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Manipulations of encoding strength and stimulus class can lead to a simulta-
neous increase in hits and decrease in false alarms for a given condition in a
yes/no recognition memory test. Based on signal detection theory, the strength-
based ‘mirror effect’ is thought to involve a shift in response criterion/threshold
(Type I), whereas the stimulus class effect derives from a specific ordering of the
memory strength signals for presented items (Type II). We implemented both
suggested mechanisms in a simple, competitive feed-forward neural network
model with a learning rule related to Bayesian inference. In a single-process
approach to recognition, the underlying decision axis as well as the response
criteria/thresholds were derived from network activation. Initial results repli-
cated findings in the literature and are a first step towards a more neurally
explicit model of mirror effects in recognition memory tests.

1. Introduction

The accommodation of mirror effects in recognition tests has long posed

a puzzle for memory researchers and has caused them to revise their as-

sumptions of the underlying decision process (for a review, see Ref. 1). In

a typical verbal yes/no recognition test, a list of individual words is pre-

sented during a study phase. In a subsequent test phase, the studied old

words are randomly interleaved with new, not previously presented, words.

For each test item, participants have to give a response, indicating whether

they think it is old (‘yes’ response) or new (‘no’ response). The resulting

decision matrix contains four possible outcomes: hits (‘yes’ responses to old

items), misses (‘no’ responses to old items), false alarms (‘yes’ responses to

new items) and correct rejections (‘no’ responses to new items).

A mirror effect occurs when there are two conditions that differ in their
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ease of recognition, and the easier condition shows not only a higher hit

rate than the harder condition, but (perhaps surprisingly) also a lower false

alarm rate.2 While the generality of this effect has been questioned (e.g.

Ref. 3), it is generally accepted as a ‘regularity of recognition memory’ (e.g.

Ref. 4, p.177).

We introduce theories that explain which mechanisms may give rise to

mirror effects, and describe a preliminary neural network model implement-

ing these in a biologically plausible way.

2. Signal detection theory and the mirror effect

Conventionally, recognition decisions are analyzed from a signal detection

perspective (for a detailed introduction, see Ref. 5). Two underlying fac-

tors are assumed: the strength of the memory signal elicited by a test

itema, and its relation to the placement of the participant’s response crite-

rion/threshold.

Memory signals for old and new items are represented as two Gaussian

distributions of unequal variance.6 The variance of the old distribution ex-

ceeds that of the new distribution, as it reflects the variability of learning in

the study phase in addition to noise.7 The distance between the means of

the old and new distributions (in units of standard deviation) determines

the ease of discrimination and is termed d′.

The criterion/threshold can be thought of as a single point along the

strength-of-evidence axis. Test items whose memory signal exceeds this cri-

terion/threshold value receive a ‘yes’ response, resulting in hits for old items

and false alarms for new items. An optimal decision criterion/threshold

maximizes correct responses and would be placed at the point of intersec-

tion of the old and new distributions.

Based on this signal detection framework, it is thought that two mech-

anisms can give rise to a mirror effect: shifts in the absolute placement of

the response criterion/threshold along the strength-of-evidence axis (Type

I) and changes in the underlying distributions (Type II).8

2.1. Type I mirror effects

Type I mirror effects (see Fig. 1) are usually observed for strength manip-

ulations of otherwise identical stimulus materials.9 For example, repeating

aWhether the signal is based on a single continuous variable, combines a continuous with
a dichotomous variable or involves a second independent process, is beyond the scope of
this paper.
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half of the items in the study phase will lead to more hits and fewer false

alarms compared to items presented only once.

Repetition has long been shown to lead to more accurate and robust

encoding (e.g. Ref. 10), so that the mean of the strong old condition (repeat

presentation) tends to be located further along the decision axis (further to

the right) than that of the weak old condition (single presentation). This is

also reflected by a larger d′ value in the strong condition.

Assuming the mean signal of the new distribution remains constant,

participants have to shift their decision criterion/threshold upwards (to the

right) to maintain an optimal response strategy. This criterion/threshold

shift accounts for fewer false alarms in the strong condition, while the simul-

taneous upwards (to the right) movement of the old distribution explains

the increased hit rate. Note that there is only a single new distribution in

a Type I mirror effect.
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Fig. 1. Type I mirror effect: Underlying distributions and response criteria/thresholds.

2.2. Type II mirror effects

Type II mirror effects (see Fig. 1) are usually observed for manipulations of

stimulus class, for example where high- and low frequency words are pre-

sented during both study and test. In this case, no criterion/threshold shift

is observed even if explicit cues are provided about which items are of high-

and low frequency;8 yet the low frequency words consistently produce lower

false alarm- and higher hit-rates. Given that low frequency words tend to

have fewer definitions and are used in less varied contexts, they are thought

to elicit a lower strength memory signal than high frequency items when
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new. By the same token, they are also more accurately encoded, explaining

the advantage for recognition of low frequency old items.11,12 It has also

been proposed that due to their comparative ‘novelty’, low frequency words

elicit increased attention and therefore more elaborative processing.2,13 As

a result of the increased separation of the old and new distribution for

low-frequency words, d′ is larger than for high-frequency words.
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Fig. 2. Type II mirror effect: Underlying distributions and response criterion/threshold.
LF = low frequency words, HF = high frequency words.

3. Our model

Although there are a large variety of single- and dual-process models of

recognition (e.g. Ref. 14,15, for a review, see Ref. 7), not all address mir-

ror effects. Those that do are often single-process Bayesian models9,12,16,17

(but see e.g. Ref. 18 for an exception). While theoretically pleasing, such

Bayesian models largely ignore issues of neural implementation by using

mathematical quantities without specifying how these might be calculated

by the brain. In this paper, we present a first step towards a neurally more

detailed model of the mirror effect in yes/no recognition memory tests.

We use McClelland and Chappell’s subjective likelihood model16 as a

starting point, as it reproduces a wide variety of recognition memory phe-

nomena. As in their model, each simulation run emulates a yes/no recog-

nition test in which a participant is presented, one ‘word’ at a time, with a

single, multi-item study list. Study items are learned, that is encoded into

memory. In a subsequent test phase, (studied) old items are mixed with

new, not previously presented, items. No learning occurs at test, but stored
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information about each presented item is retrieved and a yes/no decision is

made according to its position relative to the response criterion/threshold.

We preserved a number of the implementation ideas but deviate from

their key idea that the recognition decisions are based on a likelihood eval-

uation: in our model, the decision axis represents simple memory trace

strength often termed ‘familiarity’.

The model is a simple two-layer feed-forward network with a competitive

Conditional Principal Component Analysis learning rule (CPCA, Ref. 19)

using Winner-Takes-All (WTA). We use distributed representation of items

on the input layer, but a localist representation on the output layer. Each

item is a binary vector of ‘features’ (such as orthographic properties or

semantic and contextual associations) across the 500 units of the input

layer. Fifty randomly chosen features are active (1), all others are inactive

(0), with the exception of low frequency items, which have one fewer active

features. This reflects the previously mentioned property that low frequency

items have fewer definitions and appear in fewer contexts. Each stimulus

class comprises 30 such patterns. Initially, the output layer consists of 120

detectors. These are reduced to a maximum number of 60 (for 2 classes of

30 items) after learning, so that invariably, one detector comes to encode

one item presented during the study phase (old items). The exact number is

subject to constraints of the learning algorithm, which allows the possibility

that a single detector comes to encode multiple items, but the initial weight

settings keep the probability of this low.

In the study phase, items are presented in random order. In the simu-

lation of a Type I mirror effect (strength-based), half of the items at study

are presented twice whilst all other parameters are kept constant. In the

simulation of a Type II mirror effect (frequency-based), half the presented

patterns are of low frequency, with one less active input unit and a higher

learning rate. The latter reflects the previously discussed increased atten-

tion to low frequency items. Weights between the input and output layer

are initialized to random values in the range [0.45–0.55], which is the ini-

tial conditional probability that a given input unit is active for a specific

detected item. When an input pattern is presented, competitive winner-

takes-all learning takes place. The activation of each detector (denoted yj)

is calculated by feeding its summed, weighted and normalized net input

(denoted ηj , Eq. 1) through a sigmoid function with a gain term λ = 10

and bias term β = 0.5 (Eq. 2), where N is the number of active units in an

input pattern.
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ηj =
1

N

∑

i

xi wij (1)

At this stage, Gaussian noise is added G ∼ N(0, 0.032).

yj = G +
1

1 + eλ(−ηj+β)
(2)

Weights of the most active detector are adjusted using a CPCA Hebbian

learning rule (Eq. 3, Ref. 19), bounded between [0–1]. Weights between

active input units and detectors are increased and connections between

active detectors and inactive input units are decreased. The rate of change

is determined by the learning constant ǫ. (No change occurs for weights

to inactive detectors, unlike for some other biologically plausible Hebbian

learning rules.b)

∆wij = ǫ yj(xi − wij) (3)

For each trial (that is, for each presented item in the study phase), the noisy

activation of the winning detector is added to a weighted average (denoted

avgmax). Relative proportions are determined by the time constant τ , which

was set to 0.7, so that the current trial contributes 0.3 and the previous

average 0.7.

avgmax(t) = τ avgmax (t − 1) + (1 − τ) yj (4)

In Equation 4, yj denotes the activation of the winning detector and t

indexes trials, i.e. patterns being presented to the network. This ‘time av-

eraging’ is a simple and efficient method used by biological neurons for in-

creasing the signal-to-noise ratio.20 Initially, all time averages have a value

of 0.5 to indicate that no information is known about the relationship be-

tween the detector activation and the input feature activation. In the Type

I mirror effect simulations, time averages for weak old and strong old items

are calculated throughout the study phase. These are based on the noisy

activation value of the most active detector for a given pattern. In the Type

II mirror effect simulation, a single time average for old items is calculated

by collapsing across high and low frequency words.

On completion of the study phase, but before the test phase, thirty

random new patterns are generated per condition (Type I simulation: new,

Type II simulation: weak class new, strong class new). These are presented

bWe would like to thank Max Garagnani for pointing this out.
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Table 1. Model generated data for Type I and Type II mirror effects over 100 simu-
lations. Hits and false alarms (FA) are shown in percentages. d′ values reflect the ease
of discrimination. Criteria/thresholds are based on estimated activation averages.

Weak cond. Strong cond. High freq. Low freq.

Hit 75.100 91.767 80.767 96.400
FA 7.000 2.900 16.400 1.1
d
′ 2.153 3.285 1.847 4.089

Criterion/Threshold .541 .558 0.550

to the network using the fixed learned weights from the study phase. Time

averages are calculated based on network activation as before (see Eq. 4).

For the Type II simulation, the time average is collapsed across high and

low frequency words to generate a single time average for new items.

In the test phase, previously presented items are mixed with an equal

number of new items and presented in random order. Activation values

are calculated as before. For simplicity, we assume an unbiased response

criterion/threshold in each simulation, located half-way between the es-

timated average activation of the maximally active detector for old and

new items (i.e. avgmax), both derived prior to the test phase (see Eq. 4).

The criterion/threshold is based on estimates rather than actual values, as

participants are assumed not to have access to this information.21

In the Type I mirror effect simulation (strength-based), two crite-

ria/thresholds are used: one between new and weak old items (single pre-

sentation) and one between new and strong old items (repeat presentation).

This represents the notion that on average, participants have a higher feel-

ing of familiarity for repeated items and thus require a higher activation

level before declaring these to be old. In contrast, weak old items elicited a

lower level of memory activation, so that a less stringent criterion/threshold

is adopted.8

In the Type II mirror effect simulation (stimulus class based), a single

decision criterion/threshold is calculated, which collapses new and old items

across low- and high frequency. This is based on the observation that par-

ticipants do not appreciate that low frequency items are more memorable,

but instead adopt a single response criterion/threshold, even if provided

with explicit cues about the item type.8

4. Results

Results for 100 simulation runs of Type I and Type II mirror effects are

given in Table 1 and depicted in Fig. 3 and Fig. 4. Distributions are plotted
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for the noisy activation values for the most active detector by item class.

As previously suggested, criteria/thresholds were placed in an unbiased

‘optimal’ way, half-way between the estimated activation means for old and

new items.

4.1. Type I mirror effect

In the Type I mirror effect simulation (strength-based), strong and weak old

items differed only by the number of repetitions during the study/learning

phase. Weak items were presented once, strong items twice, both with a

learning constant ǫ = .05. In line with empirical data, new items, whose

representation did not differ, form a single distribution (see Fig. 3).
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Fig. 3. Type I mirror effect simulations: Frequency (y-axis) distributions for actual max-
imal activation values (x-axis) per item type, based on 100 experimental runs. Response
criteria/thresholds for weak old (dash-dot line) and strong old items (short-dashed line)
are placed mid-way between new and old estimated maximal activation averages.

Distributions of weak and strong old items separate due to more accu-

rate encoding of the latter, resulting in a larger d′ in the strong condition.
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Old items have a larger variance than new items as they were also subject to

variability during learning. The response criterion/threshold in the strong

condition has shifted upward as a function of the higher estimated mean

activation of strong old items. Hits and false alarms follow a mirror effect

pattern (see Table 1).
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Fig. 4. Type II mirror effect simulations: Frequency (y-axis) distributions for actual
maximal activation values (x-axis) per item type, based on 100 experimental runs. A
single response criterion/threshold (short-dashed line) is used for high- and low frequency
items and placed mid-way between collapsed new and old estimated maximal activation
averages.

4.2. Type II mirror effect

In the Type II mirror effect (stimulus class based) simulation, low-frequency

differed from high frequency items in two respects. They had one less ac-

tive unit (49 compared to 50), which was meant to reflect the fact that

low-frequency words tend to have fewer definitions and are thus used in

less varied contexts.11,12 They also had a higher learning rate η than high
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frequency items (0.09 compared to 0.04), simulating better encoding due

to increased attention to their comparative ‘novelty’.2,13 Based on Stretch

and Wixted’s findings,8 a single criterion/threshold was used for high- and

low frequency items. The model reproduces a Type II mirror effect, with

appropriate hits, false alarms and d′ values (see Fig. 4 and Table 1).

5. Conclusions and further work

We have presented a neural network model of memory processes underlying

yes/no decisions in a recognition memory test, which reproduces Type I

and Type II mirror effects. The approach takes inspiration from Bayesian

models of recognition memory, especially from McClelland and Chappell’s

subjective likelihood model.16

One of the most significant differences between the approach presented

here and existing Bayesian models8,12,16,17 is that we obtain a mirror effect

without an explicit likelihood ratio calculation. We have shown here that

the two basic classes of mirror effects can be generated from a simple,

competitive learning neural network in which the values for the familiarity

axis are directly generated from the activation of the winning detectors.

The simplicity of this approach, which is based on a signal detection, single-

process view of recognition memory, along with the direct calculation of the

criterion/threshold from neural activation are the key benefits of the model

we have introduced.

A limitation of our model concerns the treatment of low frequency

words. In order to replicate Type II mirror effects, we had to combine

two assumptions. Firstly, low frequency words elicited increased amounts

of attention compared to high frequency words,2,13 which was reflected by

their higher learning rate. Secondly, low frequency words tend to have fewer

definitions and are associated with fewer contexts, which was reflected by

one less active input unit or ‘feature’ for this stimulus class.11,12 Some

competitor models distinguish low- and high frequency through just one

manipulation.2,11–13

We further assume that neurons can perform a maximum-like operation

(which results in an output signal that approximates the maximum among

several input signals) to calculate response citeria/thresholds. This oper-

ation has been shown to be approximated by complex cells in the visual

cortex of cats and neurons in Area V4 of macaques22 and demonstrated in

a neurophysiologically plausible way for feed-forward models.23

We also assume that humans are able to distinguish high-strength from

low-strength stimuli, yet we do not implement how this might be achieved.
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Whilst this is not ideal, this assumption is common in the literature (e.g.

Ref. 8).

Our model shares some similarities with Bogacz, Brown and Giraud-

Carrier’s familiarity discrimination model.24 This model closely reproduces

observed activation patterns of ‘novelty’ neurons in the perirhinal cortex

with a two-phase three-layer network (binary input, familiarity discrimina-

tion, decision) with primarily feed-forward connections, biologically plau-

sible parameters and Hebbian learning rules. While the authors did not

use sparse coding, they demonstrated by simulation that the network’s be-

haviour would essentially remain unchanged.

During the critical initial period (the familiarity discrimination phase),

the Bogacz et al.24 model’s familiarity discrimination neurons (FDNs) are

likely to become more active for familiar patterns than for novel ones. This

is because Hebbian learning leads the synaptic weights to reflect the cor-

relation between the active inputs for a given FDN. The number of FDNs

that can become active for a given input are limited by fixed high synaptic

weights between specific input and output units in combination with inhi-

bition. Our implementation of a CPCA learning rule in combination with

winner-takes-all achieves similar results, although we do not use homo-

synaptic long-term depression.

In comparison to Bogacz et al.,24 we are less explicit in relating our

model parameters back to functional neuroanatomy and we do not analyse

our model storage capacity mathematically. However, the focus on mod-

elling mirror effects and the use of a signal detection framework distin-

guishes our work.

For further work, we would like to use a principled approach (such as

maximum likelihood estimation) for the setting of free parameters and ex-

tend the model to generate reaction time data. We want to move from

qualitative to quantitative modeling. We aim to generalize the model to

cases in which mirror effects are predicted but not observed and eventually

to a broader range of recognition memory phenomena (e.g. the list length

effect). Eventually, the model could be refined and extended to emulate

known properties of functional neuroanatomy, like, for example, Norman

and O’Reilly’s model.15

Acknowledgements

We would like to thank our anonymous reviewers for their comments which

helped to improve this paper.



December 6, 2008 2:45 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

References

1. R. Ratcliff and G. McKoon, Oxford Handbook of Memory (OUP: New York,
2000), ch. Memory models, pp. 571–582.

2. M. Glanzer and J. K. Adams, Memory and Cognition , 8 (1985).
3. R. L. Greene, The Foundations of Remembering: Essays in Honor of Henry

L. Roediger, III (Psychology Press: Hove, UK., 2007), ch. Foxes, Hedgehogs,
and Mirror Effects: The Role of General Principles in Memory Research, pp.
53–66.

4. G. Stenberg, M. Johansson and I. Rosén, Acta Psychologica , 174 (2006).
5. N. A. Macmillan and C. D. Creelman, Detection Theory: A user’s guide, 2nd

edn. (Psychology Press: Hove, UK., 2005).
6. R. Ratcliff, C. F. Sheu and S. D. Gronlund, Psychological Review 99, 518

(1992).
7. J. T. Wixted, Psychological Review 114, 152 (2007).
8. V. Stretch and J. T. Wixted, Journal of Experimental Psychology: Learning,

Memory and Cognition 24, 1379 (1998).
9. M. Glanzer, J. K. Adams, G. J. Iverson and K. Kim, Psychological Review

100, 546 (1993).
10. A. M. Glenberg, Memory and Cognition 7, 95 (1979).
11. M. Glanzer and N. Bowles, Journal of Experimental Psychology: Human

Learning and Memory 2, 21 (1976).
12. R. M. Shiffrin and M. Steyvers, Psychonomic Bulletin and Review 4, 145

(1997).
13. M. Glanzer and J. K. Adams, Journal of Experimental Psychology: Learning,

Memory and Cognition 16, 5 (1990).
14. R. A. Diana, A. P. Yonelinas and C. Ranganath, Trends in Cognitive Sciences

11, 379 (2007).
15. K. A. Norman and R. C. O’Reilly, Psychological Review 110, 611 (2003).
16. J. L. McClelland and M. Chappell, Psychological Review 105, 724 (1998).
17. M. Murdock, Psychonomic Bulletin and Review 10, 570 (2003).
18. M. Cary and L. M. Reder, Journal of Memory and Language 49, 231 (2003).
19. R. C. O’Reilly and Y. Munakata, Computational Explorations in Cognitive

Neuroscience: Understanding the Mind by Simulating the Brain (Cambridge:
MIT Press, 2000).

20. J. L. McClelland, Psychological Review 86, 287 (1979).
21. D. L. Hintzman, Journal of Experimental Psychology: Learning, Memory and

Cognition 20, 201 (1994).
22. M. A. Giese and T. Poggio, Nature Reviews Neuroscience 4, 179 (2003).
23. T. Serre, M. Kouh, C. Cadieu, U. Knoblich, G. Kreiman and T. Poggio, A

theory of object recognition: computations and circuits in the feedforward path

of the ventral stream in primate visual cortex, tech. rep., MIT: Cambridge,
MA (2005), CBCL Paper 259/AI Memo 2005-036.

24. R. Bogacz, M. W. Brown and C. Giraud-Carrier, Journal of Computational

Neuroscience 10, 5 (2001).


