub tree from the program to be
mutated and uses this sub tree to replace the full tree from
which the sub tree was copied. Kinnear [3], [8] presented and
made use of this technique with some success; but, this is
potentially a highly destructive technique. Later research by
McPhee and Hopper [9] indicated that specific patterns of code
within successful programs can be traced back to very early
programs in most GP runs. Mutation such as hoist may be
highly destructive in that, if it were to alter the root of one of
these common ancestors, it would cause a serious decrease in
performance.

Whilst there exist a number of other techniques to mutate
constants (some listed in Poli et al. [10, page 43]), the
important point to understand in the context of our work is
that these algorithms are processes to modify syntax, based
on a selection of motivations (for example, to control program

1336978-1-4244-2959-2/09/$25.00 c© 2009 IEEE

size). By contrast, our SDM algorithm is explicitly designed to
cause a mutation that will result in change of behaviour. This
sets it apart from other methods that merely process syntax.

B. Semantics in GP

A small number of studies have made use of a notion of
program semantics to improve the design of aspects of GP.

In the related field of grammatical evolution, Majeed and
Ryan [11] demonstrate a technique known as context aware
mutation. The technique evaluates subtrees and works to
prevent the mutation operator causing a destructive change
in fitness. One of the limitations noted by the authors is the
necessity of building up a repository of “good” subtrees to
work with. Potentially, however, this technique could turn
the standard mutation operator into another hill climbing
operator. The danger of it becoming a hill climbing operator
is that the fitness distribution across the search space may be
rugged, increasing the possibility of premature convergence
on a locally optimal solution compared to a non hill climbing
algorithm.

Gustafson [12] developed two edit distances to sample
semantic diversity in GP and conducted an analysis comparing
behavioural diversity measures with changes in fitness. One of
the limitations of the edit distance method is that it does not
result in a canonical representation, which would be required
by SDM to check for isomorphism of behaviours.

Semantic analysis methods are starting to appear in combi-
nation with crossover. McPhee et al. [13] used truth tables to
analyse behavioural changes in crossover. A similar technique
could be applied to mutation operators in order to assess the
levels of behavioural change caused by a specific mutation.
Whilst it is possible to represent behaviour using truth tables,
a more efficient technique is that of using reduced ordered
binary decision diagrams (ROBDDs) [14] to create reduced
canonical representations to measure behavioural difference.
Beadle and Johnson [15] used ROBDDs to compare pre and
post crossover program states for semantic change. SDM is
also based on ROBDDs, and is designed to apply to mutation
ideas that have proven successful in crossover.

Other authors, such as Yanagiya [16] and Downing [17]
have used Binary Decision Diagrams (BDDs) as a form of
representation. The focus of Downing’s work was to test the
importance of neutrality in GP. In the case of Yanagiya, BDDs
were used as a form of efficient representation to increase pro-
cessing speed at the fitness function. Despite outlining special
crossover and mutation processes to be used in the evolution of
the BDDs, Yanagiya does not use BDDs to explicitly analyse
behavioural states before and after operations. Our work is
designed to test the effects of behavioural control at the point
of the mutation operator.

III. METHODS AND ALGORITHMS

The aim of this work is to demonstrate the positive ef-
fects of redesigning the mutation operator so that instead of
merely altering syntax, it produces a guaranteed alteration of
behaviour. In this section we present the problem domains we
examine, our methods of abstraction and the pseudo code for
the algorithm we use.

A. Test Problems Used

In our experiments we used seven test problems. These are
the 6 and 11 bit multiplexer, even 4 and 7 parity, 5 and 9
majority and the artificial ant on the Santa Fe trail.

The objective of the 6 and 11 bit multiplexer problems is
to interpret two or three (respectively) control bits as a binary
number and choose the correct output bit based on the binary
number. The fitness is the number of correct choices over all
possible 64 or 2048 combinations of inputs for the 6 and 11
Boolean bits respectively. The function set is {IF, AND, OR,
NOT} and the terminal set is {A0, A1, D0, D1, D2, D3}. The
function set of the 11 bit multiplexer is the same as the 6 bit
multiplexer and the terminals are {A0, A1, A2, D0, D1, D2,
D3, D4, D5, D6, D7}.

The objective of the even 4 and 7 parity problems is to
return true if and only if an even number of the inputs are
true. The function set is the same as for the multiplexers and
the terminal set is {D0, D1, D2, D3} for the even 4 parity
and {D0, D1, D2, D3, D4, D5, D6} for the even 7 parity
experiment.

The objective of the 5 and 9 majority problems is to return
true if and only if the majority of the inputs are true. The
function set is the same as the multiplexers and the terminal
set is {D0, D1, D2, D3, D4} for the 5 majority problem and
{D0, D1, D2, D3, D4, D5, D6 , D7, D8} for the 9 majority
problem.

The artificial ant domain models an ant operating over a
trail of food pellets on a grid. The ant must collect all the food
pellets in order to achieve a full score. We use the benchmark
santa fe trail [18] which represents 89 food pellets in a broken
trail on a 32X32 toroidal grid. The function set for the ant
problem is {IF-FOOD-AHEAD, PROGN2, PROGN3} and
the terminal set is {MOVE, TURN-LEFT, TURN-RIGHT}.
The function IF-FOOD-AHEAD is an if-then-else structure
with the condition representing whether the ant has a food
pellet in the grid square directly in front of it. PROGN2 and
PROGN3 execute the instructions they hold in sequence. The
only difference between them is that PROGN2 has an arity of
two and PROGN3 has an arity of three.

B. Abstraction

In order to measure semantic equivalence we developed
a system to build canonical representations of behaviour of
programs that evolve in our experiments.

For the multiplexer, even parity, and majority experiments
we constructed a ROBDD [14] for each program and mutation
of that program. The important functionality that this provides
is the ability to reduce program representation by removing
redundant and unreachable arguments. This allows us to com-
pare programs for semantic equivalence. Any two programs
that reduce to the same ROBDD are semantically equivalent,
and vice versa. An example of an ROBDD can be found in
figure 1.

We used three pieces of software to enable us to analyse
the semantic representations of programs. We used a Java
implementation of GP [19], linked to the Colorado University

2009 IEEE Congress on Evolutionary Computation (CEC 2009) 1337

Fig. 1. This example ROBDD is a canonical representation of behavior. In
the diagram, circles represent variables (terminals in the GP context); solid
arrows represent true paths; dotted arrows represent false paths. The squares
marked 1 and 0 represent output of true and false respectively. This behaviour
could be represented by many different parse trees. Two examples of parse
trees that would result in this behaviour are IF A0 D0 D1 and IF (NOT A0)
D1 D0.

Decision Diagram Package — CUDD [20] using the JavaBDD
[21] interface.

For the artificial ant domain, we consider a behavioural
model as a sequence of moves and orientations that represent
the trail through which the ant has traveled during one execu-
tion of the ant control program (i.e. the GP candidate solution).
When the artificial ant is simulated in GP we repeatedly
execute the candidate solution until the ant has traveled 600
time steps [18], although, in the behavioural model we are
only interested in a single execution of the ant control code.
In addition to this, we execute the ant code on a toroidal grid
(32X32) that contains no food pellets and we calculate the
shape of the path for both the true and false branches of the
IF-FOOD-AHEAD (if-then-else) function.

An example program for the artificial ant is as follows:

PROGN2 (PROGN3 (MOVE, (IF-FOOD-AHEAD (PROGN2
(MOVE, TURN-RIGHT)) MOVE) MOVE) TURN-LEFT)

An example (equivalent to the program above) of the syntax
we use is as follows:

Ant Representation = 〈M, 〈 M, S 〉, 〈 M 〉, M, N 〉
The character M represents one move and the characters N,

S, E, W represent the orientations north, south, east and west
respectively. The sub sequences within the set indicate when a
branch of an IF-FOOD-AHEAD statement is being accessed
and instruction sequence within those brackets indicates the
path traveled during each branch of the condition. Because
we are only concerned with modeling the shape of the trail,
it is unimportant whether or not the ends of the IF-FOOD-
AHEAD blocks have different orientations. Therefore, at the
end of the conditions we reset the current orientation to the
orientation before the ant entered the if branches.

More formally, we can describe in Backus-Naur Format the
structure of a representation:

rep ::= 〈< expr >〉 (1)

expr ::= M |N |S|E|W (2)

| < bracketExpr > (3)

| < expr >, < expr > (4)

bracketExpr ::= 〈< expr >, < expr >〉 (5)

In addition to this model structure, we condense the abstract
representation in three ways. The first method is to remove
duplicate sub branches of the same if statement and incorpo-
rate the paths as part of the fixed path the ant was on before
the if statement. The second method searches for sequences
of orientations and reduces them to the last orientation in the
sequence. This has the effect of removing redundant turns from
the ant abstract model. The final method moves through the
representation, remembers the current orientation, and removes
any duplicate calls to turn to the current orientation. This
serves to remove redundant turn instructions.

C. SDM Algorithm

We present the pseudo code for SDM below:

for each program in population {

if random_no < prob_mutation {

counter = 0

while counter < 5 {

generate semantic_representation1 of
original_program

select mutation_point (uniform)

generate sub tree using grow (depth 4)

inset sub tree at mutation_point

generate semantic_representation2 of
mutated_program

if semantic_representation1 ≡
semantic_representation2 {

revert mutated_program back to
original_program

} else {

break

}

counter++

}

}

}

The SDM algorithm will try to mutate a program into a new
behavioural state. The process involves performing a standard
sub tree mutation; however, after each mutation attempt,
the algorithm checks to see that each mutated program is
semantically different to the original program. In some cases
it may not be possible to semantically mutate a program (for
example, if the program contained substantial inviable code)
and as a result we have applied a counter system such that
the mutation operator will have five attempts to behaviourally
mutate a program, after which the original program is returned.
Despite initial fears, this algorithm would be slow due to the
creation of the representations of behaviour, run time appears
roughly comparable.

IV. RESULTS

A. Parameters

The parameters we use in our experiments are as follows:
populations of 500 for 4 parity, 5 majority, 6 multiplexer

1338 2009 IEEE Congress on Evolutionary Computation (CEC 2009)

and the artificial ant (Santa Fe trail); populations of 4000 for
the even 7 parity, 9 majority and 11 multiplexer; 10% elitist
reproduction; 7 competitor tournament selection; ramped half
and half (to depth 6) initialisation; depth 17 program size limit;
50 generation; 100 runs; 0.9 probability for standard and SDM
mutation; and. when the SDC is used in addition to the SDM,
we use 0.9 probability for both crossover and mutation.

B. SDM Results

Table I shows that the SDM algorithm significantly con-
tributes to the performance of GP. For the overall maximum
score (compared over all generations) standard mutation is
always the worst performing mutation technique. In three
of the experiments the SDM is the best performing method
with regard to overall maximum scores. In the other four
experiments, the combined SDC and SDM algorithms were
the best performing GP runs.

When comparing the scores at generation 50, in all but one
of the experiments standard sub tree mutation is the worst
performing method. The combined SDC and SDM algorithms
are always the highest performing; however, in three cases
the SDM is statistically similar to the combined SDC and
SDM algorithms. In the case of the artificial ant, all of the
experiments produce a statistically similar result despite small
variations in performance.

Unlike the SDC algorithm [15] (and further statistical data
sheets at [19]), the relationship between SDM and its effects
on the length of programs (shown in table II) appears to be
problem dependent. It is clear that the combination of both
the SDC and SDM algorithms does substantially increase code
bloat. It is important to note that we used high values of 0.9
for both crossover and mutation in order to be consistent with
our other experiments. Combinations of other crossover and
mutation rates may well change this reading substantially, and
this is an important topic for future research.

In summary, the results tell us, that whilst the SDM has no
pronounced effect on bloat, it is clear that semantically driven
mutation and the combination of semantically driven crossover
and mutation do increase performance in GP.

C. Reverted Mutations

Figure 2 shows that there are a substantial number of state
neutral mutations taking place and being reverted in both the
5 majority and artificial ant experiments at varying levels, and
also shows that the combination of SDC and SDM produces
more reversions, which has been confirmed statistically using
a Paired T-test at the 95% confidence level. Figure 2 also
illustrates an upwards trend over time in the numbers of
reversions taking place in all of our experiments.

V. DISCUSSION

Our results indicate that on some level the one to many
relationship between behavioural and syntactic representations
constitutes an inefficiency in performance. Using standard
mutation, many fitness evaluations represent wasted compu-
tational effort, since the mutated program is semantically

equivalent to the parent program. In every experiment, our
overall comparisons demonstrated that the semantically driven
operators must force increased levels of movement (as evi-
denced by the increased levels of reversion shown in figure 2)
around the search space such that better solutions are found
quicker compared to traditional sub tree mutation.

A speculative explanation for our varying program size
results is the possibility that the increased search forced
programs to move to different regions of the search space
which required different numbers of nodes in the trees. This
would be problem specific and as such we saw varying results
in the program sizes produced by the SDM algorithm when
compared to standard sub tree mutation.

In addition to the GP performance and program size results,
we looked at the percentage of programs being reverted. One
key characteristic of this was a positive trend over time in the
level of reversions. It is well known that, as programs evolve,
they increase in size ([22], [23], [24]), and with this increase
in size, it is likely that there will be an increase in inviable
areas of code [25], [26]. As such, it is less probable that
mutation would operate on an active region of code, causing
an increased number of program reversions because the SDM
algorithm has to work harder to modify effective code.

A final point of note is that we have only applied SDM to a
simple version of sub tree mutation. As mentioned in section
II-A there are several other mutation techniques. Whilst each
technique has a different mutation process, the SDM concept
could be applied over the top of each of these different
mutation processes. One fact to be drawn from increasing
semantic diversity in standard sub tree mutation is the increase
in overall performance noted in all of our experiments, and
there is no reason to assume that applying the SDM concept on
other mutation processes cannot demonstrate a similar increase
in GP performance.

VI. CONCLUSION

In conclusion, there are four points to draw from this work.
Firstly, semantically driven mutation statistically significantly
increased the performance of GP in all seven experiments.
Secondly, unlike semantically driven crossover, semantically
driven mutation has no clear effect on the average size of the
programs produced. Thirdly, the combination of semantically
driven crossover and semantically driven mutation in our ex-
periments did appear to bloat programs. This bloating may be
due to the combination of crossover and mutation probability
parameters we used in these experiments. Finally, the increase
in the number of reversions over the generations indicates that
the SDM algorithm has to work harder to continue to provide
behavioural mutations as the generations increase.

VII. FUTURE WORK

The future avenues for this work can be divided into two
research areas. Firstly, as the expandability of the SDM is
limited by the ability to represent different problem domains,
we can develop new representation models in order to see
whether our results are sound in different contexts. The first
possibility in this case would be extending our experiments

2009 IEEE Congress on Evolutionary Computation (CEC 2009) 1339

Problem Operator Overall Max (StDev) PT Rank G50 Max (StDev) 2T Rank Success

Even 4 Parity MUT 0.0970 (±0.0749) 3 0.0400 (±0.0483) 2 52% (G6)
SDM 0.0768 (±0.0774) 1 0.0231 (±0.0423) 1 74% (G9)

SDCSDM 0.0846 (±0.0833) 2 0.0163 (±0.0303) 1 76% (G7)

5 Majority MUT 0.0527 (±0.0395) 3 0.0219 (±0.0241) 3 47% (G8)
SDM 0.0389 (±0.0426) 2 0.0088 (±0.0154) 2 74% (G7)

SDCSDM 0.0375 (±0.0448) 1 0.0034 (±0.0108) 1 90% (G11)

6 Multiplexer MUT 0.0946 (±0.0520) 3 0.0511 (±0.0520) 3 42% (G8)
SDM 0.0831 (±0.0553) 2 0.0406 (±0.0478) 2 47% (G7)

SDCSDM 0.0565 (±0.0642) 1 0.0091 (±0.0281) 1 88% (G8)

Even 7 Parity MUT 0.3584 (±0.0549) 3 0.2813 (±0.0339) 2 0% –
SDM 0.3511 (±0.0583) 1 0.2680 (±0.0373) 1 0% –

SDCSDM 0.3519 (±0.0569) 2 0.2706 (±0.0304) 1 0% –

9 Majority MUT 0.1595 (±0.0340) 3 0.1221 (±0.0104) 2 0% –
SDM 0.1576 (±0.0344) 2 0.1204 (±0.0098) 2 0% –

SDCSDM 0.1275 (±0.0462) 1 0.0769 (±0.0087) 1 0% –

11 Multiplexer MUT 0.2070 (±0.0620) 3 0.1334 (±0.0452) 3 0% –
SDM 0.1942 (±0.0703) 2 0.1117 (±0.0380) 2 0% –

SDCSDM 0.1418 (±0.0944) 1 0.0384 (±0.0372) 1 31% (G29)

Artificial Ant (SF) MUT 0.3685 (±0.0719) 3 0.3045 (±0.1202) 1 5% (G13)
SDM 0.3411 (±0.0733) 1 0.2787 (±0.1315) 1 10% (G8)

SDCSDM 0.3466 (±0.0795) 2 0.2764 (±0.1191) 1 6% (G7)

TABLE I
PROBLEM IS THE PROBLEM BEING EXAMINED. OPERATOR IS THE TYPE AND COMBINATION OF CROSSOVER AND MUTATION BEING USED WHERE MUT IS

STANDARD MUTATION, SDM IS SEMANTICALLY DRIVEN MUTATION AND SDCSDM IS SEMANTICALLY DRIVEN CROSSOVER AND SEMANTICALLY

DRIVEN MUTATION COMBINED. OVERALL MAX IS THE MEAN OF THE MAXIMUM SCORES OVER ALL GENERATIONS AND THE STDEV IS THE STANDARD

DEVIATION OF THE MAXIMUM SCORES. THE SCORES ARE REPRESENTED IN STANDARDISED FITNESS (LOWER = BETTER). PT RANK IS THE

PERFORMANCE RANK OF EACH OPERATOR BASED ON PAIRED T TESTS OF THE MAXIMUM SCORES OVER THE GENERATIONS. RANK 1 IS THE BEST

PERFORMING AT THE 95% CONFIDENCE LEVEL. G50 MAX IS A MEAN OF THE MAXIMUM SCORES AT GENERATION 50 AND STDEV IS THE STANDARD

DEVIATION OF THESE MAXIMUM SCORES. THE SCORES ARE REPRESENTED IN STANDARDISED FITNESS. 2T RANK IS THE PERFORMANCE RANKING

BASED ON 2 SAMPLE T TESTS OF THE MAXIMUM SCORES AT GENERATION 50. AGAIN, RANK 1 IS THE BEST PERFORMING AT THE 95% CONFIDENCE

LEVEL. SUCCESS IS THE NUMBER OF RUNS WHICH REACHED FULL SCORE AND THE BRACKET FIGURES REPRESENT THE FIRST GENERATION IN ANY RUN

AT WHICH FULL SCORE WAS ACHIEVED.

Problem Operator Overall Length (StDev) PT Rank

Even 4 Parity MUT 159.08 (±39.87) 2
SDM 144.62 (±29.45) 1

SDCSDM 160.44 (±51.69) 2

5 Majority MUT 90.32 (±28.82) 2
SDM 82.27 (±21.75) 1

SDCSDM 113.85 (±50.39) 3

6 Multiplexer MUT 51.95 (±16.08) 1
SDM 52.29 (±12.85) 1

SDCSDM 72.07 (±24.62) 2

Even 7 Parity MUT 206.04 (±44.67) 1
SDM 215.71 (±47.86) 2

SDCSDM 339.61 (±131.06) 3

9 Majority MUT 80.34 (±23.19) 1
SDM 86.78 (±25.30) 2

SDCSDM 307.47 (±183.12) 3

11 Multiplexer MUT 38.92 (±9.64) 1
SDM 41.02 (±8.87) 2

SDCSDM 112.49 (±49.60) 3

Artificial Ant (SF) MUT 111.65 (±26.02) 1
SDM 121.14 (±28.66) 2

SDCSDM 190.21 (±38.32) 3

TABLE II
PROBLEM IS THE PROBLEM BEING EXAMINED. OPERATOR IS THE TYPE AND COMBINATION OF CROSSOVER AND MUTATION BEING USED WHERE MUT IS

STANDARD MUTATION, SDM IS SEMANTICALLY DRIVEN MUTATION AND SDCSDM IS SEMANTICALLY DRIVEN CROSSOVER AND SEMANTICALLY

DRIVEN MUTATION COMBINED. OVERALL LENGTH IS AN AVERAGE OF THE AVERAGE PROGRAM LENGTHS FOR ALL GENERATIONS AND STDEV

REPRESENTS THE STANDARD DEVIATIONS OF THESE MEAN LENGTHS. PT RANK INDICATES THE RANK OF THE INDIVIDUALS LENGTH (SHORTEST BEING

BEST) USING A PAIRED T-TEST ANALYSED AT THE 95% CONFIDENCE LEVEL.

1340 2009 IEEE Congress on Evolutionary Computation (CEC 2009)

Fig. 2. The seven graphs indicate the percentage of mutations that were reverted in 2 of our experiments. These are the 5 majority experiment (5MAJ)
and the artificial ant experiment (AASF). SDM_R_% indicates the reversion rate for the single SDM experiments and SDCSDM_R_% indicates the rate of
reversions for the combined SDC and SDM runs. All results are averaged over 100 runs.

2009 IEEE Congress on Evolutionary Computation (CEC 2009) 1341

to cover a regression style domain. In order to expand SDM
into other domains, we require the development of a canonical
representation technique for that domain. In the case of
symbolic regression, it may be possible to use zero-suppressed
BDDs [27] as a viable representation.

Secondly, we can work towards building a semantically
driven GP to bridge the inefficiency gap caused by the one to
many relationships scenario between behaviours and syntax.
A combination of semantic initialisation, crossover, and mu-
tation, would allow us to evolve a more behaviourally diverse
range of programs and, we anticipate, to reach better solutions
in less time than standard GP.

REFERENCES

[1] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection. Cambridge, MA, USA: MIT Press, 1992.

[2] S. Luke and L. Spector, “A revised comparison of crossover and mutation
in genetic programming,” in Genetic Programming 1998: Proceedings
of the Third Annual Conference (J. R. Koza, W. Banzhaf, K. Chellapilla,
K. Deb, M. Dorigo, D. B. Fogel, M. H. Garzon, D. E. Goldberg, H. Iba,
and R. Riolo, eds.), (University of Wisconsin, Madison, Wisconsin,
USA), pp. 208–213, Morgan Kaufmann, 22-25 July 1998.

[3] K. E. Kinnear, Jr., “Evolving a sort: Lessons in genetic programming,” in
Proceedings of the 1993 International Conference on Neural Networks,
vol. 2, (San Francisco, USA), pp. 881–888, IEEE Press, 28 Mar.-1 Apr.
1993.

[4] W. B. Langdon, “The evolution of size in variable length representa-
tions,” in 1998 IEEE International Conference on Evolutionary Compu-
tation, (Anchorage, Alaska, USA), pp. 633–638, IEEE Press, 5-9 May
1998.

[5] P. J. Angeline, “An investigation into the sensitivity of genetic program-
ming to the frequency of leaf selection during subtree crossover,” in
Genetic Programming 1996: Proceedings of the First Annual Conference
(J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo, eds.),
(Stanford University, CA, USA), pp. 21–29, MIT Press, 28–31 July
1996.

[6] B. McKay, M. J. Willis, and G. W. Barton, “Using a tree structured
genetic algorithm to perform symbolic regression,” in First International
Conference on Genetic Algorithms in Engineering Systems: Innovations
and Applications, GALESIA (A. M. S. Zalzala, ed.), vol. 414, (Sheffield,
UK), pp. 487–492, IEE, 12-14 Sept. 1995.

[7] S. R. Maxwell, “Why might some problems be difficult for genetic
programming to find solutions?,” in Late Breaking Papers at the Genetic
Programming 1996 Conference Stanford University July 28-31, 1996
(J. R. Koza, ed.), (Stanford University, CA, USA), pp. 125–128, Stanford
Bookstore, 28–31 July 1996.

[8] K. E. Kinnear, Jr., “Fitness landscapes and difficulty in genetic pro-
gramming,” in Proceedings of the 1994 IEEE World Conference on
Computational Intelligence, vol. 1, (Orlando, Florida, USA), pp. 142–
147, IEEE Press, 27-29 June 1994.

[9] N. F. McPhee and N. J. Hopper, “Analysis of genetic diversity through
population history,” in Proceedings of the Genetic and Evolutionary
Computation Conference (W. Banzhaf, J. Daida, A. E. Eiben, M. H.
Garzon, V. Honavar, M. Jakiela, and R. E. Smith, eds.), vol. 2, (Orlando,
Florida, USA), pp. 1112–1120, Morgan Kaufmann, 13-17 July 1999.

[10] R. Poli, W. B. Langdon, and N. F. McPhee, A field guide to genetic
programming. Published via http://lulu.com and freely available
at http://www.gp-field-guide.org.uk, 2008. (With contri-
butions by J. R. Koza).

[11] H. Majeed and C. Ryan, “Context-aware mutation: a modular, context
aware mutation operator for genetic programming,” in GECCO ’07:
Proceedings of the 9th annual conference on Genetic and evolutionary
computation (D. Thierens, H.-G. Beyer, J. Bongard, J. Branke, J. A.
Clark, D. Cliff, C. B. Congdon, K. Deb, B. Doerr, T. Kovacs, S. Kumar,
J. F. Miller, J. Moore, F. Neumann, M. Pelikan, R. Poli, K. Sastry, K. O.
Stanley, T. Stutzle, R. A. Watson, and I. Wegener, eds.), vol. 2, (London),
pp. 1651–1658, ACM Press, 7-11 July 2007.

[12] S. Gustafson, An Analysis of Diversity in Genetic Programming. PhD
thesis, School of Computer Science and Information Technology, Uni-
versity of Nottingham, Nottingham, England, Feb. 2004.

[13] N. F. McPhee, B. Ohs, and T. Hutchison, “Semantic building blocks in
genetic programming,” in Proceedings of the 11th European Conference
on Genetic Programming, EuroGP 2008 (M. O’Neill, L. Vanneschi,
S. Gustafson, A. I. Esparcia Alcazar, I. De Falco, A. Della Cioppa, and
E. Tarantino, eds.), vol. 4971 of Lecture Notes in Computer Science,
(Naples), pp. 134–145, Springer, 26-28 Mar. 2008.

[14] R. E. Bryant, “Graph-based algorithms for boolean function manipula-
tion,” IEEE Transactions on Computers, vol. 35, no. 8, pp. 677–691,
1986.

[15] L. Beadle and C. Johnson, “Semantically driven crossover in genetic
programming,” in Proceedings of the IEEE World Congress on Compu-
tational Intelligence, (Hong Kong), pp. 111–116, IEEE, 1-6 June 2008.

[16] M. Yangiya, “Efficient genetic programming based on binary decision
diagrams,” in 1995 IEEE Conference on Evolutionary Computation,
vol. 1, (Perth, Australia), pp. 234–239, IEEE Press, 29 Nov. - 1 Dec.
1995.

[17] R. M. Downing, “Evolving binary decision diagrams using implicit
neutrality,” in Proceedings of the 2005 IEEE Congress on Evolutionary
Computation (D. Corne, Z. Michalewicz, M. Dorigo, G. Eiben, D. Fogel,
C. Fonseca, G. Greenwood, T. K. Chen, G. Raidl, A. Zalzala, S. Lucas,
B. Paechter, J. Willies, J. J. M. Guervos, E. Eberbach, B. McKay,
A. Channon, A. Tiwari, L. G. Volkert, D. Ashlock, and M. Schoenauer,
eds.), vol. 3, (Edinburgh, UK), pp. 2107–2113, IEEE Press, 2-5 Sept.
2005.

[18] W. B. Langdon and R. Poli, Foundations of Genetic Programming.
Springer-Verlag, 2002.

[19] L. Beadle, “Epoch X - Genetic Programming Analysis Software.”
http://www.epochx.com/epochx/default.asp, 2007-2008.

[20] F. Somenzi, “Cudd: CU Decision Diagram Package release.”
http://vlsi.colorado.edu/ fabio/CUDD/, 1998.

[21] J. Whaley, “JavaBDD.” http://javabdd.sourceforge.net/, 2007.
[22] R. Poli, W. B. Langdon, and S. Dignum, “On the limiting distribution

of program sizes in tree-based genetic programming,” Technical Report
CSM-464, Department of Computer Science, University of Essex, Dec.
2006.

[23] S. Luke, “Modification point depth and genome growth in genetic
programming,” Evolutionary Computation, vol. 11, pp. 67–106, Spring
2003.

[24] T. Soule and R. B. Heckendorn, “An analysis of the causes of code
growth in genetic programming,” Genetic Programming and Evolvable
Machines, vol. 3, pp. 283–309, Sept. 2002.

[25] S. Luke, “Code growth is not caused by introns,” in Late Breaking
Papers at the 2000 Genetic and Evolutionary Computation Conference
(D. Whitley, ed.), (Las Vegas, Nevada, USA), pp. 228–235, 8 July 2000.

[26] P. Nordin, F. Francone, and W. Banzhaf, “Explicitly defined introns
and destructive crossover in genetic programming,” in Proceedings of
the Workshop on Genetic Programming: From Theory to Real-World
Applications (J. P. Rosca, ed.), (Tahoe City, California, USA), pp. 6–22,
9 July 1995.

[27] S. Minato, “Implicit manipulation of polynomials using zero-suppressed
bdds,” in EDTC ’95: Proceedings of the 1995 European conference
on Design and Test, (Washington, DC, USA), p. 449, IEEE Computer
Society, 1995.

1342 2009 IEEE Congress on Evolutionary Computation (CEC 2009)

