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ARTICLE INFO ABSTRACT

Keywords: Blastocystis is the most prevalent intestinal protist in humans, yet its role in gut health remains poorly under-
Blastocystis stood. Increasing evidence suggests subtype-specific interactions with the gut microbiome and metabolome may
Microbiome underlie its variable associations with health and disease. In this pilot study, we performed an integrated analysis
EM:IEZE;i;H;lCS of the microbiota and metabolite profiles of nine Blastocystis subtypes (ST1-ST9) grolwn in vitro using xenic
Prokaryome cultures. Using 16S rRNA amplicon sequencing and proton nuclear magnetic resonance ("H-NMR) metabolomics,

we characterised the microbial communities and extracellular metabolites across subtypes. ST3 exhibited the
most distinct microbiome and metabolomic profile, characterised by a significant enrichment of short-chain fatty
acids (SCFAs) and amino-acid derivatives. Benzoate, a known antimicrobial, was uniquely downregulated in ST3.
Linear discriminant analysis identified several bacterial genera, such as Methanobrevibacter and Enterobacter, as
biomarkers for ST3. Correlations between key metabolites and microbial taxa suggest potential syntrophic in-
teractions. These findings suggest that individual Blastocystis subtypes establish distinct microenvironments in
vitro, with implications for their ecological roles in vivo. Our study provides a foundational framework for un-
derstanding subtype-specific biology and offers a platform for improving culture conditions and investigating
host-microbe interactions.

Multi-omics

1. Introduction

The human gut harbours a complex ecosystem of microorganisms,
collectively known as the gut microbiota, which plays a pivotal role in
host physiology, immune modulation, and overall health (Lozupone
et al., 2012). Advances in high-throughput sequencing and systems
biology have revealed significant associations between microbiota
composition and a wide range of host outcomes, including metabolic
regulation, neurodegeneration, immune homeostasis, and gastrointes-
tinal health (Cani et al., 2007; Abt et al., 2012; Fan and Pedersen, 2021;
Fernandez-Calvet et al., 2024). While much of this research has focused
on bacteria, the eukaryotic fraction of the gut microbiome - particularly
protists — remains underexplored.

Blastocystis, an anaerobic stramenopile, is the most prevalent intes-
tinal protist in humans, with an estimated global prevalence affecting up
to two billion people (Scanlan and Stensvold, 2013). Despite its
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ubiquity, Blastocystis remains an enigmatic organism: its pathogenicity
is controversial, with reports ranging from its association with gastro-
intestinal symptoms to its presence in asymptomatic individuals and
even correlations with favourable health indicators. This dichotomy has
led to increasing speculation that subtype (ST)-specific variation may
influence host outcomes, yet the mechanisms underlying this variation
remain poorly understood.

A growing body of evidence suggests that Blastocystis is intricately
linked to the structure of the gut microbiota. Some studies suggest that
its presence correlates with increased bacterial diversity and an eubiotic
state (Kodio et al., 2019; Tito et al., 2019), while others have associated
certain subtypes with reduced diversity and dysbiosis (Deng et al.,
2022). This raises a fundamental question: does Blastocystis adapt to
specific pre-existing microbial communities, or does it actively shape
microbial communities through competitive and/or mutualistic
interactions?
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One of the main challenges in deciphering Blastocystis biology is the
difficulty in establishing axenic cultures, which is evident from the small
number of publications with cultures of this nature (Ho et al., 1993;
Yason et al.,, 2019; Deng and Tan, 2022). Many subtypes appear to
require co-cultured bacterial communities for survival (Zierdt, 1991;
Rajamanikam et al., 2023), suggesting possible metabolic dependencies
or syntrophic relationships. Understanding the ecological and metabolic
requirements for different Blastocystis subtypes in vitro would offer
critical insights into their role in the gut ecosystem.

Here, we present an integrated microbiome and metabolomics
analysis of the nine Blastocystis human subtypes (ST1-ST9) in xenic
culture. Using 16S rRNA gene sequencing and nuclear magnetic reso-
nance (NMR)-based metabolomics, we aimed to characterise the mi-
crobial community composition and metabolic profiles associated with
each ST. By comparing these profiles, we seek to identify subtype-
specific differences that may underlie ecological strategies of Blasto-
cystis and provide clues for optimising culture conditions. This study
represents the first attempt to profile the microbiota-metabolite land-
scape across a broad range of Blastocystis subtypes, laying the ground-
work for future efforts to disentangle its role in the human gut.

2. Materials and methods
2.1. Invitro cultivation of Blastocystis

Xenic cultures of nine STs of Blastocystis (kindly provided by H.
Yoshikawa) were maintained in 12 ml of modified Jones’ medium
(Jones, 1946), at 37 °C, in microaerophilic conditions. The isolates used
were ST1 HJ96A-29 (GenBank: AB070989), ST2 HJ96-1 (GenBank:
AB070987), ST3 HJ96A-26 (GenBank: AB070988), ST4 HJ01-7 (Gen-
Bank: AY244621), ST5 SY94-1 (UNK), ST6 HJ96AS-1 (GenBank:
AB070990), ST7 HJ97-2 (GenBank: AB070991), ST8 MJ99-132 (Gen-
Bank: AB107970) and ST9 HJ00-4 (GenBank: AF408425). ST5 and ST8
originated from pig and lemur samples, respectively, whilst all other STs
originated from human samples (Table 1).

Table 1
Culture strain and origin information.
Subtype Strain Accession Deposition Origin Isolation
number date medium
ST1 HJ96A- AB070989 April 2003 Human  Diphasic egg
29 slant medium (
Yoshikawa et al.,
1995)
ST2 HJ96-1 AB070987 April 2003 Human  Diphasic egg
slant medium (
Yoshikawa et al.,
1995)
ST3 HJ96A- AB070988 April 2004 Human  Diphasic egg
26 slant medium (
Yoshikawa et al.,
1995)
ST4 HJO01-7 AY244621 February Human  Jones’ medium (
2004 Jones, 1946)
STS5 SY94-1 UNK UNK Pig UNK
ST6 HJ96AS- AB070990 April 2003 Human  Diphasic egg
1 slant medium (
Yoshikawa et al.,
1995)
ST7 HJ97-2 AB070991 April 2003 Human Diphasic egg
slant medium (
Yoshikawa et al.,
1995)
ST8 MJ99- AB107970 May 2017 Lemur UNK
132
ST9 HJ00-4 AF408425 February Human  Jones’ medium (
2004 Jones, 1946)

Abbreviation: UNK, unknown.
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2.2. Experimental set-up

Six tubes of each ST in modified Jones’ medium were prepared.
Samples were collected at 24-h intervals for six consecutive days,
forming time-points TO through T5. Presence of Blastocystis was
confirmed microscopically, but cell counts were not performed. Samples
for DNA extraction and metabolite extraction were collected daily as
two 1-ml aliquots from culture tubes and stored at —20 °C until pro-
cessing. Culture tubes for each day were disposed of after acquiring each
aliquot. Since this is an exploratory pilot study, the experiment was only
completed to one biological replicate.

2.3. DNA extraction

A 1-ml liquid sample was thawed and centrifuged at 14,000x g for
10 min, to pellet the microorganisms, after which the supernatant was
removed and discarded. DNA was extracted from the pellet using the
PureLink™ Microbiome DNA purification Kit (Cat. No. A29790; Pure-
Link, Waltham, Massachusetts, USA), following the manufacturer’s
standard protocol for microbial culture samples (Pub. No.
MANO0014332). DNA concentration and purity ratios were measured
using a BioDrop pLite+ Microvolume Spectrophotometer. Purified DNA
was sent externally to Novogene for 16S amplicon sequencing using the
[llumina NovaSeq 6000 platform.

2.4. 16S rRNA sequencing

Primers 341F (5-CCT AYG GGR BGC ASC AG-3) and 806R (5-GGA
CTA CNN GGG TAT CTA AT-3') were used to amplify the V3-V4 hy-
pervariable region of the 16S rRNA gene before sequencing samples
using the Illumina NovaSeq platform. Raw reads were processed using
Lotus2 (Ozkurt et al., 2022). Minimap2 (Li, 2018) was used for chimaera
checking/removal. Ribosomal Database Project (RDP) Bayesian Classi-
fier (Cole et al., 2014) was used to cluster reads at 97% similarity to
Operational Taxonomic Units (OTUs). Taxonomy was assigned using the
Basic Local Alignment Search Tool (BLAST) against the Greengenes2
database (version 2022.10) (DeSantis et al., 2006).

2.5. Metabolite extraction

A 1-ml liquid sample was added to 200 mg of 0.4 mm glass beads
with 1 ml 100% methanol, for a final concentration of 50% methanol.
The sample was vortexed for 30 s to mix before incubating at room
temperature for 3 min, and vortexed for 30 s again. The sample was
centrifuged at 10,000x g for 15 min at 4 °C, and the supernatant was
kept. The supernatant was snap-frozen in liquid Ny and stored at —80 °C
until lyophilisation. Lyophilisation was performed by freeze-drying the
sample overnight (Newton et al., 2025).

2.6. Nuclear magnetic resonance

One-dimensional (1D) proton nuclear magnetic resonance (NMR)
spectroscopy was conducted using a 600 MHz AVANCE III spectrometer,
equipped with a QCI-P cryoprobe (Bruker) at 298K. Samples were
randomised to minimise batch effects during NMR sample preparation
and spectral acquisition. The transmitter frequency was 600.05 MHz.
Due to high sample salt content, 220 pl samples were measured in 3 mm
NMR tubes. The spectrometer was locked to D20 (5% v/v), with 0.1%
w/v DSS (sodium trimethylsilylpropanesulfonate) used as a reference
compound. Automatic tuning and shimming were performed for each
sample, as well as the 90° pulse calibration. The receiver gain was
limited to a maximum of 128. For metabolite abundance analysis, data
were obtained from Carr-Purcell-Meiboom-Gill (CPMG) spectra, using a
CPMG period of 76.8 ms, which included 128 CPMG cycles to suppress
protein signals. The CPMG spectra were acquired with 128 scans and 16
dummy scans, using a spectral width of 16.02 ppm (9615.38 Hz),
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resulting in an acquisition time of 1.70 s. A relaxation delay of 3 s was
applied, with a total data size of 32,768 points, for a total recycle time of
4.7 s. For all the experiments, the water resonance was automatically
optimised for maximum suppression (olp ~4.699 ppm). Water sup-
pression was achieved using a pulse sequence with a field strength of
49.96 Hz, incorporating four 1-ms smooth square gradient pulses with
amplitudes of —13.17, 52.68, —17.13, and 68.52%. After acquisition,
NMR spectra were processed in Bruker TopSpin 3.6.3, which involved
line broadening, phasing and baseline correction. Spectra were then
exported to Chenomx NMR Suite 8.4 and fitted to the compounds in the
Chenomx 600 MHz database to obtain relative concentrations.

2.7. Statistical analysis

Metabolomics data were visualised and statistically analysed using R
v.4.4.2. Data from all timepoints were pooled, normalised by median,
and scaled by auto-scaling. Principal Components Analysis (PCA) was
performed using the stats package in base R, comparing the nine
different STs. Permutational Multivariate Analysis of Variance (PER-
MANOVA) was performed using the vegan package to obtain the R>-, F-,
and P-values. Pairwise comparisons were then made using the pairwi-
seAdonis package, to identify which groups showed significant differ-
ences. Partial Least Squares-Discriminant Analysis (PLS-DA) was
performed using the pls package, and cross-validation was performed
using the leave-one-out cross-validation (LOOCV) method. Following
the initial findings, a two-way comparison was made between ST3 and
all the other STs. Fold change (FC) and T-tests were performed, and a
volcano plot of 1og2(FC) vs -log10(P) was plotted using ggplot, with a FC
threshold of 2.0 and P-value threshold of 0.05. AUROC (Area Under
Receiver Operator Characteristic) plots were generated using the
Biomarker Analysis function in MetaboAnalyst 6.0 (https://www.
metaboanalyst.ca/). Metabolites with AUC (Area Under Curve) values
of > 0.8 were considered good biomarkers to discriminate ST3 from
other STs. Metabolites deemed significant with fold change and T-tests
were fed into pathway analysis using the KEGGREST package in R
v.4.4.2 and mapped to the KEGG Orthology (KO) database. Data were
filtered to remove any non-microbial pathways.

Microbiome data were visualised and statistically analysed using R
v.4.4.2. The data were rarefied to a sample size of 40,000 using the
phyloseq package. The same package was used to calculate alpha di-
versity scores; Shannon, Chaol, and Simpson diversity indices, and
observed taxa were used. A Shapiro-Wilk test was performed to deter-
mine the normality of the data. Depending on the result, either Kruskal-
Wallis test and the Dunn test (with a Bonferroni P-adjustment) or
ANOVA and Tukey HSD statistical tests were used. These were for non-
normally distributed and normally distributed data, respectively. The
phyloseq object was also used for beta diversity analysis, where a Bray-
Curtis dissimilarity matrix was used to plot a Principal Coordinates
Analysis (PCoA). To these data, a Permutational Multivariate Analysis of
Variance (PERMANOVA) was performed using the vegan package to
obtain the R%, F-, and P-values. This was followed by pairwise com-
parisons using the pairwiseAdonis package, to identify which groups
showed significant differences. To visualise differences between the taxa
observed in each group, compositional plots were generated. Data were
aggregated to a specific taxonomical level for comparison. A Linear
Discriminant Analysis (LDA) Effect Size (LEfSe) plot was generated using
the microbial package to identify taxa at the genus level that can serve as
biomarkers for the ST3 group in comparison to the other STs. Significant
taxa for microbiome and significant metabolites for metabolome data
were combined using Spearman’s correlation, generated using the
microbiome: associate function of the microbiome package in R v.4.4.2,
and plotted as a heatmap.

3. Results

We chose one strain from each human Blastocystis subtype. Cultures
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were grown xenically in modified Jones’ medium, and daily samples
were taken for analysis. Samples were then processed for characterisa-
tion using metabolomics and 16S amplicon sequencing to characterise
differences in metabolite profiles and prokaryotic composition of
different STs. Due to the exploratory nature of the pilot study, experi-
ments were conducted with a single biological replicate to inform the
direction of future research in the area.

3.1. Metabolomics

We performed 'H-NMR metabolomics to investigate potential dif-
ferences in the metabolic activity of different strains of Blastocystis.
Principal Components Analysis (PCA), an unsupervised machine
learning method, was used to find principal components that explain
data variance. PERMANOVA test yielded an R%-value of 0.138, indi-
cating that 13.8% of the variation in the distance matrix was explained
by grouping samples by ST; however, the P-value showed the results are
not statistically significant (Supplementary Fig. S1). Pairwise compari-
sons were made between each ST (Supplementary Table S1). Compari-
son of each ST with the media control shows that the metabolites for
many of the STs remain consistent over the time course, with the dif-
ference between time points not being statistically significant
(Supplementary Fig. 5S2). We then used Partial-Least Squares Discrimi-
nant Analysis (PLS-DA) for exploratory visualization purposes
(Supplementary Fig. S3), and calculated the predictive power of the
model using leave-one-out cross-validation (LOOCV) (Supplementary
Fig. S4). The analysis separated ST3 from the rest of the STs, with ST1
and ST2 also forming distinguishable but less so clusters. Feature
importance was assessed using variable importance in projection (VIP)
scores. More specifically, the top 50 critical metabolites, exceeding the
VIP threshold of 1.2 were plotted (Fig. 1). Of these, the top 10 metab-
olites were putrescine, acetoin, 5,6-dihydrouracil, desaminotyrosine,
trigonelline, nicotinate, 2-hydroxyisobutyrate, cadaverine, 3-phenylpro-
pionate, and tyramine. The associated heatmap also showed that the
metabolite levels differed between STs: ST1-ST3 had high levels of
nearly all 50 metabolites, while the levels were lower in the rest of the
STs. Univariate analysis revealed 53 metabolites that were significantly
different between ST3 and all other STs. Of these, only benzoate was
downregulated in ST3. A volcano plot was generated using log2(fold
change) by -logl0(P-adjusted) to visualise these differences (Fig. 2).
Biomarker analysis using the Area Under Receiver Operating Charac-
teristics (ROC) Curve (AUROC) identified 28 metabolites that distin-
guished ST3 from other STs, including glycerate, galactitol, cadaverine,
2-aminoadipate, acetate, nicotinate, 2-hydroxyisocaproate, imidazole,
pi-methylhistidine, carnitine, creatine phosphate, theophylline, tyro-
sine, trigonelline, guanidoacetate, sarcosine, acetoin, fucose, phenylal-
anine, 3-hydroxyisovalerate, o-phosphocholine, dimethyl sulfone,
glucose-6-phosphate, carnosine, pyruvate, 5,6-dihydrouracil, benzoate,
and succinylacetone (Fig. 3).

Pathway enrichment analysis was performed to identify over-
represented metabolic pathways associated with the metabolites found
to be potential biomarkers for ST3 in this study (Supplementary Fig. S5).
These included methane metabolism, protein digestion and absorption,
glyoxylate and dicarboxylate metabolism, phosphotransferase system,
glycine, serine, and threonine metabolism, arginine and proline meta-
bolism, tyrosine metabolism, beta-alanine metabolism, pyrimidine
metabolism, and ABC transporters. None of these were significant when
considering the P-adjusted values. Although we cannot make solid bio-
logical conclusions from this plot, it is useful in generating hypotheses
for further investigation, such as the potential importance in methane
metabolism for processes like methanogenesis for obligate anaerobic
microorganisms (Thauer and Shima, 2008), and potentially differences
in amino acid metabolism pathways between STs, which could be
attributed to differences in microbiome composition.
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Fig. 1. Variable Importance in Projection (VIP) plot for all nine STs. The top 50 metabolites with VIP scores > 1.2 are displayed.
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Fig. 2. Volcano plot showing log2(FC) against -log10(P-adj) of ST3 versus the rest of the STs. Blue nodules are downregulated in ST3 vs other STs, red nodules are
upregulated in ST3 vs other STs. Benzoate was significantly downregulated in ST3. A total of 53 different metabolites, including tyrosine, galactitol, 2-aminoadipate,

acetate, and glycerate, were significantly upregulated in ST3.
3.2. Microbiome

Alpha diversity was assessed using the Shannon, Chaol, Simpson and
observed taxa indices (Fig. 4). The Chaol index, which takes into ac-
count richness and is sensitive to low-abundance taxa (e.g. singletons
and doubletons), revealed significant differences across all nine STs,
with all pairwise comparisons (Tukey HSD) showing statistical signifi-
cance. ST4, also known as the European subtype (Alfellani et al., 2013;
Beghini et al., 2017), exhibited the highest Chaol alpha diversity, and it
also had the highest number of observed taxa. ST7 consistently showed
the lowest alpha diversity across all diversity metrics and the lowest
number of observed taxa. This finding aligns with previous observations
in vivo (Deng et al., 2022). Beta diversity was calculated using the

Bray-Curtis dissimilarity index and visualised using Principal Co-
ordinates Analysis (PCoA) (Fig. 5). At the feature level, ST3 formed a
distant centroid separate from the other STs, indicating a different
bacterial composition in the culture of this ST. PERMANOVA analysis of
the Bray-Curtis matrix showed significant differences in community
composition between STs (Supplementary Table S2).

At the phylum level, nine phyla were identified: Actinobacteriota,
Bacteroidota, Desulfobacterota, Bacillota (ex-Firmicutes), Fusobacter-
iota, Methanobacteriota, Proteobacteria, Synergistota, and one uniden-
tified phylum (Supplementary Fig. S6). Of these, Proteobacteria
dominated across all STs, followed by Bacteroidota and Bacillota,
although the latter two appeared at lower relative abundances. Bacil-
lota, which are often reported as a dominant taxon of the gut
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Fig. 3. AUROC plots showing 22 metabolites that can be classified as biomarkers to distinguish between ST3 and other STs. Aside from benzoate, which was

inversely associated with ST3, the other metabolites were all positively associated with ST3 and can be used as biomarkers to identify it from other STs. These
metabolites are: glycerate, galactitol, cadaverine, 2-aminoadipate, acetate, nicotinate, 2-hydroxyisocaproate, imidazole, tyrosine, theophylline, trigonelline, sarco-
sine, fucose, acetoin, phenylalanine, 3-hydroxyisovalerate, dimethyl sulfone, carnosine, pyruvate, 5,6-dihydrouracil, and succinylacetone.

microbiome (Sun et al., 2023), were the least abundant in ST6, which
also had a high relative abundance of Synergistota. Fusobacteriota were
most abundant in ST5 but also noticeable in ST1. Relative abundances of
phyla remained stable over the 6-day experimental period, indicating
compositional stability over time.

At the genus level, 79 genera were identified. Data were filtered to
include only taxa representing > 1% of total reads across all samples.
After filtering, 13 genera remained, one of which was unclassified
(Fig. 6). Escherichia was the most abundant across all STs. Fusobacterium
was enriched in ST5 and ST1, Morganella in ST4, Pyramidobacter in ST6,
and Comamonas with ST8. The relative abundances of Pyramidobacter in
ST6 and Comamonas in ST8 increased over the 6-day experimental
period, whilst the rest of the identified genera remained fairly stable.

Genera representing < 1% of the total reads were also plotted to high-
light low-abundance taxa (Supplementary Fig. S7).

Due to the differences observed in ST3, it was chosen for exploratory
comparison against the other STs. A Linear Discriminant Analysis (LDA)
Effect Size (LEfSe) plot was generated (Fig. 7) to identify candidate taxa
that could potentially distinguish ST3 from the other STs. Genera with
LDA scores of > 2 or < —2 were considered discriminative, with 19
genera meeting this threshold. Nonetheless, as a single sample was
available per ST, this analysis remains exploratory.

The Spearman’s correlation heatmap (Fig. 8) was generated to
examine associations between genus-level taxa and the metabolites
found to be discriminative between ST3 and the other STs. The most
significant positive correlations were between: Lawsonibacter with
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Fig. 5. Principal Coordinates Analysis (PCoA) plot grouped by ST, at the feature level. ST3 exhibited a distinct bacterial composition compared to the other STs, and

PERMANOVA results were statistically significant.

glycerate; Clostridium with isocitrate and pyruvate; Cloacibacillus with
kynurenine, butanone, and melatonin; Pyramidobacter with melatonin;
Parabacteroides with butanone and melatonin; Phocaeicola with mela-
tonin and benzoate; Enterenecus with malate; Hungatella with butanone;
Olegusella with butanone and isocitrate; and Enterococcus with sarcosine.
The most significant negative correlations were between: Holdemania
with galactitol; Blautia with cadaverine; Lawsonibacter with kynurenine;
Acutalibacteraceae with cadaverine; Methanobrevibacter with trigonel-
line, nicotinate, and cadaverine; Parvimonas with butanone, glycerate,
and isocitrate; Peptoniphilus with butanone; Comamonas with sarcosine
and melatonin; Erysipelatoclostridium with galactitol; and Alistipes with
caffeine.

4. Discussion
This is the first study that integrates microbiome and metabolomic

characterisation of Blastocystis subtypes ST1 through ST9 in xenic cul-
ture. By characterising microbial communities and metabolite profiles

simultaneously, we provide an initial view of the in vitro microenvi-
ronments associated with each Blastocystis subtype, supporting the idea
of varying ecological strategies. Among all subtypes, ST3 consistently
emerged as the most distinct, both in terms of microbial composition
and metabolite profile.

ST1-ST3, which are the most common subtypes in humans (Alfellani
et al., 2013; Tito et al., 2019; Rudzinska and Sikorska, 2023), especially
in the Americas (Jiménez et al., 2019), clustered together based on
exploratory multivariate analyses, suggesting that they may share as-
pects of their metabolic profiles. ST3 showed marked separation from
the other subtypes, including other human-associated counterparts, in
both microbiome composition and metabolomic data. ST3 is also one of
the few subtypes that has yet to be successfully cultured axenically
(Shaw et al., 2025). Given the above, we propose that ST3 may depend
on key syntrophic interactions with bacteria for its growth and survival.
These findings thus suggest that the distinct xenic culture microenvi-
ronment of ST3 may be essential for growth and potentially reflect
subtype-specific interactions with bacterial communities.
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A particularly interesting finding was the depletion of benzoate in
ST3 cultures. Benzoate is a known antimicrobial compound and a pre-
cursor to hippurate, which is often associated with microbiota diversity
and host metabolic health (Chen and Zhong, 2018; Hertel et al., 2022).
Benzoate was also positively correlated with Phicaeicola. There is an
inverse relationship between benzoate and ST3, along with this me-
tabolite’s significant positive correlation with Phocaeicola. This pattern
suggests that reduced benzoate may reflect the lower abundance of
benzoate-producing taxa, such as Phocaeicola; however, causality cannot
be inferred, and it is unclear whether this relationship would exist in
vitro as it does in vivo. It remains unclear whether the observed pattern is
a result of competitive exclusion or if ST3 selectively thrives in
low-benzoate environments. Either way, the association between
metabolite levels and microbial composition highlights the complexity
of microbial-metabolite relationships that likely shape subtype-specific
microenvironments.

Pathway enrichment analysis revealed overrepresentation of several
key metabolic pathways, with many being those involved in amino acid
metabolism. This aligns with previous in vivo metabolomics studies of
Blastocystis, with many key metabolites shown to be lower in Blasto-
cystis-positive individuals (Betts et al., 2021; Newton et al., 2025),
including glycine and threonine. These same metabolites are highlighted
in the current enrichment analysis, suggesting that some aspects of in
vivo metabolic alterations are to a certain extent reflected under in vitro
xenic culture conditions (Newton et al., 2025).

Regarding the microbiome profiles, ST4 had the highest alpha di-
versity. This has also been previously observed in in vivo studies (Beghini
et al., 2017). This suggests that the association of this ST with diverse
microbial communities may be preserved in long-term xenic culture
conditions. While Proteobacteria dominated across all subtypes, likely
reflecting the effects of extended in vitro culturing and medium
composition, ST3 harboured a distinct assemblage of bacterial genera.
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Among these, Enterobacter, Klebsiella, and Comamonas, are facultative
anaerobes often considered pathobionts (Farooq et al., 2017; Ryan et al.,
2022). Their higher abundance in ST3 cultures hints that this subtype
may either tolerate or benefit from associations with opportunistic
bacteria, which could have implications for its behaviour in dysbiotic
guts. However, the functional role of these bacteria in supporting ST3
remains to be experimentally validated. Key genera such as Methano-
brevibacter and Enterobacter should be considered as potential candidates
for future co-culture experiments.

Members of the phylum Bacteroidota, such as Bacteroides and Para-
bacteroides, were also abundant in ST3 cultures. These taxa are typically
associated with producing short-chain fatty acids (SCFAs) such as ace-
tate, propionate, and succinate (Zafar and Saier, 2021; Shin et al., 2024).
These SCFAs were also elevated in ST3. However, expected correlations
between SCFA levels and producers like Blautia were not observed,
likely reflecting unmeasured dynamics, such as cross-feeding, but could
also be due to inevitable differences between this in vitro investigation
and what has been observed in vivo. For example, Methanobrevibacter,
although detected at low abundance, showed strong negative correla-
tions with key SCFAs, pyruvate, and other fermentation-associated
metabolites, consistent with its known methanogenic nature. This rai-
ses the possibility that it may act as a metabolic sink in these cultures.
Low-abundance taxa, such as this, highlight potential functional rele-
vance of microbes that may not be dominant. The enrichment of the
methane metabolism pathways in ST3, despite not reaching statistical
significance, further supports this interpretation. It is also important to
consider other genera that could be involved in metabolite pathways,
such as methane metabolism and metabolism of amino acids such as
serine, glycine, threonine, arginine, and proline. These findings suggest
the hypothesis that Blastocystis ST3 may coexist with or be influenced by
methanogenic taxa under specific culture conditions. However, further
studies are needed to validate such interactions in vivo, as the in vitro
nature of this investigation might not be representative of in vivo
interactions.

Overall, our results suggest that each Blastocystis subtype is associ-
ated with distinct microbial and metabolic profiles in xenic culture,
which highlight subtype-specific patterns that merit further

investigation. ST3, in particular, appears to have a unique profile, which
could contribute to its elusive axenisation and widespread occurrence in
human hosts.

This study offers the first insights into the microbial and metabolic
profiles of Blastocystis subtypes in xenic culture; however, several limi-
tations should be noted. The use of long-term in vitro cultures may have
selected for microbial communities that differ from those found in vivo,
particularly the overrepresentation of Proteobacteria. The strains used
in this study have been in culture for decades, so any conclusions are
applicable to these cultures, in these conditions. The absence of bio-
logical replicates limits the statistical power and transferability of our
findings, though consistent subtype-specific patterns were observed.
Additionally, the NMR-based metabolomics approach, although robust,
is constrained by the coverage of spectral databases and may overlook
low-abundance or microbe-specific metabolites. Finally, although xenic
cultures are informative for identifying potential syntrophic relation-
ships, future studies involving faecal samples with defined Blastocystis
subtype composition are needed to validate these observations under
physiologically relevant conditions.

5. Conclusions

Our findings highlight the value of integrating metabolomic and
microbiome profiling to explore the ecological complexity of microbial
eukaryotes, such as Blastocystis. Whilst this exploratory pilot study was
only completed to one biological replicate, the observed subtype-
specific metabolic and microbial patterns suggest that they may play
distinct functional roles. This subtype-based approach can help inform
efforts to optimise culture systems, develop candidate biomarkers, and
refine interpretations of Blastocystis in microbiome studies. More
broadly, our work reinforces the value of moving beyond bacterial-
centric models of the gut ecosystem to consider the diverse roles of
protists and their interactions (synergistic or antagonistic) with micro-
bial consortia. As the field of microbiome research increasingly adopts
multi-kingdom frameworks, such exploratory studies may serve as the
foundation for comprehending broader microbial contributions to host
and environmental health.
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